1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
#include <2geom/sbasis.h>
#include <2geom/sbasis-math.h>
#include <2geom/sbasis-2d.h>
#include <2geom/bezier-to-sbasis.h>
#include <toys/path-cairo.h>
#include <toys/toy-framework-2.h>
using std::vector;
using namespace Geom;
//see a sb2d as an sb of u with coef in sbasis of v.
void
u_coef(SBasis2d f, unsigned deg, SBasis &a, SBasis &b) {
a = SBasis(f.vs, Linear());
b = SBasis(f.vs, Linear());
for (unsigned v=0; v<f.vs; v++){
a[v] = Linear(f.index(deg,v)[0], f.index(deg,v)[2]);
b[v] = Linear(f.index(deg,v)[1], f.index(deg,v)[3]);
}
}
void
v_coef(SBasis2d f, unsigned deg, SBasis &a, SBasis &b) {
a = SBasis(f.us, Linear());
b = SBasis(f.us, Linear());
for (unsigned u=0; u<f.us; u++){
a[u] = Linear(f.index(deg,u)[0], f.index(deg,u)[1]);
b[u] = Linear(f.index(deg,u)[2], f.index(deg,u)[3]);
}
}
//TODO: implement sb2d algebra!!
SBasis2d y_x2(){
SBasis2d result(Linear2d(0,-1,1,0));
result.push_back(Linear2d(1,1,1,1));
result.us = 2;
result.vs = 1;
return result;
}
SBasis2d x2_plus_y2_1(){
/*TODO: implement sb2d algebra!!
SBasis2d one(Linear2d(1,1,1,1));
SBasis2d u(Linear2d(0,1,0,1));
SBasis2d v(Linear2d(0,0,1,1));
return(u*u+v*v-one);
*/
SBasis2d result(Linear2d(-1,0,0,1));//x+y-1
result.push_back(Linear2d(-1,-1,-1,-1));
result.push_back(Linear2d(-4,-1,-1,-1));
result.push_back(Linear2d(0,0,0,0));
result.us = 2;
result.vs = 2;
return result;
}
struct Frame
{
Geom::Point O;
Geom::Point x;
Geom::Point y;
Geom::Point z;
};
void
plot3d(cairo_t *cr, SBasis const &x, SBasis const &y, SBasis const &z, Frame frame){
D2<SBasis> curve;
for (unsigned dim=0; dim<2; dim++){
curve[dim] = x*frame.x[dim] + y*frame.y[dim] + z*frame.z[dim];
curve[dim] += frame.O[dim];
}
cairo_d2_sb(cr, curve);
}
void
plot3d(cairo_t *cr,
Piecewise<SBasis> const &x,
Piecewise<SBasis> const &y,
Piecewise<SBasis> const &z, Frame frame){
Piecewise<SBasis> xx = partition(x,y.cuts);
Piecewise<SBasis> xxx = partition(xx,z.cuts);
Piecewise<SBasis> yyy = partition(y,xxx.cuts);
Piecewise<SBasis> zzz = partition(z,xxx.cuts);
for (unsigned i=0; i<xxx.size(); i++){
plot3d(cr, xxx[i], yyy[i], zzz[i], frame);
}
}
void
plot3d(cairo_t *cr, SBasis2d const &f, Frame frame, int NbRays=5){
for (int i=0; i<=NbRays; i++){
D2<SBasis> seg(SBasis(0.,1.), SBasis(i*1./NbRays, i*1./NbRays));
SBasis f_on_seg = compose(f,seg);
plot3d(cr,seg[X],seg[Y],f_on_seg,frame);
}
for (int i=0; i<NbRays; i++){
D2<SBasis> seg(SBasis(i*1./NbRays, i*1./NbRays), SBasis(0.,1.));
SBasis f_on_seg = compose(f,seg);
plot3d(cr,seg[X],seg[Y],f_on_seg,frame);
}
}
void
plot3d_top(cairo_t *cr, SBasis2d const &f, Frame frame, int NbRays=5){
for (int i=0; i<=NbRays; i++){
for(int j=0; j<2; j++){
D2<SBasis> seg;
if (j==0){
seg = D2<SBasis>(SBasis(0.,1.), SBasis(i*1./NbRays, i*1./NbRays));
}else{
seg = D2<SBasis>(SBasis(i*1./NbRays,i*1./NbRays), SBasis(0.,1.));
}
SBasis f_on_seg = compose(f,seg);
std::vector<double> rts = roots(f_on_seg);
if (rts.size()==0||rts.back()<1) rts.push_back(1.);
double t1,t0 = 0;
for (unsigned i=(rts.front()<=0?1:0); i<rts.size(); i++){
t1 = rts[i];
if (f_on_seg((t0+t1)/2)>0)
plot3d(cr,seg[X](Linear(t0,t1)),seg[Y](Linear(t0,t1)),f_on_seg(Linear(t0,t1)),frame);
t0=t1;
}
//plot3d(cr,seg[X],seg[Y],f_on_seg,frame);
}
}
}
#include <gsl/gsl_multimin.h>
class Sb2dSolverToy: public Toy {
public:
PointSetHandle hand;
Sb2dSolverToy() {
handles.push_back(&hand);
}
class bits_n_bobs{
public:
SBasis2d * ff;
Point A, B;
Point dA, dB;
};
static double
my_f (const gsl_vector *v, void *params)
{
double x, y;
bits_n_bobs* bnb = (bits_n_bobs *)params;
x = gsl_vector_get(v, 0);
y = gsl_vector_get(v, 1);
Bezier b0(bnb->B[0], bnb->B[0]+bnb->dB[0]*x, bnb->A[0]+bnb->dA[0]*y, bnb->A[0]);
Bezier b1(bnb->B[1], bnb->B[1]+bnb->dB[1]*x, bnb->A[1]+bnb->dA[1]*y, bnb->A[1]);
D2<SBasis> zeroset(b0.toSBasis(), b1.toSBasis());
SBasis comp = compose((*bnb->ff),zeroset);
Interval bounds = *bounds_fast(comp);
double error = (bounds.max()>-bounds.min() ? bounds.max() : -bounds.min() );
//printf("error = %g %g %g\n", bounds.max(), bounds.min(), error);
return error*error;
}
void draw(cairo_t *cr, std::ostringstream *notify, int width, int height, bool save, std::ostringstream *timer_stream) override {
double slider_top = width/4.;
double slider_bot = width*3./4.;
double slider_margin = width/8.;
if(hand.pts.empty()) {
hand.pts.emplace_back(width*3./16., 3*width/4.);
hand.pts.push_back(hand.pts[0] + Geom::Point(width/2., 0));
hand.pts.push_back(hand.pts[0] + Geom::Point(width/8., -width/12.));
hand.pts.push_back(hand.pts[0] + Geom::Point(0,-width/4.));
hand.pts.emplace_back(slider_margin,slider_bot);
hand.pts.emplace_back(width-slider_margin,slider_top);
}
hand.pts[4][X] = slider_margin;
if (hand.pts[4][Y]<slider_top) hand.pts[4][Y] = slider_top;
if (hand.pts[4][Y]>slider_bot) hand.pts[4][Y] = slider_bot;
hand.pts[5][X] = width-slider_margin;
if (hand.pts[5][Y]<slider_top) hand.pts[5][Y] = slider_top;
if (hand.pts[5][Y]>slider_bot) hand.pts[5][Y] = slider_bot;
double tA = (slider_bot-hand.pts[4][Y])/(slider_bot-slider_top);
double tB = (slider_bot-hand.pts[5][Y])/(slider_bot-slider_top);
cairo_move_to(cr,Geom::Point(slider_margin,slider_bot));
cairo_line_to(cr,Geom::Point(slider_margin,slider_top));
cairo_move_to(cr,Geom::Point(width-slider_margin,slider_bot));
cairo_line_to(cr,Geom::Point(width-slider_margin,slider_top));
cairo_set_line_width(cr,.5);
cairo_set_source_rgba (cr, 0., 0.3, 0., 1.);
cairo_stroke(cr);
Frame frame;
frame.O = hand.pts[0];//
frame.x = hand.pts[1]-hand.pts[0];//
frame.y = hand.pts[2]-hand.pts[0];//
frame.z = hand.pts[3]-hand.pts[0];//
/*
SBasis2d f = y_x2();
D2<SBasis> true_solution(Linear(0,1),Linear(0,1));
true_solution[Y].push_back(Linear(-1,-1));
SBasis zero = SBasis(Linear(0.));
Geom::Point A = true_solution(tA);
Geom::Point B = true_solution(tB);
*/
SBasis2d f = x2_plus_y2_1();
D2<Piecewise<SBasis> > true_solution;
true_solution[X] = cos(SBasis(Linear(0,3.141592/2)));
true_solution[Y] = sin(SBasis(Linear(0,3.141592/2)));
Piecewise<SBasis> zero = Piecewise<SBasis>(SBasis(Linear(0.)));
//Geom::Point A(cos(tA*M_PI/2), sin(tA*M_PI/2));// = true_solution(tA);
//Geom::Point B(cos(tB*M_PI/2), sin(tB*M_PI/2));// = true_solution(tB);
Geom::Point A = true_solution(tA);
Geom::Point B = true_solution(tB);
Point dA(-sin(tA*M_PI/2), cos(tA*M_PI/2));
Geom::Point dB(-sin(tB*M_PI/2), cos(tB*M_PI/2));
SBasis2d dfdu = partial_derivative(f, 0);
SBasis2d dfdv = partial_derivative(f, 1);
Geom::Point dfA(dfdu.apply(A[X],A[Y]),dfdv.apply(A[X],A[Y]));
Geom::Point dfB(dfdu.apply(B[X],B[Y]),dfdv.apply(B[X],B[Y]));
dA = rot90(dfA);
dB = rot90(dfB);
plot3d(cr,Linear(0,1),Linear(0,0),Linear(0,0),frame);
plot3d(cr,Linear(0,1),Linear(1,1),Linear(0,0),frame);
plot3d(cr,Linear(0,0),Linear(0,1),Linear(0,0),frame);
plot3d(cr,Linear(1,1),Linear(0,1),Linear(0,0),frame);
cairo_set_line_width(cr,.2);
cairo_set_source_rgba (cr, 0., 0., 0., 1.);
cairo_stroke(cr);
plot3d_top(cr,f,frame);
cairo_set_line_width(cr,1);
cairo_set_source_rgba (cr, .5, 0.5, 0.5, 1.);
cairo_stroke(cr);
plot3d(cr,f,frame);
cairo_set_line_width(cr,.2);
cairo_set_source_rgba (cr, .5, 0.5, 0.5, 1.);
cairo_stroke(cr);
plot3d(cr, true_solution[X], true_solution[Y], zero, frame);
cairo_set_line_width(cr,.5);
cairo_set_source_rgba (cr, 0., 0., 0., 1.);
cairo_stroke(cr);
double error;
for(int degree = 2; degree < 2; degree++) {
D2<SBasis> zeroset = sb2dsolve(f,A,B,degree);
plot3d(cr, zeroset[X], zeroset[Y], SBasis(Linear(0.)),frame);
cairo_set_line_width(cr,1);
cairo_set_source_rgba (cr, 0.9, 0., 0., 1.);
cairo_stroke(cr);
SBasis comp = compose(f,zeroset);
plot3d(cr, zeroset[X], zeroset[Y], comp, frame);
cairo_set_source_rgba (cr, 0.7, 0., 0.7, 1.);
cairo_stroke(cr);
//Fix Me: bounds_exact does not work here?!?!
Interval bounds = *bounds_fast(comp);
error = (bounds.max()>-bounds.min() ? bounds.max() : -bounds.min() );
}
if (1) {
bits_n_bobs par = {&f, A, B, dA, dB};
bits_n_bobs* bnb = ∥
std::cout << f[0] << "= initial f \n";
const gsl_multimin_fminimizer_type *T =
gsl_multimin_fminimizer_nmsimplex;
gsl_multimin_fminimizer *s = NULL;
gsl_vector *ss, *x;
gsl_multimin_function minex_func;
size_t iter = 0;
int status;
double size;
/* Starting point */
x = gsl_vector_alloc (2);
gsl_vector_set (x, 0, 0.552); // magic number for quarter circle
gsl_vector_set (x, 1, 0.552);
/* Set initial step sizes to 1 */
ss = gsl_vector_alloc (2);
gsl_vector_set_all (ss, 0.1);
/* Initialize method and iterate */
minex_func.n = 2;
minex_func.f = &my_f;
minex_func.params = (void *)∥
s = gsl_multimin_fminimizer_alloc (T, 2);
gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
do
{
iter++;
status = gsl_multimin_fminimizer_iterate(s);
if (status)
break;
size = gsl_multimin_fminimizer_size (s);
status = gsl_multimin_test_size (size, 1e-7);
if (status == GSL_SUCCESS)
{
printf ("converged to minimum at\n");
}
}
while (status == GSL_CONTINUE && iter < 100);
printf ("%5lu %g %gf f() = %g size = %g\n",
iter,
gsl_vector_get (s->x, 0),
gsl_vector_get (s->x, 1),
s->fval, size);
{
double x = gsl_vector_get(s->x, 0);
double y = gsl_vector_get(s->x, 1);
Bezier b0(bnb->B[0], bnb->B[0]+bnb->dB[0]*x, bnb->A[0]+bnb->dA[0]*y, bnb->A[0]);
Bezier b1(bnb->B[1], bnb->B[1]+bnb->dB[1]*x, bnb->A[1]+bnb->dA[1]*y, bnb->A[1]);
D2<SBasis> zeroset(b0.toSBasis(), b1.toSBasis());
plot3d(cr, zeroset[X], zeroset[Y], SBasis(Linear(0.)),frame);
cairo_set_line_width(cr,1);
cairo_set_source_rgba (cr, 0.9, 0., 0., 1.);
cairo_stroke(cr);
SBasis comp = compose(f,zeroset);
plot3d(cr, zeroset[X], zeroset[Y], comp, frame);
cairo_set_source_rgba (cr, 0.7, 0., 0.7, 1.);
cairo_stroke(cr);
//Fix Me: bounds_exact does not work here?!?!
Interval bounds = *bounds_fast(comp);
error = (bounds.max()>-bounds.min() ? bounds.max() : -bounds.min() );
}
gsl_vector_free(x);
gsl_vector_free(ss);
gsl_multimin_fminimizer_free (s);
}
*notify << "Gray: f-graph and true solution,\n";
*notify << "Red: solver solution,\n";
*notify << "Purple: value of f over solver solution.\n";
*notify << " error: "<< error <<".\n";
Toy::draw(cr, notify, width, height, save,timer_stream);
}
};
int main(int argc, char **argv) {
init(argc, argv, new Sb2dSolverToy());
return 0;
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|