1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
/*
* Test program for implicitization routines
*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
*
* Copyright 2008 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <2geom/symbolic/implicit.h>
#include "pick.h"
#include <iostream>
void print_basis(Geom::SL::basis_type const& b)
{
for (size_t i= 0; i < 2; ++i)
{
for (size_t j= 0; j < 3; ++j)
{
std::cout << "b[" << i << "][" << j << "] = " << b[i][j] << "\n";
}
}
}
int main( int argc, char * argv[] )
{
// degree of polinomial parametrization
// warning: not set N to a value greater than 20!
// (10 in case you don't utilize the micro-basis)
// determinant computation becomes very expensive
unsigned int N = 4;
// max modulus of polynomial coefficients
unsigned int M = 1000;
if (argc > 1)
N = std::atoi(argv[1]);
if (argc > 2)
M = std::atoi(argv[2]);
Geom::SL::MVPoly1 f, g;
Geom::SL::basis_type b;
Geom::SL::MVPoly3 p, q;
Geom::SL::Matrix<Geom::SL::MVPoly2> B;
Geom::SL::MVPoly2 r;
// generate two univariate polynomial with degree N
// and coeffcient in the range [-M, M]
f = pick_multipoly_max<1>(N, M);
g = pick_multipoly_max<1>(N, M);
std::cout << "parametrization: \n";
std::cout << "f = " << f << std::endl;
std::cout << "g = " << g << "\n\n";
// computes the micro-basis
microbasis(b, f, g);
// in case you want utilize directly the initial basis
// you should uncomment the next row and comment
// the microbasis function call
//make_initial_basis(b, f, g);
std::cout << "generators in vector form : \n";
print_basis(b);
std::cout << std::endl;
// micro-basis generators
basis_to_poly(p, b[0]);
basis_to_poly(q, b[1]);
std::cout << "generators as polynomial in R[t,x,y] : \n";
std::cout << "p = " << p << std::endl;
std::cout << "q = " << q << "\n\n";
// make up the Bezout matrix and compute the determinant
B = make_bezout_matrix(p, q);
r = determinant_minor(B);
r.normalize();
std::cout << "Bezout matrix: (entries are bivariate polynomials) \n";
std::cout << "B = " << B << "\n\n";
std::cout << "determinant: \n";
std::cout << "r(x, y) = " << r << "\n\n";
return EXIT_SUCCESS;
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|