1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
|
#include <iostream>
#include <2geom/path.h>
#include <2geom/basic-intersection.h>
#include <2geom/pathvector.h>
#include <2geom/exception.h>
#include <cstdlib>
#include <cstdio>
#include <set>
#include <vector>
#include <algorithm>
#include <limits.h>
#define NULL_IDX UINT_MAX
#include <2geom/orphan-code/intersection-by-smashing.h>
#include "../2geom/orphan-code/intersection-by-smashing.cpp"
using namespace Geom;
using namespace std;
/*
The sweeper class takes a PathVector as input and generates "events" to let clients construct the relevant graph.
The basic strategy is the following:
The path is split into "tiles": a tile consists in 2 boxes related by a (monotonic) curve.
The tiles are created at the very beginning, using a sweep, but *no care* is taken to topology
information at this step! All the boxes of all the tiles are then enlarged so that they are
either equal or disjoint.
[TODO: we should look for curves traversing boxes, split them and repeat the process...]
The sweeper maintains a virtual sweepline, that is the limit of the "known area". The tiles can have 2 states:
open if they have one end in the known area, and one in the unknown, closed otherwise.
[TODO: open/close should belong to tiles pointers, not tiles...]
The sorted list of open tiles intersecting the sweep line is called the "context".
*!*WARNING*!*: because the sweep line is not straight, closed tiles can still be in the context!!
they can only be removed once the end of the last box is reached.
The events are changes in the context when the sweep line crosses boxes.
They are obtained by sorting the tiles according to one or the other of theire end boxes depending
on the open/close state.
A "big" event happens when the sweep line reaches a new 'box'. After such a "big" event, the sweep
line goes round the new box along it's 3 other sides.
N.B.: in an ideal world, all tiles ending at one box would be on one side, all the tiles starting
there on the other. Unfortunately, because we have boxes as vertices, things are not that nice:
open/closed tiles can appear in any order around a vertex, even in the monotonic case(!). Morover,
our fat vertices have a non zero "duration", during which many things can happen: this is why we
have to keep closed edges in the context until both ends of theire boxes are reached...
To keep things uniform, such "big" events are split into elementary ones: opening/closing of a single
edge. One such event is generated for each tile around the current 'box', in CCW order (geometrically,
the sweepline is deformed in a neighborhood of the box to go round it for a certain amount, enter the
box and come back inside the box; the piece inside the box is a "virtual edge" that is not added for
good but that we keep track of). The event knows if it's the last one in such a sequence, so that the
client knows when to do the additional work required to "close" the vertex construction. Hmmm. It's
hard to explain the moves without a drawing here...(see sweep.svg in the doc dir). There are
*Closings: insert a new the relevant tile in the context with a "exit" flag.
*Openings: insert a new the relevant tile in the context with a "entry" flag.
At the end of a box, the relevant exit/entries are purged from the context.
N.B. I doubt we can do boolops without building the full graph, i.e. having different clients to obtain
different outputs. So splitting sweeper/grpah builder is maybe not so relevant w/r to functionality
(only code organization).
*/
//TODO: decline intersections algorithms for each kind of curves...
//TODO: write an intersector that can work on sub domains.
//TODO: factor computation of derivative and the like out.
std::vector<SmashIntersection> monotonic_smash_intersect( Curve const &a, Interval a_dom,
Curve const &b, Interval b_dom, double tol){
std::vector<SmashIntersection> result;
D2<SBasis> asb = a.toSBasis();
asb = portion( asb, a_dom );
D2<SBasis> bsb = b.toSBasis();
bsb = portion( bsb, b_dom );
result = monotonic_smash_intersect(asb, bsb, tol );
for (auto & i : result){
i.times[X] *= a_dom.extent();
i.times[X] += a_dom.min();
i.times[Y] *= b_dom.extent();
i.times[Y] += b_dom.min();
}
return result;
}
class Sweeper{
public:
//---------------------------
// utils...
//---------------------------
//near predicate utilized in process_splits
template<typename T>
struct NearPredicate {
double tol;
NearPredicate(double eps):tol(eps){}
NearPredicate(){tol = EPSILON;}//???
bool operator()(T x, T y) { return are_near(x, y, tol); } };
// ensures that f and t are elements of a vector, sorts and uniqueifies
// also asserts that no values fall outside of f and t
// if f is greater than t, the sort is in reverse
void process_splits(std::vector<double> &splits, double f, double t, double tol=EPSILON) {
//splits.push_back(f);
//splits.push_back(t);
std::sort(splits.begin(), splits.end());
std::vector<double>::iterator end = std::unique(splits.begin(), splits.end(), NearPredicate<double>(tol));
splits.resize(end - splits.begin());
//remove any splits which fall outside t / f
while(!splits.empty() && splits.front() < f+tol) splits.erase(splits.begin());
splits.insert(splits.begin(), f);
//splits[0] = f;
while(!splits.empty() && splits.back() > t-tol) splits.erase(splits.end() - 1);
splits.push_back(t);
//splits.back() = t;
}
struct IntersectionMinTimeOrder {
unsigned which;
IntersectionMinTimeOrder (unsigned idx) : which(idx) {}
bool operator()(SmashIntersection const &a, SmashIntersection const &b) const {
return a.times[which].min() < b.times[which].min();
}
};
// ensures that f and t are elements of a vector, sorts and uniqueifies
// also asserts that no values fall outside of f and t
// if f is greater than t, the sort is in reverse
std::vector<std::pair<Interval, Rect> >
process_intersections(std::vector<SmashIntersection> &inters, unsigned which, unsigned tileidx) {
std::vector<std::pair<Interval, Rect> > result;
std::pair<Interval, Rect> apair;
Interval dom ( tiles_data[tileidx].f, tiles_data[tileidx].t );
apair.first = Interval( dom.min() );
apair.second = tiles_data[tileidx].fbox;
result.push_back( apair );
std::sort(inters.begin(), inters.end(), IntersectionMinTimeOrder(which) );
for (auto & inter : inters){
if ( !inter.times[which].intersects( dom ) )//this should never happen.
continue;
if ( result.back().first.intersects( inter.times[which] ) ){
result.back().first.unionWith( inter.times[which] );
result.back().second.unionWith( inter.bbox );
}else{
apair.first = inter.times[which];
apair.second = inter.bbox;
result.push_back( apair );
}
}
apair.first = Interval( dom.max() );
apair.second = tiles_data[tileidx].tbox;
if ( result.size() > 1 && result.back().first.intersects( apair.first ) ){
result.back().first.unionWith( apair.first );
result.back().second.unionWith( apair.second );
}else{
result.push_back( apair );
}
return result;
}
//---------------------------
// Tiles.
//---------------------------
//A tile is a "light edge": just two boxes, joint by a curve.
//it is open iff intersected by the sweepline.
class Tile{
public:
unsigned path;
unsigned curve;
double f;
double t;
Rect fbox, tbox;
bool reversed;//with respect to sweep direction. Flip f/t instead?
bool open;//means sweepline currently cuts it (i.e. one end in the known area, the other in the unknown).
int state;//-1: both ends in unknown area, 0:one end in each, 1: both in known area.
//Warning: we can not delete a tile immediately when it's past(=closed again), only when the end of it's tbox is!.
Rect bbox(){Rect b = fbox; b.unionWith(tbox); return b;}
Point min(){return ( bbox().min() ); }
Point max(){return ( bbox().max() ); }
// Rect cur_box() const {return ((open)^(reversed) ) ? tbox : fbox; }
Rect cur_box() const { return ((state>=0)^(reversed) ) ? tbox : fbox; }
Rect first_box() const {return ( reversed ) ? tbox : fbox; }
Rect last_box() const {return ( reversed ) ? fbox : tbox; }
};
D2<SBasis> tileToSB(Tile const &tile){
//TODO: don't convert each time!!!!!!
assert( tile.path < paths.size() );
assert( tile.curve < paths[tile.path].size() );
D2<SBasis> c = paths[tile.path][tile.curve].toSBasis();
c = portion( c, Interval( tile.f, tile.t ) );
return c;
}
//SweepOrder for Rects or Tiles.
class SweepOrder{
public:
Dim2 dim;
SweepOrder(Dim2 d) : dim(d) {}
bool operator()(const Rect &a, const Rect &b) const {
return Point::LexLessRt(dim)(a.min(), b.min());
}
bool operator()(const Tile &a, const Tile &b) const {
return Point::LexLessRt(dim)(a.cur_box().min(), b.cur_box().min());
}
};
class PtrSweepOrder{
public:
Dim2 dim;
std::vector<Tile>::iterator const begin;
PtrSweepOrder(std::vector<Tile>::iterator const beg, Dim2 d) : dim(d), begin(beg){}
bool operator()(const unsigned a, const unsigned b) const {
return Point::LexLessRt(dim)((begin+a)->cur_box().min(), (begin+b)->cur_box().min());
}
};
//---------------------------
// Vertices.
//---------------------------
//A ray is nothing but an edge ending or starting at a given vertex, + some info about when/where it exited a "separating" box;
struct Ray{
public:
unsigned tile;
bool centrifuge;//true if the intrinsic orientation of curve points away from the vertex.
//exit info:
unsigned exit_side;//0:y=min; 1:x=max; 2:y=max; 3:x=min.
double exit_place; //x or y value on the exit line.
double exit_time; //exit time on curve.
Ray(){tile = NULL_IDX; exit_side = 4;}
Ray(unsigned tile_idx, unsigned s, double p, double t){
tile = tile_idx;
exit_side =s;
exit_place = p;
exit_time = t;
}
Ray(unsigned tile_idx, bool outward){
tile = tile_idx;
exit_side = 4;
centrifuge = outward;
exit_time = (centrifuge) ? 2 : -1 ;
}
void setExitInfo( unsigned side, double place, double time){
exit_side = side;
exit_place = place;
exit_time = time;
}
};
class FatVertex : public Rect{
public:
std::vector<Ray> rays;
FatVertex(const Rect &r, unsigned const tile, bool centrifuge) : Rect(r){
rays.push_back( Ray(tile, centrifuge) );
}
FatVertex(Rect r) : Rect(r){}
FatVertex() : Rect(){}
void erase(unsigned from, unsigned to){
unsigned size = to-from;
from = from % rays.size();
to = from + size;
if (to >= rays.size() ){
to = to % rays.size();
rays.erase( rays.begin()+from, rays.end() );
rays.erase( rays.begin(), rays.begin()+to );
}else{
rays.erase( rays.begin()+from, rays.begin()+to );
}
}
};
//---------------------------
// Context related stuff.
//---------------------------
class Event{
public:
bool opening;//true means an edge is added, otherwise an edge is removed from context.
unsigned tile;//which tile to open/close.
unsigned insert_at;//where to insert the next tile in the context.
//unsigned erase_at;//idx of the tile to close in the context. = context.find(tile).
bool to_be_continued;
bool empty(){
return tile==NULL_IDX;
}
Event(){
opening = false;
insert_at = 0;
//erase_at = 0;
tile = NULL_IDX;
to_be_continued = false;
}
};
void printEvent(Event const &e){
std::printf("Event: ");
std::printf("%s, ", e.opening?"opening":"closing");
std::printf("insert_at:%u, ", e.insert_at);
//std::printf("erase_at:%u, ", e.erase_at);
std::printf("tile:%u.\n", e.tile);
}
class Context : public std::vector<std::pair<unsigned,bool> >{//first = tile, second = true if it's a birth (+).
public:
Point last_pos;
FatVertex pending_vertex;
Event pending_event;
unsigned find(unsigned const tile, bool positive_only=false){
for (unsigned i=0; i<size(); i++){
if ( (*this)[i].first == tile ){
if ( (*this)[i].second || !positive_only ) return i;
}
}
return (*this).size();
}
};
void printContext(){
std::printf("context:[");
for (unsigned i=0; i<context.size(); i++){
unsigned tile = context[i].first;
assert( tile<tiles_data.size() );
std::printf(" %s%u%s", (tiles_data[ tile ].reversed)?"-":"+", tile, (context[i].second)?"o":"c");
// assert( context[i].second || !tiles_data[ tile ].open);
assert( context[i].second || tiles_data[ tile ].state==1);
}
std::printf("]\n");
}
//----
//This is the heart of it all!! Take particular care to non linear sweep line...
//----
//Given a point on the sweep line, (supposed to be the min() of a vertex not yet connected to the already known part),
//find the first edge "after" it in the context. Pretty tricky atm :-(
//TODO: implement this as a lower_bound (?).
unsigned contextRanking(Point const &pt){
// std::printf("contextRanking:------------------------------------\n");
unsigned rank = context.size();
std::vector<unsigned> unmatched_closed_tiles = std::vector<unsigned>();
// std::printf("Scan context.\n");
for (unsigned i=0; i<context.size(); i++){
unsigned tile_idx = context[i].first;
assert( tile_idx < tiles_data.size() );
// std::printf("testing %u (e=%u),", i, tile_idx);
Tile tile = tiles_data[tile_idx];
assert( tile.state >= 0 );
//if the tile is open (i.e. not both ends in the known area) and point is below/above the tile's bbox:
if ( tile.state == 0 ){
// std::printf("opened tile, ");
if (pt[1-dim] < tile.min()[1-dim] ) {
// printContext();
// std::printf("below bbox %u!\n", i);
rank = i;
break;
}
if (pt[1-dim] > tile.max()[1-dim] ){
// std::printf("above bbox %u!\n", i);
continue;
}
//TODO: don't convert each time!!!!!!
D2<SBasis> c = tileToSB( tile );
std::vector<double> times = roots(c[dim]-pt[dim]);
if (times.size()==0){
assert( tile.first_box()[dim].contains(pt[dim]) );
if ( pt[1-dim] < tile.first_box()[1-dim].min() ){
// std::printf("open+hit box %u!\n", i);
rank = i;
break;
}else{
continue;
}
}
if ( pt[1-dim] < c[1-dim](times.front()) ){
// std::printf("open+hit curve %u!\n", i);
rank = i;
break;
}
}
// std::printf("closed tile, ");
//At this point, the tile is closed (i.e. both ends are in the known area)
//Such tiles do 'nested parens' like travels in the unknown area.
//We are interested in the second occurrence only (to give a chance to open tiles to exist in between).
if ( unmatched_closed_tiles.size()==0 || tile_idx != unmatched_closed_tiles.back() ){
unmatched_closed_tiles.push_back( tile_idx );
// std::printf("open paren %u\n",tile_idx);
continue;
}
unmatched_closed_tiles.pop_back();
// std::printf("close paren, ");
if ( !tile.bbox().contains( pt ) ){
continue;
}
// std::printf("in bbox, ");
//At least one of fbox[dim], tbox[dim] has to contain the pt[dim]: assert it?
//Find intersection with the hline(vline if dim=Y) through the point
double hit_place;
//TODO: don't convert each time!!!!!!
D2<SBasis> c = tileToSB( tile );
std::vector<double> times = roots(c[1-dim]-pt[1-dim]);
if ( times.size()>0 ){
// std::printf("hit curve,");
hit_place = c[dim](times.front());
}else{
// std::printf("hit box, ");
//if there was no intersection, the line went through the first_box
assert( tile.first_box()[1-dim].contains(pt[1-dim]) );
continue;
}
if ( pt[dim] > hit_place ){
// std::printf("wrong side, ");
continue;
}
// std::printf("good side, ");
rank = i;
break;
}
// std::printf("rank %u.\n", rank);
// printContext();
assert( rank<=tiles_data.size() );
return rank;
}
//TODO: optimize this.
//it's done the slow way for debugging purpose...
void purgeDeadTiles(){
//std::printf("purge ");
//printContext();
for (unsigned i=0; i<context.size(); i++){
assert( context[i].first<tiles_data.size() );
Tile tile = tiles_data[context[i].first];
if (tile.state==1 && Point::LexLessRt(dim)( tile.fbox.max(), context.last_pos ) && Point::LexLessRt(dim)( tile.tbox.max(), context.last_pos ) ){
// if (!tile.open && Point::LexLessRt(dim)( tile.fbox.max(), context.last_pos ) && Point::LexLessRt(dim)( tile.tbox.max(), context.last_pos ) ){
unsigned j;
for (j=i+1; j<context.size() && context[j].first != context[i].first; j++){}
assert ( j < context.size() );
if ( context[j].first == context[i].first){
assert ( context[j].second == !context[i].second );
context.erase(context.begin()+j);
context.erase(context.begin()+i);
// printContext();
i--;
}
}
}
return;
}
void applyEvent(Event event){
// std::printf("Apply event : ");
if(event.empty()){
// std::printf("empty event!\n");
return;
}
// printEvent(event);
// std::printf(" old ");
// printContext();
assert ( context.begin() + event.insert_at <= context.end() );
if (!event.opening){
// unsigned idx = event.erase_at;
// assert( idx == context.find(event.tile) );
// assert( context[idx].first == event.tile);
tiles_data[event.tile].open = false;
tiles_data[event.tile].state = 1;
//context.erase(context.begin()+idx);
unsigned idx = event.insert_at;
context.insert(context.begin()+idx, std::pair<unsigned, bool>(event.tile, false) );
}else{
unsigned idx = event.insert_at;
tiles_data[event.tile].open = true;
tiles_data[event.tile].state = 0;
context.insert(context.begin()+idx, std::pair<unsigned, bool>(event.tile, true) );
sortTiles();
}
context.last_pos = context.pending_vertex.min();
context.last_pos[1-dim] = context.pending_vertex.max()[1-dim];
// std::printf(" new ");
// printContext();
// std::printf("\n");
//context.pending_event = Event();is this a good idea?
}
//---------------------------
// Sweeper.
//---------------------------
PathVector paths;
std::vector<Tile> tiles_data;
std::vector<unsigned> tiles;
std::vector<Rect> vtxboxes;
Context context;
double tol;
Dim2 dim;
//-------------------------------
//-- Tiles preparation.
//-------------------------------
//split input paths into monotonic pieces...
void createMonotonicTiles(){
for ( unsigned i=0; i<paths.size(); i++){
for ( unsigned j=0; j<paths[i].size(); j++){
//find the points where slope is 0°, 45°, 90°, 135°...
D2<SBasis> deriv = derivative( paths[i][j].toSBasis() );
std::vector<double> splits0 = roots( deriv[X] );
std::vector<double> splits90 = roots( deriv[Y] );
std::vector<double> splits45 = roots( deriv[X]- deriv[Y] );
std::vector<double> splits135 = roots( deriv[X] + deriv[Y] );
std::vector<double> splits;
splits.insert(splits.begin(), splits0.begin(), splits0.end() );
splits.insert(splits.begin(), splits90.begin(), splits90.end() );
splits.insert(splits.begin(), splits45.begin(), splits45.end() );
splits.insert(splits.begin(), splits135.begin(), splits135.end() );
process_splits(splits,0,1);
for(unsigned k = 1; k < splits.size(); k++){
Tile tile;
tile.path = i;
tile.curve = j;
tile.f = splits[k-1];
tile.t = splits[k];
//TODO: use meaningful tolerance here!!
Point fp = paths[i][j].pointAt(tile.f);
Point tp = paths[i][j].pointAt(tile.t);
tile.fbox = Rect(fp, fp );
tile.tbox = Rect(tp, tp );
tile.open = false;
tile.state = -1;
tile.reversed = Point::LexLessRt(dim)(tp, fp);
tiles_data.push_back(tile);
}
}
}
std::sort(tiles_data.begin(), tiles_data.end(), SweepOrder(dim) );
}
void splitTile(unsigned i, double t, double tolerance=0, bool sort = true){
assert( i<tiles_data.size() );
Tile newtile = tiles_data[i];
assert( newtile.f < t && t < newtile.t );
newtile.f = t;
//newtile.fbox = fatPoint(paths[newtile.path][newtile.curve].pointAt(t), tolerance );
Point p = paths[newtile.path][newtile.curve].pointAt(t);
newtile.fbox = Rect(p, p);
newtile.fbox.expandBy( tolerance );
tiles_data[i].tbox = newtile.fbox;
tiles_data[i].t = t;
tiles_data.insert(tiles_data.begin()+i+1, newtile);
if (sort)
std::sort(tiles_data.begin()+i+1, tiles_data.end(), SweepOrder(dim) );
}
void splitTile(unsigned i, SmashIntersection inter, unsigned which,bool sort = true){
double t = inter.times[which].middle();
assert( i<tiles_data.size() );
Tile newtile = tiles_data[i];
assert( newtile.f < t && t < newtile.t );
newtile.f = t;
newtile.fbox = inter.bbox;
tiles_data[i].tbox = newtile.fbox;
tiles_data[i].t = t;
tiles_data.insert(tiles_data.begin()+i+1, newtile);
if (sort)
std::sort(tiles_data.begin()+i+1, tiles_data.end(), SweepOrder(dim) );
}
#if 0
void splitTile(unsigned i, std::vector<double> const ×, double tolerance=0, bool sort = true){
if ( times.size()<3 ) return;
assert( i<tiles_data.size() );
std::vector<Tile> pieces ( times.size()-2, tiles_data[i] );
Rect prevbox = tiles_data[i].fbox;
for (unsigned k=0; k < times.size()-2; k++){
pieces[k].f = times[k];
pieces[k].t = times[k+1];
pieces[k].fbox = prevbox;
//TODO: use relevant precision here.
prevbox = fatPoint(paths[tiles_data[i].path][tiles_data[i].curve].pointAt(times[k+1]), tolerance );
pieces[k].tbox = prevbox;
}
tiles_data.insert(tiles_data.begin()+i, pieces.begin(), pieces.end() );
unsigned newi = i + times.size()-2;
assert( newi<tiles_data.size() );
assert( newi>=1 );
tiles_data[newi].f = tiles_data[newi-1].t;
tiles_data[newi].fbox = tiles_data[newi-1].tbox;
if (sort)
std::sort(tiles_data.begin()+i, tiles_data.end(), SweepOrder(dim) );
}
#else
void splitTile(unsigned i, std::vector<std::pair<Interval,Rect> > const &cuts, bool sort = true){
assert ( cuts.size() >= 2 );
assert( i<tiles_data.size() );
std::vector<Tile> pieces ( cuts.size()-1, tiles_data[i] );
for (unsigned k=1; k+1 < cuts.size(); k++){
pieces[k-1].t = cuts[k].first.middle();
pieces[k ].f = cuts[k].first.middle();
pieces[k-1].tbox = cuts[k].second;
pieces[k ].fbox = cuts[k].second;
}
pieces.front().fbox.unionWith( cuts[0].second );
pieces.back().tbox.unionWith( cuts.back().second );
tiles_data.insert(tiles_data.begin()+i, pieces.begin(), pieces.end()-1 );
unsigned newi = i + cuts.size()-2;
assert( newi < tiles_data.size() );
tiles_data[newi] = pieces.back();
if (sort)
std::sort(tiles_data.begin()+i, tiles_data.end(), SweepOrder(dim) );
}
#endif
//TODO: maybe not optimal. For a fully optimized sweep, it would be nice to have
//an efficient way to way find *only the first* intersection (in sweep direction)...
void splitIntersectingTiles(){
//make sure it is sorted, but should be ok. (remove sorting at the end of monotonic tiles creation?
std::sort(tiles_data.begin(), tiles_data.end(), SweepOrder(dim) );
// std::printf("\nFind intersections: tiles_data.size():%u\n", tiles_data.size() );
for (unsigned i=0; i+1<tiles_data.size(); i++){
//std::printf("\ni=%u (%u([%f,%f]))\n", i, tiles_data[i].curve, tiles_data[i].f, tiles_data[i].t );
std::vector<SmashIntersection> inters_on_i;
for (unsigned j=i+1; j<tiles_data.size(); j++){
//std::printf(" j=%u (%u)\n", j,tiles_data[j].curve );
if ( Point::LexLessRt(dim)(tiles_data[i].max(), tiles_data[j].min()) ) break;
unsigned pi = tiles_data[i].path;
unsigned ci = tiles_data[i].curve;
unsigned pj = tiles_data[j].path;
unsigned cj = tiles_data[j].curve;
std::vector<SmashIntersection> intersections;
intersections = monotonic_smash_intersect(paths[pi][ci], Interval(tiles_data[i].f, tiles_data[i].t),
paths[pj][cj], Interval(tiles_data[j].f, tiles_data[j].t), tol );
inters_on_i.insert( inters_on_i.end(), intersections.begin(), intersections.end() );
std::vector<std::pair<Interval, Rect> > cuts = process_intersections(intersections, 1, j);
// std::printf(" >|%u/%u|=%u. times_j:%u", i, j, crossings.size(), times_j.size() );
splitTile(j, cuts, false);
j += cuts.size()-2;
}
//process_splits(times_i, tiles_data[i].f, tiles_data[i].t);
//assert(times_i.size()>=2);
//splitTile(i, times_i, tol, false);
//i+=times_i.size()-2;
std::vector<std::pair<Interval, Rect> > cuts_on_i = process_intersections(inters_on_i, 0, i);
splitTile(i, cuts_on_i, false);
i += cuts_on_i.size()-2;
//std::printf("new i:%u, tiles_data: %u\n",i ,tiles_data.size());
//std::sort(tiles_data.begin()+i+1, tiles_data.end(), SweepOrder(dim) );
std::sort(tiles_data.begin()+i+1, tiles_data.end(), SweepOrder(dim) );
}
//this last sorting should be useless!!
std::sort(tiles_data.begin(), tiles_data.end(), SweepOrder(dim) );
}
void sortTiles(){
std::sort(tiles.begin(), tiles.end(), PtrSweepOrder(tiles_data.begin(), dim) );
}
//-------------------------------
//-- Vertices boxes cookup.
//-------------------------------
void fuseInsert(const Rect &b, std::vector<Rect> &boxes, Dim2 dim){
//TODO: this can be optimized...
for (unsigned i=0; i<boxes.size(); i++){
if ( Point::LexLessRt(dim)( b.max(), boxes[i].min() ) ) break;
if ( b.intersects( boxes[i] ) ){
Rect bigb = b;
bigb.unionWith( boxes[i] );
boxes.erase( boxes.begin()+i );
fuseInsert( bigb, boxes, dim);
return;
}
}
std::vector<Rect>::iterator pos = std::lower_bound(boxes.begin(), boxes.end(), b, SweepOrder(dim) );
boxes.insert( pos, b );
}
//debug only!!
bool isContained(Rect b, std::vector<Rect> const &boxes ){
for (const auto & boxe : boxes){
if ( boxe.contains(b) ) return true;
}
return false;
}
//Collect vertex boxes. Fuse overlapping ones.
//NB: enlarging a vertex may create intersection with already scanned ones...
std::vector<Rect> collectBoxes(){
std::vector<Rect> ret;
for (auto & i : tiles_data){
fuseInsert(i.fbox, ret, dim);
fuseInsert(i.tbox, ret, dim);
}
return ret;
}
//enlarge tiles ends to match the vertices bounding boxes.
//remove edges fully contained in one vertex bbox.
void enlargeTilesEnds(const std::vector<Rect> &boxes ){
for (unsigned i=0; i<tiles_data.size(); i++){
std::vector<Rect>::const_iterator f_it;
f_it = std::lower_bound(boxes.begin(), boxes.end(), tiles_data[i].fbox, SweepOrder(dim) );
if ( f_it==boxes.end() ) f_it--;
while (!(*f_it).contains(tiles_data[i].fbox) && f_it != boxes.begin()){
f_it--;
}
assert( (*f_it).contains(tiles_data[i].fbox) );
tiles_data[i].fbox = *f_it;
std::vector<Rect>::const_iterator t_it;
t_it = std::lower_bound(boxes.begin(), boxes.end(), tiles_data[i].tbox, SweepOrder(dim) );
if ( t_it==boxes.end() ) t_it--;
while (!(*t_it).contains(tiles_data[i].tbox) && t_it != boxes.begin()){
t_it--;
}
assert( (*t_it).contains(tiles_data[i].tbox) );
tiles_data[i].tbox = *t_it;
//NB: enlarging the ends may swapp their sweep order!!!
tiles_data[i].reversed = Point::LexLessRt(dim)( tiles_data[i].tbox.min(), tiles_data[i].fbox.min());
if ( f_it==t_it ){
tiles_data.erase(tiles_data.begin()+i);
i-=1;
}
}
}
//Make sure tiles stop at vertices. Split them if needed.
//Returns true if at least one tile was split.
bool splitTilesThroughFatPoints(std::vector<Rect> &boxes ){
std::sort(tiles.begin(), tiles.end(), PtrSweepOrder(tiles_data.begin(), dim) );
std::sort(boxes.begin(), boxes.end(), SweepOrder(dim) );
bool result = false;
for (unsigned i=0; i<tiles_data.size(); i++){
for (auto & boxe : boxes){
if ( Point::LexLessRt(dim)( tiles_data[i].max(), boxe.min()) ) break;
if ( Point::LexLessRt(dim)( boxe.max(), tiles_data[i].min()) ) continue;
if ( !boxe.intersects( tiles_data[i].bbox() ) ) continue;
if ( tiles_data[i].fbox.intersects( boxe ) ) continue;
if ( tiles_data[i].tbox.intersects( boxe ) ) continue;
//at this point box[k] intersects the curve bbox away from the fbox and tbox.
D2<SBasis> c = tileToSB( tiles_data[i] );
//----------> use level-set!!
for (unsigned corner=0; corner<4; corner++){
unsigned D = corner % 2;
double val = boxe.corner(corner)[D];
std::vector<double> times = roots( c[D] - val );
if ( times.size()>0 ){
double t = lerp( times.front(), tiles_data[i].f, tiles_data[i].t );
double hit_place = c[1-D](times.front());
if ( boxe[1-D].contains(hit_place) ){
result = true;
//taking a point on the boundary is dangerous!!
//Either use >0 tolerance here, or find 2 intersection points and split in between.
splitTile( i, t, tol, false);
break;
}
}
}
}
}
return result;
}
//TODO: rewrite all this!...
//-------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------
//-------------------------------
//-- ccw Sorting of rays around a vertex.
//-------------------------------
//-------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------
//returns an (infinite) rect around "a" separating it from "b". Nota: 3 sides are infinite!
//TODO: place the cut where there is most space...
OptRect separate(Rect const &a, Rect const &b){
Rect ret ( Interval( -infinity(), infinity() ) , Interval(-infinity(), infinity() ) );
double gap = 0;
unsigned dir = 4;
if (b[X].min() - a[X].max() > gap){
gap = b[X].min() - a[X].max();
dir = 0;
}
if (a[X].min() - b[X].max() > gap){
gap = a[X].min() - b[X].max();
dir = 1;
}
if (b[Y].min() - a[Y].max() > gap){
gap = b[Y].min() - a[Y].max();
dir = 2;
}
if (a[Y].min() - b[Y].max() > gap){
gap = a[Y].min() - b[Y].max();
dir = 3;
}
switch (dir) {
case 0: ret[X].setMax(( a.max()[X] + b.min()[X] )/ 2); break;
case 1: ret[X].setMin(( b.max()[X] + a.min()[X] )/ 2); break;
case 2: ret[Y].setMax(( a.max()[Y] + b.min()[Y] )/ 2); break;
case 3: ret[Y].setMin(( b.max()[Y] + a.min()[Y] )/ 2); break;
case 4: return OptRect();
}
return OptRect(ret);
}
//Find 4 lines (returned as a Rect sides) that cut all the rays (=edges). *!* some side might be infinite.
OptRect isolateVertex(Rect const &box){
OptRect sep ( Interval( -infinity(), infinity() ) , Interval(-infinity(), infinity() ) );
//separate this vertex from the others. Find a better way.
for (auto & vtxboxe : vtxboxes){
if ( Point::LexLessRt(dim)( sep->max(), vtxboxe.min() ) ){
break;
}
if ( vtxboxe!=box ){//&& !vtxboxes[i].intersects(box) ){
OptRect sepi = separate(box, vtxboxe);
if ( sep && sepi ){
sep = intersect(*sep, *sepi);
}else{
std::cout<<"box="<<box<<"\n";
std::cout<<"vtxboxes[i]="<<vtxboxe<<"\n";
assert(sepi);
}
}
}
if (!sep) THROW_EXCEPTION("Invalid intersection data.");
return sep;
}
//TODO: argh... rewrite to have "dim"=min first place.
struct ExitPoint{
public:
unsigned side; //0:y=min; 1:x=max; 2:y=max; 3:x=min.
double place; //x or y value on the exit line.
unsigned ray_idx;
double time; //exit time on curve.
ExitPoint(){}
ExitPoint(unsigned s, double p, unsigned r, double t){
side =s;
place = p;
ray_idx = r;
time = t;
}
};
class ExitOrder{
public:
bool operator()(Ray a, Ray b) const {
if ( a.exit_side < b.exit_side ) return true;
if ( a.exit_side > b.exit_side ) return false;
if ( a.exit_side <= 1) {
return ( a.exit_place < b.exit_place );
}
return ( a.exit_place > b.exit_place );
}
};
void printRay(Ray const &r){
std::printf("Ray: tile=%u, centrifuge=%u, side=%u, place=%f\n",
r.tile, r.centrifuge, r.exit_side, r.exit_place);
}
void printVertex(FatVertex const &v){
std::printf("Vertex: [%f,%f]x[%f,%f]\n", v[X].min(),v[X].max(),v[Y].min(),v[Y].max() );
for (const auto & ray : v.rays){
printRay(ray);
}
}
//TODO: use a partial order on input coming from the context + Try quadrant order just in case it's enough.
//TODO: use monotonic assumption.
void sortRays( FatVertex &v ){
OptRect sep = isolateVertex(v);
for (unsigned i=0; i < v.rays.size(); i++){
v.rays[i].centrifuge = (tiles_data[ v.rays[i].tile ].fbox == v);
v.rays[i].exit_time = v.rays[i].centrifuge ? 1 : 0 ;
}
for (unsigned i=0; i < v.rays.size(); i++){
//TODO: don't convert each time!!!
assert( v.rays[i].tile < tiles_data.size() );
D2<SBasis> c = tileToSB( tiles_data[ v.rays[i].tile ] );
for (unsigned side=0; side<4; side++){//scan X or Y direction, on level min or max...
double level = sep->corner( side )[1-side%2];
if (level != infinity() && level != -infinity() ){
std::vector<double> times = roots(c[1-side%2]-level);
if ( times.size() > 0 ) {
double t;
assert( v.rays[i].tile < tiles_data.size() );
if (tiles_data[ v.rays[i].tile ].fbox == v){
t = times.front();
if ( v.rays[i].exit_side > 3 || v.rays[i].exit_time > t ){
v.rays[i].setExitInfo( side, c[side%2](t), t);
}
}else{
t = times.back();
if ( v.rays[i].exit_side > 3 || v.rays[i].exit_time < t ){
v.rays[i].setExitInfo( side, c[side%2](t), t);
}
}
}
}
}
}
//Rk: at this point, side == 4 means the edge is contained in the intersection box (?)...;
std::sort( v.rays.begin(), v.rays.end(), ExitOrder() );
}
//-------------------------------
//-- initialize all data.
//-------------------------------
Sweeper(){}
Sweeper(PathVector const &input_paths, Dim2 sweep_dir, double tolerance=1e-5){
paths = input_paths;//use a ptr...
dim = sweep_dir;
tol = tolerance;
//split paths into monotonic tiles
createMonotonicTiles();
//split at tiles intersections
splitIntersectingTiles();
//handle overlapping end boxes/and tiles traversing boxes.
do{
vtxboxes = collectBoxes();
}while ( splitTilesThroughFatPoints(vtxboxes) );
enlargeTilesEnds(vtxboxes);
//now create the pointers to the tiles.
tiles = std::vector<unsigned>(tiles_data.size(), 0);
for (unsigned i=0; i<tiles_data.size(); i++){
tiles[i] = i;
}
sortTiles();
//initialize the context.
if (tiles_data.size()>0){
context.clear();
context.last_pos = tiles_data[tiles.front()].min();
context.last_pos[dim] -= 1;
context.pending_vertex = FatVertex();
context.pending_event = Event();
}
// std::printf("Sweeper initialized (%u tiles)\n", tiles_data.size());
}
//-------------------------------
//-- Event walk.
//-------------------------------
Event getNextEvent(){
// std::printf("getNextEvent():\n");
// std::printf("initial contex:\n");
// printContext();
Event old_event = context.pending_event, event;
// std::printf("apply old event\n");
applyEvent(context.pending_event);
// printContext();
if (context.pending_vertex.rays.size()== 0){
// std::printf("cook up a new vertex\n");
//find the edges at the next vertex.
//TODO: implement this as a lower bound!!
std::vector<unsigned>::iterator low, high;
//Warning: bad looking test, but make sure we advance even in case of 0 width boxes...
for ( low = tiles.begin(); low != tiles.end() &&
( tiles_data[*low].state==1 || Point::LexLessRt(dim)(tiles_data[*low].cur_box().min(), context.last_pos) ); low++){}
if ( low == tiles.end() ){
// std::printf("no more event found\n");
return(Event());
}
Rect pos = tiles_data[ *low ].cur_box();
context.last_pos = pos.min();
context.last_pos[1-dim] = pos.max()[1-dim];
// printContext();
// std::printf("purgeDeadTiles\n");
purgeDeadTiles();
// printContext();
FatVertex v(pos);
high = low;
do{
// v.rays.push_back( Ray(*high, !tiles_data[*high].open) );
v.rays.push_back( Ray(*high, tiles_data[*high].state!=0) );
high++;
}while( high != tiles.end() && tiles_data[ *high ].cur_box()==pos );
// std::printf("sortRays\n");
sortRays(v);
//Look for an opened tile
unsigned i=0;
for( i=0; i<v.rays.size(); ++i){assert( v.rays[i].tile<tiles_data.size() );}
// for( i=0; i<v.rays.size() && !tiles_data[ v.rays[i].tile ].open; ++i){}
for( i=0; i<v.rays.size() && tiles_data[ v.rays[i].tile ].state!=0; ++i){}
//if there are only openings:
if (i == v.rays.size() ){
// std::printf("only openings!\n");
event.insert_at = contextRanking(pos.min());
}
//if there is at least one closing: make it first, and catch 'insert_at'.
else{
// std::printf("not only openings\n");
if( i > 0 ){
std::vector<Ray> head;
head.assign ( v.rays.begin(), v.rays.begin()+i );
v.rays.erase ( v.rays.begin(), v.rays.begin()+i );
v.rays.insert( v.rays.end(), head.begin(), head.end());
}
//assert( tiles_data[ v.rays[0].tile ].open );
assert( tiles_data[ v.rays[0].tile ].state==0 );
event.insert_at = context.find( v.rays.front().tile )+1;
// event.erase_at = context.find( v.rays.front().tile );
// std::printf("at least one closing!\n");
}
context.pending_vertex = v;
}else{
// std::printf("continue biting exiting vertex\n");
event.tile = context.pending_vertex.rays.front().tile;
event.insert_at = old_event.insert_at;
// if (old_event.opening){
// event.insert_at++;
// }else{
// if (old_event.erase_at < old_event.insert_at){
// event.insert_at--;
// }
// }
event.insert_at++;
}
event.tile = context.pending_vertex.rays.front().tile;
// event.opening = !tiles_data[ event.tile ].open;
event.opening = tiles_data[ event.tile ].state!=0;
event.to_be_continued = context.pending_vertex.rays.size()>1;
// if ( !event.opening ) event.erase_at = context.find(event.tile);
context.pending_vertex.rays.erase(context.pending_vertex.rays.begin());
context.pending_event = event;
// printEvent(event);
return event;
}
};
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=4:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|