1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <basegfx/numeric/ftools.hxx>
#include <basegfx/polygon/b2dpolypolygoncutter.hxx>
#include <basegfx/point/b2dpoint.hxx>
#include <basegfx/vector/b2dvector.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/polygon/b2dpolygoncutandtouch.hxx>
#include <basegfx/range/b2drange.hxx>
#include <basegfx/polygon/b2dpolypolygontools.hxx>
#include <basegfx/curve/b2dcubicbezier.hxx>
#include <sal/log.hxx>
#include <utility>
#include <vector>
#include <algorithm>
#include <numeric>
namespace basegfx
{
namespace
{
struct StripHelper
{
B2DRange maRange;
sal_Int32 mnDepth;
B2VectorOrientation meOrinetation;
};
struct PN
{
public:
B2DPoint maPoint;
sal_uInt32 mnI;
sal_uInt32 mnIP;
sal_uInt32 mnIN;
};
struct VN
{
public:
B2DVector maPrev;
B2DVector maNext;
// to have the correct curve segments in the crossover checks,
// it is necessary to keep the original next vectors, too. Else,
// it may happen to use an already switched next vector which
// would interpolate the wrong comparison point
B2DVector maOriginalNext;
};
struct SN
{
public:
PN* mpPN;
bool operator<(const SN& rComp) const
{
if(fTools::equal(mpPN->maPoint.getX(), rComp.mpPN->maPoint.getX()))
{
if(fTools::equal(mpPN->maPoint.getY(), rComp.mpPN->maPoint.getY()))
{
return (mpPN->mnI < rComp.mpPN->mnI);
}
else
{
return fTools::less(mpPN->maPoint.getY(), rComp.mpPN->maPoint.getY());
}
}
else
{
return fTools::less(mpPN->maPoint.getX(), rComp.mpPN->maPoint.getX());
}
}
};
typedef std::vector< PN > PNV;
typedef std::vector< VN > VNV;
typedef std::vector< SN > SNV;
typedef std::pair< basegfx::B2DPoint /*orig*/, basegfx::B2DPoint /*repl*/ > CorrectionPair;
class solver
{
private:
const B2DPolyPolygon maOriginal;
PNV maPNV;
VNV maVNV;
SNV maSNV;
std::vector< CorrectionPair >
maCorrectionTable;
bool mbIsCurve : 1;
bool mbChanged : 1;
void impAddPolygon(const sal_uInt32 aPos, const B2DPolygon& rGeometry)
{
const sal_uInt32 nCount(rGeometry.count());
PN aNewPN;
VN aNewVN;
SN aNewSN;
for(sal_uInt32 a(0); a < nCount; a++)
{
const B2DPoint aPoint(rGeometry.getB2DPoint(a));
aNewPN.maPoint = aPoint;
aNewPN.mnI = aPos + a;
aNewPN.mnIP = aPos + ((a != 0) ? a - 1 : nCount - 1);
aNewPN.mnIN = aPos + ((a + 1 == nCount) ? 0 : a + 1);
maPNV.push_back(aNewPN);
if(mbIsCurve)
{
aNewVN.maPrev = rGeometry.getPrevControlPoint(a) - aPoint;
aNewVN.maNext = rGeometry.getNextControlPoint(a) - aPoint;
aNewVN.maOriginalNext = aNewVN.maNext;
maVNV.push_back(aNewVN);
}
aNewSN.mpPN = &maPNV[maPNV.size() - 1];
maSNV.push_back(aNewSN);
}
}
static bool impLeftOfEdges(const B2DVector& rVecA, const B2DVector& rVecB, const B2DVector& rTest)
{
// tests if rTest is left of both directed line segments along the line -rVecA, rVecB. Test is
// with border.
if(rVecA.cross(rVecB) > 0.0)
{
// b is left turn seen from a, test if Test is left of both and so inside (left is seen as inside)
const bool bBoolA(fTools::moreOrEqual(rVecA.cross(rTest), 0.0));
const bool bBoolB(fTools::lessOrEqual(rVecB.cross(rTest), 0.0));
return (bBoolA && bBoolB);
}
else
{
// b is right turn seen from a, test if Test is right of both and so outside (left is seen as inside)
const bool bBoolA(fTools::lessOrEqual(rVecA.cross(rTest), 0.0));
const bool bBoolB(fTools::moreOrEqual(rVecB.cross(rTest), 0.0));
return (!(bBoolA && bBoolB));
}
}
void impSwitchNext(PN& rPNa, PN& rPNb)
{
std::swap(rPNa.mnIN, rPNb.mnIN);
if(mbIsCurve)
{
VN& rVNa = maVNV[rPNa.mnI];
VN& rVNb = maVNV[rPNb.mnI];
std::swap(rVNa.maNext, rVNb.maNext);
}
if(!mbChanged)
{
mbChanged = true;
}
}
B2DCubicBezier createSegment(const PN& rPN, bool bPrev) const
{
const B2DPoint& rStart(rPN.maPoint);
const B2DPoint& rEnd(maPNV[bPrev ? rPN.mnIP : rPN.mnIN].maPoint);
const B2DVector& rCPA(bPrev ? maVNV[rPN.mnI].maPrev : maVNV[rPN.mnI].maNext);
// Use maOriginalNext, not maNext to create the original (yet unchanged)
// curve segment. Otherwise, this segment would NOT ne correct.
const B2DVector& rCPB(bPrev ? maVNV[maPNV[rPN.mnIP].mnI].maOriginalNext : maVNV[maPNV[rPN.mnIN].mnI].maPrev);
return B2DCubicBezier(rStart, rStart + rCPA, rEnd + rCPB, rEnd);
}
void impHandleCommon(PN& rPNa, PN& rPNb)
{
if(mbIsCurve)
{
const B2DCubicBezier aNextA(createSegment(rPNa, false));
const B2DCubicBezier aPrevA(createSegment(rPNa, true));
if(aNextA.equal(aPrevA))
{
// deadend on A (identical edge)
return;
}
const B2DCubicBezier aNextB(createSegment(rPNb, false));
const B2DCubicBezier aPrevB(createSegment(rPNb, true));
if(aNextB.equal(aPrevB))
{
// deadend on B (identical edge)
return;
}
if(aPrevA.equal(aPrevB))
{
// common edge in same direction
return;
}
else if(aPrevA.equal(aNextB))
{
// common edge in opposite direction
if(aNextA.equal(aPrevB))
{
// common edge in opposite direction continues
return;
}
else
{
// common edge in opposite direction leave
impSwitchNext(rPNa, rPNb);
}
}
else if(aNextA.equal(aNextB))
{
// common edge in same direction enter
// search leave edge
PN* pPNa2 = &maPNV[rPNa.mnIN];
PN* pPNb2 = &maPNV[rPNb.mnIN];
bool bOnEdge(true);
do
{
const B2DCubicBezier aNextA2(createSegment(*pPNa2, false));
const B2DCubicBezier aNextB2(createSegment(*pPNb2, false));
if(aNextA2.equal(aNextB2))
{
pPNa2 = &maPNV[pPNa2->mnIN];
pPNb2 = &maPNV[pPNb2->mnIN];
}
else
{
bOnEdge = false;
}
}
while(bOnEdge && pPNa2 != &rPNa && pPNb2 != &rPNb);
if(bOnEdge)
{
// loop over two identical polygon paths
return;
}
else
{
// enter at rPNa, rPNb; leave at pPNa2, pPNb2. No common edges
// at enter/leave. Check for crossover.
const B2DVector aPrevCA(aPrevA.interpolatePoint(0.5) - aPrevA.getStartPoint());
const B2DVector aNextCA(aNextA.interpolatePoint(0.5) - aNextA.getStartPoint());
const B2DVector aPrevCB(aPrevB.interpolatePoint(0.5) - aPrevB.getStartPoint());
const bool bEnter(impLeftOfEdges(aPrevCA, aNextCA, aPrevCB));
const B2DCubicBezier aNextA2(createSegment(*pPNa2, false));
const B2DCubicBezier aPrevA2(createSegment(*pPNa2, true));
const B2DCubicBezier aNextB2(createSegment(*pPNb2, false));
const B2DVector aPrevCA2(aPrevA2.interpolatePoint(0.5) - aPrevA2.getStartPoint());
const B2DVector aNextCA2(aNextA2.interpolatePoint(0.5) - aNextA2.getStartPoint());
const B2DVector aNextCB2(aNextB2.interpolatePoint(0.5) - aNextB2.getStartPoint());
const bool bLeave(impLeftOfEdges(aPrevCA2, aNextCA2, aNextCB2));
if(bEnter != bLeave)
{
// crossover
impSwitchNext(rPNa, rPNb);
}
}
}
else if(aNextA.equal(aPrevB))
{
// common edge in opposite direction enter
impSwitchNext(rPNa, rPNb);
}
else
{
// no common edges, check for crossover
const B2DVector aPrevCA(aPrevA.interpolatePoint(0.5) - aPrevA.getStartPoint());
const B2DVector aNextCA(aNextA.interpolatePoint(0.5) - aNextA.getStartPoint());
const B2DVector aPrevCB(aPrevB.interpolatePoint(0.5) - aPrevB.getStartPoint());
const B2DVector aNextCB(aNextB.interpolatePoint(0.5) - aNextB.getStartPoint());
const bool bEnter(impLeftOfEdges(aPrevCA, aNextCA, aPrevCB));
const bool bLeave(impLeftOfEdges(aPrevCA, aNextCA, aNextCB));
if(bEnter != bLeave)
{
// crossover
impSwitchNext(rPNa, rPNb);
}
}
}
else
{
const B2DPoint& rNextA(maPNV[rPNa.mnIN].maPoint);
const B2DPoint& rPrevA(maPNV[rPNa.mnIP].maPoint);
if(rNextA.equal(rPrevA))
{
// deadend on A
return;
}
const B2DPoint& rNextB(maPNV[rPNb.mnIN].maPoint);
const B2DPoint& rPrevB(maPNV[rPNb.mnIP].maPoint);
if(rNextB.equal(rPrevB))
{
// deadend on B
return;
}
if(rPrevA.equal(rPrevB))
{
// common edge in same direction
return;
}
else if(rPrevA.equal(rNextB))
{
// common edge in opposite direction
if(rNextA.equal(rPrevB))
{
// common edge in opposite direction continues
return;
}
else
{
// common edge in opposite direction leave
impSwitchNext(rPNa, rPNb);
}
}
else if(rNextA.equal(rNextB))
{
// common edge in same direction enter
// search leave edge
PN* pPNa2 = &maPNV[rPNa.mnIN];
PN* pPNb2 = &maPNV[rPNb.mnIN];
bool bOnEdge(true);
do
{
const B2DPoint& rNextA2(maPNV[pPNa2->mnIN].maPoint);
const B2DPoint& rNextB2(maPNV[pPNb2->mnIN].maPoint);
if(rNextA2.equal(rNextB2))
{
pPNa2 = &maPNV[pPNa2->mnIN];
pPNb2 = &maPNV[pPNb2->mnIN];
}
else
{
bOnEdge = false;
}
}
while(bOnEdge && pPNa2 != &rPNa && pPNb2 != &rPNb);
if(bOnEdge)
{
// loop over two identical polygon paths
return;
}
else
{
// enter at rPNa, rPNb; leave at pPNa2, pPNb2. No common edges
// at enter/leave. Check for crossover.
const B2DPoint& aPointE(rPNa.maPoint);
const B2DVector aPrevAE(rPrevA - aPointE);
const B2DVector aNextAE(rNextA - aPointE);
const B2DVector aPrevBE(rPrevB - aPointE);
const B2DPoint& aPointL(pPNa2->maPoint);
const B2DVector aPrevAL(maPNV[pPNa2->mnIP].maPoint - aPointL);
const B2DVector aNextAL(maPNV[pPNa2->mnIN].maPoint - aPointL);
const B2DVector aNextBL(maPNV[pPNb2->mnIN].maPoint - aPointL);
const bool bEnter(impLeftOfEdges(aPrevAE, aNextAE, aPrevBE));
const bool bLeave(impLeftOfEdges(aPrevAL, aNextAL, aNextBL));
if(bEnter != bLeave)
{
// crossover; switch start or end
impSwitchNext(rPNa, rPNb);
}
}
}
else if(rNextA.equal(rPrevB))
{
// common edge in opposite direction enter
impSwitchNext(rPNa, rPNb);
}
else
{
// no common edges, check for crossover
const B2DPoint& aPoint(rPNa.maPoint);
const B2DVector aPrevA(rPrevA - aPoint);
const B2DVector aNextA(rNextA - aPoint);
const B2DVector aPrevB(rPrevB - aPoint);
const B2DVector aNextB(rNextB - aPoint);
const bool bEnter(impLeftOfEdges(aPrevA, aNextA, aPrevB));
const bool bLeave(impLeftOfEdges(aPrevA, aNextA, aNextB));
if(bEnter != bLeave)
{
// crossover
impSwitchNext(rPNa, rPNb);
}
}
}
}
void impSolve()
{
// sort by point to identify common nodes easier
std::sort(maSNV.begin(), maSNV.end());
// handle common nodes
const sal_uInt32 nNodeCount(maSNV.size());
sal_uInt32 a(0);
// snap unsharp-equal points
if(nNodeCount)
{
basegfx::B2DPoint* pLast(&maSNV[0].mpPN->maPoint);
for(const auto& rSN : maSNV)
{
basegfx::B2DPoint* pCurrent(&rSN.mpPN->maPoint);
if(pLast->equal(*pCurrent) && (pLast->getX() != pCurrent->getX() || pLast->getY() != pCurrent->getY()))
{
const basegfx::B2DPoint aMiddle((*pLast + *pCurrent) * 0.5);
if(pLast->getX() != aMiddle.getX() || pLast->getY() != aMiddle.getY())
{
maCorrectionTable.emplace_back(*pLast, aMiddle);
*pLast = aMiddle;
}
if(pCurrent->getX() != aMiddle.getX() || pCurrent->getY() != aMiddle.getY())
{
maCorrectionTable.emplace_back(*pCurrent, aMiddle);
*pCurrent = aMiddle;
}
}
pLast = pCurrent;
}
}
for(a = 0; a < nNodeCount - 1; a++)
{
// test a before using it, not after. Also use nPointCount instead of aSortNodes.size()
PN& rPNb = *(maSNV[a].mpPN);
for(sal_uInt32 b(a + 1); b < nNodeCount && rPNb.maPoint.equal(maSNV[b].mpPN->maPoint); b++)
{
impHandleCommon(rPNb, *maSNV[b].mpPN);
}
}
}
public:
explicit solver(const B2DPolygon& rOriginal)
: maOriginal(B2DPolyPolygon(rOriginal)),
mbIsCurve(false),
mbChanged(false)
{
const sal_uInt32 nOriginalCount(rOriginal.count());
if(!nOriginalCount)
return;
B2DPolygon aGeometry(utils::addPointsAtCutsAndTouches(rOriginal));
aGeometry.removeDoublePoints();
aGeometry = utils::simplifyCurveSegments(aGeometry);
mbIsCurve = aGeometry.areControlPointsUsed();
const sal_uInt32 nPointCount(aGeometry.count());
// If it's not a bezier polygon, at least four points are needed to create
// a self-intersection. If it's a bezier polygon, the minimum point number
// is two, since with a single point You get a curve, but no self-intersection
if(!(nPointCount > 3 || (nPointCount > 1 && mbIsCurve)))
return;
// reserve space in point, control and sort vector.
maSNV.reserve(nPointCount);
maPNV.reserve(nPointCount);
maVNV.reserve(mbIsCurve ? nPointCount : 0);
// fill data
impAddPolygon(0, aGeometry);
// solve common nodes
impSolve();
}
explicit solver(B2DPolyPolygon aOriginal, size_t* pPointLimit = nullptr)
: maOriginal(std::move(aOriginal)),
mbIsCurve(false),
mbChanged(false)
{
sal_uInt32 nOriginalCount(maOriginal.count());
if(!nOriginalCount)
return;
B2DPolyPolygon aGeometry(utils::addPointsAtCutsAndTouches(maOriginal, pPointLimit));
aGeometry.removeDoublePoints();
aGeometry = utils::simplifyCurveSegments(aGeometry);
mbIsCurve = aGeometry.areControlPointsUsed();
nOriginalCount = aGeometry.count();
if(!nOriginalCount)
return;
// If it's not a bezier curve, at least three points would be needed to have a
// topological relevant (not empty) polygon. Since it's not known here if trivial
// edges (dead ends) will be kept or sorted out, add non-bezier polygons with
// more than one point.
// For bezier curves, the minimum for defining an area is also one.
sal_uInt32 nPointCount = std::accumulate( aGeometry.begin(), aGeometry.end(), sal_uInt32(0),
[](sal_uInt32 a, const basegfx::B2DPolygon& b){return a + b.count();});
if(!nPointCount)
return;
// reserve space in point, control and sort vector.
maSNV.reserve(nPointCount);
maPNV.reserve(nPointCount);
maVNV.reserve(mbIsCurve ? nPointCount : 0);
// fill data
sal_uInt32 nInsertIndex(0);
for(const auto& rCandidate : aGeometry )
{
const sal_uInt32 nCandCount(rCandidate.count());
// use same condition as above, the data vector is
// pre-allocated
if(nCandCount)
{
impAddPolygon(nInsertIndex, rCandidate);
nInsertIndex += nCandCount;
}
}
// solve common nodes
impSolve();
}
B2DPolyPolygon getB2DPolyPolygon()
{
if(mbChanged)
{
B2DPolyPolygon aRetval;
const sal_uInt32 nCount(maPNV.size());
sal_uInt32 nCountdown(nCount);
for(sal_uInt32 a(0); nCountdown && a < nCount; a++)
{
PN& rPN = maPNV[a];
if(rPN.mnI != SAL_MAX_UINT32)
{
// unused node, start new part polygon
B2DPolygon aNewPart;
PN* pPNCurr = &rPN;
do
{
const B2DPoint& rPoint = pPNCurr->maPoint;
aNewPart.append(rPoint);
if(mbIsCurve)
{
const VN& rVNCurr = maVNV[pPNCurr->mnI];
if(!rVNCurr.maPrev.equalZero())
{
aNewPart.setPrevControlPoint(aNewPart.count() - 1, rPoint + rVNCurr.maPrev);
}
if(!rVNCurr.maNext.equalZero())
{
aNewPart.setNextControlPoint(aNewPart.count() - 1, rPoint + rVNCurr.maNext);
}
}
pPNCurr->mnI = SAL_MAX_UINT32;
nCountdown--;
pPNCurr = &(maPNV[pPNCurr->mnIN]);
}
while(pPNCurr != &rPN && pPNCurr->mnI != SAL_MAX_UINT32);
// close and add
aNewPart.setClosed(true);
aRetval.append(aNewPart);
}
}
return aRetval;
}
else
{
const sal_uInt32 nCorrectionSize(maCorrectionTable.size());
// no change, return original
if(!nCorrectionSize)
{
return maOriginal;
}
// apply coordinate corrections to ensure inside/outside correctness after solving
const sal_uInt32 nPolygonCount(maOriginal.count());
basegfx::B2DPolyPolygon aRetval(maOriginal);
for(sal_uInt32 a(0); a < nPolygonCount; a++)
{
basegfx::B2DPolygon aTemp(aRetval.getB2DPolygon(a));
const sal_uInt32 nPointCount(aTemp.count());
bool bChanged(false);
for(sal_uInt32 b(0); b < nPointCount; b++)
{
const basegfx::B2DPoint aCandidate(aTemp.getB2DPoint(b));
for(sal_uInt32 c(0); c < nCorrectionSize; c++)
{
if(maCorrectionTable[c].first.getX() == aCandidate.getX() && maCorrectionTable[c].first.getY() == aCandidate.getY())
{
aTemp.setB2DPoint(b, maCorrectionTable[c].second);
bChanged = true;
}
}
}
if(bChanged)
{
aRetval.setB2DPolygon(a, aTemp);
}
}
return aRetval;
}
}
};
} // end of anonymous namespace
} // end of namespace basegfx
namespace basegfx::utils
{
B2DPolyPolygon solveCrossovers(const B2DPolyPolygon& rCandidate, size_t* pPointLimit)
{
if(rCandidate.count() > 0)
{
solver aSolver(rCandidate, pPointLimit);
return aSolver.getB2DPolyPolygon();
}
else
{
return rCandidate;
}
}
B2DPolyPolygon solveCrossovers(const B2DPolygon& rCandidate)
{
solver aSolver(rCandidate);
return aSolver.getB2DPolyPolygon();
}
B2DPolyPolygon stripNeutralPolygons(const B2DPolyPolygon& rCandidate)
{
B2DPolyPolygon aRetval;
for(const auto& rPolygon : rCandidate)
{
if(utils::getOrientation(rPolygon) != B2VectorOrientation::Neutral)
{
aRetval.append(rPolygon);
}
}
return aRetval;
}
B2DPolyPolygon createNonzeroConform(const B2DPolyPolygon& rCandidate)
{
if (rCandidate.count() > 1000)
{
SAL_WARN("basegfx", "this poly is too large, " << rCandidate.count() << " elements, to be able to process timeously, falling back to ignoring the winding rule, which is likely to cause rendering artifacts");
return rCandidate;
}
B2DPolyPolygon aCandidate;
// remove all self-intersections and intersections
if(rCandidate.count() == 1)
{
aCandidate = basegfx::utils::solveCrossovers(rCandidate.getB2DPolygon(0));
}
else
{
aCandidate = basegfx::utils::solveCrossovers(rCandidate);
}
// cleanup evtl. neutral polygons
aCandidate = basegfx::utils::stripNeutralPolygons(aCandidate);
// remove all polygons which have the same orientation as the polygon they are directly contained in
const sal_uInt32 nCount(aCandidate.count());
if(nCount > 1)
{
sal_uInt32 a, b;
std::vector< StripHelper > aHelpers;
aHelpers.resize(nCount);
for(a = 0; a < nCount; a++)
{
const B2DPolygon& aCand(aCandidate.getB2DPolygon(a));
StripHelper* pNewHelper = &(aHelpers[a]);
pNewHelper->maRange = utils::getRange(aCand);
pNewHelper->meOrinetation = utils::getOrientation(aCand);
// initialize with own orientation
pNewHelper->mnDepth = (pNewHelper->meOrinetation == B2VectorOrientation::Negative ? -1 : 1);
}
for(a = 0; a < nCount - 1; a++)
{
const B2DPolygon& aCandA(aCandidate.getB2DPolygon(a));
StripHelper& rHelperA = aHelpers[a];
for(b = a + 1; b < nCount; b++)
{
const B2DPolygon& aCandB(aCandidate.getB2DPolygon(b));
StripHelper& rHelperB = aHelpers[b];
const bool bAInB(rHelperB.maRange.isInside(rHelperA.maRange) && utils::isInside(aCandB, aCandA, true));
if(bAInB)
{
// A is inside B, add orientation of B to A
rHelperA.mnDepth += (rHelperB.meOrinetation == B2VectorOrientation::Negative ? -1 : 1);
}
const bool bBInA(rHelperA.maRange.isInside(rHelperB.maRange) && utils::isInside(aCandA, aCandB, true));
if(bBInA)
{
// B is inside A, add orientation of A to B
rHelperB.mnDepth += (rHelperA.meOrinetation == B2VectorOrientation::Negative ? -1 : 1);
}
}
}
const B2DPolyPolygon aSource(aCandidate);
aCandidate.clear();
for(a = 0; a < nCount; a++)
{
const StripHelper& rHelper = aHelpers[a];
// for contained unequal oriented polygons sum will be 0
// for contained equal it will be >=2 or <=-2
// for free polygons (not contained) it will be 1 or -1
// -> accept all which are >=-1 && <= 1
bool bAcceptEntry(rHelper.mnDepth >= -1 && rHelper.mnDepth <= 1);
if(bAcceptEntry)
{
aCandidate.append(aSource.getB2DPolygon(a));
}
}
}
return aCandidate;
}
B2DPolyPolygon stripDispensablePolygons(const B2DPolyPolygon& rCandidate, bool bKeepAboveZero)
{
const sal_uInt32 nCount(rCandidate.count());
B2DPolyPolygon aRetval;
if(nCount)
{
if(nCount == 1)
{
if(!bKeepAboveZero && utils::getOrientation(rCandidate.getB2DPolygon(0)) == B2VectorOrientation::Positive)
{
aRetval = rCandidate;
}
}
else
{
sal_uInt32 a, b;
std::vector< StripHelper > aHelpers;
aHelpers.resize(nCount);
for(a = 0; a < nCount; a++)
{
const B2DPolygon& aCandidate(rCandidate.getB2DPolygon(a));
StripHelper* pNewHelper = &(aHelpers[a]);
pNewHelper->maRange = utils::getRange(aCandidate);
pNewHelper->meOrinetation = utils::getOrientation(aCandidate);
pNewHelper->mnDepth = (pNewHelper->meOrinetation == B2VectorOrientation::Negative ? -1 : 0);
}
for(a = 0; a < nCount - 1; a++)
{
const B2DPolygon& aCandA(rCandidate.getB2DPolygon(a));
StripHelper& rHelperA = aHelpers[a];
for(b = a + 1; b < nCount; b++)
{
const B2DPolygon& aCandB(rCandidate.getB2DPolygon(b));
StripHelper& rHelperB = aHelpers[b];
const bool bAInB(rHelperB.maRange.isInside(rHelperA.maRange) && utils::isInside(aCandB, aCandA, true));
const bool bBInA(rHelperA.maRange.isInside(rHelperB.maRange) && utils::isInside(aCandA, aCandB, true));
if(bAInB && bBInA)
{
// congruent
if(rHelperA.meOrinetation == rHelperB.meOrinetation)
{
// two polys or two holes. Lower one of them to get one of them out of the way.
// Since each will be contained in the other one, both will be increased, too.
// So, for lowering, increase only one of them
rHelperA.mnDepth++;
}
else
{
// poly and hole. They neutralize, so get rid of both. Move securely below zero.
rHelperA.mnDepth = - static_cast<sal_Int32>(nCount);
rHelperB.mnDepth = - static_cast<sal_Int32>(nCount);
}
}
else
{
if(bAInB)
{
if(rHelperB.meOrinetation == B2VectorOrientation::Negative)
{
rHelperA.mnDepth--;
}
else
{
rHelperA.mnDepth++;
}
}
else if(bBInA)
{
if(rHelperA.meOrinetation == B2VectorOrientation::Negative)
{
rHelperB.mnDepth--;
}
else
{
rHelperB.mnDepth++;
}
}
}
}
}
for(a = 0; a < nCount; a++)
{
const StripHelper& rHelper = aHelpers[a];
bool bAcceptEntry(bKeepAboveZero ? 1 <= rHelper.mnDepth : rHelper.mnDepth == 0);
if(bAcceptEntry)
{
aRetval.append(rCandidate.getB2DPolygon(a));
}
}
}
}
return aRetval;
}
B2DPolyPolygon prepareForPolygonOperation(const B2DPolygon& rCandidate)
{
solver aSolver(rCandidate);
B2DPolyPolygon aRetval(stripNeutralPolygons(aSolver.getB2DPolyPolygon()));
return correctOrientations(aRetval);
}
B2DPolyPolygon prepareForPolygonOperation(const B2DPolyPolygon& rCandidate)
{
solver aSolver(rCandidate);
B2DPolyPolygon aRetval(stripNeutralPolygons(aSolver.getB2DPolyPolygon()));
return correctOrientations(aRetval);
}
B2DPolyPolygon solvePolygonOperationOr(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB)
{
if(!rCandidateA.count())
{
return rCandidateB;
}
else if(!rCandidateB.count())
{
return rCandidateA;
}
else
{
// concatenate polygons, solve crossovers and throw away all sub-polygons
// which have a depth other than 0.
B2DPolyPolygon aRetval(rCandidateA);
aRetval.append(rCandidateB);
aRetval = solveCrossovers(aRetval);
aRetval = stripNeutralPolygons(aRetval);
return stripDispensablePolygons(aRetval);
}
}
B2DPolyPolygon solvePolygonOperationXor(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB)
{
if(!rCandidateA.count())
{
return rCandidateB;
}
else if(!rCandidateB.count())
{
return rCandidateA;
}
else
{
// XOR is pretty simple: By definition it is the simple concatenation of
// the single polygons since we imply XOR fill rule. Make it intersection-free
// and correct orientations
B2DPolyPolygon aRetval(rCandidateA);
aRetval.append(rCandidateB);
aRetval = solveCrossovers(aRetval);
aRetval = stripNeutralPolygons(aRetval);
return correctOrientations(aRetval);
}
}
B2DPolyPolygon solvePolygonOperationAnd(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB)
{
if(!rCandidateA.count())
{
return B2DPolyPolygon();
}
else if(!rCandidateB.count())
{
return B2DPolyPolygon();
}
else
{
// tdf#130150 shortcut & precision: If both are simple ranges,
// solve based on ranges
if(basegfx::utils::isRectangle(rCandidateA) && basegfx::utils::isRectangle(rCandidateB))
{
// *if* both are ranges, AND always can be solved
const basegfx::B2DRange aRangeA(rCandidateA.getB2DRange());
const basegfx::B2DRange aRangeB(rCandidateB.getB2DRange());
if(aRangeA.isInside(aRangeB))
{
// 2nd completely inside 1st -> 2nd is result of AND
return rCandidateB;
}
if(aRangeB.isInside(aRangeA))
{
// 2nd completely inside 1st -> 2nd is result of AND
return rCandidateA;
}
// solve by intersection
basegfx::B2DRange aIntersect(aRangeA);
aIntersect.intersect(aRangeB);
if(aIntersect.isEmpty())
{
// no overlap -> empty polygon as result of AND
return B2DPolyPolygon();
}
// create polygon result
return B2DPolyPolygon(
basegfx::utils::createPolygonFromRect(
aIntersect));
}
// concatenate polygons, solve crossovers and throw away all sub-polygons
// with a depth of < 1. This means to keep all polygons where at least two
// polygons do overlap.
B2DPolyPolygon aRetval(rCandidateA);
aRetval.append(rCandidateB);
aRetval = solveCrossovers(aRetval);
aRetval = stripNeutralPolygons(aRetval);
return stripDispensablePolygons(aRetval, true);
}
}
B2DPolyPolygon solvePolygonOperationDiff(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB)
{
if(!rCandidateA.count())
{
return B2DPolyPolygon();
}
else if(!rCandidateB.count())
{
return rCandidateA;
}
else
{
// Make B topologically to holes and append to A
B2DPolyPolygon aRetval(rCandidateB);
aRetval.flip();
aRetval.append(rCandidateA);
// solve crossovers and throw away all sub-polygons which have a
// depth other than 0.
aRetval = basegfx::utils::solveCrossovers(aRetval);
aRetval = basegfx::utils::stripNeutralPolygons(aRetval);
return basegfx::utils::stripDispensablePolygons(aRetval);
}
}
B2DPolyPolygon mergeToSinglePolyPolygon(const B2DPolyPolygonVector& rInput)
{
if(rInput.empty())
return B2DPolyPolygon();
// first step: prepareForPolygonOperation and simple merge of non-overlapping
// PolyPolygons for speedup; this is possible for the wanted OR-operation
B2DPolyPolygonVector aResult;
aResult.reserve(rInput.size());
for(const basegfx::B2DPolyPolygon & a : rInput)
{
const basegfx::B2DPolyPolygon aCandidate(prepareForPolygonOperation(a));
if(!aResult.empty())
{
const B2DRange aCandidateRange(aCandidate.getB2DRange());
bool bCouldMergeSimple(false);
for(auto & b: aResult)
{
basegfx::B2DPolyPolygon aTarget(b);
const B2DRange aTargetRange(aTarget.getB2DRange());
if(!aCandidateRange.overlaps(aTargetRange))
{
aTarget.append(aCandidate);
b = aTarget;
bCouldMergeSimple = true;
break;
}
}
if(!bCouldMergeSimple)
{
aResult.push_back(aCandidate);
}
}
else
{
aResult.push_back(aCandidate);
}
}
// second step: melt pairwise to a single PolyPolygon
while(aResult.size() > 1)
{
B2DPolyPolygonVector aResult2;
aResult2.reserve((aResult.size() / 2) + 1);
for(size_t a(0); a < aResult.size(); a += 2)
{
if(a + 1 < aResult.size())
{
// a pair for processing
aResult2.push_back(solvePolygonOperationOr(aResult[a], aResult[a + 1]));
}
else
{
// last single PolyPolygon; copy to target to not lose it
aResult2.push_back(aResult[a]);
}
}
aResult = aResult2;
}
// third step: get result
if(aResult.size() == 1)
{
return aResult[0];
}
return B2DPolyPolygon();
}
} // end of namespace
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|