summaryrefslogtreecommitdiffstats
path: root/Documentation/networking/af_xdp.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /Documentation/networking/af_xdp.rst
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/networking/af_xdp.rst')
-rw-r--r--Documentation/networking/af_xdp.rst849
1 files changed, 849 insertions, 0 deletions
diff --git a/Documentation/networking/af_xdp.rst b/Documentation/networking/af_xdp.rst
new file mode 100644
index 000000000..dceeb0d76
--- /dev/null
+++ b/Documentation/networking/af_xdp.rst
@@ -0,0 +1,849 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======
+AF_XDP
+======
+
+Overview
+========
+
+AF_XDP is an address family that is optimized for high performance
+packet processing.
+
+This document assumes that the reader is familiar with BPF and XDP. If
+not, the Cilium project has an excellent reference guide at
+http://cilium.readthedocs.io/en/latest/bpf/.
+
+Using the XDP_REDIRECT action from an XDP program, the program can
+redirect ingress frames to other XDP enabled netdevs, using the
+bpf_redirect_map() function. AF_XDP sockets enable the possibility for
+XDP programs to redirect frames to a memory buffer in a user-space
+application.
+
+An AF_XDP socket (XSK) is created with the normal socket()
+syscall. Associated with each XSK are two rings: the RX ring and the
+TX ring. A socket can receive packets on the RX ring and it can send
+packets on the TX ring. These rings are registered and sized with the
+setsockopts XDP_RX_RING and XDP_TX_RING, respectively. It is mandatory
+to have at least one of these rings for each socket. An RX or TX
+descriptor ring points to a data buffer in a memory area called a
+UMEM. RX and TX can share the same UMEM so that a packet does not have
+to be copied between RX and TX. Moreover, if a packet needs to be kept
+for a while due to a possible retransmit, the descriptor that points
+to that packet can be changed to point to another and reused right
+away. This again avoids copying data.
+
+The UMEM consists of a number of equally sized chunks. A descriptor in
+one of the rings references a frame by referencing its addr. The addr
+is simply an offset within the entire UMEM region. The user space
+allocates memory for this UMEM using whatever means it feels is most
+appropriate (malloc, mmap, huge pages, etc). This memory area is then
+registered with the kernel using the new setsockopt XDP_UMEM_REG. The
+UMEM also has two rings: the FILL ring and the COMPLETION ring. The
+FILL ring is used by the application to send down addr for the kernel
+to fill in with RX packet data. References to these frames will then
+appear in the RX ring once each packet has been received. The
+COMPLETION ring, on the other hand, contains frame addr that the
+kernel has transmitted completely and can now be used again by user
+space, for either TX or RX. Thus, the frame addrs appearing in the
+COMPLETION ring are addrs that were previously transmitted using the
+TX ring. In summary, the RX and FILL rings are used for the RX path
+and the TX and COMPLETION rings are used for the TX path.
+
+The socket is then finally bound with a bind() call to a device and a
+specific queue id on that device, and it is not until bind is
+completed that traffic starts to flow.
+
+The UMEM can be shared between processes, if desired. If a process
+wants to do this, it simply skips the registration of the UMEM and its
+corresponding two rings, sets the XDP_SHARED_UMEM flag in the bind
+call and submits the XSK of the process it would like to share UMEM
+with as well as its own newly created XSK socket. The new process will
+then receive frame addr references in its own RX ring that point to
+this shared UMEM. Note that since the ring structures are
+single-consumer / single-producer (for performance reasons), the new
+process has to create its own socket with associated RX and TX rings,
+since it cannot share this with the other process. This is also the
+reason that there is only one set of FILL and COMPLETION rings per
+UMEM. It is the responsibility of a single process to handle the UMEM.
+
+How is then packets distributed from an XDP program to the XSKs? There
+is a BPF map called XSKMAP (or BPF_MAP_TYPE_XSKMAP in full). The
+user-space application can place an XSK at an arbitrary place in this
+map. The XDP program can then redirect a packet to a specific index in
+this map and at this point XDP validates that the XSK in that map was
+indeed bound to that device and ring number. If not, the packet is
+dropped. If the map is empty at that index, the packet is also
+dropped. This also means that it is currently mandatory to have an XDP
+program loaded (and one XSK in the XSKMAP) to be able to get any
+traffic to user space through the XSK.
+
+AF_XDP can operate in two different modes: XDP_SKB and XDP_DRV. If the
+driver does not have support for XDP, or XDP_SKB is explicitly chosen
+when loading the XDP program, XDP_SKB mode is employed that uses SKBs
+together with the generic XDP support and copies out the data to user
+space. A fallback mode that works for any network device. On the other
+hand, if the driver has support for XDP, it will be used by the AF_XDP
+code to provide better performance, but there is still a copy of the
+data into user space.
+
+Concepts
+========
+
+In order to use an AF_XDP socket, a number of associated objects need
+to be setup. These objects and their options are explained in the
+following sections.
+
+For an overview on how AF_XDP works, you can also take a look at the
+Linux Plumbers paper from 2018 on the subject:
+http://vger.kernel.org/lpc_net2018_talks/lpc18_paper_af_xdp_perf-v2.pdf. Do
+NOT consult the paper from 2017 on "AF_PACKET v4", the first attempt
+at AF_XDP. Nearly everything changed since then. Jonathan Corbet has
+also written an excellent article on LWN, "Accelerating networking
+with AF_XDP". It can be found at https://lwn.net/Articles/750845/.
+
+UMEM
+----
+
+UMEM is a region of virtual contiguous memory, divided into
+equal-sized frames. An UMEM is associated to a netdev and a specific
+queue id of that netdev. It is created and configured (chunk size,
+headroom, start address and size) by using the XDP_UMEM_REG setsockopt
+system call. A UMEM is bound to a netdev and queue id, via the bind()
+system call.
+
+An AF_XDP is socket linked to a single UMEM, but one UMEM can have
+multiple AF_XDP sockets. To share an UMEM created via one socket A,
+the next socket B can do this by setting the XDP_SHARED_UMEM flag in
+struct sockaddr_xdp member sxdp_flags, and passing the file descriptor
+of A to struct sockaddr_xdp member sxdp_shared_umem_fd.
+
+The UMEM has two single-producer/single-consumer rings that are used
+to transfer ownership of UMEM frames between the kernel and the
+user-space application.
+
+Rings
+-----
+
+There are a four different kind of rings: FILL, COMPLETION, RX and
+TX. All rings are single-producer/single-consumer, so the user-space
+application need explicit synchronization of multiple
+processes/threads are reading/writing to them.
+
+The UMEM uses two rings: FILL and COMPLETION. Each socket associated
+with the UMEM must have an RX queue, TX queue or both. Say, that there
+is a setup with four sockets (all doing TX and RX). Then there will be
+one FILL ring, one COMPLETION ring, four TX rings and four RX rings.
+
+The rings are head(producer)/tail(consumer) based rings. A producer
+writes the data ring at the index pointed out by struct xdp_ring
+producer member, and increasing the producer index. A consumer reads
+the data ring at the index pointed out by struct xdp_ring consumer
+member, and increasing the consumer index.
+
+The rings are configured and created via the _RING setsockopt system
+calls and mmapped to user-space using the appropriate offset to mmap()
+(XDP_PGOFF_RX_RING, XDP_PGOFF_TX_RING, XDP_UMEM_PGOFF_FILL_RING and
+XDP_UMEM_PGOFF_COMPLETION_RING).
+
+The size of the rings need to be of size power of two.
+
+UMEM Fill Ring
+~~~~~~~~~~~~~~
+
+The FILL ring is used to transfer ownership of UMEM frames from
+user-space to kernel-space. The UMEM addrs are passed in the ring. As
+an example, if the UMEM is 64k and each chunk is 4k, then the UMEM has
+16 chunks and can pass addrs between 0 and 64k.
+
+Frames passed to the kernel are used for the ingress path (RX rings).
+
+The user application produces UMEM addrs to this ring. Note that, if
+running the application with aligned chunk mode, the kernel will mask
+the incoming addr. E.g. for a chunk size of 2k, the log2(2048) LSB of
+the addr will be masked off, meaning that 2048, 2050 and 3000 refers
+to the same chunk. If the user application is run in the unaligned
+chunks mode, then the incoming addr will be left untouched.
+
+
+UMEM Completion Ring
+~~~~~~~~~~~~~~~~~~~~
+
+The COMPLETION Ring is used transfer ownership of UMEM frames from
+kernel-space to user-space. Just like the FILL ring, UMEM indices are
+used.
+
+Frames passed from the kernel to user-space are frames that has been
+sent (TX ring) and can be used by user-space again.
+
+The user application consumes UMEM addrs from this ring.
+
+
+RX Ring
+~~~~~~~
+
+The RX ring is the receiving side of a socket. Each entry in the ring
+is a struct xdp_desc descriptor. The descriptor contains UMEM offset
+(addr) and the length of the data (len).
+
+If no frames have been passed to kernel via the FILL ring, no
+descriptors will (or can) appear on the RX ring.
+
+The user application consumes struct xdp_desc descriptors from this
+ring.
+
+TX Ring
+~~~~~~~
+
+The TX ring is used to send frames. The struct xdp_desc descriptor is
+filled (index, length and offset) and passed into the ring.
+
+To start the transfer a sendmsg() system call is required. This might
+be relaxed in the future.
+
+The user application produces struct xdp_desc descriptors to this
+ring.
+
+Libbpf
+======
+
+Libbpf is a helper library for eBPF and XDP that makes using these
+technologies a lot simpler. It also contains specific helper functions
+in tools/lib/bpf/xsk.h for facilitating the use of AF_XDP. It
+contains two types of functions: those that can be used to make the
+setup of AF_XDP socket easier and ones that can be used in the data
+plane to access the rings safely and quickly. To see an example on how
+to use this API, please take a look at the sample application in
+samples/bpf/xdpsock_usr.c which uses libbpf for both setup and data
+plane operations.
+
+We recommend that you use this library unless you have become a power
+user. It will make your program a lot simpler.
+
+XSKMAP / BPF_MAP_TYPE_XSKMAP
+============================
+
+On XDP side there is a BPF map type BPF_MAP_TYPE_XSKMAP (XSKMAP) that
+is used in conjunction with bpf_redirect_map() to pass the ingress
+frame to a socket.
+
+The user application inserts the socket into the map, via the bpf()
+system call.
+
+Note that if an XDP program tries to redirect to a socket that does
+not match the queue configuration and netdev, the frame will be
+dropped. E.g. an AF_XDP socket is bound to netdev eth0 and
+queue 17. Only the XDP program executing for eth0 and queue 17 will
+successfully pass data to the socket. Please refer to the sample
+application (samples/bpf/) in for an example.
+
+Configuration Flags and Socket Options
+======================================
+
+These are the various configuration flags that can be used to control
+and monitor the behavior of AF_XDP sockets.
+
+XDP_COPY and XDP_ZEROCOPY bind flags
+------------------------------------
+
+When you bind to a socket, the kernel will first try to use zero-copy
+copy. If zero-copy is not supported, it will fall back on using copy
+mode, i.e. copying all packets out to user space. But if you would
+like to force a certain mode, you can use the following flags. If you
+pass the XDP_COPY flag to the bind call, the kernel will force the
+socket into copy mode. If it cannot use copy mode, the bind call will
+fail with an error. Conversely, the XDP_ZEROCOPY flag will force the
+socket into zero-copy mode or fail.
+
+XDP_SHARED_UMEM bind flag
+-------------------------
+
+This flag enables you to bind multiple sockets to the same UMEM. It
+works on the same queue id, between queue ids and between
+netdevs/devices. In this mode, each socket has their own RX and TX
+rings as usual, but you are going to have one or more FILL and
+COMPLETION ring pairs. You have to create one of these pairs per
+unique netdev and queue id tuple that you bind to.
+
+Starting with the case were we would like to share a UMEM between
+sockets bound to the same netdev and queue id. The UMEM (tied to the
+fist socket created) will only have a single FILL ring and a single
+COMPLETION ring as there is only on unique netdev,queue_id tuple that
+we have bound to. To use this mode, create the first socket and bind
+it in the normal way. Create a second socket and create an RX and a TX
+ring, or at least one of them, but no FILL or COMPLETION rings as the
+ones from the first socket will be used. In the bind call, set he
+XDP_SHARED_UMEM option and provide the initial socket's fd in the
+sxdp_shared_umem_fd field. You can attach an arbitrary number of extra
+sockets this way.
+
+What socket will then a packet arrive on? This is decided by the XDP
+program. Put all the sockets in the XSK_MAP and just indicate which
+index in the array you would like to send each packet to. A simple
+round-robin example of distributing packets is shown below:
+
+.. code-block:: c
+
+ #include <linux/bpf.h>
+ #include "bpf_helpers.h"
+
+ #define MAX_SOCKS 16
+
+ struct {
+ __uint(type, BPF_MAP_TYPE_XSKMAP);
+ __uint(max_entries, MAX_SOCKS);
+ __uint(key_size, sizeof(int));
+ __uint(value_size, sizeof(int));
+ } xsks_map SEC(".maps");
+
+ static unsigned int rr;
+
+ SEC("xdp_sock") int xdp_sock_prog(struct xdp_md *ctx)
+ {
+ rr = (rr + 1) & (MAX_SOCKS - 1);
+
+ return bpf_redirect_map(&xsks_map, rr, XDP_DROP);
+ }
+
+Note, that since there is only a single set of FILL and COMPLETION
+rings, and they are single producer, single consumer rings, you need
+to make sure that multiple processes or threads do not use these rings
+concurrently. There are no synchronization primitives in the
+libbpf code that protects multiple users at this point in time.
+
+Libbpf uses this mode if you create more than one socket tied to the
+same UMEM. However, note that you need to supply the
+XSK_LIBBPF_FLAGS__INHIBIT_PROG_LOAD libbpf_flag with the
+xsk_socket__create calls and load your own XDP program as there is no
+built in one in libbpf that will route the traffic for you.
+
+The second case is when you share a UMEM between sockets that are
+bound to different queue ids and/or netdevs. In this case you have to
+create one FILL ring and one COMPLETION ring for each unique
+netdev,queue_id pair. Let us say you want to create two sockets bound
+to two different queue ids on the same netdev. Create the first socket
+and bind it in the normal way. Create a second socket and create an RX
+and a TX ring, or at least one of them, and then one FILL and
+COMPLETION ring for this socket. Then in the bind call, set he
+XDP_SHARED_UMEM option and provide the initial socket's fd in the
+sxdp_shared_umem_fd field as you registered the UMEM on that
+socket. These two sockets will now share one and the same UMEM.
+
+There is no need to supply an XDP program like the one in the previous
+case where sockets were bound to the same queue id and
+device. Instead, use the NIC's packet steering capabilities to steer
+the packets to the right queue. In the previous example, there is only
+one queue shared among sockets, so the NIC cannot do this steering. It
+can only steer between queues.
+
+In libbpf, you need to use the xsk_socket__create_shared() API as it
+takes a reference to a FILL ring and a COMPLETION ring that will be
+created for you and bound to the shared UMEM. You can use this
+function for all the sockets you create, or you can use it for the
+second and following ones and use xsk_socket__create() for the first
+one. Both methods yield the same result.
+
+Note that a UMEM can be shared between sockets on the same queue id
+and device, as well as between queues on the same device and between
+devices at the same time.
+
+XDP_USE_NEED_WAKEUP bind flag
+-----------------------------
+
+This option adds support for a new flag called need_wakeup that is
+present in the FILL ring and the TX ring, the rings for which user
+space is a producer. When this option is set in the bind call, the
+need_wakeup flag will be set if the kernel needs to be explicitly
+woken up by a syscall to continue processing packets. If the flag is
+zero, no syscall is needed.
+
+If the flag is set on the FILL ring, the application needs to call
+poll() to be able to continue to receive packets on the RX ring. This
+can happen, for example, when the kernel has detected that there are no
+more buffers on the FILL ring and no buffers left on the RX HW ring of
+the NIC. In this case, interrupts are turned off as the NIC cannot
+receive any packets (as there are no buffers to put them in), and the
+need_wakeup flag is set so that user space can put buffers on the
+FILL ring and then call poll() so that the kernel driver can put these
+buffers on the HW ring and start to receive packets.
+
+If the flag is set for the TX ring, it means that the application
+needs to explicitly notify the kernel to send any packets put on the
+TX ring. This can be accomplished either by a poll() call, as in the
+RX path, or by calling sendto().
+
+An example of how to use this flag can be found in
+samples/bpf/xdpsock_user.c. An example with the use of libbpf helpers
+would look like this for the TX path:
+
+.. code-block:: c
+
+ if (xsk_ring_prod__needs_wakeup(&my_tx_ring))
+ sendto(xsk_socket__fd(xsk_handle), NULL, 0, MSG_DONTWAIT, NULL, 0);
+
+I.e., only use the syscall if the flag is set.
+
+We recommend that you always enable this mode as it usually leads to
+better performance especially if you run the application and the
+driver on the same core, but also if you use different cores for the
+application and the kernel driver, as it reduces the number of
+syscalls needed for the TX path.
+
+XDP_{RX|TX|UMEM_FILL|UMEM_COMPLETION}_RING setsockopts
+------------------------------------------------------
+
+These setsockopts sets the number of descriptors that the RX, TX,
+FILL, and COMPLETION rings respectively should have. It is mandatory
+to set the size of at least one of the RX and TX rings. If you set
+both, you will be able to both receive and send traffic from your
+application, but if you only want to do one of them, you can save
+resources by only setting up one of them. Both the FILL ring and the
+COMPLETION ring are mandatory as you need to have a UMEM tied to your
+socket. But if the XDP_SHARED_UMEM flag is used, any socket after the
+first one does not have a UMEM and should in that case not have any
+FILL or COMPLETION rings created as the ones from the shared UMEM will
+be used. Note, that the rings are single-producer single-consumer, so
+do not try to access them from multiple processes at the same
+time. See the XDP_SHARED_UMEM section.
+
+In libbpf, you can create Rx-only and Tx-only sockets by supplying
+NULL to the rx and tx arguments, respectively, to the
+xsk_socket__create function.
+
+If you create a Tx-only socket, we recommend that you do not put any
+packets on the fill ring. If you do this, drivers might think you are
+going to receive something when you in fact will not, and this can
+negatively impact performance.
+
+XDP_UMEM_REG setsockopt
+-----------------------
+
+This setsockopt registers a UMEM to a socket. This is the area that
+contain all the buffers that packet can reside in. The call takes a
+pointer to the beginning of this area and the size of it. Moreover, it
+also has parameter called chunk_size that is the size that the UMEM is
+divided into. It can only be 2K or 4K at the moment. If you have an
+UMEM area that is 128K and a chunk size of 2K, this means that you
+will be able to hold a maximum of 128K / 2K = 64 packets in your UMEM
+area and that your largest packet size can be 2K.
+
+There is also an option to set the headroom of each single buffer in
+the UMEM. If you set this to N bytes, it means that the packet will
+start N bytes into the buffer leaving the first N bytes for the
+application to use. The final option is the flags field, but it will
+be dealt with in separate sections for each UMEM flag.
+
+SO_BINDTODEVICE setsockopt
+--------------------------
+
+This is a generic SOL_SOCKET option that can be used to tie AF_XDP
+socket to a particular network interface. It is useful when a socket
+is created by a privileged process and passed to a non-privileged one.
+Once the option is set, kernel will refuse attempts to bind that socket
+to a different interface. Updating the value requires CAP_NET_RAW.
+
+XDP_STATISTICS getsockopt
+-------------------------
+
+Gets drop statistics of a socket that can be useful for debug
+purposes. The supported statistics are shown below:
+
+.. code-block:: c
+
+ struct xdp_statistics {
+ __u64 rx_dropped; /* Dropped for reasons other than invalid desc */
+ __u64 rx_invalid_descs; /* Dropped due to invalid descriptor */
+ __u64 tx_invalid_descs; /* Dropped due to invalid descriptor */
+ };
+
+XDP_OPTIONS getsockopt
+----------------------
+
+Gets options from an XDP socket. The only one supported so far is
+XDP_OPTIONS_ZEROCOPY which tells you if zero-copy is on or not.
+
+Multi-Buffer Support
+====================
+
+With multi-buffer support, programs using AF_XDP sockets can receive
+and transmit packets consisting of multiple buffers both in copy and
+zero-copy mode. For example, a packet can consist of two
+frames/buffers, one with the header and the other one with the data,
+or a 9K Ethernet jumbo frame can be constructed by chaining together
+three 4K frames.
+
+Some definitions:
+
+* A packet consists of one or more frames
+
+* A descriptor in one of the AF_XDP rings always refers to a single
+ frame. In the case the packet consists of a single frame, the
+ descriptor refers to the whole packet.
+
+To enable multi-buffer support for an AF_XDP socket, use the new bind
+flag XDP_USE_SG. If this is not provided, all multi-buffer packets
+will be dropped just as before. Note that the XDP program loaded also
+needs to be in multi-buffer mode. This can be accomplished by using
+"xdp.frags" as the section name of the XDP program used.
+
+To represent a packet consisting of multiple frames, a new flag called
+XDP_PKT_CONTD is introduced in the options field of the Rx and Tx
+descriptors. If it is true (1) the packet continues with the next
+descriptor and if it is false (0) it means this is the last descriptor
+of the packet. Why the reverse logic of end-of-packet (eop) flag found
+in many NICs? Just to preserve compatibility with non-multi-buffer
+applications that have this bit set to false for all packets on Rx,
+and the apps set the options field to zero for Tx, as anything else
+will be treated as an invalid descriptor.
+
+These are the semantics for producing packets onto AF_XDP Tx ring
+consisting of multiple frames:
+
+* When an invalid descriptor is found, all the other
+ descriptors/frames of this packet are marked as invalid and not
+ completed. The next descriptor is treated as the start of a new
+ packet, even if this was not the intent (because we cannot guess
+ the intent). As before, if your program is producing invalid
+ descriptors you have a bug that must be fixed.
+
+* Zero length descriptors are treated as invalid descriptors.
+
+* For copy mode, the maximum supported number of frames in a packet is
+ equal to CONFIG_MAX_SKB_FRAGS + 1. If it is exceeded, all
+ descriptors accumulated so far are dropped and treated as
+ invalid. To produce an application that will work on any system
+ regardless of this config setting, limit the number of frags to 18,
+ as the minimum value of the config is 17.
+
+* For zero-copy mode, the limit is up to what the NIC HW
+ supports. Usually at least five on the NICs we have checked. We
+ consciously chose to not enforce a rigid limit (such as
+ CONFIG_MAX_SKB_FRAGS + 1) for zero-copy mode, as it would have
+ resulted in copy actions under the hood to fit into what limit the
+ NIC supports. Kind of defeats the purpose of zero-copy mode. How to
+ probe for this limit is explained in the "probe for multi-buffer
+ support" section.
+
+On the Rx path in copy-mode, the xsk core copies the XDP data into
+multiple descriptors, if needed, and sets the XDP_PKT_CONTD flag as
+detailed before. Zero-copy mode works the same, though the data is not
+copied. When the application gets a descriptor with the XDP_PKT_CONTD
+flag set to one, it means that the packet consists of multiple buffers
+and it continues with the next buffer in the following
+descriptor. When a descriptor with XDP_PKT_CONTD == 0 is received, it
+means that this is the last buffer of the packet. AF_XDP guarantees
+that only a complete packet (all frames in the packet) is sent to the
+application. If there is not enough space in the AF_XDP Rx ring, all
+frames of the packet will be dropped.
+
+If application reads a batch of descriptors, using for example the libxdp
+interfaces, it is not guaranteed that the batch will end with a full
+packet. It might end in the middle of a packet and the rest of the
+buffers of that packet will arrive at the beginning of the next batch,
+since the libxdp interface does not read the whole ring (unless you
+have an enormous batch size or a very small ring size).
+
+An example program each for Rx and Tx multi-buffer support can be found
+later in this document.
+
+Usage
+-----
+
+In order to use AF_XDP sockets two parts are needed. The
+user-space application and the XDP program. For a complete setup and
+usage example, please refer to the sample application. The user-space
+side is xdpsock_user.c and the XDP side is part of libbpf.
+
+The XDP code sample included in tools/lib/bpf/xsk.c is the following:
+
+.. code-block:: c
+
+ SEC("xdp_sock") int xdp_sock_prog(struct xdp_md *ctx)
+ {
+ int index = ctx->rx_queue_index;
+
+ // A set entry here means that the corresponding queue_id
+ // has an active AF_XDP socket bound to it.
+ if (bpf_map_lookup_elem(&xsks_map, &index))
+ return bpf_redirect_map(&xsks_map, index, 0);
+
+ return XDP_PASS;
+ }
+
+A simple but not so performance ring dequeue and enqueue could look
+like this:
+
+.. code-block:: c
+
+ // struct xdp_rxtx_ring {
+ // __u32 *producer;
+ // __u32 *consumer;
+ // struct xdp_desc *desc;
+ // };
+
+ // struct xdp_umem_ring {
+ // __u32 *producer;
+ // __u32 *consumer;
+ // __u64 *desc;
+ // };
+
+ // typedef struct xdp_rxtx_ring RING;
+ // typedef struct xdp_umem_ring RING;
+
+ // typedef struct xdp_desc RING_TYPE;
+ // typedef __u64 RING_TYPE;
+
+ int dequeue_one(RING *ring, RING_TYPE *item)
+ {
+ __u32 entries = *ring->producer - *ring->consumer;
+
+ if (entries == 0)
+ return -1;
+
+ // read-barrier!
+
+ *item = ring->desc[*ring->consumer & (RING_SIZE - 1)];
+ (*ring->consumer)++;
+ return 0;
+ }
+
+ int enqueue_one(RING *ring, const RING_TYPE *item)
+ {
+ u32 free_entries = RING_SIZE - (*ring->producer - *ring->consumer);
+
+ if (free_entries == 0)
+ return -1;
+
+ ring->desc[*ring->producer & (RING_SIZE - 1)] = *item;
+
+ // write-barrier!
+
+ (*ring->producer)++;
+ return 0;
+ }
+
+But please use the libbpf functions as they are optimized and ready to
+use. Will make your life easier.
+
+Usage Multi-Buffer Rx
+---------------------
+
+Here is a simple Rx path pseudo-code example (using libxdp interfaces
+for simplicity). Error paths have been excluded to keep it short:
+
+.. code-block:: c
+
+ void rx_packets(struct xsk_socket_info *xsk)
+ {
+ static bool new_packet = true;
+ u32 idx_rx = 0, idx_fq = 0;
+ static char *pkt;
+
+ int rcvd = xsk_ring_cons__peek(&xsk->rx, opt_batch_size, &idx_rx);
+
+ xsk_ring_prod__reserve(&xsk->umem->fq, rcvd, &idx_fq);
+
+ for (int i = 0; i < rcvd; i++) {
+ struct xdp_desc *desc = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx++);
+ char *frag = xsk_umem__get_data(xsk->umem->buffer, desc->addr);
+ bool eop = !(desc->options & XDP_PKT_CONTD);
+
+ if (new_packet)
+ pkt = frag;
+ else
+ add_frag_to_pkt(pkt, frag);
+
+ if (eop)
+ process_pkt(pkt);
+
+ new_packet = eop;
+
+ *xsk_ring_prod__fill_addr(&xsk->umem->fq, idx_fq++) = desc->addr;
+ }
+
+ xsk_ring_prod__submit(&xsk->umem->fq, rcvd);
+ xsk_ring_cons__release(&xsk->rx, rcvd);
+ }
+
+Usage Multi-Buffer Tx
+---------------------
+
+Here is an example Tx path pseudo-code (using libxdp interfaces for
+simplicity) ignoring that the umem is finite in size, and that we
+eventually will run out of packets to send. Also assumes pkts.addr
+points to a valid location in the umem.
+
+.. code-block:: c
+
+ void tx_packets(struct xsk_socket_info *xsk, struct pkt *pkts,
+ int batch_size)
+ {
+ u32 idx, i, pkt_nb = 0;
+
+ xsk_ring_prod__reserve(&xsk->tx, batch_size, &idx);
+
+ for (i = 0; i < batch_size;) {
+ u64 addr = pkts[pkt_nb].addr;
+ u32 len = pkts[pkt_nb].size;
+
+ do {
+ struct xdp_desc *tx_desc;
+
+ tx_desc = xsk_ring_prod__tx_desc(&xsk->tx, idx + i++);
+ tx_desc->addr = addr;
+
+ if (len > xsk_frame_size) {
+ tx_desc->len = xsk_frame_size;
+ tx_desc->options = XDP_PKT_CONTD;
+ } else {
+ tx_desc->len = len;
+ tx_desc->options = 0;
+ pkt_nb++;
+ }
+ len -= tx_desc->len;
+ addr += xsk_frame_size;
+
+ if (i == batch_size) {
+ /* Remember len, addr, pkt_nb for next iteration.
+ * Skipped for simplicity.
+ */
+ break;
+ }
+ } while (len);
+ }
+
+ xsk_ring_prod__submit(&xsk->tx, i);
+ }
+
+Probing for Multi-Buffer Support
+--------------------------------
+
+To discover if a driver supports multi-buffer AF_XDP in SKB or DRV
+mode, use the XDP_FEATURES feature of netlink in linux/netdev.h to
+query for NETDEV_XDP_ACT_RX_SG support. This is the same flag as for
+querying for XDP multi-buffer support. If XDP supports multi-buffer in
+a driver, then AF_XDP will also support that in SKB and DRV mode.
+
+To discover if a driver supports multi-buffer AF_XDP in zero-copy
+mode, use XDP_FEATURES and first check the NETDEV_XDP_ACT_XSK_ZEROCOPY
+flag. If it is set, it means that at least zero-copy is supported and
+you should go and check the netlink attribute
+NETDEV_A_DEV_XDP_ZC_MAX_SEGS in linux/netdev.h. An unsigned integer
+value will be returned stating the max number of frags that are
+supported by this device in zero-copy mode. These are the possible
+return values:
+
+1: Multi-buffer for zero-copy is not supported by this device, as max
+ one fragment supported means that multi-buffer is not possible.
+
+>=2: Multi-buffer is supported in zero-copy mode for this device. The
+ returned number signifies the max number of frags supported.
+
+For an example on how these are used through libbpf, please take a
+look at tools/testing/selftests/bpf/xskxceiver.c.
+
+Multi-Buffer Support for Zero-Copy Drivers
+------------------------------------------
+
+Zero-copy drivers usually use the batched APIs for Rx and Tx
+processing. Note that the Tx batch API guarantees that it will provide
+a batch of Tx descriptors that ends with full packet at the end. This
+to facilitate extending a zero-copy driver with multi-buffer support.
+
+Sample application
+==================
+
+There is a xdpsock benchmarking/test application included that
+demonstrates how to use AF_XDP sockets with private UMEMs. Say that
+you would like your UDP traffic from port 4242 to end up in queue 16,
+that we will enable AF_XDP on. Here, we use ethtool for this::
+
+ ethtool -N p3p2 rx-flow-hash udp4 fn
+ ethtool -N p3p2 flow-type udp4 src-port 4242 dst-port 4242 \
+ action 16
+
+Running the rxdrop benchmark in XDP_DRV mode can then be done
+using::
+
+ samples/bpf/xdpsock -i p3p2 -q 16 -r -N
+
+For XDP_SKB mode, use the switch "-S" instead of "-N" and all options
+can be displayed with "-h", as usual.
+
+This sample application uses libbpf to make the setup and usage of
+AF_XDP simpler. If you want to know how the raw uapi of AF_XDP is
+really used to make something more advanced, take a look at the libbpf
+code in tools/lib/bpf/xsk.[ch].
+
+FAQ
+=======
+
+Q: I am not seeing any traffic on the socket. What am I doing wrong?
+
+A: When a netdev of a physical NIC is initialized, Linux usually
+ allocates one RX and TX queue pair per core. So on a 8 core system,
+ queue ids 0 to 7 will be allocated, one per core. In the AF_XDP
+ bind call or the xsk_socket__create libbpf function call, you
+ specify a specific queue id to bind to and it is only the traffic
+ towards that queue you are going to get on you socket. So in the
+ example above, if you bind to queue 0, you are NOT going to get any
+ traffic that is distributed to queues 1 through 7. If you are
+ lucky, you will see the traffic, but usually it will end up on one
+ of the queues you have not bound to.
+
+ There are a number of ways to solve the problem of getting the
+ traffic you want to the queue id you bound to. If you want to see
+ all the traffic, you can force the netdev to only have 1 queue, queue
+ id 0, and then bind to queue 0. You can use ethtool to do this::
+
+ sudo ethtool -L <interface> combined 1
+
+ If you want to only see part of the traffic, you can program the
+ NIC through ethtool to filter out your traffic to a single queue id
+ that you can bind your XDP socket to. Here is one example in which
+ UDP traffic to and from port 4242 are sent to queue 2::
+
+ sudo ethtool -N <interface> rx-flow-hash udp4 fn
+ sudo ethtool -N <interface> flow-type udp4 src-port 4242 dst-port \
+ 4242 action 2
+
+ A number of other ways are possible all up to the capabilities of
+ the NIC you have.
+
+Q: Can I use the XSKMAP to implement a switch between different umems
+ in copy mode?
+
+A: The short answer is no, that is not supported at the moment. The
+ XSKMAP can only be used to switch traffic coming in on queue id X
+ to sockets bound to the same queue id X. The XSKMAP can contain
+ sockets bound to different queue ids, for example X and Y, but only
+ traffic goming in from queue id Y can be directed to sockets bound
+ to the same queue id Y. In zero-copy mode, you should use the
+ switch, or other distribution mechanism, in your NIC to direct
+ traffic to the correct queue id and socket.
+
+Q: My packets are sometimes corrupted. What is wrong?
+
+A: Care has to be taken not to feed the same buffer in the UMEM into
+ more than one ring at the same time. If you for example feed the
+ same buffer into the FILL ring and the TX ring at the same time, the
+ NIC might receive data into the buffer at the same time it is
+ sending it. This will cause some packets to become corrupted. Same
+ thing goes for feeding the same buffer into the FILL rings
+ belonging to different queue ids or netdevs bound with the
+ XDP_SHARED_UMEM flag.
+
+Credits
+=======
+
+- Björn Töpel (AF_XDP core)
+- Magnus Karlsson (AF_XDP core)
+- Alexander Duyck
+- Alexei Starovoitov
+- Daniel Borkmann
+- Jesper Dangaard Brouer
+- John Fastabend
+- Jonathan Corbet (LWN coverage)
+- Michael S. Tsirkin
+- Qi Z Zhang
+- Willem de Bruijn