1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <i18nutil/calendar.hxx>
#include <cmath>
#include <stdlib.h>
#include <calendar_hijri.hxx>
#include <tools/long.hxx>
#include <basegfx/numeric/ftools.hxx>
using namespace ::com::sun::star::uno;
using namespace ::com::sun::star::lang;
using namespace ::com::sun::star::i18n;
namespace i18npool {
// Synodic Period (mean time between 2 successive new moon: 29d, 12 hr, 44min, 3sec
constexpr double SynPeriod = 29.53058868;
// Julian day on Jan 1, 1900
constexpr double jd1900 = 2415020.75933;
// Reference point: March 26, 2001 == 1422 Hijri == 1252 Synodial month from 1900
constexpr sal_Int32 SynRef = 1252;
constexpr sal_Int32 GregRef = 1422;
Calendar_hijri::Calendar_hijri()
{
cCalendar = "com.sun.star.i18n.Calendar_hijri";
}
#define FIELDS ((1 << CalendarFieldIndex::ERA) | (1 << CalendarFieldIndex::YEAR) | (1 << CalendarFieldIndex::MONTH) | (1 << CalendarFieldIndex::DAY_OF_MONTH))
// map field value from hijri calendar to gregorian calendar
void Calendar_hijri::mapToGregorian()
{
if (!(fieldSet & FIELDS))
return;
sal_Int32 day = static_cast<sal_Int32>(fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH]);
sal_Int32 month = static_cast<sal_Int32>(fieldSetValue[CalendarFieldIndex::MONTH]) + 1;
sal_Int32 year = static_cast<sal_Int32>(fieldSetValue[CalendarFieldIndex::YEAR]);
if (fieldSetValue[CalendarFieldIndex::ERA] == 0)
year *= -1;
ToGregorian(&day, &month, &year);
fieldSetValue[CalendarFieldIndex::ERA] = year <= 0 ? 0 : 1;
fieldSetValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
fieldSetValue[CalendarFieldIndex::DAY_OF_MONTH] = static_cast<sal_Int16>(day);
fieldSetValue[CalendarFieldIndex::YEAR] = static_cast<sal_Int16>(abs(year));
fieldSet |= FIELDS;
}
// map field value from gregorian calendar to hijri calendar
void Calendar_hijri::mapFromGregorian()
{
sal_Int32 month, day, year;
day = static_cast<sal_Int32>(fieldValue[CalendarFieldIndex::DAY_OF_MONTH]);
month = static_cast<sal_Int32>(fieldValue[CalendarFieldIndex::MONTH]) + 1;
year = static_cast<sal_Int32>(fieldValue[CalendarFieldIndex::YEAR]);
if (fieldValue[CalendarFieldIndex::ERA] == 0)
year *= -1;
// Get Hijri date
getHijri(&day, &month, &year);
fieldValue[CalendarFieldIndex::DAY_OF_MONTH] = static_cast<sal_Int16>(day);
fieldValue[CalendarFieldIndex::MONTH] = sal::static_int_cast<sal_Int16>(month - 1);
fieldValue[CalendarFieldIndex::YEAR] = static_cast<sal_Int16>(abs(year));
fieldValue[CalendarFieldIndex::ERA] = static_cast<sal_Int16>(year) < 1 ? 0 : 1;
}
// This function returns the Julian date/time of the Nth new moon since
// January 1900. The synodic month is passed as parameter.
// Adapted from "Astronomical Formulae for Calculators" by
// Jean Meeus, Third Edition, Willmann-Bell, 1985.
double
Calendar_hijri::NewMoon(sal_Int32 n)
{
double jd, t, t2, t3, k, ma, sa, tf, xtra;
k = n;
t = k/1236.85; // Time in Julian centuries from 1900 January 0.5
t2 = t * t;
t3 = t2 * t;
// Mean time of phase
jd = jd1900
+ SynPeriod * k
- 0.0001178 * t2
- 0.000000155 * t3
+ 0.00033 * sin(basegfx::deg2rad(166.56 + 132.87 * t - 0.009173 * t2));
// Sun's mean anomaly in radian
sa = basegfx::deg2rad(359.2242
+ 29.10535608 * k
- 0.0000333 * t2
- 0.00000347 * t3);
// Moon's mean anomaly
ma = basegfx::deg2rad(306.0253
+ 385.81691806 * k
+ 0.0107306 * t2
+ 0.00001236 * t3);
// Moon's argument of latitude
tf = 2.0 * basegfx::deg2rad(21.2964
+ 390.67050646 * k
- 0.0016528 * t2
- 0.00000239 * t3);
// should reduce to interval between 0 to 1.0 before calculating further
// Corrections for New Moon
xtra = (0.1734 - 0.000393 * t) * sin(sa)
+ 0.0021 * sin(sa * 2)
- 0.4068 * sin(ma)
+ 0.0161 * sin(2 * ma)
- 0.0004 * sin(3 * ma)
+ 0.0104 * sin(tf)
- 0.0051 * sin(sa + ma)
- 0.0074 * sin(sa - ma)
+ 0.0004 * sin(tf + sa)
- 0.0004 * sin(tf - sa)
- 0.0006 * sin(tf + ma)
+ 0.0010 * sin(tf - ma)
+ 0.0005 * sin(sa + 2 * ma);
// convert from Ephemeris Time (ET) to (approximate) Universal Time (UT)
jd += xtra - (0.41 + 1.2053 * t + 0.4992 * t2)/1440;
return jd;
}
// Get Hijri Date
void
Calendar_hijri::getHijri(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
{
double prevday;
sal_Int32 syndiff;
sal_Int32 newsyn;
double newjd;
sal_Int32 synmonth;
// Get Julian Day from Gregorian
sal_Int32 const julday = getJulianDay(*day, *month, *year);
// obtain approx. of how many Synodic months since the beginning of the year 1900
synmonth = static_cast<sal_Int32>(0.5 + (julday - jd1900)/SynPeriod);
newsyn = synmonth;
prevday = julday - 0.5;
do {
newjd = NewMoon(newsyn);
// Decrement syntonic months
newsyn--;
} while (newjd > prevday);
newsyn++;
// difference from reference point
syndiff = newsyn - SynRef;
// Round up the day
*day = static_cast<sal_Int32>(julday - newjd + 0.5);
*month = (syndiff % 12) + 1;
// currently not supported
//dayOfYear = (sal_Int32)(month * SynPeriod + day);
*year = GregRef + static_cast<sal_Int32>(syndiff / 12);
// If month negative, consider it previous year
if (syndiff != 0 && *month <= 0) {
*month += 12;
(*year)--;
}
// If Before Hijri subtract 1
if (*year <= 0) (*year)--;
}
void
Calendar_hijri::ToGregorian(sal_Int32 *day, sal_Int32 *month, sal_Int32 *year)
{
sal_Int32 nmonth;
double jday;
if ( *year < 0 ) (*year)++;
// Number of month from reference point
nmonth = *month + *year * 12 - (GregRef * 12 + 1);
// Add Synodic Reference point
nmonth += SynRef;
// Get Julian days add time too
jday = NewMoon(nmonth) + *day;
// Round-up
jday = std::trunc(jday + 0.5);
// Use algorithm from "Numerical Recipes in C"
getGregorianDay(static_cast<sal_Int32>(jday), day, month, year);
// Julian -> Gregorian only works for non-negative year
if ( *year <= 0 ) {
*day = -1;
*month = -1;
*year = -1;
}
}
/* this algorithm is taken from "Numerical Recipes in C", 2nd ed, pp 14-15. */
/* this algorithm only valid for non-negative gregorian year */
void
Calendar_hijri::getGregorianDay(sal_Int32 lJulianDay, sal_Int32 *pnDay, sal_Int32 *pnMonth, sal_Int32 *pnYear)
{
/* working variables */
tools::Long lFactorA, lFactorB, lFactorC, lFactorD, lFactorE;
constexpr sal_Int32 GREGORIAN_CROSSOVER = 2299161;
/* test whether to adjust for the Gregorian calendar crossover */
if (lJulianDay >= GREGORIAN_CROSSOVER) {
/* calculate a small adjustment */
tools::Long lAdjust = static_cast<tools::Long>((static_cast<float>(lJulianDay - 1867216) - 0.25) / 36524.25);
lFactorA = lJulianDay + 1 + lAdjust - static_cast<tools::Long>(0.25 * lAdjust);
} else {
/* no adjustment needed */
lFactorA = lJulianDay;
}
lFactorB = lFactorA + 1524;
lFactorC = static_cast<tools::Long>(6680.0 + (static_cast<float>(lFactorB - 2439870) - 122.1) / 365.25);
lFactorD = static_cast<tools::Long>(365 * lFactorC + (0.25 * lFactorC));
lFactorE = static_cast<tools::Long>((lFactorB - lFactorD) / i18nutil::monthDaysWithoutJanFeb);
/* now, pull out the day number */
*pnDay = lFactorB - lFactorD - static_cast<tools::Long>(i18nutil::monthDaysWithoutJanFeb * lFactorE);
/* ...and the month, adjusting it if necessary */
*pnMonth = lFactorE - 1;
if (*pnMonth > 12)
(*pnMonth) -= 12;
/* ...and similarly for the year */
*pnYear = lFactorC - 4715;
if (*pnMonth > 2)
(*pnYear)--;
// Negative year adjustments
if (*pnYear <= 0)
(*pnYear)--;
}
sal_Int32
Calendar_hijri::getJulianDay(sal_Int32 day, sal_Int32 month, sal_Int32 year)
{
double jy, jm;
if( year == 0 ) {
return -1;
}
if( year == 1582 && month == 10 && day > 4 && day < 15 ) {
return -1;
}
if( month > 2 ) {
jy = year;
jm = month + 1;
} else {
jy = year - 1;
jm = month + 13;
}
sal_Int32 intgr = static_cast<sal_Int32>(static_cast<sal_Int32>(365.25 * jy) + static_cast<sal_Int32>(i18nutil::monthDaysWithoutJanFeb * jm) + day + 1720995 );
//check for switch to Gregorian calendar
double const gregcal = 15 + 31 * ( 10 + 12 * 1582 );
if( day + 31 * (month + 12 * year) >= gregcal ) {
double ja;
ja = std::trunc(0.01 * jy);
intgr += static_cast<sal_Int32>(2 - ja + std::trunc(0.25 * ja));
}
return intgr;
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|