summaryrefslogtreecommitdiffstats
path: root/Documentation/dev-tools/kasan.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /Documentation/dev-tools/kasan.rst
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/dev-tools/kasan.rst')
-rw-r--r--Documentation/dev-tools/kasan.rst549
1 files changed, 549 insertions, 0 deletions
diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst
new file mode 100644
index 000000000..382818a71
--- /dev/null
+++ b/Documentation/dev-tools/kasan.rst
@@ -0,0 +1,549 @@
+The Kernel Address Sanitizer (KASAN)
+====================================
+
+Overview
+--------
+
+Kernel Address Sanitizer (KASAN) is a dynamic memory safety error detector
+designed to find out-of-bounds and use-after-free bugs.
+
+KASAN has three modes:
+
+1. Generic KASAN
+2. Software Tag-Based KASAN
+3. Hardware Tag-Based KASAN
+
+Generic KASAN, enabled with CONFIG_KASAN_GENERIC, is the mode intended for
+debugging, similar to userspace ASan. This mode is supported on many CPU
+architectures, but it has significant performance and memory overheads.
+
+Software Tag-Based KASAN or SW_TAGS KASAN, enabled with CONFIG_KASAN_SW_TAGS,
+can be used for both debugging and dogfood testing, similar to userspace HWASan.
+This mode is only supported for arm64, but its moderate memory overhead allows
+using it for testing on memory-restricted devices with real workloads.
+
+Hardware Tag-Based KASAN or HW_TAGS KASAN, enabled with CONFIG_KASAN_HW_TAGS,
+is the mode intended to be used as an in-field memory bug detector or as a
+security mitigation. This mode only works on arm64 CPUs that support MTE
+(Memory Tagging Extension), but it has low memory and performance overheads and
+thus can be used in production.
+
+For details about the memory and performance impact of each KASAN mode, see the
+descriptions of the corresponding Kconfig options.
+
+The Generic and the Software Tag-Based modes are commonly referred to as the
+software modes. The Software Tag-Based and the Hardware Tag-Based modes are
+referred to as the tag-based modes.
+
+Support
+-------
+
+Architectures
+~~~~~~~~~~~~~
+
+Generic KASAN is supported on x86_64, arm, arm64, powerpc, riscv, s390, xtensa,
+and loongarch, and the tag-based KASAN modes are supported only on arm64.
+
+Compilers
+~~~~~~~~~
+
+Software KASAN modes use compile-time instrumentation to insert validity checks
+before every memory access and thus require a compiler version that provides
+support for that. The Hardware Tag-Based mode relies on hardware to perform
+these checks but still requires a compiler version that supports the memory
+tagging instructions.
+
+Generic KASAN requires GCC version 8.3.0 or later
+or any Clang version supported by the kernel.
+
+Software Tag-Based KASAN requires GCC 11+
+or any Clang version supported by the kernel.
+
+Hardware Tag-Based KASAN requires GCC 10+ or Clang 12+.
+
+Memory types
+~~~~~~~~~~~~
+
+Generic KASAN supports finding bugs in all of slab, page_alloc, vmap, vmalloc,
+stack, and global memory.
+
+Software Tag-Based KASAN supports slab, page_alloc, vmalloc, and stack memory.
+
+Hardware Tag-Based KASAN supports slab, page_alloc, and non-executable vmalloc
+memory.
+
+For slab, both software KASAN modes support SLUB and SLAB allocators, while
+Hardware Tag-Based KASAN only supports SLUB.
+
+Usage
+-----
+
+To enable KASAN, configure the kernel with::
+
+ CONFIG_KASAN=y
+
+and choose between ``CONFIG_KASAN_GENERIC`` (to enable Generic KASAN),
+``CONFIG_KASAN_SW_TAGS`` (to enable Software Tag-Based KASAN), and
+``CONFIG_KASAN_HW_TAGS`` (to enable Hardware Tag-Based KASAN).
+
+For the software modes, also choose between ``CONFIG_KASAN_OUTLINE`` and
+``CONFIG_KASAN_INLINE``. Outline and inline are compiler instrumentation types.
+The former produces a smaller binary while the latter is up to 2 times faster.
+
+To include alloc and free stack traces of affected slab objects into reports,
+enable ``CONFIG_STACKTRACE``. To include alloc and free stack traces of affected
+physical pages, enable ``CONFIG_PAGE_OWNER`` and boot with ``page_owner=on``.
+
+Boot parameters
+~~~~~~~~~~~~~~~
+
+KASAN is affected by the generic ``panic_on_warn`` command line parameter.
+When it is enabled, KASAN panics the kernel after printing a bug report.
+
+By default, KASAN prints a bug report only for the first invalid memory access.
+With ``kasan_multi_shot``, KASAN prints a report on every invalid access. This
+effectively disables ``panic_on_warn`` for KASAN reports.
+
+Alternatively, independent of ``panic_on_warn``, the ``kasan.fault=`` boot
+parameter can be used to control panic and reporting behaviour:
+
+- ``kasan.fault=report``, ``=panic``, or ``=panic_on_write`` controls whether
+ to only print a KASAN report, panic the kernel, or panic the kernel on
+ invalid writes only (default: ``report``). The panic happens even if
+ ``kasan_multi_shot`` is enabled. Note that when using asynchronous mode of
+ Hardware Tag-Based KASAN, ``kasan.fault=panic_on_write`` always panics on
+ asynchronously checked accesses (including reads).
+
+Software and Hardware Tag-Based KASAN modes (see the section about various
+modes below) support altering stack trace collection behavior:
+
+- ``kasan.stacktrace=off`` or ``=on`` disables or enables alloc and free stack
+ traces collection (default: ``on``).
+- ``kasan.stack_ring_size=<number of entries>`` specifies the number of entries
+ in the stack ring (default: ``32768``).
+
+Hardware Tag-Based KASAN mode is intended for use in production as a security
+mitigation. Therefore, it supports additional boot parameters that allow
+disabling KASAN altogether or controlling its features:
+
+- ``kasan=off`` or ``=on`` controls whether KASAN is enabled (default: ``on``).
+
+- ``kasan.mode=sync``, ``=async`` or ``=asymm`` controls whether KASAN
+ is configured in synchronous, asynchronous or asymmetric mode of
+ execution (default: ``sync``).
+ Synchronous mode: a bad access is detected immediately when a tag
+ check fault occurs.
+ Asynchronous mode: a bad access detection is delayed. When a tag check
+ fault occurs, the information is stored in hardware (in the TFSR_EL1
+ register for arm64). The kernel periodically checks the hardware and
+ only reports tag faults during these checks.
+ Asymmetric mode: a bad access is detected synchronously on reads and
+ asynchronously on writes.
+
+- ``kasan.vmalloc=off`` or ``=on`` disables or enables tagging of vmalloc
+ allocations (default: ``on``).
+
+- ``kasan.page_alloc.sample=<sampling interval>`` makes KASAN tag only every
+ Nth page_alloc allocation with the order equal or greater than
+ ``kasan.page_alloc.sample.order``, where N is the value of the ``sample``
+ parameter (default: ``1``, or tag every such allocation).
+ This parameter is intended to mitigate the performance overhead introduced
+ by KASAN.
+ Note that enabling this parameter makes Hardware Tag-Based KASAN skip checks
+ of allocations chosen by sampling and thus miss bad accesses to these
+ allocations. Use the default value for accurate bug detection.
+
+- ``kasan.page_alloc.sample.order=<minimum page order>`` specifies the minimum
+ order of allocations that are affected by sampling (default: ``3``).
+ Only applies when ``kasan.page_alloc.sample`` is set to a value greater
+ than ``1``.
+ This parameter is intended to allow sampling only large page_alloc
+ allocations, which is the biggest source of the performance overhead.
+
+Error reports
+~~~~~~~~~~~~~
+
+A typical KASAN report looks like this::
+
+ ==================================================================
+ BUG: KASAN: slab-out-of-bounds in kmalloc_oob_right+0xa8/0xbc [test_kasan]
+ Write of size 1 at addr ffff8801f44ec37b by task insmod/2760
+
+ CPU: 1 PID: 2760 Comm: insmod Not tainted 4.19.0-rc3+ #698
+ Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
+ Call Trace:
+ dump_stack+0x94/0xd8
+ print_address_description+0x73/0x280
+ kasan_report+0x144/0x187
+ __asan_report_store1_noabort+0x17/0x20
+ kmalloc_oob_right+0xa8/0xbc [test_kasan]
+ kmalloc_tests_init+0x16/0x700 [test_kasan]
+ do_one_initcall+0xa5/0x3ae
+ do_init_module+0x1b6/0x547
+ load_module+0x75df/0x8070
+ __do_sys_init_module+0x1c6/0x200
+ __x64_sys_init_module+0x6e/0xb0
+ do_syscall_64+0x9f/0x2c0
+ entry_SYSCALL_64_after_hwframe+0x44/0xa9
+ RIP: 0033:0x7f96443109da
+ RSP: 002b:00007ffcf0b51b08 EFLAGS: 00000202 ORIG_RAX: 00000000000000af
+ RAX: ffffffffffffffda RBX: 000055dc3ee521a0 RCX: 00007f96443109da
+ RDX: 00007f96445cff88 RSI: 0000000000057a50 RDI: 00007f9644992000
+ RBP: 000055dc3ee510b0 R08: 0000000000000003 R09: 0000000000000000
+ R10: 00007f964430cd0a R11: 0000000000000202 R12: 00007f96445cff88
+ R13: 000055dc3ee51090 R14: 0000000000000000 R15: 0000000000000000
+
+ Allocated by task 2760:
+ save_stack+0x43/0xd0
+ kasan_kmalloc+0xa7/0xd0
+ kmem_cache_alloc_trace+0xe1/0x1b0
+ kmalloc_oob_right+0x56/0xbc [test_kasan]
+ kmalloc_tests_init+0x16/0x700 [test_kasan]
+ do_one_initcall+0xa5/0x3ae
+ do_init_module+0x1b6/0x547
+ load_module+0x75df/0x8070
+ __do_sys_init_module+0x1c6/0x200
+ __x64_sys_init_module+0x6e/0xb0
+ do_syscall_64+0x9f/0x2c0
+ entry_SYSCALL_64_after_hwframe+0x44/0xa9
+
+ Freed by task 815:
+ save_stack+0x43/0xd0
+ __kasan_slab_free+0x135/0x190
+ kasan_slab_free+0xe/0x10
+ kfree+0x93/0x1a0
+ umh_complete+0x6a/0xa0
+ call_usermodehelper_exec_async+0x4c3/0x640
+ ret_from_fork+0x35/0x40
+
+ The buggy address belongs to the object at ffff8801f44ec300
+ which belongs to the cache kmalloc-128 of size 128
+ The buggy address is located 123 bytes inside of
+ 128-byte region [ffff8801f44ec300, ffff8801f44ec380)
+ The buggy address belongs to the page:
+ page:ffffea0007d13b00 count:1 mapcount:0 mapping:ffff8801f7001640 index:0x0
+ flags: 0x200000000000100(slab)
+ raw: 0200000000000100 ffffea0007d11dc0 0000001a0000001a ffff8801f7001640
+ raw: 0000000000000000 0000000080150015 00000001ffffffff 0000000000000000
+ page dumped because: kasan: bad access detected
+
+ Memory state around the buggy address:
+ ffff8801f44ec200: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
+ ffff8801f44ec280: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
+ >ffff8801f44ec300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03
+ ^
+ ffff8801f44ec380: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
+ ffff8801f44ec400: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
+ ==================================================================
+
+The report header summarizes what kind of bug happened and what kind of access
+caused it. It is followed by a stack trace of the bad access, a stack trace of
+where the accessed memory was allocated (in case a slab object was accessed),
+and a stack trace of where the object was freed (in case of a use-after-free
+bug report). Next comes a description of the accessed slab object and the
+information about the accessed memory page.
+
+In the end, the report shows the memory state around the accessed address.
+Internally, KASAN tracks memory state separately for each memory granule, which
+is either 8 or 16 aligned bytes depending on KASAN mode. Each number in the
+memory state section of the report shows the state of one of the memory
+granules that surround the accessed address.
+
+For Generic KASAN, the size of each memory granule is 8. The state of each
+granule is encoded in one shadow byte. Those 8 bytes can be accessible,
+partially accessible, freed, or be a part of a redzone. KASAN uses the following
+encoding for each shadow byte: 00 means that all 8 bytes of the corresponding
+memory region are accessible; number N (1 <= N <= 7) means that the first N
+bytes are accessible, and other (8 - N) bytes are not; any negative value
+indicates that the entire 8-byte word is inaccessible. KASAN uses different
+negative values to distinguish between different kinds of inaccessible memory
+like redzones or freed memory (see mm/kasan/kasan.h).
+
+In the report above, the arrow points to the shadow byte ``03``, which means
+that the accessed address is partially accessible.
+
+For tag-based KASAN modes, this last report section shows the memory tags around
+the accessed address (see the `Implementation details`_ section).
+
+Note that KASAN bug titles (like ``slab-out-of-bounds`` or ``use-after-free``)
+are best-effort: KASAN prints the most probable bug type based on the limited
+information it has. The actual type of the bug might be different.
+
+Generic KASAN also reports up to two auxiliary call stack traces. These stack
+traces point to places in code that interacted with the object but that are not
+directly present in the bad access stack trace. Currently, this includes
+call_rcu() and workqueue queuing.
+
+Implementation details
+----------------------
+
+Generic KASAN
+~~~~~~~~~~~~~
+
+Software KASAN modes use shadow memory to record whether each byte of memory is
+safe to access and use compile-time instrumentation to insert shadow memory
+checks before each memory access.
+
+Generic KASAN dedicates 1/8th of kernel memory to its shadow memory (16TB
+to cover 128TB on x86_64) and uses direct mapping with a scale and offset to
+translate a memory address to its corresponding shadow address.
+
+Here is the function which translates an address to its corresponding shadow
+address::
+
+ static inline void *kasan_mem_to_shadow(const void *addr)
+ {
+ return (void *)((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT)
+ + KASAN_SHADOW_OFFSET;
+ }
+
+where ``KASAN_SHADOW_SCALE_SHIFT = 3``.
+
+Compile-time instrumentation is used to insert memory access checks. Compiler
+inserts function calls (``__asan_load*(addr)``, ``__asan_store*(addr)``) before
+each memory access of size 1, 2, 4, 8, or 16. These functions check whether
+memory accesses are valid or not by checking corresponding shadow memory.
+
+With inline instrumentation, instead of making function calls, the compiler
+directly inserts the code to check shadow memory. This option significantly
+enlarges the kernel, but it gives an x1.1-x2 performance boost over the
+outline-instrumented kernel.
+
+Generic KASAN is the only mode that delays the reuse of freed objects via
+quarantine (see mm/kasan/quarantine.c for implementation).
+
+Software Tag-Based KASAN
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Software Tag-Based KASAN uses a software memory tagging approach to checking
+access validity. It is currently only implemented for the arm64 architecture.
+
+Software Tag-Based KASAN uses the Top Byte Ignore (TBI) feature of arm64 CPUs
+to store a pointer tag in the top byte of kernel pointers. It uses shadow memory
+to store memory tags associated with each 16-byte memory cell (therefore, it
+dedicates 1/16th of the kernel memory for shadow memory).
+
+On each memory allocation, Software Tag-Based KASAN generates a random tag, tags
+the allocated memory with this tag, and embeds the same tag into the returned
+pointer.
+
+Software Tag-Based KASAN uses compile-time instrumentation to insert checks
+before each memory access. These checks make sure that the tag of the memory
+that is being accessed is equal to the tag of the pointer that is used to access
+this memory. In case of a tag mismatch, Software Tag-Based KASAN prints a bug
+report.
+
+Software Tag-Based KASAN also has two instrumentation modes (outline, which
+emits callbacks to check memory accesses; and inline, which performs the shadow
+memory checks inline). With outline instrumentation mode, a bug report is
+printed from the function that performs the access check. With inline
+instrumentation, a ``brk`` instruction is emitted by the compiler, and a
+dedicated ``brk`` handler is used to print bug reports.
+
+Software Tag-Based KASAN uses 0xFF as a match-all pointer tag (accesses through
+pointers with the 0xFF pointer tag are not checked). The value 0xFE is currently
+reserved to tag freed memory regions.
+
+Hardware Tag-Based KASAN
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Hardware Tag-Based KASAN is similar to the software mode in concept but uses
+hardware memory tagging support instead of compiler instrumentation and
+shadow memory.
+
+Hardware Tag-Based KASAN is currently only implemented for arm64 architecture
+and based on both arm64 Memory Tagging Extension (MTE) introduced in ARMv8.5
+Instruction Set Architecture and Top Byte Ignore (TBI).
+
+Special arm64 instructions are used to assign memory tags for each allocation.
+Same tags are assigned to pointers to those allocations. On every memory
+access, hardware makes sure that the tag of the memory that is being accessed is
+equal to the tag of the pointer that is used to access this memory. In case of a
+tag mismatch, a fault is generated, and a report is printed.
+
+Hardware Tag-Based KASAN uses 0xFF as a match-all pointer tag (accesses through
+pointers with the 0xFF pointer tag are not checked). The value 0xFE is currently
+reserved to tag freed memory regions.
+
+If the hardware does not support MTE (pre ARMv8.5), Hardware Tag-Based KASAN
+will not be enabled. In this case, all KASAN boot parameters are ignored.
+
+Note that enabling CONFIG_KASAN_HW_TAGS always results in in-kernel TBI being
+enabled. Even when ``kasan.mode=off`` is provided or when the hardware does not
+support MTE (but supports TBI).
+
+Hardware Tag-Based KASAN only reports the first found bug. After that, MTE tag
+checking gets disabled.
+
+Shadow memory
+-------------
+
+The contents of this section are only applicable to software KASAN modes.
+
+The kernel maps memory in several different parts of the address space.
+The range of kernel virtual addresses is large: there is not enough real
+memory to support a real shadow region for every address that could be
+accessed by the kernel. Therefore, KASAN only maps real shadow for certain
+parts of the address space.
+
+Default behaviour
+~~~~~~~~~~~~~~~~~
+
+By default, architectures only map real memory over the shadow region
+for the linear mapping (and potentially other small areas). For all
+other areas - such as vmalloc and vmemmap space - a single read-only
+page is mapped over the shadow area. This read-only shadow page
+declares all memory accesses as permitted.
+
+This presents a problem for modules: they do not live in the linear
+mapping but in a dedicated module space. By hooking into the module
+allocator, KASAN temporarily maps real shadow memory to cover them.
+This allows detection of invalid accesses to module globals, for example.
+
+This also creates an incompatibility with ``VMAP_STACK``: if the stack
+lives in vmalloc space, it will be shadowed by the read-only page, and
+the kernel will fault when trying to set up the shadow data for stack
+variables.
+
+CONFIG_KASAN_VMALLOC
+~~~~~~~~~~~~~~~~~~~~
+
+With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the
+cost of greater memory usage. Currently, this is supported on x86,
+arm64, riscv, s390, and powerpc.
+
+This works by hooking into vmalloc and vmap and dynamically
+allocating real shadow memory to back the mappings.
+
+Most mappings in vmalloc space are small, requiring less than a full
+page of shadow space. Allocating a full shadow page per mapping would
+therefore be wasteful. Furthermore, to ensure that different mappings
+use different shadow pages, mappings would have to be aligned to
+``KASAN_GRANULE_SIZE * PAGE_SIZE``.
+
+Instead, KASAN shares backing space across multiple mappings. It allocates
+a backing page when a mapping in vmalloc space uses a particular page
+of the shadow region. This page can be shared by other vmalloc
+mappings later on.
+
+KASAN hooks into the vmap infrastructure to lazily clean up unused shadow
+memory.
+
+To avoid the difficulties around swapping mappings around, KASAN expects
+that the part of the shadow region that covers the vmalloc space will
+not be covered by the early shadow page but will be left unmapped.
+This will require changes in arch-specific code.
+
+This allows ``VMAP_STACK`` support on x86 and can simplify support of
+architectures that do not have a fixed module region.
+
+For developers
+--------------
+
+Ignoring accesses
+~~~~~~~~~~~~~~~~~
+
+Software KASAN modes use compiler instrumentation to insert validity checks.
+Such instrumentation might be incompatible with some parts of the kernel, and
+therefore needs to be disabled.
+
+Other parts of the kernel might access metadata for allocated objects.
+Normally, KASAN detects and reports such accesses, but in some cases (e.g.,
+in memory allocators), these accesses are valid.
+
+For software KASAN modes, to disable instrumentation for a specific file or
+directory, add a ``KASAN_SANITIZE`` annotation to the respective kernel
+Makefile:
+
+- For a single file (e.g., main.o)::
+
+ KASAN_SANITIZE_main.o := n
+
+- For all files in one directory::
+
+ KASAN_SANITIZE := n
+
+For software KASAN modes, to disable instrumentation on a per-function basis,
+use the KASAN-specific ``__no_sanitize_address`` function attribute or the
+generic ``noinstr`` one.
+
+Note that disabling compiler instrumentation (either on a per-file or a
+per-function basis) makes KASAN ignore the accesses that happen directly in
+that code for software KASAN modes. It does not help when the accesses happen
+indirectly (through calls to instrumented functions) or with Hardware
+Tag-Based KASAN, which does not use compiler instrumentation.
+
+For software KASAN modes, to disable KASAN reports in a part of the kernel code
+for the current task, annotate this part of the code with a
+``kasan_disable_current()``/``kasan_enable_current()`` section. This also
+disables the reports for indirect accesses that happen through function calls.
+
+For tag-based KASAN modes, to disable access checking, use
+``kasan_reset_tag()`` or ``page_kasan_tag_reset()``. Note that temporarily
+disabling access checking via ``page_kasan_tag_reset()`` requires saving and
+restoring the per-page KASAN tag via ``page_kasan_tag``/``page_kasan_tag_set``.
+
+Tests
+~~~~~
+
+There are KASAN tests that allow verifying that KASAN works and can detect
+certain types of memory corruptions. The tests consist of two parts:
+
+1. Tests that are integrated with the KUnit Test Framework. Enabled with
+``CONFIG_KASAN_KUNIT_TEST``. These tests can be run and partially verified
+automatically in a few different ways; see the instructions below.
+
+2. Tests that are currently incompatible with KUnit. Enabled with
+``CONFIG_KASAN_MODULE_TEST`` and can only be run as a module. These tests can
+only be verified manually by loading the kernel module and inspecting the
+kernel log for KASAN reports.
+
+Each KUnit-compatible KASAN test prints one of multiple KASAN reports if an
+error is detected. Then the test prints its number and status.
+
+When a test passes::
+
+ ok 28 - kmalloc_double_kzfree
+
+When a test fails due to a failed ``kmalloc``::
+
+ # kmalloc_large_oob_right: ASSERTION FAILED at lib/test_kasan.c:163
+ Expected ptr is not null, but is
+ not ok 4 - kmalloc_large_oob_right
+
+When a test fails due to a missing KASAN report::
+
+ # kmalloc_double_kzfree: EXPECTATION FAILED at lib/test_kasan.c:974
+ KASAN failure expected in "kfree_sensitive(ptr)", but none occurred
+ not ok 44 - kmalloc_double_kzfree
+
+
+At the end the cumulative status of all KASAN tests is printed. On success::
+
+ ok 1 - kasan
+
+Or, if one of the tests failed::
+
+ not ok 1 - kasan
+
+There are a few ways to run KUnit-compatible KASAN tests.
+
+1. Loadable module
+
+ With ``CONFIG_KUNIT`` enabled, KASAN-KUnit tests can be built as a loadable
+ module and run by loading ``test_kasan.ko`` with ``insmod`` or ``modprobe``.
+
+2. Built-In
+
+ With ``CONFIG_KUNIT`` built-in, KASAN-KUnit tests can be built-in as well.
+ In this case, the tests will run at boot as a late-init call.
+
+3. Using kunit_tool
+
+ With ``CONFIG_KUNIT`` and ``CONFIG_KASAN_KUNIT_TEST`` built-in, it is also
+ possible to use ``kunit_tool`` to see the results of KUnit tests in a more
+ readable way. This will not print the KASAN reports of the tests that passed.
+ See `KUnit documentation <https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html>`_
+ for more up-to-date information on ``kunit_tool``.
+
+.. _KUnit: https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html