1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
module com
{
module sun
{
module star
{
module chart2
{
interface XRegressionCurveCalculator : com::sun::star::uno::XInterface
{
/** set calculation properties for curve calculation.
@param degree
Degree of polynomial regression curve, value should be greater than zero
If the curve is not polynomial, this property has no effect.
@param period
Period of a moving average regression curve, value should be greater or equal to 2
If the curve is not moving average regression curve, this property has no effect.
@param forceIntercept
Should force the intercept value.
@param interceptValue
Intercept value.
@param movingType
Only if regression type is "Moving Average"
@see ::com::sun::star::chart2::MovingAverageType
*/
void setRegressionProperties( [in] long degree,
[in] boolean forceIntercept,
[in] double interceptValue,
[in] long period,
[in] long movingType);
/** recalculates the parameters of the internal regression curve according to
the <i>x</i>- and <i>y</i>-values given.
@param aXValues
All x-values that represent the measurement points on
which the regression is based
@param aYValues
All y-values that represent the measurement points on
which the regression is based
*/
void recalculateRegression( [in] sequence< double > aXValues,
[in] sequence< double > aYValues);
/** calculates the value of the regression curve for <i>x</i>.
@param x
The abscissa value for which the value of the regression
curve should be calculated. All numbers that are part of
the domain of the regression function are valid.
@return
If <i>x</i> is element of the domain of the regression
curve function, the result is its value.
@throws com::sun::star::lang::IllegalArgumentException
If <i>x</i> is not part of the domain of the regression
function.
*/
double getCurveValue( [in] double x )
raises( com::sun::star::lang::IllegalArgumentException );
/** calculate multiple points of a regression curve at once. Note
that this method may optimize the output by returning less
points, e.g. for a line you may get only two resulting points
instead of nPointCount() points. This is only
allowed if the parameter
bMaySkipPointsInCalculation() is set to
`TRUE`.
<p>It is important that a renderer takes the scalings into
account. When one of these parameters is unknown, no
optimization must be done.</p>
@param min the abscissa value for the starting point.
@param max the abscissa value for the ending point.
@param nPointCount the number of points to calculate.
@param bMaySkipPointsInCalculation determines whether it is
allowed to skip points in the calculation. When this
parameter is `TRUE` it is assumed that the underlying
coordinate system is Cartesian.
@param xScalingX a scaling that is used for the values in
x-direction
@param xScalingY a scaling that is used for the values in
y-direction
*/
sequence< com::sun::star::geometry::RealPoint2D > getCurveValues(
[in] double min,
[in] double max,
[in] long nPointCount,
[in] XScaling xScalingX,
[in] XScaling xScalingY,
[in] boolean bMaySkipPointsInCalculation )
raises( com::sun::star::lang::IllegalArgumentException );
/** Returns the value of the correlation coefficient for the given
regression. This value is often denoted as <i>r</i> or
<i>R</i>.
<p>The value of <i>r</i> is signed. Often
<i>r</i><sup>2</sup> is used instead of <i>r</i> to denote
a regression curve's accuracy.</p>
@return
The return value is the fraction of the variance in the
data that is explained by the regression.
*/
double getCorrelationCoefficient();
/** Retrieve a string showing the regression curve's function with
calculated parameters.
@return
The string returned contains the regression curve's
formula in a form <pre>"f(x) = ..."</pre>, where the
calculated parts are filled out. For a linear regression
you might get <pre>"f(x) = 0.341 x + 1.45"</pre>.
*/
string getRepresentation();
/** Returns a representation using the given number format for formatting all numbers
contained in the formula. Wrap equation to fit in nFormulaLength characters
@see getRepresentation
*/
string getFormattedRepresentation( [in] com::sun::star::util::XNumberFormatsSupplier xNumFmtSupplier,
[in] long nNumberFormatKey,
[in] long nFormulaLength );
/** Set the names of X and Y variables of the equation to replace "x" and "f(x)" in representation
@param aXName string of the name of X variable
@param aYName string of the name of Y variable
*/
void setXYNames( [in] string aXName,
[in] string aYName );
};
} ; // chart2
} ; // com
} ; // sun
} ; // star
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|