1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
|
# Custom Shaders (mpv .hook syntax)
libplacebo supports the same [custom shader syntax used by
mpv](https://mpv.io/manual/master/#options-glsl-shader), with some important
changes. This document will serve as a complete reference for this syntax.
## Overview
In general, user shaders are divided into distinct *blocks*. Each block can
define a shader, a texture, a buffer, or a tunable parameter. Each block
starts with a collection of header directives, which are lines starting with
the syntax `//!`.
As an example, here is a simple shader that simply inverts the video signal:
``` glsl linenums="1"
//!HOOK LUMA
//!HOOK RGB
//!BIND HOOKED
vec4 hook()
{
vec4 color = HOOKED_texOff(0);
color.rgb = vec3(1.0) - color.rgb;
return color;
}
```
This shader defines one block - a shader block which hooks into the two
texture stages `LUMA` and `RGB`, binds the hooked texture, inverts the value
of the `rgb` channels, and then returns the modified color.
### Expressions
In a few contexts, shader directives accept arithmetic expressions, denoted by
`<expr>` in the listing below. For historical reasons, all expressions are
given in [reverse polish notation
(RPN)](https://en.wikipedia.org/wiki/Reverse_Polish_notation), and the only
value type is a floating point number. The following value types and
arithmetic operations are available:
* `1.234`: Literal float constant, evaluates to itself.
* `NAME.w`, `NAME.width`: Evaluates to the width of a texture with name `NAME`.
* `NAME.h`, `NAME.height`: Evaluates to the height of a texture with name `NAME`.
* `PAR`: Evaluates to the value of a tunable shader parameter with name `PAR`.
* `+`: Evaluates to `X+Y`.
* `-`: Evaluates to `X-Y`.
* `*`: Evaluates to `X*Y`.
* `/`: Evaluates to `X/Y`.
* `%`: Evaluates to `fmod(X, Y)`.
* `>`: Evaluates to `(X > Y) ? 1.0 : 0.0`.
* `<`: Evaluates to `(X < Y) ? 1.0 : 0.0`.
* `=`: Evaluates to `fuzzy_eq(X, Y) ? 1.0 : 0.0`, with some tolerance to
allow for floating point inaccuracy. (Around 1 ppm)
* `!`: Evaluates to `X ? 0.0 : 1.0`.
Note that `+` and `*` can be used as suitable replacements for the otherwise
absent boolean logic expressions (`||` and `&&`).
## Shaders
Shaders are the default block type, and have no special syntax to indicate
their presence. Shader stages contain raw GLSL code that will be
(conditionally) executed. This GLSL snippet must define a single function
`vec4 hook()`, or `void hook()` for compute shaders.
During the execution of any shader, the following global variables are made
available:
* `int frame`: A raw counter tracking the number of executions of this shader
stage.
* `float random`: A pseudo-random float uniformly distributed in the range
`[0,1)`.
* `vec2 input_size`: The nominal size (in pixels) of the original input image.
* `vec2 target_size`: The nominal size (in pixels) of the output rectangle.
* `vec2 tex_offset`: The nominal offset (in pixels), of the original input crop.
* `vec4 linearize(vec4 color)`: Linearize the input color according to the
image's tagged gamma function.
* `vec4 delinearize(vec4 color)`: Opposite counterpart to `linearize`.
Shader stages accept the following directives:
### `HOOK <texture>`
A `HOOK` directive determines when a shader stage is run. During internal
processing, libplacebo goes over a number of pre-defined *hook points* at set
points in the processing pipeline. It is only possible to intercept the image,
and run custom shaders, at these fixed hook points.
Here is a current list of hook points:
* `RGB`: Input plane containing RGB values
* `LUMA`: Input plane containing a Y value
* `CHROMA`: Input plane containing chroma values (one or both)
* `ALPHA`: Input plane containing a single alpha value
* `XYZ`: Input plane containing XYZ values
* `CHROMA_SCALED`: Chroma plane, after merging and upscaling to luma size
* `ALPHA_SCALED`: Alpha plane, after upscaling to luma size
* `NATIVE`: Merged input planes, before any sort of color conversion (as-is)
* `MAIN`: After conversion to RGB, before linearization/scaling
* `LINEAR`: After conversion to linear light (for scaling purposes)
* `SIGMOID`: After conversion to sigmoidized light (for scaling purposes)
* `PREKERNEL`: Immediately before the execution of the main scaler kernel
* `POSTKERNEL`: Immediately after the execution of the main scaler kernel
* `SCALED`: After scaling, in either linear or non-linear light RGB
* `PREOUTPUT`: After color conversion to target colorspace, before alpha blending
* `OUTPUT`: After alpha blending, before dithering and final output pass
!!! warning "`MAINPRESUB`"
In mpv, `MAIN` and `MAINPRESUB` are separate shader stages, because the
mpv option `--blend-subtitles=video` allows rendering overlays directly
onto the pre-scaled video stage. libplacebo does not support this feature,
and as such, the `MAINPRESUB` shader stage does not exist. It is still
valid to refer to this name in shaders, but it is handled identically to
`MAIN`.
It's possible for a hook point to never fire. For example, `SIGMOID` will not
fire when downscaling, as sigmoidization only happens when upscaling.
Similarly, `LUMA`/`CHROMA` will not fire on an RGB video and vice versa.
A single shader stage may hook multiple hook points simultaneously, for
example, to cover both `LUMA` and `RGB` cases with the same logic. (See the
example shader in the introduction)
### `BIND <texture>`
The `BIND` directive makes a texture available for use in the shader. This can
be any of the previously named hook points, a custom texture define by a
`TEXTURE` block, a custom texture saved by a `SAVE` directive, or the special
value `HOOKED` which allows binding whatever texture hook dispatched this
shader stage.
A bound texture will define the following GLSL functions (as macros):
* `sampler2D NAME_raw`: A reference to the raw texture sampler itself.
* `vec2 NAME_pos`: The texel coordinates of the current pixel.
* `vec2 NAME_map(ivec2 id)`: A function that maps from `gl_GlobalInvocationID`
to texel coordinates. (Compute shaders)
* `vec2 NAME_size`: The size (in pixels) of the texture.
* `vec2 NAME_pt`: Convenience macro for `1.0 / NAME_size`. The size of a
single pixel (in texel coordinates).
* `vec2 NAME_off`: The sample offset of the texture. Basically, the pixel
coordinates of the top-left corner of the sampled area.
* `float NAME_mul`: The coefficient that must be multiplied into sampled
values in order to rescale them to `[0,1]`.
* `vec4 NAME_tex(vec2 pos)`: A wrapper around `NAME_mul * textureLod(NAME_raw,
pos, 0.0)`.
* `vec4 NAME_texOff(vec2 offset)`: A wrapper around `NAME_tex(NAME_pos + NAME_pt * offset)`.
This can be used to easily access adjacent pixels, e.g. `NAME_texOff(-1,2)`
samples a pixel one to the left and two to the bottom of the current
location.
* `vec4 NAME_gather(vec2 pos, int c)`: A wrapper around
`NAME_mul * textureGather(pos, c)`, with appropriate scaling. (Only when
supported[^ifdef])
!!! note "Rotation matrix"
For compatibility with mpv, we also define a `mat2 NAME_rot` which is
simply equal to a 2x2 identity matrix. libplacebo never rotates input
planes - all rotation happens during the final output to the display.
[^ifdef]: Because these are macros, their presence can be tested for using
`#ifdef` inside the GLSL preprocessor.
This same directive can also be used to bind buffer blocks (i.e.
uniform/storage buffers), as defined by the [`BUFFER` directive](#buffer-name).
### `SAVE <texture>`
By default, after execution of a shader stage, the resulting output is
captured back into the same hooked texture that triggered the shader. This
behavior can be overridden using the explicit `SAVE` directive. For example,
a shader might need access to a low-res version of the luma input texture in
order to process chroma:
``` glsl linenums="1"
//!HOOK CHROMA
//!BIND CHROMA
//!BIND LUMA
//!SAVE LUMA_LOWRES
//!WIDTH CHROMA.w
//!HEIGHT CHROMA.h
vec4 hook()
{
return LUMA_texOff(0);
}
```
This shader binds both luma and chroma and resizes the luma plane down to the
size of the chroma plane, saving the result as a new texture `LUMA_LOWRES`. In
general, you can pick any name you want, here.
### `DESC <description>`
This purely informative directive simply gives the shader stage a name. This
is the name that will be reported to the shader stage and execution time
metrics.
### `OFFSET <xo yo | ALIGN>`
This directive indicates a pixel shift (offset) introduced by this pass. These
pixel offsets will be accumulated and corrected automatically as part of plane
alignment / main scaling.
A special value of `ALIGN` will attempt to counteract any existing offset of
the hooked texture by aligning it with reference plane (i.e. luma). This can
be used to e.g. introduce custom chroma scaling in a way that doesn't break
chroma subtexel offsets.
An example:
``` glsl linenums="1"
//!HOOK LUMA
//!BIND HOOKED
//!OFFSET 100.5 100.5
vec4 hook()
{
// Constant offset by N pixels towards the bottom right
return HOOKED_texOff(-vec2(100.5));
}
```
This (slightly silly) shader simply shifts the entire sampled region to the
bottom right by 100.5 pixels, and propagates this shift to the main scaler
using the `OFFSET` directive. As such, the end result of this is that there is
no visible shift of the overall image, but some detail (~100 pixels) near the
bottom-right border is lost due to falling outside the bounds of the texture.
### `WIDTH <expr>`, `HEIGHT <expr>`
These directives can be used to override the dimensions of the resulting
texture. Note that not all textures can be resized this way. Currently, only
`RGB`, `LUMA`, `CHROMA`, `XYZ`, `NATIVE` and `MAIN` are resizable. Trying to
save a texture with an incompatible size to any other shader stage will result
in an error.
### `WHEN <expr>`
This directive takes an expression that can be used to make shader stages
conditionally executed. If this evaluates to 0, the shader stage will be
skipped.
Example:
``` glsl linenums="1"
//!PARAM strength
//!TYPE float
//!MINIMUM 0
1.0
//!HOOK MAIN
//!BIND HOOKED
//!WHEN intensity 0 >
//!DESC do something based on 'intensity'
...
```
This example defines a shader stage that only conditionally executes itself
if the value of the `intensity` shader parameter is non-zero.
### `COMPONENTS <num>`
This directive overrides the number of components present in a texture.
For example, if you want to extract a one-dimensional feature map from the
otherwise 3 or 4 dimensional `MAIN` texture, you can use this directive to
save on memory bandwidth and consumption by having libplacebo only allocate a
one-component texture to store the feature map in:
``` glsl linenums="1"
//!HOOK MAIN
//!BIND HOOKED
//!SAVE featuremap
//!COMPONENTS 1
```
### `COMPUTE <bw> <bh> [<tw> <th>]`
This directive specifies that the shader should be treated as a compute
shader, with the block size `bw` and `bh`. The compute shader will be
dispatched with however many blocks are necessary to completely tile over the
output. Within each block, there will be `tw*th` threads, forming a single
work group. In other words: `tw` and `th` specify the work group size, which
can be different from the block size. So for example, a compute shader with
`bw = bh = 32` and `tw = th = 8` running on a `500x500` texture would dispatch
`16x16` blocks (rounded up), each with `8x8` threads.
Instead of defining a `vec4 hook()`, compute shaders must define a `void
hook()` which results directly to the output texture, a `writeonly image2D
out_image` made available to the shader stage.
For example, here is a shader executing a single-pass 41x41 convolution
(average blur) on the luma plane, using a compute shader to share sampling
work between adjacent threads in a work group:
``` glsl linenums="1"
//!HOOK LUMA
//!BIND HOOKED
//!COMPUTE 32 32
//!DESC avg convolution
// Kernel size, 41x41 as an example
const ivec2 ksize = ivec2(41, 41);
const ivec2 offset = ksize / 2;
// We need to load extra source texels to account for padding due to kernel
// overhang
const ivec2 isize = ivec2(gl_WorkGroupSize) + ksize - 1;
shared float inp[isize.y][isize.x];
void hook()
{
// load texels into shmem
ivec2 base = ivec2(gl_WorkGroupID) * ivec2(gl_WorkGroupSize);
for (uint y = gl_LocalInvocationID.y; y < isize.y; y += gl_WorkGroupSize.y) {
for (uint x = gl_LocalInvocationID.x; x < isize.x; x += gl_WorkGroupSize.x)
inp[y][x] = texelFetch(HOOKED_raw, base + ivec2(x,y) - offset, 0).x;
}
// synchronize threads
barrier();
// do convolution
float sum;
for (uint y = 0; y < ksize.y; y++) {
for (uint x = 0; x < ksize.x; x++)
sum += inp[gl_LocalInvocationID.y+y][gl_LocalInvocationID.x+x];
}
vec4 color = vec4(HOOKED_mul * sum / (ksize.x * ksize.y), 0, 0, 1);
imageStore(out_image, ivec2(gl_GlobalInvocationID), color);
}
```
## Textures
Custom textures can be defined and made available to shader stages using
`TEXTURE` blocks. These can be used to provide e.g. LUTs or pre-trained
weights.
The data for a texture is provided as a raw hexadecimal string encoding the
in-memory representation of a texture, according to its given texture format,
for example:
``` glsl linenums="1"
//!TEXTURE COLORS
//!SIZE 3 3
//!FORMAT rgba32f
//!FILTER NEAREST
//!BORDER REPEAT
0000803f000000000000000000000000000000000000803f00000000000000000000000
0000000000000803f00000000000000000000803f0000803f000000000000803f000000
000000803f000000000000803f0000803f00000000000000009a99993e9a99993e9a999
93e000000009a99193F9A99193f9a99193f000000000000803f0000803f0000803f0000
0000
```
Texture blocks accept the following directives:
### `TEXTURE <name>`
This must be the first directive in a texture block, and marks it as such. The
name given is the name that the texture will be referred to (via `BIND`
directives).
### `SIZE <width> [<height> [<depth>]]`
This directive gives the size of the texture, as integers. For example,
`//!SIZE 512 512` marks a 512x512 texture block. Textures can be 1D, 2D or 3D
depending on the number of coordinates specified.
### `FORMAT <fmt>`
This directive specifies the texture format. A complete list of known textures
is exposed as part of the `pl_gpu` struct metadata, but they follow the format
convention `rgba8`, `rg16hf`, `rgba32f`, `r64i` and so on.
### `FILTER <LINEAR | NEAREST>`
This directive specifies the texture magnification/minification filter.
### `BORDER <CLAMP | REPEAT | MIRROR>`
This directive specifies the border clamping method of the texture.
### `STORAGE`
If present, this directive marks the texture as a storage image. It will still
be initialized with the initial values, but rather than being bound as a
read-only and immutable `sampler2D`, it is bound as a `readwrite coherent
image2D`. Such texture scan be used to, for example, store persistent state
across invocations of the shader.
## Buffers
Custom uniform / storage shader buffer blocks can be defined using `BUFFER`
directives.
The (initial) data for a buffer is provided as a raw hexadecimal string
encoding the in-memory representation of a buffer in the corresponding GLSL
packing layout (std140 or std430 for uniform and storage blocks,
respectively):
``` glsl linenums="1"
//!BUFFER buf_uniform
//!VAR float foo
//!VAR float bar
0000000000000000
//!BUFFER buf_storage
//!VAR vec2 bat
//!VAR int big[32];
//!STORAGE
```
Buffer blocks accept the following directives:
### `BUFFER <name>`
This must be the first directive in a buffer block, and marks it as such. The
name given is mostly cosmetic, as individual variables can be accessed
directly using the names given in the corresponding `VAR` directives.
### `STORAGE`
If present, this directive marks the buffer as a (readwrite coherent) shader
storage block, instead of a readonly uniform buffer block. Such storage blocks
can be used to track and evolve state across invocations of this shader.
Storage blocks may also be initialized with default data, but this is
optional. They can also be initialized as part of the first shader execution
(e.g. by testing for `frame == 0`).
### `VAR <type> <name>`
This directive appends a new variable to the shader block, with GLSL type
`<type>` and shader name `<name>`. For example, `VAR float foo` introduces a
`float foo;` member into the buffer block, and `VAR mat4 transform` introduces
a `mat4 transform;` member.
It is also possible to introduce array variables, using `[N]` as part of the
variable name.
## Tunable parameters
Finally, the `PARAM` directive allows introducing tunable shader parameters,
which are exposed programmatically as part of the C API (`pl_hook`).[^mpv]
[^mpv]: In mpv using `--vo=gpu-next`, these can be set using the
[`--glsl-shader-opts` option](https://mpv.io/manual/master/#options-glsl-shader-opts).
The default value of a parameter is given as the block body, for example:
``` glsl linenums="1"
//!PARAM contrast
//!DESC Gain to apply to image brightness
//!TYPE float
//!MINIMUM 0.0
//!MAXIMUM 100.0
1.0
```
Parameters accept the following directives:
### `PARAM <name>`
This must be the first directive in a parameter block, and marks it as such.
The name given is the name that will be used to refer to this parameter in
GLSL code.
### `DESC <description>`
This directive can be used to provide a friendlier description of the shader
parameter, exposed as part of the C API to end users.
### `MINIMUM <value>`, `MAXIMUM <value>`
Provides the minimum/maximum value bound of this parameter. If absent, no
minimum/maximum is enforced.
### `TYPE [ENUM] <DEFINE | [DYNAMIC | CONSTANT] <type>>`
This gives the type of the parameter, which determines what type of values it
can hold and how it will be made available to the shader. `<type>` must be
a scalar GLSL numeric type, such as `int`, `float` or `uint`.
If a type is `ENUM`, it is treated as an enumeration type. To use this, `type`
must either be `int` or `DEFINE`. Instead of providing a single default value,
the param body should be a list of all possible enumeration values (as separate
lines). These names will be made available inside the shader body (as a
`#define`), as well as inside RPN expressions (e.g. `WHEN`). The qualifiers
`MINIMUM` and `MAXIMUM` are ignored for `ENUM` parameters, with the value
range instead being set implicitly from the list of options.
The optional qualifiers `DYNAMIC` or `CONSTANT` mark the parameter as
dynamically changing and compile-time constant, respectively. A `DYNAMIC`
variable is assumed to change frequently, and will be grouped with other
frequently-changing input parameters. A `CONSTANT` parameter will be
introduced as a compile-time constant into the shader header, which means thy
can be used in e.g. constant expressions such as array sizes.[^spec]
[^spec]: On supported platforms, these are implemented using specialization
constants, which can be updated at run-time without requiring a full shader
recompilation.
Finally, the special type `TYPE DEFINE` marks a variable as a preprocessor
define, which can be used inside `#if` preprocessor expressions. For example:
``` glsl linenums="1"
//!PARAM taps
//!DESC Smoothing taps
//!TYPE DEFINE
//!MINIMUM 0
//!MAXIMUM 5
2
//!HOOK LUMA
//!BIND HOOKED
const uint row_size = 2 * taps + 1;
const float weights[row_size] = {
#if taps == 0
1.0,
#endif
#if taps == 1
0.10650697891920,
0.78698604216159,
0.10650697891920,
#endif
#if taps == 2
0.05448868454964,
0.24420134200323,
0.40261994689424,
0.24420134200323,
0.05448868454964,
#endif
// ...
};
```
An example of an enum parameter:
``` glsl linenums="1"
//!PARAM csp
//!DESC Colorspace
//!TYPE ENUM int
BT709
BT2020
DCIP3
//!HOOK MAIN
//!BIND HOOKED
const mat3 matrices[3] = {
mat3(...), // BT709
mat3(...), // BT2020
mat3(...), // DCIP3
};
#define MAT matrices[csp]
// ...
```
## Full example
A collection of full examples can be found in the [mpv user shaders
wiki](https://github.com/mpv-player/mpv/wiki/User-Scripts#user-shaders), but
here is an example of a parametrized Gaussian smoothed film grain compute
shader:
``` glsl linenums="1"
//!PARAM intensity
//!DESC Film grain intensity
//!TYPE float
//!MINIMUM 0
0.1
//!PARAM taps
//!DESC Film grain smoothing taps
//!TYPE DEFINE
//!MINIMUM 0
//!MAXIMUM 5
2
//!HOOK LUMA
//!BIND HOOKED
//!DESC Apply gaussian smoothed film grain
//!WHEN intensity 0 >
//!COMPUTE 32 32
const uint row_size = 2 * taps + 1;
const float weights[row_size] = {
#if taps == 0
1.0,
#endif
#if taps == 1
0.10650697891920,
0.78698604216159,
0.10650697891920,
#endif
#if taps == 2
0.05448868454964,
0.24420134200323,
0.40261994689424,
0.24420134200323,
0.05448868454964,
#endif
#if taps == 3
0.03663284536919,
0.11128075847888,
0.21674532140370,
0.27068214949642,
0.21674532140370,
0.11128075847888,
0.03663284536919,
#endif
#if taps == 4
0.02763055063889,
0.06628224528636,
0.12383153680577,
0.18017382291138,
0.20416368871516,
0.18017382291138,
0.12383153680577,
0.06628224528636,
0.02763055063889,
#endif
#if taps == 5
0.02219054849244,
0.04558899978527,
0.07981140824009,
0.11906462996609,
0.15136080967773,
0.16396720767670,
0.15136080967773,
0.11906462996609,
0.07981140824009,
0.04558899978527,
0.02219054849244,
#endif
};
const uvec2 isize = uvec2(gl_WorkGroupSize) + uvec2(2 * taps);
shared float grain[isize.y][isize.x];
// PRNG
float permute(float x)
{
x = (34.0 * x + 1.0) * x;
return fract(x * 1.0/289.0) * 289.0;
}
float seed(uvec2 pos)
{
const float phi = 1.61803398874989;
vec3 m = vec3(fract(phi * vec2(pos)), random) + vec3(1.0);
return permute(permute(m.x) + m.y) + m.z;
}
float rand(inout float state)
{
state = permute(state);
return fract(state * 1.0/41.0);
}
// Turns uniform white noise into gaussian white noise by passing it
// through an approximation of the gaussian quantile function
float rand_gaussian(inout float state) {
const float a0 = 0.151015505647689;
const float a1 = -0.5303572634357367;
const float a2 = 1.365020122861334;
const float b0 = 0.132089632343748;
const float b1 = -0.7607324991323768;
float p = 0.95 * rand(state) + 0.025;
float q = p - 0.5;
float r = q * q;
float g = q * (a2 + (a1 * r + a0) / (r*r + b1*r + b0));
g *= 0.255121822830526; // normalize to [-1,1)
return g;
}
void hook()
{
// generate grain in `grain`
uint num_threads = gl_WorkGroupSize.x * gl_WorkGroupSize.y;
for (uint i = gl_LocalInvocationIndex; i < isize.y * isize.x; i += num_threads) {
uvec2 pos = uvec2(i % isize.y, i / isize.y);
float state = seed(gl_WorkGroupID.xy * gl_WorkGroupSize.xy + pos);
grain[pos.y][pos.x] = rand_gaussian(state);
}
// make writes visible
barrier();
// convolve horizontally
for (uint y = gl_LocalInvocationID.y; y < isize.y; y += gl_WorkGroupSize.y) {
float hsum = 0;
for (uint x = 0; x < row_size; x++) {
float g = grain[y][gl_LocalInvocationID.x + x];
hsum += weights[x] * g;
}
// update grain LUT
grain[y][gl_LocalInvocationID.x + taps] = hsum;
}
barrier();
// convolve vertically
float vsum = 0.0;
for (uint y = 0; y < row_size; y++) {
float g = grain[gl_LocalInvocationID.y + y][gl_LocalInvocationID.x + taps];
vsum += weights[y] * g;
}
vec4 color = HOOKED_tex(HOOKED_pos);
color.rgb += vec3(intensity * vsum);
imageStore(out_image, ivec2(gl_GlobalInvocationID), color);
}
```
|