1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2009 by Sun Microsystems, Inc.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
package com.sun.star.comp.Calc.NLPSolver;
import com.sun.star.comp.Calc.NLPSolver.dialogs.DummyEvolutionarySolverStatusDialog;
import com.sun.star.comp.Calc.NLPSolver.dialogs.EvolutionarySolverStatusUno;
import com.sun.star.comp.Calc.NLPSolver.dialogs.IEvolutionarySolverStatusDialog;
import com.sun.star.sheet.SolverConstraintOperator;
import com.sun.star.uno.XComponentContext;
import java.util.ArrayList;
import net.adaptivebox.global.BasicBound;
import net.adaptivebox.global.RandomGenerator;
import net.adaptivebox.goodness.ACRComparator;
import net.adaptivebox.goodness.BCHComparator;
import net.adaptivebox.goodness.IGoodnessCompareEngine;
import net.adaptivebox.knowledge.Library;
import net.adaptivebox.knowledge.SearchPoint;
import net.adaptivebox.problem.ProblemEncoder;
public abstract class BaseEvolutionarySolver extends BaseNLPSolver {
public BaseEvolutionarySolver(XComponentContext xContext, String name) {
super(xContext, name);
registerProperty(m_swarmSize);
registerProperty(m_learningCycles);
registerProperty(m_guessVariableRange);
registerProperty(m_variableRangeThreshold);
registerProperty(m_useACRComperator);
registerProperty(m_useRandomStartingPoint);
registerProperty(m_useStrongerPRNG);
registerProperty(m_required);
registerProperty(m_tolerance);
registerProperty(m_enhancedSolverStatus);
}
private static class Variable {
private final CellMap CellMap;
private final int OriginalVariable;
private double MinValue;
private double MaxValue;
private double Granularity;
private Variable(CellMap cellMap, int originalVariable) {
this.CellMap = cellMap;
this.OriginalVariable = originalVariable;
this.MinValue = BasicBound.MINDOUBLE;
this.MaxValue = BasicBound.MAXDOUBLE;
this.Granularity = 0.0;
}
}
private class CalcProblemEncoder extends ProblemEncoder {
private final ArrayList<Variable> m_variables;
private final ArrayList<ExtSolverConstraint> m_constraints;
private CalcProblemEncoder(ArrayList<Variable> variables,
ArrayList<ExtSolverConstraint> constraints) throws Exception {
//m_variableCount variables to solve, target function + constraints to match
super(variables.size(), 1 + constraints.size());
m_variables = variables;
m_constraints = constraints;
double objective = m_maximize ? BasicBound.MAXDOUBLE : BasicBound.MINDOUBLE;
setDefaultYAt(0, objective, objective);
for (int i = 0; i < constraints.size(); i++) {
ExtSolverConstraint constraint = constraints.get(i);
switch (constraint.Operator.getValue()) {
case SolverConstraintOperator.EQUAL_value:
setDefaultYAt(i + 1, constraint.Data, constraint.Data);
break;
case SolverConstraintOperator.GREATER_EQUAL_value:
setDefaultYAt(i + 1, constraint.Data, BasicBound.MAXDOUBLE);
break;
case SolverConstraintOperator.LESS_EQUAL_value:
setDefaultYAt(i + 1, BasicBound.MINDOUBLE, constraint.Data);
break;
case SolverConstraintOperator.INTEGER_value:
setDefaultYAt(i + 1, BasicBound.MINDOUBLE, BasicBound.MAXDOUBLE);
break;
case SolverConstraintOperator.BINARY_value:
setDefaultYAt(i + 1, 0, 1);
break;
}
}
for (int i = 0; i < m_variables.size(); i++) {
Variable variable = m_variables.get(i);
setDefaultXAt(i, variable.MinValue, variable.MaxValue, variable.Granularity);
}
}
@Override
protected double calcTargetAt(int index, double[] VX) {
if (index == 0) {
//calcTargetAt is called in a loop over all functions, so it's
//enough to set the variables in the first step only
for (int i = 0; i < m_variables.size(); i++) {
CellMap variableMap = m_variables.get(i).CellMap;
m_variableData[variableMap.Range][variableMap.Row][variableMap.Col] = VX[i];
}
for (int i = 0; i < m_cellRangeCount; i++)
m_cellRangeData[i].setData(m_variableData[i]);
//errors are punished
if (m_objectiveCell.getError() != 0)
return m_maximize ? BasicBound.MINDOUBLE : BasicBound.MAXDOUBLE;
double result = m_objectiveCell.getValue();
if (result >= m_toleratedMin && result <= m_toleratedMax && checkConstraints())
m_toleratedCount++;
return result;
} else
return m_constraints.get(index - 1).getLeftValue();
}
}
protected CalcProblemEncoder m_problemEncoder;
protected Library m_library;
protected IGoodnessCompareEngine m_envCompareEngine;
protected IGoodnessCompareEngine m_specCompareEngine;
protected SearchPoint m_totalBestPoint;
protected int m_toleratedCount;
protected double m_toleratedMin;
protected double m_toleratedMax;
private final ArrayList<Variable> m_variables = new ArrayList<Variable>();
//properties
protected PropertyInfo<Integer> m_swarmSize = new PropertyInfo<Integer>("SwarmSize", 70, "Size of Swarm");
protected PropertyInfo<Integer> m_librarySize = new PropertyInfo<Integer>("LibrarySize", 210, "Size of Library");
protected PropertyInfo<Integer> m_learningCycles = new PropertyInfo<Integer>("LearningCycles", 2000, "Learning Cycles");
private final PropertyInfo<Boolean> m_guessVariableRange = new PropertyInfo<Boolean>("GuessVariableRange", true, "Variable Bounds Guessing");
private final PropertyInfo<Double> m_variableRangeThreshold = new PropertyInfo<Double>("VariableRangeThreshold", 3.0, "Variable Bounds Threshold (when guessing)"); //to approximate the variable bounds
private final PropertyInfo<Boolean> m_useACRComperator = new PropertyInfo<Boolean>("UseACRComparator", false, "Use ACR Comparator (instead of BCH)");
private final PropertyInfo<Boolean> m_useRandomStartingPoint = new PropertyInfo<Boolean>("UseRandomStartingPoint", false, "Use Random starting point");
private final PropertyInfo<Boolean> m_useStrongerPRNG = new PropertyInfo<Boolean>("UseStrongerPRNG", false, "Use a stronger random generator (slower)");
protected PropertyInfo<Integer> m_required = new PropertyInfo<Integer>("StagnationLimit", 70, "Stagnation Limit");
protected PropertyInfo<Double> m_tolerance = new PropertyInfo<Double>("Tolerance", 1e-6, "Stagnation Tolerance");
private final PropertyInfo<Boolean> m_enhancedSolverStatus = new PropertyInfo<Boolean>("EnhancedSolverStatus", true, "Show enhanced solver status");
protected IEvolutionarySolverStatusDialog m_solverStatusDialog;
private void prepareVariables(double[][] variableBounds) {
m_variables.clear();
for (int i = 0; i < m_variableCount; i++) {
Variable var = new Variable(m_variableMap[i], i);
var.MinValue = variableBounds[i][0];
var.MaxValue = variableBounds[i][1];
var.Granularity = variableBounds[i][2];
m_variables.add(var);
}
}
@Override
protected void initializeSolve() {
super.initializeSolve();
if (m_variableCount == 0)
{
return;
}
if (m_enhancedSolverStatus.getValue())
m_solverStatusDialog = new EvolutionarySolverStatusUno(m_xContext);
else
m_solverStatusDialog = new DummyEvolutionarySolverStatusDialog();
//Init:
double[][] variableBounds = new double[m_variableCount][3];
//approximate variable bounds
for (int i = 0; i < m_variableCount; i++) {
if (m_guessVariableRange.getValue()) {
double value = m_variableCells[i].getValue();
//0 is a bad starting point, so just pick some other.
//That is certainly not optimal but the user should specify
//bounds or at least a good starting point anyway.
if (value == 0.0)
value = 1000;
double b1;
double b2;
if (m_assumeNonNegative.getValue()) {
b1 = 0;
b2 = value + value * 2 * m_variableRangeThreshold.getValue();
} else {
b1 = value + value * m_variableRangeThreshold.getValue();
b2 = value - value * m_variableRangeThreshold.getValue();
}
variableBounds[i][0] = Math.min(b1, b2);
variableBounds[i][1] = Math.max(b1, b2);
} else {
//that almost always leads to bad or no solutions at all
if (m_assumeNonNegative.getValue())
variableBounds[i][0] = 0.0;
else
variableBounds[i][0] = BasicBound.MINDOUBLE;
variableBounds[i][1] = BasicBound.MAXDOUBLE;
}
variableBounds[i][2] = 0.0;
}
//prepare constraints and parse them for variable bounds
ArrayList<ExtSolverConstraint> constraints = new ArrayList<ExtSolverConstraint>();
for (int i = 0; i < m_constraintCount; i++) {
Double doubleValue;
if (m_extConstraints[i].Right != null)
doubleValue = null;
else
doubleValue = m_extConstraints[i].Data;
boolean isVariableBound = false;
//If it refers to a cell, it has to be treated as constraint, not as
//bound.
if (m_extConstraints[i].Right == null) {
for (int j = 0; j < m_variableCount && !isVariableBound; j++) {
if (m_constraints[i].Left.Sheet == super.m_variables[j].Sheet &&
m_constraints[i].Left.Column == super.m_variables[j].Column &&
m_constraints[i].Left.Row == super.m_variables[j].Row) {
isVariableBound = true;
//Therefore we try to use it as bounds for this variable.
switch (m_extConstraints[i].Operator.getValue()) {
case SolverConstraintOperator.EQUAL_value:
if (doubleValue == null)
continue;
variableBounds[j][0] = doubleValue;
variableBounds[j][1] = doubleValue;
break;
case SolverConstraintOperator.GREATER_EQUAL_value:
if (doubleValue == null)
continue;
variableBounds[j][0] = doubleValue;
break;
case SolverConstraintOperator.LESS_EQUAL_value:
if (doubleValue == null)
continue;
variableBounds[j][1] = doubleValue;
break;
case SolverConstraintOperator.INTEGER_value:
variableBounds[j][2] = 1.0;
break;
case SolverConstraintOperator.BINARY_value:
variableBounds[j][0] = 0.0;
variableBounds[j][1] = 1.0;
variableBounds[j][2] = 1.0;
break;
default:
//If it is neither <=, nor =, nor >=, we treat
//it as normal constraint.
isVariableBound = false;
}
}
}
}
if (!isVariableBound) {
constraints.add(m_extConstraints[i]);
}
}
prepareVariables(variableBounds);
try {
m_problemEncoder = new CalcProblemEncoder(m_variables, constraints);
} catch (Exception e) {
m_problemEncoder = null;
return;
}
m_library = new Library(m_librarySize.getValue(), m_problemEncoder);
if (m_useRandomStartingPoint.getValue()) {
m_totalBestPoint = m_problemEncoder.getEncodedSearchPoint();
} else {
m_totalBestPoint = m_problemEncoder.getFreshSearchPoint();
double[] currentValues = new double[m_variables.size()];
for (int i = 0; i < m_variables.size(); i++)
currentValues[i] = m_currentParameters[m_variables.get(i).OriginalVariable];
m_totalBestPoint.importLocation(currentValues);
m_problemEncoder.evaluate(m_totalBestPoint);
}
//input the chosen point into the library as reference for the individuals
m_library.getSelectedPoint(0).importPoint(m_totalBestPoint);
m_solverStatusDialog.setBestSolution(m_totalBestPoint.getObjectiveValue(), checkConstraints());
m_envCompareEngine = new BCHComparator();
m_specCompareEngine = m_useACRComperator.getValue() ? new ACRComparator(m_library, m_learningCycles.getValue()) : new BCHComparator();
RandomGenerator.useStrongerGenerator( m_useStrongerPRNG.getValue() );
}
protected void applySolution() {
double[] location = m_totalBestPoint.getLocation();
//make sure, the "Integer" variable type is met
m_problemEncoder.getDesignSpace().getMappingPoint(location);
//get the function value for our optimal point
for (int i = 0; i < m_variableCount; i++) {
m_variableCells[i].setValue(location[i]);
m_currentParameters[i] = location[i];
}
m_functionValue = m_objectiveCell.getValue();
}
@Override
protected void finalizeSolve() {
applySolution();
m_success = (m_objectiveCell.getError() == 0 && checkConstraints());
m_solverStatusDialog.setVisible(false);
m_solverStatusDialog.dispose();
super.finalizeSolve();
}
private boolean checkConstraints() {
boolean result = true;
for (int i = 0; i < m_constraintCount && result; i++) {
if (m_extConstraints[i].Left.getError() == 0) {
double value = m_extConstraints[i].getLeftValue();
double targetValue = m_extConstraints[i].Data;
switch (m_extConstraints[i].Operator.getValue()) {
case SolverConstraintOperator.EQUAL_value:
result = value == targetValue;
break;
case SolverConstraintOperator.GREATER_EQUAL_value:
result = value >= targetValue;
break;
case SolverConstraintOperator.LESS_EQUAL_value:
result = value <= targetValue;
break;
case SolverConstraintOperator.INTEGER_value:
result = Math.rint(value) == value;
break;
case SolverConstraintOperator.BINARY_value:
result = (value == 0.0 || value == 1.0);
break;
}
} else {
result = false;
}
}
return result;
}
}
|