summaryrefslogtreecommitdiffstats
path: root/nlpsolver/ThirdParty/EvolutionarySolver/src/net/adaptivebox/sco
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-15 05:54:39 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-15 05:54:39 +0000
commit267c6f2ac71f92999e969232431ba04678e7437e (patch)
tree358c9467650e1d0a1d7227a21dac2e3d08b622b2 /nlpsolver/ThirdParty/EvolutionarySolver/src/net/adaptivebox/sco
parentInitial commit. (diff)
downloadlibreoffice-267c6f2ac71f92999e969232431ba04678e7437e.tar.xz
libreoffice-267c6f2ac71f92999e969232431ba04678e7437e.zip
Adding upstream version 4:24.2.0.upstream/4%24.2.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'nlpsolver/ThirdParty/EvolutionarySolver/src/net/adaptivebox/sco')
-rw-r--r--nlpsolver/ThirdParty/EvolutionarySolver/src/net/adaptivebox/sco/SCAgent.java143
1 files changed, 143 insertions, 0 deletions
diff --git a/nlpsolver/ThirdParty/EvolutionarySolver/src/net/adaptivebox/sco/SCAgent.java b/nlpsolver/ThirdParty/EvolutionarySolver/src/net/adaptivebox/sco/SCAgent.java
new file mode 100644
index 0000000000..a09d0dcfd6
--- /dev/null
+++ b/nlpsolver/ThirdParty/EvolutionarySolver/src/net/adaptivebox/sco/SCAgent.java
@@ -0,0 +1,143 @@
+package net.adaptivebox.sco;
+
+/**
+ * Description: The description of social cognitive agent.
+ *
+ * @Information source: a) external library (L); b) the own memory: a point that
+ * generated in the last learning cycle
+ *
+ * @Coefficients: TaoB and TaoW
+ *
+ * @ Author Create/Modi Note
+ * Xiaofeng Xie Mar 11, 2003
+ * Xiaofeng Xie May 11, 2004
+ * Xiaofeng Xie May 20, 2004
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * Please acknowledge the author(s) if you use this code in any way.
+ *
+ * @version 1.0
+ * @Since MAOS1.0
+ *
+ * @References:
+ * [1] Xie X F, Zhang W J. Solving engineering design problems by social cognitive
+ * optimization. Genetic and Evolutionary Computation Conference, 2004: 261-262
+ */
+
+import net.adaptivebox.problem.ProblemEncoder;
+import net.adaptivebox.space.DesignSpace;
+import net.adaptivebox.space.ILocationEngine;
+import net.adaptivebox.global.RandomGenerator;
+import net.adaptivebox.goodness.IGoodnessCompareEngine;
+import net.adaptivebox.knowledge.Library;
+import net.adaptivebox.knowledge.SearchPoint;
+
+public class SCAgent {
+
+ // Describes the problem to be solved (encode the point into intermediate information)
+ private ProblemEncoder problemEncoder;
+
+ // Forms the goodness landscape
+ private IGoodnessCompareEngine specComparator;
+
+ // the coefficients of SCAgent
+ private static final int TaoB = 2;
+
+ // The early version set TaoW as the size of external library (NL), but 4 is often enough
+ private static final int TaoW = 4;
+
+ // The referred external library
+ private Library externalLib;
+
+ // store the point that generated in current learning cycle
+ private SearchPoint trailPoint;
+
+ // the own memory: store the point that generated in last learning cycle
+ private SearchPoint pcurrent_t;
+
+ public void setExternalLib(Library lib) {
+ externalLib = lib;
+ }
+
+ public void setProblemEncoder(ProblemEncoder encoder) {
+ problemEncoder = encoder;
+ trailPoint = problemEncoder.getFreshSearchPoint();
+ pcurrent_t = problemEncoder.getEncodedSearchPoint();
+ }
+
+ public void setSpecComparator(IGoodnessCompareEngine comparer) {
+ specComparator = comparer;
+ }
+
+ public SearchPoint generatePoint() {
+ // generate a new point
+ generatePoint(trailPoint);
+
+ // evaluate the generated point
+ problemEncoder.evaluate(trailPoint);
+ return trailPoint;
+ }
+
+ private void generatePoint(ILocationEngine tempPoint) {
+ SearchPoint Xmodel, Xrefer, libBPoint;
+
+ // choose Selects a better point (libBPoint) from externalLib (L) based
+ // on tournament selection
+ int xb = externalLib.tournamentSelection(specComparator, TaoB, true);
+ libBPoint = externalLib.getSelectedPoint(xb);
+
+ // Compares pcurrent_t with libBPoint
+ // The better one becomes model point (Xmodel)
+ // The worse one becomes refer point (Xrefer)
+ if (specComparator.compare(pcurrent_t.getEncodeInfo(),
+ libBPoint.getEncodeInfo()) == IGoodnessCompareEngine.LARGER_THAN) {
+ Xmodel = libBPoint;
+ Xrefer = pcurrent_t;
+ } else {
+ Xmodel = pcurrent_t;
+ Xrefer = libBPoint;
+ }
+
+ // observational learning: generates a new point near the model point, which
+ // the variation range is decided by the difference of Xmodel and Xrefer
+ inferPoint(tempPoint, Xmodel, Xrefer, problemEncoder.getDesignSpace());
+ }
+
+ // 1. Update the current point into the external library
+ // 2. Replace the current point by the generated point
+ public void updateInfo() {
+ // Selects a bad point kw from TaoW points in Library
+ int xw = externalLib.tournamentSelection(specComparator, TaoW, false);
+
+ // Replaces kw with pcurrent_t
+ externalLib.getSelectedPoint(xw).importPoint(pcurrent_t);
+
+ // Replaces pcurrent_t (x(t)) with trailPoint (x(t+1))
+ pcurrent_t.importPoint(trailPoint);
+ }
+
+ // 1---model point, 2---refer point
+ private boolean inferPoint(ILocationEngine newPoint, ILocationEngine point1, ILocationEngine point2,
+ DesignSpace space) {
+ double[] newLoc = newPoint.getLocation();
+ double[] real1 = point1.getLocation();
+ double[] real2 = point2.getLocation();
+
+ for (int i = 0; i < newLoc.length; i++) {
+ newLoc[i] = real1[i] * 2 - real2[i];
+ // boundary handling
+ newLoc[i] = space.boundAdjustAt(newLoc[i], i);
+ newLoc[i] = RandomGenerator.doubleRangeRandom(newLoc[i], real2[i]);
+ }
+ return true;
+ }
+}