summaryrefslogtreecommitdiffstats
path: root/src/include/libplacebo/renderer.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/include/libplacebo/renderer.h')
-rw-r--r--src/include/libplacebo/renderer.h847
1 files changed, 847 insertions, 0 deletions
diff --git a/src/include/libplacebo/renderer.h b/src/include/libplacebo/renderer.h
new file mode 100644
index 0000000..d2e01e4
--- /dev/null
+++ b/src/include/libplacebo/renderer.h
@@ -0,0 +1,847 @@
+/*
+ * This file is part of libplacebo.
+ *
+ * libplacebo is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * libplacebo is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with libplacebo. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef LIBPLACEBO_RENDERER_H_
+#define LIBPLACEBO_RENDERER_H_
+
+#include <libplacebo/config.h>
+#include <libplacebo/colorspace.h>
+#include <libplacebo/filters.h>
+#include <libplacebo/gpu.h>
+#include <libplacebo/shaders/colorspace.h>
+#include <libplacebo/shaders/deinterlacing.h>
+#include <libplacebo/shaders/dithering.h>
+#include <libplacebo/shaders/film_grain.h>
+#include <libplacebo/shaders/icc.h>
+#include <libplacebo/shaders/lut.h>
+#include <libplacebo/shaders/sampling.h>
+#include <libplacebo/shaders/custom.h>
+#include <libplacebo/swapchain.h>
+
+PL_API_BEGIN
+
+// Thread-safety: Unsafe
+typedef struct pl_renderer_t *pl_renderer;
+
+// Enum values used in pl_renderer_errors_t as a bit positions for error flags
+enum pl_render_error {
+ PL_RENDER_ERR_NONE = 0,
+ PL_RENDER_ERR_FBO = 1 << 0,
+ PL_RENDER_ERR_SAMPLING = 1 << 1,
+ PL_RENDER_ERR_DEBANDING = 1 << 2,
+ PL_RENDER_ERR_BLENDING = 1 << 3,
+ PL_RENDER_ERR_OVERLAY = 1 << 4,
+ PL_RENDER_ERR_PEAK_DETECT = 1 << 5,
+ PL_RENDER_ERR_FILM_GRAIN = 1 << 6,
+ PL_RENDER_ERR_FRAME_MIXING = 1 << 7,
+ PL_RENDER_ERR_DEINTERLACING = 1 << 8,
+ PL_RENDER_ERR_ERROR_DIFFUSION = 1 << 9,
+ PL_RENDER_ERR_HOOKS = 1 << 10,
+ PL_RENDER_ERR_CONTRAST_RECOVERY = 1 << 11,
+};
+
+// Struct describing current renderer state, including internal processing errors,
+// as well as list of signatures of disabled hooks.
+struct pl_render_errors {
+ enum pl_render_error errors;
+ // List containing signatures of disabled hooks
+ const uint64_t *disabled_hooks;
+ int num_disabled_hooks;
+};
+
+// Creates a new renderer object, which is backed by a GPU context. This is a
+// high-level object that takes care of the rendering chain as a whole, from
+// the source textures to the finished frame.
+PL_API pl_renderer pl_renderer_create(pl_log log, pl_gpu gpu);
+PL_API void pl_renderer_destroy(pl_renderer *rr);
+
+// Returns current renderer state, see pl_render_errors.
+PL_API struct pl_render_errors pl_renderer_get_errors(pl_renderer rr);
+
+// Clears errors state of renderer. If `errors` is NULL, all render errors will
+// be cleared. Otherwise only selected errors/hooks will be cleared.
+// If `PL_RENDER_ERR_HOOKS` is set and `num_disabled_hooks` is 0, clear all hooks.
+// Otherwise only selected hooks will be cleard based on `disabled_hooks` array.
+PL_API void pl_renderer_reset_errors(pl_renderer rr,
+ const struct pl_render_errors *errors);
+
+enum pl_lut_type {
+ PL_LUT_UNKNOWN = 0,
+ PL_LUT_NATIVE, // applied to raw image contents (after fixing bit depth)
+ PL_LUT_NORMALIZED, // applied to normalized (HDR) RGB values
+ PL_LUT_CONVERSION, // LUT fully replaces color conversion
+
+ // Note: When using a PL_LUT_CONVERSION to replace the YUV->RGB conversion,
+ // `pl_render_params.color_adjustment` is no longer applied. Similarly,
+ // when using a PL_LUT_CONVERSION to replace the image->target color space
+ // conversion, `pl_render_params.color_map_params` are ignored.
+ //
+ // Note: For LUTs attached to the output frame, PL_LUT_CONVERSION should
+ // instead perform the inverse (RGB->native) conversion.
+ //
+ // Note: PL_LUT_UNKNOWN tries inferring the meaning of the LUT from the
+ // LUT's tagged metadata, and otherwise falls back to PL_LUT_NATIVE.
+};
+
+enum pl_render_stage {
+ PL_RENDER_STAGE_FRAME, // full frame redraws, for fresh/uncached frames
+ PL_RENDER_STAGE_BLEND, // the output blend pass (only for pl_render_image_mix)
+ PL_RENDER_STAGE_COUNT,
+};
+
+struct pl_render_info {
+ const struct pl_dispatch_info *pass; // information about the shader
+ enum pl_render_stage stage; // the associated render stage
+
+ // This specifies the chronological index of this pass within the frame and
+ // stage (starting at `index == 0`).
+ int index;
+
+ // For PL_RENDER_STAGE_BLEND, this specifies the number of frames
+ // being blended (since that results in a different shader).
+ int count;
+};
+
+// Represents the options used for rendering. These affect the quality of
+// the result.
+struct pl_render_params {
+ // Configures the algorithms used for upscaling and downscaling,
+ // respectively. If left as NULL, then libplacebo will only use inexpensive
+ // sampling (bilinear or nearest neighbour depending on the capabilities
+ // of the hardware / texture).
+ //
+ // Note: Setting `downscaler` to NULL also implies `skip_anti_aliasing`,
+ // since the built-in GPU sampling algorithms can't anti-alias.
+ //
+ // Note: If set to the same address as the built-in `pl_filter_bicubic`,
+ // `pl_filter_nearest` etc.; libplacebo will also use the more efficient
+ // direct sampling algorithm where possible without quality loss.
+ const struct pl_filter_config *upscaler;
+ const struct pl_filter_config *downscaler;
+
+ // If set, this overrides the value of `upscaler`/`downscaling` for
+ // subsampled (chroma) planes. These scalers are used whenever the size of
+ // multiple different `pl_plane`s in a single `pl_frame` differ, requiring
+ // adaptation when converting to/from RGB. Note that a value of NULL simply
+ // means "no override". To force built-in scaling explicitly, set this to
+ // `&pl_filter_bilinear`.
+ const struct pl_filter_config *plane_upscaler;
+ const struct pl_filter_config *plane_downscaler;
+
+ // The anti-ringing strength to apply to filters. See the equivalent option
+ // in `pl_sample_filter_params` for more information.
+ float antiringing_strength;
+
+ // Configures the algorithm used for frame mixing (when using
+ // `pl_render_image_mix`). Ignored otherwise. As a special requirement,
+ // this must be a filter config with `polar` set to false, since it's only
+ // used for 1D mixing and thus only 1D filters are compatible.
+ //
+ // If set to NULL, frame mixing is disabled, in which case
+ // `pl_render_image_mix` will use nearest-neighbour semantics. (Note that
+ // this still goes through the redraw cache, unless you also enable
+ // `skip_caching_single_frame`)
+ const struct pl_filter_config *frame_mixer;
+
+ // Configures the settings used to deband source textures. Leaving this as
+ // NULL disables debanding.
+ //
+ // Note: The `deband_params.grain` setting is automatically adjusted to
+ // prevent blowing up on HDR sources. The user need not account for this.
+ const struct pl_deband_params *deband_params;
+
+ // Configures the settings used to sigmoidize the image before upscaling.
+ // This is not always used. If NULL, disables sigmoidization.
+ const struct pl_sigmoid_params *sigmoid_params;
+
+ // Configures the color adjustment parameters used to decode the color.
+ // This can be used to apply additional artistic settings such as
+ // desaturation, etc. If NULL, defaults to &pl_color_adjustment_neutral.
+ const struct pl_color_adjustment *color_adjustment;
+
+ // Configures the settings used to detect the peak of the source content,
+ // for HDR sources. Has no effect on SDR content. If NULL, peak detection
+ // is disabled.
+ const struct pl_peak_detect_params *peak_detect_params;
+
+ // Configures the settings used to tone map from HDR to SDR, or from higher
+ // gamut to standard gamut content. If NULL, defaults to
+ // `&pl_color_map_default_params`.
+ const struct pl_color_map_params *color_map_params;
+
+ // Configures the settings used to dither to the output depth. Leaving this
+ // as NULL disables dithering.
+ const struct pl_dither_params *dither_params;
+
+ // Configures the error diffusion kernel to use for error diffusion
+ // dithering. If set, this will be used instead of `dither_params` whenever
+ // possible. Leaving this as NULL disables error diffusion.
+ const struct pl_error_diffusion_kernel *error_diffusion;
+
+ // Configures the settings used to simulate color blindness, if desired.
+ // If NULL, this feature is disabled.
+ const struct pl_cone_params *cone_params;
+
+ // Configures output blending. When rendering to the final target, the
+ // framebuffer contents will be blended using this blend mode. Requires
+ // that the target format has PL_FMT_CAP_BLENDABLE. NULL disables blending.
+ const struct pl_blend_params *blend_params;
+
+ // Configures the settings used to deinterlace frames (see
+ // `pl_frame.field`), if required.. If NULL, deinterlacing is "disabled",
+ // meaning interlaced frames are rendered as weaved frames instead.
+ //
+ // Note: As a consequence of how `pl_frame` represents individual fields,
+ // and especially when using the `pl_queue`, this will still result in
+ // frames being redundantly rendered twice. As such, it's highly
+ // recommended to, instead, fully disable deinterlacing by not marking
+ // source frames as interlaced in the first place.
+ const struct pl_deinterlace_params *deinterlace_params;
+
+ // If set, applies an extra distortion matrix to the image, after
+ // scaling and before presenting it to the screen. Can be used for e.g.
+ // fractional rotation.
+ //
+ // Note: The distortion canvas will be set to the size of `target->crop`,
+ // so this cannot effectively draw outside the specified target area,
+ // nor change the aspect ratio of the image.
+ const struct pl_distort_params *distort_params;
+
+ // List of custom user shaders / hooks.
+ // See <libplacebo/shaders/custom.h> for more information.
+ const struct pl_hook * const *hooks;
+ int num_hooks;
+
+ // Color mapping LUT. If present, this will be applied as part of the
+ // image being rendered, in normalized RGB space.
+ //
+ // Note: In this context, PL_LUT_NATIVE means "gamma light" and
+ // PL_LUT_NORMALIZED means "linear light". For HDR signals, normalized LUTs
+ // are scaled so 1.0 corresponds to the `pl_color_transfer_nominal_peak`.
+ //
+ // Note: A PL_LUT_CONVERSION fully replaces the color adaptation from
+ // `image` to `target`, including any tone-mapping (if necessary) and ICC
+ // profiles. It has the same representation as PL_LUT_NATIVE, so in this
+ // case the input and output are (respectively) non-linear light RGB.
+ const struct pl_custom_lut *lut;
+ enum pl_lut_type lut_type;
+
+ // If the image being rendered does not span the entire size of the target,
+ // it will be cleared explicitly using this background color (RGB). To
+ // disable this logic, set `skip_target_clearing`.
+ float background_color[3];
+ float background_transparency; // 0.0 for opaque, 1.0 for fully transparent
+ bool skip_target_clearing;
+
+ // If set to a value above 0.0, the output will be rendered with rounded
+ // corners, as if an alpha transparency mask had been applied. The value
+ // indicates the relative fraction of the side length to round - a value
+ // of 1.0 rounds the corners as much as possible.
+ float corner_rounding;
+
+ // If true, then transparent images will made opaque by painting them
+ // against a checkerboard pattern consisting of alternating colors. If both
+ // colors are left as {0}, they default respectively to 93% and 87% gray.
+ bool blend_against_tiles;
+ float tile_colors[2][3];
+ int tile_size;
+
+ // --- Performance / quality trade-off options:
+ // These should generally be left off where quality is desired, as they can
+ // degrade the result quite noticeably; but may be useful for older or
+ // slower hardware. Note that libplacebo will automatically disable
+ // advanced features on hardware where they are unsupported, regardless of
+ // these settings. So only enable them if you need a performance bump.
+
+ // Disables anti-aliasing on downscaling. This will result in moiré
+ // artifacts and nasty, jagged pixels when downscaling, except for some
+ // very limited special cases (e.g. bilinear downsampling to exactly 0.5x).
+ //
+ // Significantly speeds up downscaling with high downscaling ratios.
+ bool skip_anti_aliasing;
+
+ // Normally, when the size of the `target` used with `pl_render_image_mix`
+ // changes, or the render parameters are updated, the internal cache of
+ // mixed frames must be discarded in order to re-render all required
+ // frames. Setting this option to `true` will skip the cache invalidation
+ // and instead re-use the existing frames (with bilinear scaling to the new
+ // size if necessary), which comes at a quality loss shortly after a
+ // resize, but should make it much more smooth.
+ bool preserve_mixing_cache;
+
+ // --- Performance tuning / debugging options
+ // These may affect performance or may make debugging problems easier,
+ // but shouldn't have any effect on the quality.
+
+ // Normally, `pl_render_image_mix` will also push single frames through the
+ // mixer cache, in order to speed up re-draws. Enabling this option
+ // disables that logic, causing single frames to bypass the cache. (Though
+ // it will still read from, if they happen to already be cached)
+ bool skip_caching_single_frame;
+
+ // Disables linearization / sigmoidization before scaling. This might be
+ // useful when tracking down unexpected image artifacts or excessing
+ // ringing, but it shouldn't normally be necessary.
+ bool disable_linear_scaling;
+
+ // Forces the use of the "general" scaling algorithms even when using the
+ // special-cased built-in presets like `pl_filter_bicubic`. Basically, this
+ // disables the more efficient implementations in favor of the slower,
+ // general-purpose ones.
+ bool disable_builtin_scalers;
+
+ // Forces correction of subpixel offsets (using the configured `upscaler`).
+ bool correct_subpixel_offsets;
+
+ // Forces the use of dithering, even when rendering to 16-bit FBOs. This is
+ // generally pretty pointless because most 16-bit FBOs have high enough
+ // depth that rounding errors are below the human perception threshold,
+ // but this can be used to test the dither code.
+ bool force_dither;
+
+ // Disables the gamma-correct dithering logic which normally applies when
+ // dithering to low bit depths. No real use, outside of testing.
+ bool disable_dither_gamma_correction;
+
+ // Completely overrides the use of FBOs, as if there were no renderable
+ // texture format available. This disables most features.
+ bool disable_fbos;
+
+ // Use only low-bit-depth FBOs (8 bits). Note that this also implies
+ // disabling linear scaling and sigmoidization.
+ bool force_low_bit_depth_fbos;
+
+ // If this is true, all shaders will be generated as "dynamic" shaders,
+ // with any compile-time constants being replaced by runtime-adjustable
+ // values. This is generally a performance loss, but has the advantage of
+ // being able to freely change parameters without triggering shader
+ // recompilations.
+ //
+ // It's a good idea to enable while presenting configurable settings to the
+ // user, but it should be set to false once those values are "dialed in".
+ bool dynamic_constants;
+
+ // This callback is invoked for every pass successfully executed in the
+ // process of rendering a frame. Optional.
+ //
+ // Note: `info` is only valid until this function returns.
+ void (*info_callback)(void *priv, const struct pl_render_info *info);
+ void *info_priv;
+
+ // --- Deprecated/removed fields
+ bool allow_delayed_peak_detect PL_DEPRECATED; // moved to pl_peak_detect_params
+ const struct pl_icc_params *icc_params PL_DEPRECATED; // use pl_frame.icc
+ bool ignore_icc_profiles PL_DEPRECATED; // non-functional, just set pl_frame.icc to NULL
+ int lut_entries PL_DEPRECATED; // hard-coded as 256
+ float polar_cutoff PL_DEPRECATED; // hard-coded as 1e-3
+};
+
+// Bare minimum parameters, with no features enabled. This is the fastest
+// possible configuration, and should therefore be fine on any system.
+#define PL_RENDER_DEFAULTS \
+ .color_map_params = &pl_color_map_default_params, \
+ .color_adjustment = &pl_color_adjustment_neutral, \
+ .tile_colors = {{0.93, 0.93, 0.93}, \
+ {0.87, 0.87, 0.87}}, \
+ .tile_size = 32,
+
+#define pl_render_params(...) (&(struct pl_render_params) { PL_RENDER_DEFAULTS __VA_ARGS__ })
+PL_API extern const struct pl_render_params pl_render_fast_params;
+
+// This contains the default/recommended options for reasonable image quality,
+// while also not being too terribly slow. All of the *_params structs are
+// defaulted to the corresponding *_default_params, except for deband_params,
+// which is disabled by default.
+//
+// This should be fine on most integrated GPUs, but if it's too slow,
+// consider using `pl_render_fast_params` instead.
+PL_API extern const struct pl_render_params pl_render_default_params;
+
+// This contains a higher quality preset for better image quality at the cost
+// of quite a bit of performance. In addition to the settings implied by
+// `pl_render_default_params`, it enables debanding, sets the upscaler to
+// `pl_filter_ewa_lanczossharp`, and uses pl_*_high_quality_params structs where
+// available. This should only really be used with a discrete GPU and where
+// maximum image quality is desired.
+PL_API extern const struct pl_render_params pl_render_high_quality_params;
+
+#define PL_MAX_PLANES 4
+
+// High level description of a single slice of an image. This basically
+// represents a single 2D plane, with any number of components
+struct pl_plane {
+ // The texture underlying this plane. The texture must be 2D, and must
+ // have specific parameters set depending on what the plane is being used
+ // for (see `pl_render_image`).
+ pl_tex texture;
+
+ // The preferred behaviour when sampling outside of this texture. Optional,
+ // since the default (PL_TEX_ADDRESS_CLAMP) is very reasonable.
+ enum pl_tex_address_mode address_mode;
+
+ // Controls whether or not the `texture` will be considered flipped
+ // vertically with respect to the overall image dimensions. It's generally
+ // preferable to flip planes using this setting instead of the crop in
+ // cases where the flipping is the result of e.g. negative plane strides or
+ // flipped framebuffers (OpenGL).
+ //
+ // Note that any planar padding (due to e.g. size mismatch or misalignment
+ // of subsampled planes) is always at the physical end of the texture
+ // (highest y coordinate) - even if this bool is true. However, any
+ // subsampling shift (`shift_y`) is applied with respect to the flipped
+ // direction. This ensures the correct interpretation when e.g. vertically
+ // flipping 4:2:0 sources by flipping all planes.
+ bool flipped;
+
+ // Describes the number and interpretation of the components in this plane.
+ // This defines the mapping from component index to the canonical component
+ // order (RGBA, YCbCrA or XYZA). It's worth pointing out that this is
+ // completely separate from `texture->format.sample_order`. The latter is
+ // essentially irrelevant/transparent for the API user, since it just
+ // determines which order the texture data shows up as inside the GLSL
+ // shader; whereas this field controls the actual meaning of the component.
+ //
+ // Example; if the user has a plane with just {Y} and a plane with just
+ // {Cb Cr}, and a GPU that only supports bgra formats, you would still
+ // specify the component mapping as {0} and {1 2} respectively, even though
+ // the GPU is sampling the data in the order BGRA. Use -1 for "ignored"
+ // components.
+ int components; // number of relevant components
+ int component_mapping[4]; // semantic index of each component
+
+ // Controls the sample offset, relative to the "reference" dimensions. For
+ // an example of what to set here, see `pl_chroma_location_offset`. Note
+ // that this is given in unit of reference pixels. For a graphical example,
+ // imagine you have a 2x2 image with a 1x1 (subsampled) plane. Without any
+ // shift (0.0), the situation looks like this:
+ //
+ // X-------X X = reference pixel
+ // | | P = plane pixel
+ // | P |
+ // | |
+ // X-------X
+ //
+ // For 4:2:0 subsampling, this corresponds to PL_CHROMA_CENTER. If the
+ // shift_x was instead set to -0.5, the `P` pixel would be offset to the
+ // left by half the separation between the reference (`X` pixels), resulting
+ // in the following:
+ //
+ // X-------X X = reference pixel
+ // | | P = plane pixel
+ // P |
+ // | |
+ // X-------X
+ //
+ // For 4:2:0 subsampling, this corresponds to PL_CHROMA_LEFT.
+ //
+ // Note: It's recommended to fill this using `pl_chroma_location_offset` on
+ // the chroma planes.
+ float shift_x, shift_y;
+};
+
+enum pl_overlay_mode {
+ PL_OVERLAY_NORMAL = 0, // treat the texture as a normal, full-color texture
+ PL_OVERLAY_MONOCHROME, // treat the texture as a single-component alpha map
+ PL_OVERLAY_MODE_COUNT,
+};
+
+enum pl_overlay_coords {
+ PL_OVERLAY_COORDS_AUTO = 0, // equal to SRC/DST_FRAME, respectively
+ PL_OVERLAY_COORDS_SRC_FRAME, // relative to the raw src frame
+ PL_OVERLAY_COORDS_SRC_CROP, // relative to the src frame crop
+ PL_OVERLAY_COORDS_DST_FRAME, // relative to the raw dst frame
+ PL_OVERLAY_COORDS_DST_CROP, // relative to the dst frame crop
+ PL_OVERLAY_COORDS_COUNT,
+
+ // Note on rotations: If there is an end-to-end rotation between `src` and
+ // `dst`, then any overlays relative to SRC_FRAME or SRC_CROP will be
+ // rotated alongside the image, while overlays relative to DST_FRAME or
+ // DST_CROP will not.
+};
+
+struct pl_overlay_part {
+ pl_rect2df src; // source coordinate with respect to `pl_overlay.tex`
+ pl_rect2df dst; // target coordinates with respect to `pl_overlay.coords`
+
+ // If `mode` is PL_OVERLAY_MONOCHROME, then this specifies the color of
+ // this overlay part. The color is multiplied into the sampled texture's
+ // first channel.
+ float color[4];
+};
+
+// A struct representing an image overlay (e.g. for subtitles or on-screen
+// status messages, controls, ...)
+struct pl_overlay {
+ // The texture containing the backing data for overlay parts. Must have
+ // `params.sampleable` set.
+ pl_tex tex;
+
+ // This controls the coloring mode of this overlay.
+ enum pl_overlay_mode mode;
+
+ // Controls which coordinates this overlay is addressed relative to.
+ enum pl_overlay_coords coords;
+
+ // This controls the colorspace information for this overlay. The contents
+ // of the texture / the value of `color` are interpreted according to this.
+ struct pl_color_repr repr;
+ struct pl_color_space color;
+
+ // The number of parts for this overlay.
+ const struct pl_overlay_part *parts;
+ int num_parts;
+};
+
+// High-level description of a complete frame, including metadata and planes
+struct pl_frame {
+ // Each frame is split up into some number of planes, each of which may
+ // carry several components and be of any size / offset.
+ int num_planes;
+ struct pl_plane planes[PL_MAX_PLANES];
+
+ // For interlaced frames. If set, this `pl_frame` corresponds to a single
+ // field of the underlying source textures. `first_field` indicates which
+ // of these fields is ordered first in time. `prev` and `next` should point
+ // to the previous/next frames in the file, or NULL if there are none.
+ //
+ // Note: Setting these fields on the render target has no meaning and will
+ // be ignored.
+ enum pl_field field;
+ enum pl_field first_field;
+ const struct pl_frame *prev, *next;
+
+ // If set, will be called immediately before GPU access to this frame. This
+ // function *may* be used to, for example, perform synchronization with
+ // external APIs (e.g. `pl_vulkan_hold/release`). If your mapping requires
+ // a memcpy of some sort (e.g. pl_tex_transfer), users *should* instead do
+ // the memcpy up-front and avoid the use of these callbacks - because they
+ // might be called multiple times on the same frame.
+ //
+ // This function *may* arbitrarily mutate the `pl_frame`, but it *should*
+ // ideally only update `planes` - in particular, color metadata and so
+ // forth should be provided up-front as best as possible. Note that changes
+ // here will not be reflected back to the structs provided in the original
+ // `pl_render_*` call (e.g. via `pl_frame_mix`).
+ //
+ // Note: Unless dealing with interlaced frames, only one frame will ever be
+ // acquired at a time per `pl_render_*` call. So users *can* safely use
+ // this with, for example, hwdec mappers that can only map a single frame
+ // at a time. When using this with, for example, `pl_render_image_mix`,
+ // each frame to be blended is acquired and release in succession, before
+ // moving on to the next frame. For interlaced frames, the previous and
+ // next frames must also be acquired simultaneously.
+ bool (*acquire)(pl_gpu gpu, struct pl_frame *frame);
+
+ // If set, will be called after a plane is done being used by the GPU,
+ // *including* after any errors (e.g. `acquire` returning false).
+ void (*release)(pl_gpu gpu, struct pl_frame *frame);
+
+ // Color representation / encoding / semantics of this frame.
+ struct pl_color_repr repr;
+ struct pl_color_space color;
+
+ // Optional ICC profile associated with this frame.
+ pl_icc_object icc;
+
+ // Alternative to `icc`, this can be used in cases where allocating and
+ // tracking an pl_icc_object externally may be inconvenient. The resulting
+ // profile will be managed internally by the pl_renderer.
+ struct pl_icc_profile profile;
+
+ // Optional LUT associated with this frame.
+ const struct pl_custom_lut *lut;
+ enum pl_lut_type lut_type;
+
+ // The logical crop / rectangle containing the valid information, relative
+ // to the reference plane's dimensions (e.g. luma). Pixels outside of this
+ // rectangle will ostensibly be ignored, but note that this is not a hard
+ // guarantee. In particular, scaler filters may end up sampling outside of
+ // this crop. This rect may be flipped, and may be partially or wholly
+ // outside the bounds of the underlying textures. (Optional)
+ //
+ // Note that `pl_render_image` will map the input crop directly to the
+ // output crop, stretching and scaling as needed. If you wish to preserve
+ // the aspect ratio, use a dedicated function like pl_rect2df_aspect_copy.
+ pl_rect2df crop;
+
+ // Logical rotation of the image, with respect to the underlying planes.
+ // For example, if this is PL_ROTATION_90, then the image will be rotated
+ // to the right by 90° when mapping to `crop`. The actual position on-screen
+ // is unaffected, so users should ensure that the (rotated) aspect ratio
+ // matches the source. (Or use a helper like `pl_rect2df_aspect_set_rot`)
+ //
+ // Note: For `target` frames, this corresponds to a rotation of the
+ // display, for `image` frames, this corresponds to a rotation of the
+ // camera.
+ //
+ // So, as an example, target->rotation = PL_ROTATE_90 means the end user
+ // has rotated the display to the right by 90° (meaning rendering will be
+ // rotated 90° to the *left* to compensate), and image->rotation =
+ // PL_ROTATE_90 means the video provider has rotated the camera to the
+ // right by 90° (so rendering will be rotated 90° to the *right* to
+ // compensate).
+ pl_rotation rotation;
+
+ // A list of additional overlays associated with this frame. Note that will
+ // be rendered directly onto intermediate/cache frames, so changing any of
+ // these overlays may require flushing the renderer cache.
+ const struct pl_overlay *overlays;
+ int num_overlays;
+
+ // Note on subsampling and plane correspondence: All planes belonging to
+ // the same frame will only be stretched by an integer multiple (or inverse
+ // thereof) in order to match the reference dimensions of this image. For
+ // example, suppose you have an 8x4 image. A valid plane scaling would be
+ // 4x2 -> 8x4 or 4x4 -> 4x4, but not 6x4 -> 8x4. So if a 6x4 plane is
+ // given, then it would be treated like a cropped 8x4 plane (since 1.0 is
+ // the closest scaling ratio to the actual ratio of 1.3).
+ //
+ // For an explanation of why this makes sense, consider the relatively
+ // common example of a subsampled, oddly sized (e.g. jpeg) image. In such
+ // cases, for example a 35x23 image, the 4:2:0 subsampled chroma plane
+ // would have to end up as 17.5x11.5, which gets rounded up to 18x12 by
+ // implementations. So in this example, the 18x12 chroma plane would get
+ // treated by libplacebo as an oversized chroma plane - i.e. the plane
+ // would get sampled as if it was 17.5 pixels wide and 11.5 pixels large.
+
+ // Associated film grain data (see <libplacebo/shaders/film_grain.h>).
+ //
+ // Note: This is ignored for the `target` of `pl_render_image`, since
+ // un-applying grain makes little sense.
+ struct pl_film_grain_data film_grain;
+
+ // Ignored by libplacebo. May be useful for users.
+ void *user_data;
+};
+
+// Helper function to infer the chroma location offset for each plane in a
+// frame. This is equivalent to calling `pl_chroma_location_offset` on all
+// subsampled planes' shift_x/shift_y variables.
+PL_API void pl_frame_set_chroma_location(struct pl_frame *frame,
+ enum pl_chroma_location chroma_loc);
+
+// Fills in a `pl_frame` based on a swapchain frame's FBO and metadata.
+PL_API void pl_frame_from_swapchain(struct pl_frame *out_frame,
+ const struct pl_swapchain_frame *frame);
+
+// Helper function to determine if a frame is logically cropped or not. In
+// particular, this is useful in determining whether or not an output frame
+// needs to be cleared before rendering or not.
+PL_API bool pl_frame_is_cropped(const struct pl_frame *frame);
+
+// Helper function to reset a frame to a given RGB color. If the frame's
+// color representation is something other than RGB, the clear color will
+// be adjusted accordingly. `clear_color` should be non-premultiplied.
+PL_API void pl_frame_clear_rgba(pl_gpu gpu, const struct pl_frame *frame,
+ const float clear_color[4]);
+
+// Like `pl_frame_clear_rgba` but without an alpha channel.
+static inline void pl_frame_clear(pl_gpu gpu, const struct pl_frame *frame,
+ const float clear_color[3])
+{
+ const float clear_color_rgba[4] = { clear_color[0], clear_color[1], clear_color[2], 1.0 };
+ pl_frame_clear_rgba(gpu, frame, clear_color_rgba);
+}
+
+// Helper functions to return the fixed/inferred pl_frame parameters used
+// for rendering internally. Mutates `image` and `target` in-place to hold
+// the modified values, which are what will actually be used for rendering.
+//
+// This currently includes:
+// - Defaulting all missing pl_color_space/repr parameters
+// - Coalescing all rotation to the target
+// - Rounding and clamping the target crop to pixel boundaries and adjusting the
+// image crop correspondingly
+//
+// Note: This is idempotent and does not generally alter the effects of a
+// subsequent `pl_render_image` on the same pl_frame pair. (But see the
+// following warning)
+//
+// Warning: This does *not* call pl_frame.acquire/release, and so the returned
+// metadata *may* be incorrect if the acquire callback mutates the pl_frame in
+// nontrivial ways, in particular the crop and color space fields.
+PL_API void pl_frames_infer(pl_renderer rr, struct pl_frame *image,
+ struct pl_frame *target);
+
+
+// Render a single image to a target using the given parameters. This is
+// fully dynamic, i.e. the params can change at any time. libplacebo will
+// internally detect and flush whatever caches are invalidated as a result of
+// changing colorspace, size etc.
+//
+// Required plane capabilities:
+// - Planes in `image` must be `sampleable`
+// - Planes in `target` must be `renderable`
+//
+// Recommended plane capabilities: (Optional, but good for performance)
+// - Planes in `image` should have `sample_mode` PL_TEX_SAMPLE_LINEAR
+// - Planes in `target` should be `storable`
+// - Planes in `target` should have `blit_dst`
+//
+// Note on lifetime: Once this call returns, the passed structures may be
+// freely overwritten or discarded by the caller, even the referenced
+// `pl_tex` objects may be freely reused.
+//
+// Note: `image` may be NULL, in which case `target.overlays` will still be
+// rendered, but nothing else.
+PL_API bool pl_render_image(pl_renderer rr, const struct pl_frame *image,
+ const struct pl_frame *target,
+ const struct pl_render_params *params);
+
+// Flushes the internal state of this renderer. This is normally not needed,
+// even if the image parameters, colorspace or target configuration change,
+// since libplacebo will internally detect such circumstances and recreate
+// outdated resources automatically. Doing this explicitly *may* be useful to
+// purge some state related to things like HDR peak detection or frame mixing,
+// so calling it is a good idea if the content source is expected to change
+// dramatically (e.g. when switching to a different file).
+PL_API void pl_renderer_flush_cache(pl_renderer rr);
+
+// Mirrors `pl_get_detected_hdr_metadata`, giving you the current internal peak
+// detection HDR metadata (when peak detection is active). Returns false if no
+// information is available (e.g. not HDR source, peak detection disabled).
+PL_API bool pl_renderer_get_hdr_metadata(pl_renderer rr,
+ struct pl_hdr_metadata *metadata);
+
+// Represents a mixture of input frames, distributed temporally.
+//
+// NOTE: Frames must be sorted by timestamp, i.e. `timestamps` must be
+// monotonically increasing.
+struct pl_frame_mix {
+ // The number of frames in this mixture. The number of frames should be
+ // sufficient to meet the needs of the configured frame mixer. See the
+ // section below for more information.
+ //
+ // If the number of frames is 0, this call will be equivalent to
+ // `pl_render_image` with `image == NULL`.
+ int num_frames;
+
+ // A list of the frames themselves. The frames can have different
+ // colorspaces, configurations of planes, or even sizes.
+ //
+ // Note: This is a list of pointers, to avoid users having to copy
+ // around `pl_frame` structs when re-organizing this array.
+ const struct pl_frame **frames;
+
+ // A list of unique signatures, one for each frame. These are used to
+ // identify frames across calls to this function, so it's crucial that they
+ // be both unique per-frame but also stable across invocations of
+ // `pl_render_frame_mix`.
+ const uint64_t *signatures;
+
+ // A list of relative timestamps for each frame. These are relative to the
+ // time of the vsync being drawn, i.e. this function will render the frame
+ // that will be made visible at timestamp 0.0. The values are expected to
+ // be normalized such that a separation of 1.0 corresponds to roughly one
+ // nominal source frame duration. So a constant framerate video file will
+ // always have timestamps like e.g. {-2.3, -1.3, -0.3, 0.7, 1.7, 2.7},
+ // using an example radius of 3.
+ //
+ // In cases where the framerate is variable (e.g. VFR video), the choice of
+ // what to scale to use can be difficult to answer. A typical choice would
+ // be either to use the canonical (container-tagged) framerate, or the
+ // highest momentary framerate, as a reference. If all else fails, you
+ // could also use the display's framerate.
+ //
+ // Note: This function assumes zero-order-hold semantics, i.e. the frame at
+ // timestamp 0.7 is intended to remain visible until timestamp 1.7, when
+ // the next frame replaces it.
+ const float *timestamps;
+
+ // The duration for which the vsync being drawn will be held, using the
+ // same scale as `timestamps`. If the display has an unknown or variable
+ // frame-rate (e.g. Adaptive Sync), then you're probably better off not
+ // using this function and instead just painting the frames directly using
+ // `pl_render_frame` at the correct PTS.
+ //
+ // As an example, if `vsync_duration` is 0.4, then it's assumed that the
+ // vsync being painted is visible for the period [0.0, 0.4].
+ float vsync_duration;
+
+ // Explanation of the frame mixing radius: The algorithm chosen in
+ // `pl_render_params.frame_mixer` has a canonical radius equal to
+ // `pl_filter_config.kernel->radius`. This means that the frame mixing
+ // algorithm will (only) need to consult all of the frames that have a
+ // distance within the interval [-radius, radius]. As such, the user should
+ // include all such frames in `frames`, but may prune or omit frames that
+ // lie outside it.
+ //
+ // The built-in frame mixing (`pl_render_params.frame_mixer == NULL`) has
+ // no concept of radius, it just always needs access to the "current" and
+ // "next" frames.
+};
+
+// Helper function to calculate the base frame mixing radius.
+//
+// Note: When the source FPS exceeds the display FPS, this radius must be
+// increased by the corresponding ratio.
+static inline float pl_frame_mix_radius(const struct pl_render_params *params)
+{
+ // For backwards compatibility, allow !frame_mixer->kernel
+ if (!params->frame_mixer || !params->frame_mixer->kernel)
+ return 0.0;
+
+ return params->frame_mixer->kernel->radius;
+}
+
+// Find closest frame to current PTS by zero-order hold semantics, or NULL.
+PL_API const struct pl_frame *pl_frame_mix_current(const struct pl_frame_mix *mix);
+
+// Find closest frame to current PTS by nearest neighbour semantics, or NULL.
+PL_API const struct pl_frame *pl_frame_mix_nearest(const struct pl_frame_mix *mix);
+
+// Render a mixture of images to the target using the given parameters. This
+// functions much like a generalization of `pl_render_image`, for when the API
+// user has more control over the frame queue / vsync loop, and can provide a
+// few frames from the past and future + timestamp information.
+//
+// This allows libplacebo to perform rudimentary frame mixing / interpolation,
+// in order to eliminate judder artifacts typically associated with
+// source/display frame rate mismatch.
+PL_API bool pl_render_image_mix(pl_renderer rr, const struct pl_frame_mix *images,
+ const struct pl_frame *target,
+ const struct pl_render_params *params);
+
+// Analog of `pl_frame_infer` corresponding to `pl_render_image_mix`. This
+// function will *not* mutate the frames contained in `mix`, and instead
+// return an adjusted copy of the "reference" frame for that image mix in
+// `out_refimage`, or {0} if the mix is empty.
+PL_API void pl_frames_infer_mix(pl_renderer rr, const struct pl_frame_mix *mix,
+ struct pl_frame *target, struct pl_frame *out_ref);
+
+// Backwards compatibility with old filters API, may be deprecated.
+// Redundant with pl_filter_configs and masking `allowed` for
+// PL_FILTER_SCALING and PL_FILTER_FRAME_MIXING respectively.
+
+// A list of recommended frame mixer presets, terminated by {0}
+PL_API extern const struct pl_filter_preset pl_frame_mixers[];
+PL_API extern const int pl_num_frame_mixers; // excluding trailing {0}
+
+// A list of recommended scaler presets, terminated by {0}. This is almost
+// equivalent to `pl_filter_presets` with the exception of including extra
+// built-in filters that don't map to the `pl_filter` architecture.
+PL_API extern const struct pl_filter_preset pl_scale_filters[];
+PL_API extern const int pl_num_scale_filters; // excluding trailing {0}
+
+// Deprecated in favor of `pl_cache_save/pl_cache_load` on the `pl_cache`
+// associated with the `pl_gpu` this renderer is using.
+PL_DEPRECATED PL_API size_t pl_renderer_save(pl_renderer rr, uint8_t *out_cache);
+PL_DEPRECATED PL_API void pl_renderer_load(pl_renderer rr, const uint8_t *cache);
+
+PL_API_END
+
+#endif // LIBPLACEBO_RENDERER_H_