1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2009 by Sun Microsystems, Inc.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
package com.sun.star.comp.Calc.NLPSolver;
import com.sun.star.comp.Calc.NLPSolver.dialogs.IEvolutionarySolverStatusDialog;
import com.sun.star.uno.XComponentContext;
import com.sun.star.lib.uno.helper.Factory;
import com.sun.star.lang.XSingleComponentFactory;
import com.sun.star.registry.XRegistryKey;
import net.adaptivebox.sco.SCAgent;
import net.adaptivebox.global.IUpdateCycleEngine;
import net.adaptivebox.knowledge.Library;
import net.adaptivebox.knowledge.SearchPoint;
public final class SCOSolverImpl extends BaseEvolutionarySolver
implements com.sun.star.lang.XServiceInfo
{
private static final String m_implementationName = SCOSolverImpl.class.getName();
private static final String[] m_serviceNames = {
"com.sun.star.sheet.Solver",
"com.sun.star.beans.PropertySet"
};
public SCOSolverImpl( XComponentContext context )
{
super(context, "SCO Evolutionary Algorithm");
registerProperty(m_librarySize); //SCO allows the user to specify the size of the library
}
public static XSingleComponentFactory __getComponentFactory( String sImplementationName ) {
XSingleComponentFactory xFactory = null;
if ( sImplementationName.equals( m_implementationName ) )
xFactory = Factory.createComponentFactory(SCOSolverImpl.class, m_serviceNames);
return xFactory;
}
public static boolean __writeRegistryServiceInfo( XRegistryKey xRegistryKey ) {
return Factory.writeRegistryServiceInfo(m_implementationName,
m_serviceNames,
xRegistryKey);
}
// com.sun.star.lang.XServiceInfo:
public String getImplementationName() {
return m_implementationName;
}
public boolean supportsService( String sService ) {
int len = m_serviceNames.length;
for( int i=0; i < len; i++) {
if (sService.equals(m_serviceNames[i]))
return true;
}
return false;
}
public String[] getSupportedServiceNames() {
return m_serviceNames;
}
public void solve() {
initializeSolve();
if (m_problemEncoder == null)
{
return;
}
//Init:
int swarmSize = m_swarmSize.getValue();
SCAgent[] agents = new SCAgent[swarmSize];
for (int i = 0; i < swarmSize; i++) {
agents[i] = new SCAgent();
agents[i].setProblemEncoder(m_problemEncoder);
agents[i].setSpecComparator(m_specCompareEngine);
agents[i].setExternalLib(m_library);
}
//Learn:
m_solverStatusDialog.setVisible(true);
int learningCycles = m_learningCycles.getValue();
m_solverStatusDialog.setMaxIterations(learningCycles);
m_solverStatusDialog.setMaxStagnation(m_required.getValue());
int learningCycle = 1;
long runtime = 0;
do {
long startTime = System.nanoTime();
if (learningCycle >= m_learningCycles.getValue())
learningCycle = 1;
if (m_solverStatusDialog.getUserState() == IEvolutionarySolverStatusDialog.CONTINUE)
lockDocument();
m_toleratedCount = 0;
m_toleratedMin = -1.0 * m_tolerance.getValue();
m_toleratedMax = m_tolerance.getValue();
for (; learningCycle <= learningCycles &&
m_toleratedCount < m_required.getValue() &&
m_solverStatusDialog.getUserState() != IEvolutionarySolverStatusDialog.CANCEL; learningCycle++) {
for (int i = 0; i < swarmSize; i++) {
SearchPoint point = agents[i].generatePoint();
boolean inRange = (point.getObjectiveValue() >= m_toleratedMin && point.getObjectiveValue() <= m_toleratedMax);
if (Library.replace(m_envCompareEngine, point, m_totalBestPoint)) {
m_solverStatusDialog.setBestSolution(m_totalBestPoint.getObjectiveValue(), m_totalBestPoint.isFeasible());
if (!inRange) {
m_toleratedMin = point.getObjectiveValue() - m_tolerance.getValue();
m_toleratedMax = point.getObjectiveValue() + m_tolerance.getValue();
m_toleratedCount = 0;
}
}
}
for (int i = 0; i < swarmSize; i++)
agents[i].updateInfo();
if (m_specCompareEngine instanceof IUpdateCycleEngine)
((IUpdateCycleEngine)m_specCompareEngine).updateCycle(learningCycle);
m_solverStatusDialog.setIteration(learningCycle);
m_solverStatusDialog.setStagnation(m_toleratedCount);
m_solverStatusDialog.setRuntime(runtime + (System.nanoTime() - startTime));
m_xReschedule.reschedule();
}
applySolution(); //show the current solution
unlockDocument(); //allow the solution to be displayed
runtime += (System.nanoTime() - startTime);
m_solverStatusDialog.setRuntime(runtime);
} while (m_solverStatusDialog.waitForUser() == IEvolutionarySolverStatusDialog.CONTINUE);
lockDocument();
finalizeSolve();
}
}
|