summaryrefslogtreecommitdiffstats
path: root/src/toys/smash-intersector.cpp
blob: b01acfb32f3f211c6edb1dc0c7cec2645afcf8f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
/*
 * Diffeomorphism-based intersector: given two curves
 *  M(t)=(x(t),y(t)) and N(u)=(X(u),Y(u))
 * and supposing M is a graph over the x-axis, we compute y(x) and solve
 *  Y(u) - y(X(u)) = 0
 * to get the intersections of the two curves...
 *
 * Notice the result can be far from intuitive because of the choice we have
 * to make to consider a curve as a graph over x or y. For instance the two
 * branches of xy=eps are never close from this point of view (!)...
 *
 * Authors:
 * 		J.-F. Barraud    <jfbarraud at gmail.com>
 * Copyright 2010  authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */


#include <2geom/d2.h>
#include <2geom/sbasis.h>
#include <2geom/path.h>
#include <2geom/bezier-to-sbasis.h>
#include <2geom/sbasis-geometric.h>
#include <toys/path-cairo.h>
#include <toys/toy-framework-2.h>

#include <cstdlib>
#include <cstdio>
#include <set>
#include <vector>
#include <algorithm>

#include <2geom/orphan-code/intersection-by-smashing.h>
#include "../2geom/orphan-code/intersection-by-smashing.cpp"

using namespace Geom;

#define VERBOSE 0

static double exp_rescale(double x){ return ::pow(10, x);}
std::string exp_formatter(double x){ return default_formatter(exp_rescale(x));}



#if 0
//useless here;
Piecewise<D2<SBasis> > linearizeCusps( D2<SBasis> f, double tol){
	D2<SBasis> df = derivative( f );
	std::vector<Interval> xdoms = level_set( df[X], 0., tol);
	std::vector<Interval> ydoms = level_set( df[Y], 0., tol);
	std::vector<Interval> doms;
	//TODO: use order!!
	for ( unsigned i=0; i<xdoms.size(); i++ ){
		OptInterval inter = xdoms[i];
		for ( unsigned j=0; j<ydoms.size(); j++ ){
			inter &= ydoms[j];
		}
		if (inter) {
			doms.push_back( *inter );
		}
	}
	Piecewise<D2<SBasis> > result;
	if (doms.size() == 0 ) return Piecewise<D2<SBasis> >(f);
	if (doms[0].min() > 0 ){
		result.cuts.push_back( 0 );
		result.cuts.push_back( doms[0].min() );
		result.segs.push_back( portion( f, Interval( 0, doms[0].min() ) ) );
	}
	for ( unsigned i=0; i<doms.size(); i++ ){
		Point a = result.segs.back().at1();
		Point b = f.valueAt( doms[i].middle() );
		Point c = f.valueAt( doms[i].max() );
		result.cuts.push_back( doms[i].middle() );
		result.segs.push_back( D2<SBasis>( Linear( a[X], b[X] ), Linear( a[Y], b[Y] ) ) );
		result.cuts.push_back( doms[i].max() );
		result.segs.push_back( D2<SBasis>( Linear( b[X], c[X] ), Linear( b[Y], c[Y] ) ) );
		double t = ( i+1 == doms.size() )? 1 : doms[i+1].min();
		result.cuts.push_back( t );
		result.segs.push_back( portion( f, Interval( doms[i].max(), t ) ) );
	}
	return result;
}
#endif

#if 0
/* Computes the intersection of two sets given as (ordered) union intervals.
 */
std::vector<Interval> intersect( std::vector<Interval> const &a, std::vector<Interval> const &b){
	std::vector<Interval> result;
	//TODO: use order!
	for (unsigned i=0; i < a.size(); i++){
		for (unsigned j=0; j < b.size(); j++){
			OptInterval c( a[i] );
			c &= b[j];
			if ( c ) {
				result.push_back( *c );
			}
		}
	}
	return result;
}

/* Computes the top and bottom boundaries of the L_\infty neighborhood
 * of a curve. The curve is supposed to be a graph over the x-axis.
 */
void computeLinfinityNeighborhood( D2<SBasis > const &f, double tol, D2<Piecewise<SBasis> > &topside, D2<Piecewise<SBasis> > &botside ){
	double signx = ( f[X].at0() > f[X].at1() )? -1 : 1;
	double signy = ( f[Y].at0() > f[Y].at1() )? -1 : 1;

	Piecewise<D2<SBasis> > top, bot;
	top = Piecewise<D2<SBasis> > (f);
	top.cuts.insert( top.cuts.end(), 2);
	top.segs.insert( top.segs.end(), D2<SBasis>(Linear( f[X].at1(), f[X].at1()+2*tol*signx),
			                                    Linear( f[Y].at1() )) );
	bot = Piecewise<D2<SBasis> >(f);
	bot.cuts.insert( bot.cuts.begin(), - 1 );
	bot.segs.insert( bot.segs.begin(), D2<SBasis>(Linear( f[X].at0()-2*tol*signx, f[X].at0()),
												  Linear( f[Y].at0() )) );
	top += Point(-tol*signx,  tol);
	bot += Point( tol*signx, -tol);

	if ( signy < 0 ){
		swap( top, bot );
		top += Point( 0,  2*tol);
		bot += Point( 0, -2*tol);
	}
	topside = make_cuts_independent(top);
	botside = make_cuts_independent(bot);
}


/*Compute top and bottom boundaries of the L^infty nbhd of the graph of a *monotonic* function f.
 * if f is increasing, it is given by [f(t-tol)-tol, f(t+tol)+tol].
 * if not, it is [f(t+tol)-tol, f(t-tol)+tol].
 */
void computeLinfinityNeighborhood( Piecewise<SBasis> const &f, double tol, Piecewise<SBasis> &top, Piecewise<SBasis> &bot){
	top = f + tol;
	top.offsetDomain( - tol );
	top.cuts.insert( top.cuts.end(), f.domain().max() + tol);
	top.segs.insert( top.segs.end(), SBasis(Linear( f.lastValue() + tol )) );

	bot = f - tol;
	bot.offsetDomain( tol );
	bot.cuts.insert( bot.cuts.begin(), f.domain().min() - tol);
	bot.segs.insert( bot.segs.begin(), SBasis(Linear( f.firstValue() - tol )) );

	if ( f.firstValue() > f.lastValue() ){
	swap( top, bot );
	top += 2*tol;
	bot -= 2*tol;
	}
}

std::vector<Interval> level_set( D2<SBasis> const &f, Rect region){
	std::vector<Interval> x_in_reg = level_set( f[X], region[X] );
	std::vector<Interval> y_in_reg = level_set( f[Y], region[Y] );
	std::vector<Interval> result = intersect ( x_in_reg, y_in_reg );
	return result;
}

void prolongateByConstants( Piecewise<SBasis> &f, double paddle_width ){
	if ( f.size() == 0 ) return; //do we have a covention about the domain of empty pwsb?
	f.cuts.insert( f.cuts.begin(), f.cuts.front() - paddle_width );
	f.segs.insert( f.segs.begin(), SBasis( f.segs.front().at0() ) );
	f.cuts.insert( f.cuts.end(), f.cuts.back() + paddle_width );
	f.segs.insert( f.segs.end(), SBasis( f.segs.back().at1() ) );
}



/* Returns the intervals over which the curve keeps its slope
 * in one of the 8 sectors delimited by x=0, y=0, y=x, y=-x.
 * WARNING: both curves are supposed to be a graphs over x or y axis,
 *     and the smaller the slopes the better (typically <=45°).
 */
std::vector<std::pair<Interval, Interval> > smash_intersect( D2<SBasis> const &a, D2<SBasis> const &b,
			double tol, cairo_t *cr , bool draw_more_stuff=false ){

	std::vector<std::pair<Interval, Interval> > res;

	// a and b or X and Y may have to be exchanged, so make local copies.
	D2<SBasis> aa = a;
	D2<SBasis> bb = b;
	bool swapresult = false;
	bool swapcoord = false;//debug only!

	if ( draw_more_stuff ){
		cairo_set_line_width (cr, 3);
		cairo_set_source_rgba(cr, .5, .9, .7, 1 );
		cairo_d2_sb(cr, aa);
		cairo_d2_sb(cr, bb);
		cairo_stroke(cr);
	}

#if 1
	//if the (enlarged) bounding boxes don't intersect, stop.
	if ( !draw_more_stuff ){
		OptRect abounds = bounds_fast( a );
		OptRect bbounds = bounds_fast( b );
		if ( !abounds || !bbounds ) return res;
		abounds->expandBy(tol);
		if ( !(abounds->intersects(*bbounds))){
			return res;
		}
	}
#endif

	//Choose the best curve to be re-parametrized by x or y values.
	OptRect dabounds = bounds_exact(derivative(a));
	OptRect dbbounds = bounds_exact(derivative(b));
	if	( dbbounds->min().length() > dabounds->min().length() ){
		aa=b;
		bb=a;
		swap( dabounds, dbbounds );
		swapresult = true;
	}

	//Choose the best coordinate to use as new parameter
	double dxmin = std::min( abs((*dabounds)[X].max()), abs((*dabounds)[X].min()) );
	double dymin = std::min( abs((*dabounds)[Y].max()), abs((*dabounds)[Y].min()) );
	if ( (*dabounds)[X].max()*(*dabounds)[X].min() < 0 ) dxmin=0;
	if ( (*dabounds)[Y].max()*(*dabounds)[Y].min() < 0 ) dymin=0;
	assert (dxmin>=0 && dymin>=0);

	if (dxmin < dymin) {
		aa = D2<SBasis>( aa[Y], aa[X] );
		bb = D2<SBasis>( bb[Y], bb[X] );
		swapcoord = true;
	}

	//re-parametrize aa by the value of x.
	Interval x_range_strict( aa[X].at0(), aa[X].at1() );
	Piecewise<SBasis> y_of_x = pw_compose_inverse(aa[Y],aa[X], 2, 1e-5);

	//Compute top and bottom boundaries of the L^infty nbhd of aa.
	Piecewise<SBasis> top_ay, bot_ay;
	computeLinfinityNeighborhood( y_of_x, tol, top_ay, bot_ay);

	Interval ax_range = top_ay.domain();//i.e. aa[X] domain ewpanded by tol.

	if ( draw_more_stuff ){
		Piecewise<SBasis> dbg_x( SBasis( Linear( top_ay.domain().min(), top_ay.domain().max() ) ) );
		dbg_x.setDomain( top_ay.domain() );
		D2<Piecewise<SBasis> > dbg_side ( Piecewise<SBasis>( SBasis( Linear(   0    ) ) ),
				                          Piecewise<SBasis>( SBasis( Linear( 0, 2*tol) ) ) );

		D2<Piecewise<SBasis> > dbg_rgn;
		unsigned h = ( swapcoord ) ? Y : X;
		dbg_rgn[h].concat ( dbg_x );
		dbg_rgn[h].concat ( dbg_side[X] + dbg_x.lastValue() );
		dbg_rgn[h].concat ( reverse(dbg_x) );
		dbg_rgn[h].concat ( dbg_side[X] + dbg_x.firstValue() );

		dbg_rgn[1-h].concat ( bot_ay );
		dbg_rgn[1-h].concat ( dbg_side[Y] + bot_ay.lastValue() );
		dbg_rgn[1-h].concat ( reverse(top_ay) );
		dbg_rgn[1-h].concat ( reverse( dbg_side[Y] ) + bot_ay.firstValue() );

		cairo_set_line_width (cr, 1.);
		cairo_set_source_rgba(cr, 0., 1., 0., .75 );
		cairo_d2_pw_sb(cr, dbg_rgn );
		cairo_stroke(cr);

		D2<SBasis> bbb = bb;
		if ( swapcoord ) swap( bbb[X], bbb[Y] );
		//Piecewise<D2<SBasis> > dbg_rgnB = neighborhood( bbb, tol );
		D2<Piecewise<SBasis> > dbg_topB, dbg_botB;
		computeLinfinityNeighborhood( bbb, tol, dbg_topB, dbg_botB );
		cairo_set_line_width (cr, 1.);
		cairo_set_source_rgba(cr, .2, 8., .2, .4 );
//		cairo_pw_d2_sb(cr, dbg_rgnB );
		cairo_d2_pw_sb(cr, dbg_topB );
		cairo_d2_pw_sb(cr, dbg_botB );
		cairo_stroke(cr);
	}

	std::vector<Interval> bx_in_ax_range = level_set(bb[X], ax_range );

	// find times when bb is in the neighborhood of aa.
	std::vector<Interval> tbs;
	for (unsigned i=0; i<bx_in_ax_range.size(); i++){
		D2<Piecewise<SBasis> > bb_in;
		bb_in[X] = Piecewise<SBasis> ( portion( bb[X], bx_in_ax_range[i] ) );
		bb_in[Y] = Piecewise<SBasis> ( portion( bb[Y], bx_in_ax_range[i]) );
		bb_in[X].setDomain( bx_in_ax_range[i] );
		bb_in[Y].setDomain( bx_in_ax_range[i] );

		Piecewise<SBasis> h;
		Interval level;
		h = bb_in[Y] - compose( top_ay, bb_in[X] );
		level = Interval( -infinity(), 0 );
		std::vector<Interval> rts_lo = level_set( h, level);
		h = bb_in[Y] - compose( bot_ay, bb_in[X] );
		level = Interval( 0, infinity());
		std::vector<Interval> rts_hi = level_set( h, level);

		std::vector<Interval> rts = intersect( rts_lo, rts_hi );
		tbs.insert(tbs.end(), rts.begin(),  rts.end()  );
	}

	std::vector<std::pair<Interval, Interval> > result(tbs.size(),std::pair<Interval,Interval>());

	/* for each solution I, find times when aa is in the neighborhood of bb(I).
	 * (Note: the preimage of bb[X](I) by aa[X], enlarged by tol, is a good approximation of this:
	 * it would give points in the 2*tol neighborhood of bb (if the slope of aa is never more than 1).
	 *  + faster computation.
	 *  - implies little jumps depending on the subdivision of the input curve into monotonic pieces
	 *  and on the choice of preferred axis. If noticeable, these jumps would feel random to the user :-(
	 */
	for (unsigned j=0; j<tbs.size(); j++){
		result[j].second = tbs[j];
		std::vector<Interval> tas;
		Piecewise<SBasis> fat_y_of_x = y_of_x;
		prolongateByConstants( fat_y_of_x, 100*(1+tol) );

		D2<Piecewise<SBasis> > top_b, bot_b;
		D2<SBasis> bbj = portion( bb, tbs[j] );
		computeLinfinityNeighborhood( bbj, tol, top_b, bot_b );

		Piecewise<SBasis> h;
		Interval level;
		h = top_b[Y] - compose( fat_y_of_x, top_b[X] );
		level = Interval( +infinity(), 0 );
		std::vector<Interval> rts_top = level_set( h, level);
		for (unsigned idx=0; idx < rts_top.size(); idx++){
			rts_top[idx] = Interval( top_b[X].valueAt( rts_top[idx].min() ),
									 top_b[X].valueAt( rts_top[idx].max() ) );
		}
		assert( rts_top.size() == 1 );

		h = bot_b[Y] - compose( fat_y_of_x, bot_b[X] );
		level = Interval( 0, -infinity());
		std::vector<Interval> rts_bot = level_set( h, level);
		for (unsigned idx=0; idx < rts_bot.size(); idx++){
			rts_bot[idx] = Interval( bot_b[X].valueAt( rts_bot[idx].min() ),
									 bot_b[X].valueAt( rts_bot[idx].max() ) );
		}
		assert( rts_bot.size() == 1 );

#if VERBOSE
		printf("range(aa[X]) = [%f, %f];\n", y_of_x.domain().min(), y_of_x.domain().max());
		printf("range(bbj[X]) = [%f, %f]; tol= %f\n", bbj[X].at0(), bbj[X].at1(), tol);

		printf("rts_top = ");
		for (unsigned dbgi=0; dbgi<rts_top.size(); dbgi++){
			printf("[%f,%f]U", rts_top[dbgi].min(), rts_top[dbgi].max() );
		}
		printf("\n");
		printf("rts_bot = ");
		for (unsigned dbgi=0; dbgi<rts_bot.size(); dbgi++){
			printf("[%f,%f]U", rts_bot[dbgi].min(), rts_bot[dbgi].max() );
		}
		printf("\n");
#endif
		rts_top = intersect( rts_top, rts_bot );
#if VERBOSE
		printf("intersection = ");
		for (unsigned dbgi=0; dbgi<rts_top.size(); dbgi++){
			printf("[%f,%f]U", rts_top[dbgi].min(), rts_top[dbgi].max() );
		}
		printf("\n\n");

		if (rts_top.size() != 1){
			printf("!!!!!!!!!!!!!!!!!!!!!!\n!!!!!!!!!!!!!!!!!!!!!!\n");
			rts_top[0].unionWith( rts_top[1] );
			assert( false );
		}
#endif
		assert (rts_top.size() == 1);
		Interval x_dom = rts_top[0];

		if ( x_dom.max() <= x_range_strict.min() ){
			tas.push_back( Interval ( ( aa[X].at0() < aa[X].at1() ) ? 0 : 1 ) );
		}else if ( x_dom.min() >= x_range_strict.max() ){
			tas.push_back( Interval ( ( aa[X].at0() < aa[X].at1() ) ? 1 : 0 ) );
		}else{
			tas = level_set(aa[X], x_dom );
		}

#if VERBOSE
		if ( tas.size() != 1 ){
			printf("Error: preimage of [%f, %f] by x:[0,1]->[%f, %f] is ",
					x_dom.min(), x_dom.max(), x_range_strict.min(), x_range_strict.max());
			if ( tas.size() == 0 ){
				printf( "empty.\n");
			}else{
				printf("\n   [%f,%f]", tas[0].min(), tas[0].max() );
				for (unsigned toto=1; toto<tas.size(); toto++){
					printf(" U [%f,%f]", tas[toto].min(), tas[toto].max() );
				}
			}
		}
#endif
		assert( tas.size()==1 );
		result[j].first = tas.front();
	}

	if (swapresult) {
		for ( unsigned i=0; i<result.size(); i++){
			Interval temp = result[i].first;
			result[i].first = result[i].second;
			result[i].second = temp;
		}
	}
	return result;
}

#endif

class Intersector : public Toy
{
  private:
	void draw( cairo_t *cr,	std::ostringstream *notify,
    		   int width, int height, bool save, std::ostringstream *timer_stream) override 
    {
        double tol = exp_rescale(slider.value());
    	D2<SBasis> A = handles_to_sbasis(psh.pts.begin(), A_bez_ord-1);
        D2<SBasis> B = handles_to_sbasis(psh.pts.begin()+A_bez_ord, B_bez_ord-1);
    	cairo_set_line_width (cr, .8);
    	cairo_set_source_rgba(cr,0.,0.,0.,.6);
        cairo_d2_sb(cr, A);
        cairo_d2_sb(cr, B);
    	cairo_stroke(cr);

    	Rect tolbytol( anchor.pos, anchor.pos );
    	tolbytol.expandBy( tol );
        cairo_rectangle(cr, tolbytol);
    	cairo_stroke(cr);
/*
		Piecewise<D2<SBasis> > smthA = linearizeCusps(A+Point(0,10), tol);
        cairo_set_line_width (cr, 1.);
        cairo_set_source_rgba(cr, 1., 0., 1., 1. );
        cairo_pw_d2_sb(cr, smthA);
    	cairo_stroke(cr);
*/

        std::vector<Interval> Acuts = monotonicSplit(A);
        std::vector<Interval> Bcuts = monotonicSplit(B);

#if 0
        for (unsigned i=0; i<Acuts.size(); i++){
        	D2<SBasis> Ai = portion( A, Acuts[i]);
            cairo_set_line_width (cr, .2);
            cairo_set_source_rgba(cr, 0., 0., 0., 1. );
            draw_cross(cr, Ai.at0());
        	cairo_stroke(cr);
        	for (unsigned j=0; j<Bcuts.size(); j++){
            	std::vector<std::pair<Interval, Interval> > my_intersections;
            	D2<SBasis> Bj = portion( B, Bcuts[j]);
                cairo_set_line_width (cr, .2);
                cairo_set_source_rgba(cr, 0., 0., 0., 1. );
                draw_cross(cr, Bj.at0());
            	cairo_stroke(cr);
        	}
        }
#endif

		std::vector<SmashIntersection> my_intersections;
     	my_intersections = smash_intersect( A, B, tol );

     	for (auto & my_intersection : my_intersections){
     		cairo_set_line_width (cr, 2.5);
            cairo_set_source_rgba(cr, 1., 0., 0., .8 );
            cairo_d2_sb(cr, portion( A, my_intersection.times[X]));
        	cairo_stroke(cr);
            cairo_set_line_width (cr, 2.5);
            cairo_set_source_rgba(cr, 0., 0., 1., .8 );
            cairo_d2_sb(cr, portion( B, my_intersection.times[Y]));
        	cairo_stroke(cr);
     	}
#if 0

        unsigned apiece( slidera.value()/100. * Acuts.size() );
        unsigned bpiece( sliderb.value()/100. * Bcuts.size() );


        for (unsigned i=0; i<Acuts.size(); i++){
        	D2<SBasis> Ai = portion( A, Acuts[i]);
        	for (unsigned j=0; j<Bcuts.size(); j++){
            	if ( toggle.on &&  (i != apiece || j != bpiece) ) continue;

        		std::vector<SmashIntersection> my_intersections;
            	D2<SBasis> Bj = portion( B, Bcuts[j]);
            	bool draw_more = toggle.on &&  i == apiece && j == bpiece;
//             	my_intersections = smash_intersect( Ai, Bj, tol, cr, draw_more );
             	my_intersections = monotonic_smash_intersect( Ai, Bj, tol );

             	for (unsigned k=0; k<my_intersections.size(); k++){
             		cairo_set_line_width (cr, 2.5);
                    cairo_set_source_rgba(cr, 1., 0., 0., .8 );
                    cairo_d2_sb(cr, portion( Ai, my_intersections[k].times[X]));
                	cairo_stroke(cr);
                    cairo_set_line_width (cr, 2.5);
                    cairo_set_source_rgba(cr, 0., 0., 1., .8 );
                    cairo_d2_sb(cr, portion( Bj, my_intersections[k].times[Y]));
                	cairo_stroke(cr);
             	}
            }
        }
#endif
        Toy::draw(cr, notify, width, height, save,timer_stream);
    }
	
  public:
    Intersector(unsigned int _A_bez_ord, unsigned int _B_bez_ord)
		: A_bez_ord(_A_bez_ord), B_bez_ord(_B_bez_ord)
	{
    	unsigned int total_handles = A_bez_ord + B_bez_ord;
		for ( unsigned int i = 0; i < total_handles; ++i )
			psh.push_back(Geom::Point(uniform()*400, uniform()*400));
		handles.push_back(&psh);
		slider = Slider(-4, 2, 0, 1.2, "tolerance");
		slider.geometry(Point(30, 20), 250);
		slider.formatter(&exp_formatter);
		handles.push_back(&slider);
		slidera = Slider(0, 100, 1, 0., "piece on A");
		slidera.geometry(Point(300, 50), 250);
		handles.push_back(&slidera);
		sliderb = Slider(0, 100, 1, 0., "piece on B");
		sliderb.geometry(Point(300, 80), 250);
		handles.push_back(&sliderb);
		toggle = Toggle( Rect(Point(300,10), Point(440,30)), "Piece by piece", false );
		handles.push_back(&toggle);
		anchor = PointHandle ( Point(100, 100 ) );
		handles.push_back(&anchor);
	}
	
  private:
	unsigned int A_bez_ord;
	unsigned int B_bez_ord;
	PointSetHandle psh;
	PointHandle anchor;
	Slider slider,slidera,sliderb;
	Toggle toggle;
};


int main(int argc, char **argv) 
{	
	unsigned int A_bez_ord=4;
	unsigned int B_bez_ord=4;
    if(argc > 2)
        sscanf(argv[2], "%d", &B_bez_ord);
    if(argc > 1)
        sscanf(argv[1], "%d", &A_bez_ord);

    init( argc, argv, new Intersector(A_bez_ord, B_bez_ord));
    return 0;
}


/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :