diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /Documentation/translations/zh_CN/arch | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/translations/zh_CN/arch')
28 files changed, 2691 insertions, 0 deletions
diff --git a/Documentation/translations/zh_CN/arch/arm/Booting b/Documentation/translations/zh_CN/arch/arm/Booting new file mode 100644 index 0000000000..f18585156b --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm/Booting @@ -0,0 +1,175 @@ +Chinese translated version of Documentation/arch/arm/booting.rst + +If you have any comment or update to the content, please contact the +original document maintainer directly. However, if you have a problem +communicating in English you can also ask the Chinese maintainer for +help. Contact the Chinese maintainer if this translation is outdated +or if there is a problem with the translation. + +Maintainer: Russell King <linux@arm.linux.org.uk> +Chinese maintainer: Fu Wei <tekkamanninja@gmail.com> +--------------------------------------------------------------------- +Documentation/arch/arm/booting.rst 的中文翻译 + +如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文 +交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻 +译存在问题,请联系中文版维护者。 + +英文版维护者: Russell King <linux@arm.linux.org.uk> +中文版维护者: 傅炜 Fu Wei <tekkamanninja@gmail.com> +中文版翻译者: 傅炜 Fu Wei <tekkamanninja@gmail.com> +中文版校译者: 傅炜 Fu Wei <tekkamanninja@gmail.com> + +以下为正文 +--------------------------------------------------------------------- + + 启动 ARM Linux + ============== + +作者:Russell King +日期:2002年5月18日 + +以下文档适用于 2.4.18-rmk6 及以上版本。 + +为了启动 ARM Linux,你需要一个引导装载程序(boot loader), +它是一个在主内核启动前运行的一个小程序。引导装载程序需要初始化各种 +设备,并最终调用 Linux 内核,将信息传递给内核。 + +从本质上讲,引导装载程序应提供(至少)以下功能: + +1、设置和初始化 RAM。 +2、初始化一个串口。 +3、检测机器的类型(machine type)。 +4、设置内核标签列表(tagged list)。 +5、调用内核映像。 + + +1、设置和初始化 RAM +------------------- + +现有的引导加载程序: 强制 +新开发的引导加载程序: 强制 + +引导装载程序应该找到并初始化系统中所有内核用于保持系统变量数据的 RAM。 +这个操作的执行是设备依赖的。(它可能使用内部算法来自动定位和计算所有 +RAM,或可能使用对这个设备已知的 RAM 信息,还可能使用任何引导装载程序 +设计者想到的匹配方法。) + + +2、初始化一个串口 +----------------------------- + +现有的引导加载程序: 可选、建议 +新开发的引导加载程序: 可选、建议 + +引导加载程序应该初始化并使能一个目标板上的串口。这允许内核串口驱动 +自动检测哪个串口用于内核控制台。(一般用于调试或与目标板通信。) + +作为替代方案,引导加载程序也可以通过标签列表传递相关的'console=' +选项给内核以指定某个串口,而串口数据格式的选项在以下文档中描述: + + Documentation/admin-guide/kernel-parameters.rst。 + + +3、检测机器类型 +-------------------------- + +现有的引导加载程序: 可选 +新开发的引导加载程序: 强制 + +引导加载程序应该通过某些方式检测自身所处的机器类型。这是一个硬件 +代码或通过查看所连接的硬件用某些算法得到,这些超出了本文档的范围。 +引导加载程序最终必须能提供一个 MACH_TYPE_xxx 值给内核。 +(详见 linux/arch/arm/tools/mach-types )。 + +4、设置启动数据 +------------------ + +现有的引导加载程序: 可选、强烈建议 +新开发的引导加载程序: 强制 + +引导加载程序必须提供标签列表或者 dtb 映像以传递配置数据给内核。启动 +数据的物理地址通过寄存器 r2 传递给内核。 + +4a、设置内核标签列表 +-------------------------------- + +bootloader 必须创建和初始化内核标签列表。一个有效的标签列表以 +ATAG_CORE 标签开始,并以 ATAG_NONE 标签结束。ATAG_CORE 标签可以是 +空的,也可以是非空。一个空 ATAG_CORE 标签其 size 域设置为 +‘2’(0x00000002)。ATAG_NONE 标签的 size 域必须设置为零。 + +在列表中可以保存任意数量的标签。对于一个重复的标签是追加到之前标签 +所携带的信息之后,还是会覆盖原来的信息,是未定义的。某些标签的行为 +是前者,其他是后者。 + +bootloader 必须传递一个系统内存的位置和最小值,以及根文件系统位置。 +因此,最小的标签列表如下所示: + + +-----------+ +基地址 -> | ATAG_CORE | | + +-----------+ | + | ATAG_MEM | | 地址增长方向 + +-----------+ | + | ATAG_NONE | | + +-----------+ v + +标签列表应该保存在系统的 RAM 中。 + +标签列表必须置于内核自解压和 initrd'bootp' 程序都不会覆盖的内存区。 +建议放在 RAM 的头 16KiB 中。 + +4b、设置设备树 +------------------------- + +bootloader 必须以 64bit 地址对齐的形式加载一个设备树映像(dtb)到系统 +RAM 中,并用启动数据初始化它。dtb 格式在文档 +https://www.devicetree.org/specifications/ 中。内核将会在 +dtb 物理地址处查找 dtb 魔数值(0xd00dfeed),以确定 dtb 是否已经代替 +标签列表被传递进来。 + +bootloader 必须传递一个系统内存的位置和最小值,以及根文件系统位置。 +dtb 必须置于内核自解压不会覆盖的内存区。建议将其放置于 RAM 的头 16KiB +中。但是不可将其放置于“0”物理地址处,因为内核认为:r2 中为 0,意味着 +没有标签列表和 dtb 传递过来。 + +5、调用内核映像 +--------------------------- + +现有的引导加载程序: 强制 +新开发的引导加载程序: 强制 + +调用内核映像 zImage 有两个选择。如果 zImge 保存在 flash 中,且是为了 +在 flash 中直接运行而被正确链接的。这样引导加载程序就可以在 flash 中 +直接调用 zImage。 + +zImage 也可以被放在系统 RAM(任意位置)中被调用。注意:内核使用映像 +基地址的前 16KB RAM 空间来保存页表。建议将映像置于 RAM 的 32KB 处。 + +对于以上任意一种情况,都必须符合以下启动状态: + +- 停止所有 DMA 设备,这样内存数据就不会因为虚假网络包或磁盘数据而被破坏。 + 这可能可以节省你许多的调试时间。 + +- CPU 寄存器配置 + r0 = 0, + r1 = (在上面 3 中获取的)机器类型码。 + r2 = 标签列表在系统 RAM 中的物理地址,或 + 设备树块(dtb)在系统 RAM 中的物理地址 + +- CPU 模式 + 所有形式的中断必须被禁止 (IRQs 和 FIQs) + CPU 必须处于 SVC 模式。(对于 Angel 调试有特例存在) + +- 缓存,MMUs + MMU 必须关闭。 + 指令缓存开启或关闭都可以。 + 数据缓存必须关闭。 + +- 引导加载程序应该通过直接跳转到内核映像的第一条指令来调用内核映像。 + + 对于支持 ARM 指令集的 CPU,跳入内核入口时必须处在 ARM 状态,即使 + 对于 Thumb-2 内核也是如此。 + + 对于仅支持 Thumb 指令集的 CPU,比如 Cortex-M 系列的 CPU,跳入 + 内核入口时必须处于 Thumb 状态。 diff --git a/Documentation/translations/zh_CN/arch/arm/kernel_user_helpers.txt b/Documentation/translations/zh_CN/arch/arm/kernel_user_helpers.txt new file mode 100644 index 0000000000..018eb7d542 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm/kernel_user_helpers.txt @@ -0,0 +1,284 @@ +Chinese translated version of Documentation/arch/arm/kernel_user_helpers.rst + +If you have any comment or update to the content, please contact the +original document maintainer directly. However, if you have a problem +communicating in English you can also ask the Chinese maintainer for +help. Contact the Chinese maintainer if this translation is outdated +or if there is a problem with the translation. + +Maintainer: Nicolas Pitre <nicolas.pitre@linaro.org> + Dave Martin <dave.martin@linaro.org> +Chinese maintainer: Fu Wei <tekkamanninja@gmail.com> +--------------------------------------------------------------------- +Documentation/arch/arm/kernel_user_helpers.rst 的中文翻译 + +如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文 +交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻 +译存在问题,请联系中文版维护者。 +英文版维护者: Nicolas Pitre <nicolas.pitre@linaro.org> + Dave Martin <dave.martin@linaro.org> +中文版维护者: 傅炜 Fu Wei <tekkamanninja@gmail.com> +中文版翻译者: 傅炜 Fu Wei <tekkamanninja@gmail.com> +中文版校译者: 宋冬生 Dongsheng Song <dongshneg.song@gmail.com> + 傅炜 Fu Wei <tekkamanninja@gmail.com> + + +以下为正文 +--------------------------------------------------------------------- +内核提供的用户空间辅助代码 +========================= + +在内核内存空间的固定地址处,有一个由内核提供并可从用户空间访问的代码 +段。它用于向用户空间提供因在许多 ARM CPU 中未实现的特性和/或指令而需 +内核提供帮助的某些操作。这些代码直接在用户模式下执行的想法是为了获得 +最佳效率,但那些与内核计数器联系过于紧密的部分,则被留给了用户库实现。 +事实上,此代码甚至可能因不同的 CPU 而异,这取决于其可用的指令集或它 +是否为 SMP 系统。换句话说,内核保留在不作出警告的情况下根据需要更改 +这些代码的权利。只有本文档描述的入口及其结果是保证稳定的。 + +这与完全成熟的 VDSO 实现不同(但两者并不冲突),尽管如此,VDSO 可阻止 +某些通过常量高效跳转到那些代码段的汇编技巧。且由于那些代码段在返回用户 +代码前仅使用少量的代码周期,则一个 VDSO 间接远程调用将会在这些简单的 +操作上增加一个可测量的开销。 + +在对那些拥有原生支持的新型处理器进行代码优化时,仅在已为其他操作使用 +了类似的新增指令,而导致二进制结果已与早期 ARM 处理器不兼容的情况下, +用户空间才应绕过这些辅助代码,并在内联函数中实现这些操作(无论是通过 +编译器在代码中直接放置,还是作为库函数调用实现的一部分)。也就是说, +如果你编译的代码不会为了其他目的使用新指令,则不要仅为了避免使用这些 +内核辅助代码,导致二进制程序无法在早期处理器上运行。 + +新的辅助代码可能随着时间的推移而增加,所以新内核中的某些辅助代码在旧 +内核中可能不存在。因此,程序必须在对任何辅助代码调用假设是安全之前, +检测 __kuser_helper_version 的值(见下文)。理想情况下,这种检测应该 +只在进程启动时执行一次;如果内核版本不支持所需辅助代码,则该进程可尽早 +中止执行。 + +kuser_helper_version +-------------------- + +位置: 0xffff0ffc + +参考声明: + + extern int32_t __kuser_helper_version; + +定义: + + 这个区域包含了当前运行内核实现的辅助代码版本号。用户空间可以通过读 + 取此版本号以确定特定的辅助代码是否存在。 + +使用范例: + +#define __kuser_helper_version (*(int32_t *)0xffff0ffc) + +void check_kuser_version(void) +{ + if (__kuser_helper_version < 2) { + fprintf(stderr, "can't do atomic operations, kernel too old\n"); + abort(); + } +} + +注意: + + 用户空间可以假设这个域的值不会在任何单个进程的生存期内改变。也就 + 是说,这个域可以仅在库的初始化阶段或进程启动阶段读取一次。 + +kuser_get_tls +------------- + +位置: 0xffff0fe0 + +参考原型: + + void * __kuser_get_tls(void); + +输入: + + lr = 返回地址 + +输出: + + r0 = TLS 值 + +被篡改的寄存器: + + 无 + +定义: + + 获取之前通过 __ARM_NR_set_tls 系统调用设置的 TLS 值。 + +使用范例: + +typedef void * (__kuser_get_tls_t)(void); +#define __kuser_get_tls (*(__kuser_get_tls_t *)0xffff0fe0) + +void foo() +{ + void *tls = __kuser_get_tls(); + printf("TLS = %p\n", tls); +} + +注意: + + - 仅在 __kuser_helper_version >= 1 时,此辅助代码存在 + (从内核版本 2.6.12 开始)。 + +kuser_cmpxchg +------------- + +位置: 0xffff0fc0 + +参考原型: + + int __kuser_cmpxchg(int32_t oldval, int32_t newval, volatile int32_t *ptr); + +输入: + + r0 = oldval + r1 = newval + r2 = ptr + lr = 返回地址 + +输出: + + r0 = 成功代码 (零或非零) + C flag = 如果 r0 == 0 则置 1,如果 r0 != 0 则清零。 + +被篡改的寄存器: + + r3, ip, flags + +定义: + + 仅在 *ptr 为 oldval 时原子保存 newval 于 *ptr 中。 + 如果 *ptr 被改变,则返回值为零,否则为非零值。 + 如果 *ptr 被改变,则 C flag 也会被置 1,以实现调用代码中的汇编 + 优化。 + +使用范例: + +typedef int (__kuser_cmpxchg_t)(int oldval, int newval, volatile int *ptr); +#define __kuser_cmpxchg (*(__kuser_cmpxchg_t *)0xffff0fc0) + +int atomic_add(volatile int *ptr, int val) +{ + int old, new; + + do { + old = *ptr; + new = old + val; + } while(__kuser_cmpxchg(old, new, ptr)); + + return new; +} + +注意: + + - 这个例程已根据需要包含了内存屏障。 + + - 仅在 __kuser_helper_version >= 2 时,此辅助代码存在 + (从内核版本 2.6.12 开始)。 + +kuser_memory_barrier +-------------------- + +位置: 0xffff0fa0 + +参考原型: + + void __kuser_memory_barrier(void); + +输入: + + lr = 返回地址 + +输出: + + 无 + +被篡改的寄存器: + + 无 + +定义: + + 应用于任何需要内存屏障以防止手动数据修改带来的一致性问题,以及 + __kuser_cmpxchg 中。 + +使用范例: + +typedef void (__kuser_dmb_t)(void); +#define __kuser_dmb (*(__kuser_dmb_t *)0xffff0fa0) + +注意: + + - 仅在 __kuser_helper_version >= 3 时,此辅助代码存在 + (从内核版本 2.6.15 开始)。 + +kuser_cmpxchg64 +--------------- + +位置: 0xffff0f60 + +参考原型: + + int __kuser_cmpxchg64(const int64_t *oldval, + const int64_t *newval, + volatile int64_t *ptr); + +输入: + + r0 = 指向 oldval + r1 = 指向 newval + r2 = 指向目标值 + lr = 返回地址 + +输出: + + r0 = 成功代码 (零或非零) + C flag = 如果 r0 == 0 则置 1,如果 r0 != 0 则清零。 + +被篡改的寄存器: + + r3, lr, flags + +定义: + + 仅在 *ptr 等于 *oldval 指向的 64 位值时,原子保存 *newval + 指向的 64 位值于 *ptr 中。如果 *ptr 被改变,则返回值为零, + 否则为非零值。 + + 如果 *ptr 被改变,则 C flag 也会被置 1,以实现调用代码中的汇编 + 优化。 + +使用范例: + +typedef int (__kuser_cmpxchg64_t)(const int64_t *oldval, + const int64_t *newval, + volatile int64_t *ptr); +#define __kuser_cmpxchg64 (*(__kuser_cmpxchg64_t *)0xffff0f60) + +int64_t atomic_add64(volatile int64_t *ptr, int64_t val) +{ + int64_t old, new; + + do { + old = *ptr; + new = old + val; + } while(__kuser_cmpxchg64(&old, &new, ptr)); + + return new; +} + +注意: + + - 这个例程已根据需要包含了内存屏障。 + + - 由于这个过程的代码长度(此辅助代码跨越 2 个常规的 kuser “槽”), + 因此 0xffff0f80 不被作为有效的入口点。 + + - 仅在 __kuser_helper_version >= 5 时,此辅助代码存在 + (从内核版本 3.1 开始)。 diff --git a/Documentation/translations/zh_CN/arch/arm64/amu.rst b/Documentation/translations/zh_CN/arch/arm64/amu.rst new file mode 100644 index 0000000000..f8e09fd21e --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm64/amu.rst @@ -0,0 +1,100 @@ +.. include:: ../../disclaimer-zh_CN.rst + +:Original: :ref:`Documentation/arch/arm64/amu.rst <amu_index>` + +Translator: Bailu Lin <bailu.lin@vivo.com> + +================================== +AArch64 Linux 中扩展的活动监控单元 +================================== + +作者: Ionela Voinescu <ionela.voinescu@arm.com> + +日期: 2019-09-10 + +本文档简要描述了 AArch64 Linux 支持的活动监控单元的规范。 + + +架构总述 +-------- + +活动监控是 ARMv8.4 CPU 架构引入的一个可选扩展特性。 + +活动监控单元(在每个 CPU 中实现)为系统管理提供了性能计数器。既可以通 +过系统寄存器的方式访问计数器,同时也支持外部内存映射的方式访问计数器。 + +AMUv1 架构实现了一个由4个固定的64位事件计数器组成的计数器组。 + + - CPU 周期计数器:同 CPU 的频率增长 + - 常量计数器:同固定的系统时钟频率增长 + - 淘汰指令计数器: 同每次架构指令执行增长 + - 内存停顿周期计数器:计算由在时钟域内的最后一级缓存中未命中而引起 + 的指令调度停顿周期数 + +当处于 WFI 或者 WFE 状态时,计数器不会增长。 + +AMU 架构提供了一个高达16位的事件计数器空间,未来新的 AMU 版本中可能 +用它来实现新增的事件计数器。 + +另外,AMUv1 实现了一个多达16个64位辅助事件计数器的计数器组。 + +冷复位时所有的计数器会清零。 + + +基本支持 +-------- + +内核可以安全地运行在支持 AMU 和不支持 AMU 的 CPU 组合中。 +因此,当配置 CONFIG_ARM64_AMU_EXTN 后我们无条件使能后续 +(secondary or hotplugged) CPU 检测和使用这个特性。 + +当在 CPU 上检测到该特性时,我们会标记为特性可用但是不能保证计数器的功能, +仅表明有扩展属性。 + +固件(代码运行在高异常级别,例如 arm-tf )需支持以下功能: + + - 提供低异常级别(EL2 和 EL1)访问 AMU 寄存器的能力。 + - 使能计数器。如果未使能,它的值应为 0。 + - 在从电源关闭状态启动 CPU 前或后保存或者恢复计数器。 + +当使用使能了该特性的内核启动但固件损坏时,访问计数器寄存器可能会遭遇 +panic 或者死锁。即使未发现这些症状,计数器寄存器返回的数据结果并不一 +定能反映真实情况。通常,计数器会返回 0,表明他们未被使能。 + +如果固件没有提供适当的支持最好关闭 CONFIG_ARM64_AMU_EXTN。 +值得注意的是,出于安全原因,不要绕过 AMUSERRENR_EL0 设置而捕获从 +EL0(用户空间) 访问 EL1(内核空间)。 因此,固件应该确保访问 AMU寄存器 +不会困在 EL2或EL3。 + +AMUv1 的固定计数器可以通过如下系统寄存器访问: + + - SYS_AMEVCNTR0_CORE_EL0 + - SYS_AMEVCNTR0_CONST_EL0 + - SYS_AMEVCNTR0_INST_RET_EL0 + - SYS_AMEVCNTR0_MEM_STALL_EL0 + +特定辅助计数器可以通过 SYS_AMEVCNTR1_EL0(n) 访问,其中n介于0到15。 + +详细信息定义在目录:arch/arm64/include/asm/sysreg.h。 + + +用户空间访问 +------------ + +由于以下原因,当前禁止从用户空间访问 AMU 的寄存器: + + - 安全因数:可能会暴露处于安全模式执行的代码信息。 + - 意愿:AMU 是用于系统管理的。 + +同样,该功能对用户空间不可见。 + + +虚拟化 +------ + +由于以下原因,当前禁止从 KVM 客户端的用户空间(EL0)和内核空间(EL1) +访问 AMU 的寄存器: + + - 安全因数:可能会暴露给其他客户端或主机端执行的代码信息。 + +任何试图访问 AMU 寄存器的行为都会触发一个注册在客户端的未定义异常。 diff --git a/Documentation/translations/zh_CN/arch/arm64/booting.txt b/Documentation/translations/zh_CN/arch/arm64/booting.txt new file mode 100644 index 0000000000..630eb32a88 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm64/booting.txt @@ -0,0 +1,246 @@ +Chinese translated version of Documentation/arch/arm64/booting.rst + +If you have any comment or update to the content, please contact the +original document maintainer directly. However, if you have a problem +communicating in English you can also ask the Chinese maintainer for +help. Contact the Chinese maintainer if this translation is outdated +or if there is a problem with the translation. + +M: Will Deacon <will.deacon@arm.com> +zh_CN: Fu Wei <wefu@redhat.com> +C: 55f058e7574c3615dea4615573a19bdb258696c6 +--------------------------------------------------------------------- +Documentation/arch/arm64/booting.rst 的中文翻译 + +如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文 +交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻 +译存在问题,请联系中文版维护者。 + +英文版维护者: Will Deacon <will.deacon@arm.com> +中文版维护者: 傅炜 Fu Wei <wefu@redhat.com> +中文版翻译者: 傅炜 Fu Wei <wefu@redhat.com> +中文版校译者: 傅炜 Fu Wei <wefu@redhat.com> +本文翻译提交时的 Git 检出点为: 55f058e7574c3615dea4615573a19bdb258696c6 + +以下为正文 +--------------------------------------------------------------------- + 启动 AArch64 Linux + ================== + +作者: Will Deacon <will.deacon@arm.com> +日期: 2012 年 09 月 07 日 + +本文档基于 Russell King 的 ARM 启动文档,且适用于所有公开发布的 +AArch64 Linux 内核代码。 + +AArch64 异常模型由多个异常级(EL0 - EL3)组成,对于 EL0 和 EL1 异常级 +有对应的安全和非安全模式。EL2 是系统管理级,且仅存在于非安全模式下。 +EL3 是最高特权级,且仅存在于安全模式下。 + +基于本文档的目的,我们将简单地使用‘引导装载程序’(‘boot loader’) +这个术语来定义在将控制权交给 Linux 内核前 CPU 上执行的所有软件。 +这可能包含安全监控和系统管理代码,或者它可能只是一些用于准备最小启动 +环境的指令。 + +基本上,引导装载程序(至少)应实现以下操作: + +1、设置和初始化 RAM +2、设置设备树数据 +3、解压内核映像 +4、调用内核映像 + + +1、设置和初始化 RAM +----------------- + +必要性: 强制 + +引导装载程序应该找到并初始化系统中所有内核用于保持系统变量数据的 RAM。 +这个操作的执行方式因设备而异。(它可能使用内部算法来自动定位和计算所有 +RAM,或可能使用对这个设备已知的 RAM 信息,还可能是引导装载程序设计者 +想到的任何合适的方法。) + + +2、设置设备树数据 +--------------- + +必要性: 强制 + +设备树数据块(dtb)必须 8 字节对齐,且大小不能超过 2MB。由于设备树 +数据块将在使能缓存的情况下以 2MB 粒度被映射,故其不能被置于必须以特定 +属性映射的2M区域内。 + +注: v4.2 之前的版本同时要求设备树数据块被置于从内核映像以下 +text_offset 字节处算起第一个 512MB 内。 + +3、解压内核映像 +------------- + +必要性: 可选 + +AArch64 内核当前没有提供自解压代码,因此如果使用了压缩内核映像文件 +(比如 Image.gz),则需要通过引导装载程序(使用 gzip 等)来进行解压。 +若引导装载程序没有实现这个功能,就要使用非压缩内核映像文件。 + + +4、调用内核映像 +------------- + +必要性: 强制 + +已解压的内核映像包含一个 64 字节的头,内容如下: + + u32 code0; /* 可执行代码 */ + u32 code1; /* 可执行代码 */ + u64 text_offset; /* 映像装载偏移,小端模式 */ + u64 image_size; /* 映像实际大小, 小端模式 */ + u64 flags; /* 内核旗标, 小端模式 * + u64 res2 = 0; /* 保留 */ + u64 res3 = 0; /* 保留 */ + u64 res4 = 0; /* 保留 */ + u32 magic = 0x644d5241; /* 魔数, 小端, "ARM\x64" */ + u32 res5; /* 保留 (用于 PE COFF 偏移) */ + + +映像头注释: + +- 自 v3.17 起,除非另有说明,所有域都是小端模式。 + +- code0/code1 负责跳转到 stext. + +- 当通过 EFI 启动时, 最初 code0/code1 被跳过。 + res5 是到 PE 文件头的偏移,而 PE 文件头含有 EFI 的启动入口点 + (efi_stub_entry)。当 stub 代码完成了它的使命,它会跳转到 code0 + 继续正常的启动流程。 + +- v3.17 之前,未明确指定 text_offset 的字节序。此时,image_size 为零, + 且 text_offset 依照内核字节序为 0x80000。 + 当 image_size 非零,text_offset 为小端模式且是有效值,应被引导加载 + 程序使用。当 image_size 为零,text_offset 可假定为 0x80000。 + +- flags 域 (v3.17 引入) 为 64 位小端模式,其编码如下: + 位 0: 内核字节序。 1 表示大端模式,0 表示小端模式。 + 位 1-2: 内核页大小。 + 0 - 未指定。 + 1 - 4K + 2 - 16K + 3 - 64K + 位 3: 内核物理位置 + 0 - 2MB 对齐基址应尽量靠近内存起始处,因为 + 其基址以下的内存无法通过线性映射访问 + 1 - 2MB 对齐基址可以在物理内存的任意位置 + 位 4-63: 保留。 + +- 当 image_size 为零时,引导装载程序应试图在内核映像末尾之后尽可能 + 多地保留空闲内存供内核直接使用。对内存空间的需求量因所选定的内核 + 特性而异, 并无实际限制。 + +内核映像必须被放置在任意一个可用系统内存 2MB 对齐基址的 text_offset +字节处,并从该处被调用。2MB 对齐基址和内核映像起始地址之间的区域对于 +内核来说没有特殊意义,且可能被用于其他目的。 +从映像起始地址算起,最少必须准备 image_size 字节的空闲内存供内核使用。 +注: v4.6 之前的版本无法使用内核映像物理偏移以下的内存,所以当时建议 +将映像尽量放置在靠近系统内存起始的地方。 + +任何提供给内核的内存(甚至在映像起始地址之前),若未从内核中标记为保留 +(如在设备树(dtb)的 memreserve 区域),都将被认为对内核是可用。 + +在跳转入内核前,必须符合以下状态: + +- 停止所有 DMA 设备,这样内存数据就不会因为虚假网络包或磁盘数据而 + 被破坏。这可能可以节省你许多的调试时间。 + +- 主 CPU 通用寄存器设置 + x0 = 系统 RAM 中设备树数据块(dtb)的物理地址。 + x1 = 0 (保留,将来可能使用) + x2 = 0 (保留,将来可能使用) + x3 = 0 (保留,将来可能使用) + +- CPU 模式 + 所有形式的中断必须在 PSTATE.DAIF 中被屏蔽(Debug、SError、IRQ + 和 FIQ)。 + CPU 必须处于 EL2(推荐,可访问虚拟化扩展)或非安全 EL1 模式下。 + +- 高速缓存、MMU + MMU 必须关闭。 + 指令缓存开启或关闭皆可。 + 已载入的内核映像的相应内存区必须被清理,以达到缓存一致性点(PoC)。 + 当存在系统缓存或其他使能缓存的一致性主控器时,通常需使用虚拟地址 + 维护其缓存,而非 set/way 操作。 + 遵从通过虚拟地址操作维护构架缓存的系统缓存必须被配置,并可以被使能。 + 而不通过虚拟地址操作维护构架缓存的系统缓存(不推荐),必须被配置且 + 禁用。 + + *译者注:对于 PoC 以及缓存相关内容,请参考 ARMv8 构架参考手册 + ARM DDI 0487A + +- 架构计时器 + CNTFRQ 必须设定为计时器的频率,且 CNTVOFF 必须设定为对所有 CPU + 都一致的值。如果在 EL1 模式下进入内核,则 CNTHCTL_EL2 中的 + EL1PCTEN (bit 0) 必须置位。 + +- 一致性 + 通过内核启动的所有 CPU 在内核入口地址上必须处于相同的一致性域中。 + 这可能要根据具体实现来定义初始化过程,以使能每个CPU上对维护操作的 + 接收。 + +- 系统寄存器 + 在进入内核映像的异常级中,所有构架中可写的系统寄存器必须通过软件 + 在一个更高的异常级别下初始化,以防止在 未知 状态下运行。 + + 对于拥有 GICv3 中断控制器并以 v3 模式运行的系统: + - 如果 EL3 存在: + ICC_SRE_EL3.Enable (位 3) 必须初始化为 0b1。 + ICC_SRE_EL3.SRE (位 0) 必须初始化为 0b1。 + - 若内核运行在 EL1: + ICC_SRE_EL2.Enable (位 3) 必须初始化为 0b1。 + ICC_SRE_EL2.SRE (位 0) 必须初始化为 0b1。 + - 设备树(DT)或 ACPI 表必须描述一个 GICv3 中断控制器。 + + 对于拥有 GICv3 中断控制器并以兼容(v2)模式运行的系统: + - 如果 EL3 存在: + ICC_SRE_EL3.SRE (位 0) 必须初始化为 0b0。 + - 若内核运行在 EL1: + ICC_SRE_EL2.SRE (位 0) 必须初始化为 0b0。 + - 设备树(DT)或 ACPI 表必须描述一个 GICv2 中断控制器。 + +以上对于 CPU 模式、高速缓存、MMU、架构计时器、一致性、系统寄存器的 +必要条件描述适用于所有 CPU。所有 CPU 必须在同一异常级别跳入内核。 + +引导装载程序必须在每个 CPU 处于以下状态时跳入内核入口: + +- 主 CPU 必须直接跳入内核映像的第一条指令。通过此 CPU 传递的设备树 + 数据块必须在每个 CPU 节点中包含一个 ‘enable-method’ 属性,所 + 支持的 enable-method 请见下文。 + + 引导装载程序必须生成这些设备树属性,并在跳入内核入口之前将其插入 + 数据块。 + +- enable-method 为 “spin-table” 的 CPU 必须在它们的 CPU + 节点中包含一个 ‘cpu-release-addr’ 属性。这个属性标识了一个 + 64 位自然对齐且初始化为零的内存位置。 + + 这些 CPU 必须在内存保留区(通过设备树中的 /memreserve/ 域传递 + 给内核)中自旋于内核之外,轮询它们的 cpu-release-addr 位置(必须 + 包含在保留区中)。可通过插入 wfe 指令来降低忙循环开销,而主 CPU 将 + 发出 sev 指令。当对 cpu-release-addr 所指位置的读取操作返回非零值 + 时,CPU 必须跳入此值所指向的地址。此值为一个单独的 64 位小端值, + 因此 CPU 须在跳转前将所读取的值转换为其本身的端模式。 + +- enable-method 为 “psci” 的 CPU 保持在内核外(比如,在 + memory 节点中描述为内核空间的内存区外,或在通过设备树 /memreserve/ + 域中描述为内核保留区的空间中)。内核将会发起在 ARM 文档(编号 + ARM DEN 0022A:用于 ARM 上的电源状态协调接口系统软件)中描述的 + CPU_ON 调用来将 CPU 带入内核。 + + *译者注: ARM DEN 0022A 已更新到 ARM DEN 0022C。 + + 设备树必须包含一个 ‘psci’ 节点,请参考以下文档: + Documentation/devicetree/bindings/arm/psci.yaml + + +- 辅助 CPU 通用寄存器设置 + x0 = 0 (保留,将来可能使用) + x1 = 0 (保留,将来可能使用) + x2 = 0 (保留,将来可能使用) + x3 = 0 (保留,将来可能使用) diff --git a/Documentation/translations/zh_CN/arch/arm64/elf_hwcaps.rst b/Documentation/translations/zh_CN/arch/arm64/elf_hwcaps.rst new file mode 100644 index 0000000000..f60ac1580d --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm64/elf_hwcaps.rst @@ -0,0 +1,240 @@ +.. include:: ../../disclaimer-zh_CN.rst + +:Original: :ref:`Documentation/arch/arm64/elf_hwcaps.rst <elf_hwcaps_index>` + +Translator: Bailu Lin <bailu.lin@vivo.com> + +================ +ARM64 ELF hwcaps +================ + +这篇文档描述了 arm64 ELF hwcaps 的用法和语义。 + + +1. 简介 +------- + +有些硬件或软件功能仅在某些 CPU 实现上和/或在具体某个内核配置上可用,但 +对于处于 EL0 的用户空间代码没有可用的架构发现机制。内核通过在辅助向量表 +公开一组称为 hwcaps 的标志而把这些功能暴露给用户空间。 + +用户空间软件可以通过获取辅助向量的 AT_HWCAP 或 AT_HWCAP2 条目来测试功能, +并测试是否设置了相关标志,例如:: + + bool floating_point_is_present(void) + { + unsigned long hwcaps = getauxval(AT_HWCAP); + if (hwcaps & HWCAP_FP) + return true; + + return false; + } + +如果软件依赖于 hwcap 描述的功能,在尝试使用该功能前则应检查相关的 hwcap +标志以验证该功能是否存在。 + +不能通过其他方式探查这些功能。当一个功能不可用时,尝试使用它可能导致不可 +预测的行为,并且无法保证能确切的知道该功能不可用,例如 SIGILL。 + + +2. Hwcaps 的说明 +---------------- + +大多数 hwcaps 旨在说明通过架构 ID 寄存器(处于 EL0 的用户空间代码无法访问) +描述的功能的存在。这些 hwcap 通过 ID 寄存器字段定义,并且应根据 ARM 体系 +结构参考手册(ARM ARM)中定义的字段来解释说明。 + +这些 hwcaps 以下面的形式描述:: + + idreg.field == val 表示有某个功能。 + +当 idreg.field 中有 val 时,hwcaps 表示 ARM ARM 定义的功能是有效的,但是 +并不是说要完全和 val 相等,也不是说 idreg.field 描述的其他功能就是缺失的。 + +其他 hwcaps 可能表明无法仅由 ID 寄存器描述的功能的存在。这些 hwcaps 可能 +没有被 ID 寄存器描述,需要参考其他文档。 + + +3. AT_HWCAP 中揭示的 hwcaps +--------------------------- + +HWCAP_FP + ID_AA64PFR0_EL1.FP == 0b0000 表示有此功能。 + +HWCAP_ASIMD + ID_AA64PFR0_EL1.AdvSIMD == 0b0000 表示有此功能。 + +HWCAP_EVTSTRM + 通用计时器频率配置为大约100KHz以生成事件。 + +HWCAP_AES + ID_AA64ISAR0_EL1.AES == 0b0001 表示有此功能。 + +HWCAP_PMULL + ID_AA64ISAR0_EL1.AES == 0b0010 表示有此功能。 + +HWCAP_SHA1 + ID_AA64ISAR0_EL1.SHA1 == 0b0001 表示有此功能。 + +HWCAP_SHA2 + ID_AA64ISAR0_EL1.SHA2 == 0b0001 表示有此功能。 + +HWCAP_CRC32 + ID_AA64ISAR0_EL1.CRC32 == 0b0001 表示有此功能。 + +HWCAP_ATOMICS + ID_AA64ISAR0_EL1.Atomic == 0b0010 表示有此功能。 + +HWCAP_FPHP + ID_AA64PFR0_EL1.FP == 0b0001 表示有此功能。 + +HWCAP_ASIMDHP + ID_AA64PFR0_EL1.AdvSIMD == 0b0001 表示有此功能。 + +HWCAP_CPUID + 根据 Documentation/arch/arm64/cpu-feature-registers.rst 描述,EL0 可以访问 + 某些 ID 寄存器。 + + 这些 ID 寄存器可能表示功能的可用性。 + +HWCAP_ASIMDRDM + ID_AA64ISAR0_EL1.RDM == 0b0001 表示有此功能。 + +HWCAP_JSCVT + ID_AA64ISAR1_EL1.JSCVT == 0b0001 表示有此功能。 + +HWCAP_FCMA + ID_AA64ISAR1_EL1.FCMA == 0b0001 表示有此功能。 + +HWCAP_LRCPC + ID_AA64ISAR1_EL1.LRCPC == 0b0001 表示有此功能。 + +HWCAP_DCPOP + ID_AA64ISAR1_EL1.DPB == 0b0001 表示有此功能。 + +HWCAP_SHA3 + ID_AA64ISAR0_EL1.SHA3 == 0b0001 表示有此功能。 + +HWCAP_SM3 + ID_AA64ISAR0_EL1.SM3 == 0b0001 表示有此功能。 + +HWCAP_SM4 + ID_AA64ISAR0_EL1.SM4 == 0b0001 表示有此功能。 + +HWCAP_ASIMDDP + ID_AA64ISAR0_EL1.DP == 0b0001 表示有此功能。 + +HWCAP_SHA512 + ID_AA64ISAR0_EL1.SHA2 == 0b0010 表示有此功能。 + +HWCAP_SVE + ID_AA64PFR0_EL1.SVE == 0b0001 表示有此功能。 + +HWCAP_ASIMDFHM + ID_AA64ISAR0_EL1.FHM == 0b0001 表示有此功能。 + +HWCAP_DIT + ID_AA64PFR0_EL1.DIT == 0b0001 表示有此功能。 + +HWCAP_USCAT + ID_AA64MMFR2_EL1.AT == 0b0001 表示有此功能。 + +HWCAP_ILRCPC + ID_AA64ISAR1_EL1.LRCPC == 0b0010 表示有此功能。 + +HWCAP_FLAGM + ID_AA64ISAR0_EL1.TS == 0b0001 表示有此功能。 + +HWCAP_SSBS + ID_AA64PFR1_EL1.SSBS == 0b0010 表示有此功能。 + +HWCAP_SB + ID_AA64ISAR1_EL1.SB == 0b0001 表示有此功能。 + +HWCAP_PACA + 如 Documentation/arch/arm64/pointer-authentication.rst 所描述, + ID_AA64ISAR1_EL1.APA == 0b0001 或 ID_AA64ISAR1_EL1.API == 0b0001 + 表示有此功能。 + +HWCAP_PACG + 如 Documentation/arch/arm64/pointer-authentication.rst 所描述, + ID_AA64ISAR1_EL1.GPA == 0b0001 或 ID_AA64ISAR1_EL1.GPI == 0b0001 + 表示有此功能。 + +HWCAP2_DCPODP + + ID_AA64ISAR1_EL1.DPB == 0b0010 表示有此功能。 + +HWCAP2_SVE2 + + ID_AA64ZFR0_EL1.SVEVer == 0b0001 表示有此功能。 + +HWCAP2_SVEAES + + ID_AA64ZFR0_EL1.AES == 0b0001 表示有此功能。 + +HWCAP2_SVEPMULL + + ID_AA64ZFR0_EL1.AES == 0b0010 表示有此功能。 + +HWCAP2_SVEBITPERM + + ID_AA64ZFR0_EL1.BitPerm == 0b0001 表示有此功能。 + +HWCAP2_SVESHA3 + + ID_AA64ZFR0_EL1.SHA3 == 0b0001 表示有此功能。 + +HWCAP2_SVESM4 + + ID_AA64ZFR0_EL1.SM4 == 0b0001 表示有此功能。 + +HWCAP2_FLAGM2 + + ID_AA64ISAR0_EL1.TS == 0b0010 表示有此功能。 + +HWCAP2_FRINT + + ID_AA64ISAR1_EL1.FRINTTS == 0b0001 表示有此功能。 + +HWCAP2_SVEI8MM + + ID_AA64ZFR0_EL1.I8MM == 0b0001 表示有此功能。 + +HWCAP2_SVEF32MM + + ID_AA64ZFR0_EL1.F32MM == 0b0001 表示有此功能。 + +HWCAP2_SVEF64MM + + ID_AA64ZFR0_EL1.F64MM == 0b0001 表示有此功能。 + +HWCAP2_SVEBF16 + + ID_AA64ZFR0_EL1.BF16 == 0b0001 表示有此功能。 + +HWCAP2_I8MM + + ID_AA64ISAR1_EL1.I8MM == 0b0001 表示有此功能。 + +HWCAP2_BF16 + + ID_AA64ISAR1_EL1.BF16 == 0b0001 表示有此功能。 + +HWCAP2_DGH + + ID_AA64ISAR1_EL1.DGH == 0b0001 表示有此功能。 + +HWCAP2_RNG + + ID_AA64ISAR0_EL1.RNDR == 0b0001 表示有此功能。 + +HWCAP2_BTI + + ID_AA64PFR0_EL1.BT == 0b0001 表示有此功能。 + + +4. 未使用的 AT_HWCAP 位 +----------------------- + +为了与用户空间交互,内核保证 AT_HWCAP 的第62、63位将始终返回0。 diff --git a/Documentation/translations/zh_CN/arch/arm64/hugetlbpage.rst b/Documentation/translations/zh_CN/arch/arm64/hugetlbpage.rst new file mode 100644 index 0000000000..8079eadde2 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm64/hugetlbpage.rst @@ -0,0 +1,45 @@ +.. include:: ../../disclaimer-zh_CN.rst + +:Original: :ref:`Documentation/arch/arm64/hugetlbpage.rst <hugetlbpage_index>` + +Translator: Bailu Lin <bailu.lin@vivo.com> + +===================== +ARM64中的 HugeTLBpage +===================== + +大页依靠有效利用 TLBs 来提高地址翻译的性能。这取决于以下 +两点 - + + - 大页的大小 + - TLBs 支持的条目大小 + +ARM64 接口支持2种大页方式。 + +1) pud/pmd 级别的块映射 +----------------------- + +这是常规大页,他们的 pmd 或 pud 页面表条目指向一个内存块。 +不管 TLB 中支持的条目大小如何,块映射可以减少翻译大页地址 +所需遍历的页表深度。 + +2) 使用连续位 +------------- + +架构中转换页表条目(D4.5.3, ARM DDI 0487C.a)中提供一个连续 +位告诉 MMU 这个条目是一个连续条目集的一员,它可以被缓存在单 +个 TLB 条目中。 + +在 Linux 中连续位用来增加 pmd 和 pte(最后一级)级别映射的大 +小。受支持的连续页表条目数量因页面大小和页表级别而异。 + + +支持以下大页尺寸配置 - + + ====== ======== ==== ======== === + - CONT PTE PMD CONT PMD PUD + ====== ======== ==== ======== === + 4K: 64K 2M 32M 1G + 16K: 2M 32M 1G + 64K: 2M 512M 16G + ====== ======== ==== ======== === diff --git a/Documentation/translations/zh_CN/arch/arm64/index.rst b/Documentation/translations/zh_CN/arch/arm64/index.rst new file mode 100644 index 0000000000..e12b9f6e5d --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm64/index.rst @@ -0,0 +1,19 @@ +.. include:: ../../disclaimer-zh_CN.rst + +:Original: :ref:`Documentation/arch/arm64/index.rst <arm64_index>` +:Translator: Bailu Lin <bailu.lin@vivo.com> + +.. _cn_arm64_index: + + +========== +ARM64 架构 +========== + +.. toctree:: + :maxdepth: 2 + + amu + hugetlbpage + perf + elf_hwcaps diff --git a/Documentation/translations/zh_CN/arch/arm64/legacy_instructions.txt b/Documentation/translations/zh_CN/arch/arm64/legacy_instructions.txt new file mode 100644 index 0000000000..e469fccbe3 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm64/legacy_instructions.txt @@ -0,0 +1,72 @@ +Chinese translated version of Documentation/arch/arm64/legacy_instructions.rst + +If you have any comment or update to the content, please contact the +original document maintainer directly. However, if you have a problem +communicating in English you can also ask the Chinese maintainer for +help. Contact the Chinese maintainer if this translation is outdated +or if there is a problem with the translation. + +Maintainer: Punit Agrawal <punit.agrawal@arm.com> + Suzuki K. Poulose <suzuki.poulose@arm.com> +Chinese maintainer: Fu Wei <wefu@redhat.com> +--------------------------------------------------------------------- +Documentation/arch/arm64/legacy_instructions.rst 的中文翻译 + +如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文 +交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻 +译存在问题,请联系中文版维护者。 + +本文翻译提交时的 Git 检出点为: bc465aa9d045feb0e13b4a8f32cc33c1943f62d6 + +英文版维护者: Punit Agrawal <punit.agrawal@arm.com> + Suzuki K. Poulose <suzuki.poulose@arm.com> +中文版维护者: 傅炜 Fu Wei <wefu@redhat.com> +中文版翻译者: 傅炜 Fu Wei <wefu@redhat.com> +中文版校译者: 傅炜 Fu Wei <wefu@redhat.com> + +以下为正文 +--------------------------------------------------------------------- +Linux 内核在 arm64 上的移植提供了一个基础框架,以支持构架中正在被淘汰或已废弃指令的模拟执行。 +这个基础框架的代码使用未定义指令钩子(hooks)来支持模拟。如果指令存在,它也允许在硬件中启用该指令。 + +模拟模式可通过写 sysctl 节点(/proc/sys/abi)来控制。 +不同的执行方式及 sysctl 节点的相应值,解释如下: + +* Undef(未定义) + 值: 0 + 产生未定义指令终止异常。它是那些构架中已废弃的指令,如 SWP,的默认处理方式。 + +* Emulate(模拟) + 值: 1 + 使用软件模拟方式。为解决软件迁移问题,这种模拟指令模式的使用是被跟踪的,并会发出速率限制警告。 + 它是那些构架中正在被淘汰的指令,如 CP15 barriers(隔离指令),的默认处理方式。 + +* Hardware Execution(硬件执行) + 值: 2 + 虽然标记为正在被淘汰,但一些实现可能提供硬件执行这些指令的使能/禁用操作。 + 使用硬件执行一般会有更好的性能,但将无法收集运行时对正被淘汰指令的使用统计数据。 + +默认执行模式依赖于指令在构架中状态。正在被淘汰的指令应该以模拟(Emulate)作为默认模式, +而已废弃的指令必须默认使用未定义(Undef)模式 + +注意:指令模拟可能无法应对所有情况。更多详情请参考单独的指令注释。 + +受支持的遗留指令 +------------- +* SWP{B} +节点: /proc/sys/abi/swp +状态: 已废弃 +默认执行方式: Undef (0) + +* CP15 Barriers +节点: /proc/sys/abi/cp15_barrier +状态: 正被淘汰,不推荐使用 +默认执行方式: Emulate (1) + +* SETEND +节点: /proc/sys/abi/setend +状态: 正被淘汰,不推荐使用 +默认执行方式: Emulate (1)* +注:为了使能这个特性,系统中的所有 CPU 必须在 EL0 支持混合字节序。 +如果一个新的 CPU (不支持混合字节序) 在使能这个特性后被热插入系统, +在应用中可能会出现不可预期的结果。 diff --git a/Documentation/translations/zh_CN/arch/arm64/memory.txt b/Documentation/translations/zh_CN/arch/arm64/memory.txt new file mode 100644 index 0000000000..c6962e9cb9 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm64/memory.txt @@ -0,0 +1,114 @@ +Chinese translated version of Documentation/arch/arm64/memory.rst + +If you have any comment or update to the content, please contact the +original document maintainer directly. However, if you have a problem +communicating in English you can also ask the Chinese maintainer for +help. Contact the Chinese maintainer if this translation is outdated +or if there is a problem with the translation. + +Maintainer: Catalin Marinas <catalin.marinas@arm.com> +Chinese maintainer: Fu Wei <wefu@redhat.com> +--------------------------------------------------------------------- +Documentation/arch/arm64/memory.rst 的中文翻译 + +如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文 +交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻 +译存在问题,请联系中文版维护者。 + +本文翻译提交时的 Git 检出点为: bc465aa9d045feb0e13b4a8f32cc33c1943f62d6 + +英文版维护者: Catalin Marinas <catalin.marinas@arm.com> +中文版维护者: 傅炜 Fu Wei <wefu@redhat.com> +中文版翻译者: 傅炜 Fu Wei <wefu@redhat.com> +中文版校译者: 傅炜 Fu Wei <wefu@redhat.com> + +以下为正文 +--------------------------------------------------------------------- + Linux 在 AArch64 中的内存布局 + =========================== + +作者: Catalin Marinas <catalin.marinas@arm.com> + +本文档描述 AArch64 Linux 内核所使用的虚拟内存布局。此构架可以实现 +页大小为 4KB 的 4 级转换表和页大小为 64KB 的 3 级转换表。 + +AArch64 Linux 使用 3 级或 4 级转换表,其页大小配置为 4KB,对于用户和内核 +分别都有 39-bit (512GB) 或 48-bit (256TB) 的虚拟地址空间。 +对于页大小为 64KB的配置,仅使用 2 级转换表,有 42-bit (4TB) 的虚拟地址空间,但内存布局相同。 + +用户地址空间的 63:48 位为 0,而内核地址空间的相应位为 1。TTBRx 的 +选择由虚拟地址的 63 位给出。swapper_pg_dir 仅包含内核(全局)映射, +而用户 pgd 仅包含用户(非全局)映射。swapper_pg_dir 地址被写入 +TTBR1 中,且从不写入 TTBR0。 + + +AArch64 Linux 在页大小为 4KB,并使用 3 级转换表时的内存布局: + +起始地址 结束地址 大小 用途 +----------------------------------------------------------------------- +0000000000000000 0000007fffffffff 512GB 用户空间 +ffffff8000000000 ffffffffffffffff 512GB 内核空间 + + +AArch64 Linux 在页大小为 4KB,并使用 4 级转换表时的内存布局: + +起始地址 结束地址 大小 用途 +----------------------------------------------------------------------- +0000000000000000 0000ffffffffffff 256TB 用户空间 +ffff000000000000 ffffffffffffffff 256TB 内核空间 + + +AArch64 Linux 在页大小为 64KB,并使用 2 级转换表时的内存布局: + +起始地址 结束地址 大小 用途 +----------------------------------------------------------------------- +0000000000000000 000003ffffffffff 4TB 用户空间 +fffffc0000000000 ffffffffffffffff 4TB 内核空间 + + +AArch64 Linux 在页大小为 64KB,并使用 3 级转换表时的内存布局: + +起始地址 结束地址 大小 用途 +----------------------------------------------------------------------- +0000000000000000 0000ffffffffffff 256TB 用户空间 +ffff000000000000 ffffffffffffffff 256TB 内核空间 + + +更详细的内核虚拟内存布局,请参阅内核启动信息。 + + +4KB 页大小的转换表查找: + ++--------+--------+--------+--------+--------+--------+--------+--------+ +|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0| ++--------+--------+--------+--------+--------+--------+--------+--------+ + | | | | | | + | | | | | v + | | | | | [11:0] 页内偏移 + | | | | +-> [20:12] L3 索引 + | | | +-----------> [29:21] L2 索引 + | | +---------------------> [38:30] L1 索引 + | +-------------------------------> [47:39] L0 索引 + +-------------------------------------------------> [63] TTBR0/1 + + +64KB 页大小的转换表查找: + ++--------+--------+--------+--------+--------+--------+--------+--------+ +|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0| ++--------+--------+--------+--------+--------+--------+--------+--------+ + | | | | | + | | | | v + | | | | [15:0] 页内偏移 + | | | +----------> [28:16] L3 索引 + | | +--------------------------> [41:29] L2 索引 + | +-------------------------------> [47:42] L1 索引 + +-------------------------------------------------> [63] TTBR0/1 + + +当使用 KVM 时, 管理程序(hypervisor)在 EL2 中通过相对内核虚拟地址的 +一个固定偏移来映射内核页(内核虚拟地址的高 24 位设为零): + +起始地址 结束地址 大小 用途 +----------------------------------------------------------------------- +0000004000000000 0000007fffffffff 256GB 在 HYP 中映射的内核对象 diff --git a/Documentation/translations/zh_CN/arch/arm64/perf.rst b/Documentation/translations/zh_CN/arch/arm64/perf.rst new file mode 100644 index 0000000000..6be72704e6 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm64/perf.rst @@ -0,0 +1,86 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../../disclaimer-zh_CN.rst + +:Original: :ref:`Documentation/arch/arm64/perf.rst <perf_index>` + +Translator: Bailu Lin <bailu.lin@vivo.com> + +============= +Perf 事件属性 +============= + +:作者: Andrew Murray <andrew.murray@arm.com> +:日期: 2019-03-06 + +exclude_user +------------ + +该属性排除用户空间。 + +用户空间始终运行在 EL0,因此该属性将排除 EL0。 + + +exclude_kernel +-------------- + +该属性排除内核空间。 + +打开 VHE 时内核运行在 EL2,不打开 VHE 时内核运行在 EL1。客户机 +内核总是运行在 EL1。 + +对于宿主机,该属性排除 EL1 和 VHE 上的 EL2。 + +对于客户机,该属性排除 EL1。请注意客户机从来不会运行在 EL2。 + + +exclude_hv +---------- + +该属性排除虚拟机监控器。 + +对于 VHE 宿主机该属性将被忽略,此时我们认为宿主机内核是虚拟机监 +控器。 + +对于 non-VHE 宿主机该属性将排除 EL2,因为虚拟机监控器运行在 EL2 +的任何代码主要用于客户机和宿主机的切换。 + +对于客户机该属性无效。请注意客户机从来不会运行在 EL2。 + + +exclude_host / exclude_guest +---------------------------- + +这些属性分别排除了 KVM 宿主机和客户机。 + +KVM 宿主机可能运行在 EL0(用户空间),EL1(non-VHE 内核)和 +EL2(VHE 内核 或 non-VHE 虚拟机监控器)。 + +KVM 客户机可能运行在 EL0(用户空间)和 EL1(内核)。 + +由于宿主机和客户机之间重叠的异常级别,我们不能仅仅依靠 PMU 的硬件异 +常过滤机制-因此我们必须启用/禁用对于客户机进入和退出的计数。而这在 +VHE 和 non-VHE 系统上表现不同。 + +对于 non-VHE 系统的 exclude_host 属性排除 EL2 - 在进入和退出客户 +机时,我们会根据 exclude_host 和 exclude_guest 属性在适当的情况下 +禁用/启用该事件。 + +对于 VHE 系统的 exclude_guest 属性排除 EL1,而对其中的 exclude_host +属性同时排除 EL0,EL2。在进入和退出客户机时,我们会适当地根据 +exclude_host 和 exclude_guest 属性包括/排除 EL0。 + +以上声明也适用于在 not-VHE 客户机使用这些属性时,但是请注意客户机从 +来不会运行在 EL2。 + + +准确性 +------ + +在 non-VHE 宿主机上,我们在 EL2 进入/退出宿主机/客户机的切换时启用/ +关闭计数器 -但是在启用/禁用计数器和进入/退出客户机之间存在一段延时。 +对于 exclude_host, 我们可以通过过滤 EL2 消除在客户机进入/退出边界 +上用于计数客户机事件的宿主机事件计数器。但是当使用 !exclude_hv 时, +在客户机进入/退出有一个小的停电窗口无法捕获到宿主机的事件。 + +在 VHE 系统没有停电窗口。 diff --git a/Documentation/translations/zh_CN/arch/arm64/silicon-errata.txt b/Documentation/translations/zh_CN/arch/arm64/silicon-errata.txt new file mode 100644 index 0000000000..f4767ffdd6 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm64/silicon-errata.txt @@ -0,0 +1,74 @@ +Chinese translated version of Documentation/arch/arm64/silicon-errata.rst + +If you have any comment or update to the content, please contact the +original document maintainer directly. However, if you have a problem +communicating in English you can also ask the Chinese maintainer for +help. Contact the Chinese maintainer if this translation is outdated +or if there is a problem with the translation. + +M: Will Deacon <will.deacon@arm.com> +zh_CN: Fu Wei <wefu@redhat.com> +C: 1926e54f115725a9248d0c4c65c22acaf94de4c4 +--------------------------------------------------------------------- +Documentation/arch/arm64/silicon-errata.rst 的中文翻译 + +如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文 +交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻 +译存在问题,请联系中文版维护者。 + +英文版维护者: Will Deacon <will.deacon@arm.com> +中文版维护者: 傅炜 Fu Wei <wefu@redhat.com> +中文版翻译者: 傅炜 Fu Wei <wefu@redhat.com> +中文版校译者: 傅炜 Fu Wei <wefu@redhat.com> +本文翻译提交时的 Git 检出点为: 1926e54f115725a9248d0c4c65c22acaf94de4c4 + +以下为正文 +--------------------------------------------------------------------- + 芯片勘误和软件补救措施 + ================== + +作者: Will Deacon <will.deacon@arm.com> +日期: 2015年11月27日 + +一个不幸的现实:硬件经常带有一些所谓的“瑕疵(errata)”,导致其在 +某些特定情况下会违背构架定义的行为。就基于 ARM 的硬件而言,这些瑕疵 +大体可分为以下几类: + + A 类:无可行补救措施的严重缺陷。 + B 类:有可接受的补救措施的重大或严重缺陷。 + C 类:在正常操作中不会显现的小瑕疵。 + +更多资讯,请在 infocenter.arm.com (需注册)中查阅“软件开发者勘误 +笔记”(“Software Developers Errata Notice”)文档。 + +对于 Linux 而言,B 类缺陷可能需要操作系统的某些特别处理。例如,避免 +一个特殊的代码序列,或是以一种特定的方式配置处理器。在某种不太常见的 +情况下,为将 A 类缺陷当作 C 类处理,可能需要用类似的手段。这些手段被 +统称为“软件补救措施”,且仅在少数情况需要(例如,那些需要一个运行在 +非安全异常级的补救措施 *并且* 能被 Linux 触发的情况)。 + +对于尚在讨论中的可能对未受瑕疵影响的系统产生干扰的软件补救措施,有一个 +相应的内核配置(Kconfig)选项被加在 “内核特性(Kernel Features)”-> +“基于可选方法框架的 ARM 瑕疵补救措施(ARM errata workarounds via +the alternatives framework)"。这些选项被默认开启,若探测到受影响的CPU, +补丁将在运行时被使用。至于对系统运行影响较小的补救措施,内核配置选项 +并不存在,且代码以某种规避瑕疵的方式被构造(带注释为宜)。 + +这种做法对于在任意内核源代码树中准确地判断出哪个瑕疵已被软件方法所补救 +稍微有点麻烦,所以在 Linux 内核中此文件作为软件补救措施的注册表, +并将在新的软件补救措施被提交和向后移植(backported)到稳定内核时被更新。 + +| 实现者 | 受影响的组件 | 勘误编号 | 内核配置 | ++----------------+-----------------+-----------------+-------------------------+ +| ARM | Cortex-A53 | #826319 | ARM64_ERRATUM_826319 | +| ARM | Cortex-A53 | #827319 | ARM64_ERRATUM_827319 | +| ARM | Cortex-A53 | #824069 | ARM64_ERRATUM_824069 | +| ARM | Cortex-A53 | #819472 | ARM64_ERRATUM_819472 | +| ARM | Cortex-A53 | #845719 | ARM64_ERRATUM_845719 | +| ARM | Cortex-A53 | #843419 | ARM64_ERRATUM_843419 | +| ARM | Cortex-A57 | #832075 | ARM64_ERRATUM_832075 | +| ARM | Cortex-A57 | #852523 | N/A | +| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 | +| | | | | +| Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 | +| Cavium | ThunderX GICv3 | #23154 | CAVIUM_ERRATUM_23154 | diff --git a/Documentation/translations/zh_CN/arch/arm64/tagged-pointers.txt b/Documentation/translations/zh_CN/arch/arm64/tagged-pointers.txt new file mode 100644 index 0000000000..27577c3c5e --- /dev/null +++ b/Documentation/translations/zh_CN/arch/arm64/tagged-pointers.txt @@ -0,0 +1,52 @@ +Chinese translated version of Documentation/arch/arm64/tagged-pointers.rst + +If you have any comment or update to the content, please contact the +original document maintainer directly. However, if you have a problem +communicating in English you can also ask the Chinese maintainer for +help. Contact the Chinese maintainer if this translation is outdated +or if there is a problem with the translation. + +Maintainer: Will Deacon <will.deacon@arm.com> +Chinese maintainer: Fu Wei <wefu@redhat.com> +--------------------------------------------------------------------- +Documentation/arch/arm64/tagged-pointers.rst 的中文翻译 + +如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文 +交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻 +译存在问题,请联系中文版维护者。 + +英文版维护者: Will Deacon <will.deacon@arm.com> +中文版维护者: 傅炜 Fu Wei <wefu@redhat.com> +中文版翻译者: 傅炜 Fu Wei <wefu@redhat.com> +中文版校译者: 傅炜 Fu Wei <wefu@redhat.com> + +以下为正文 +--------------------------------------------------------------------- + Linux 在 AArch64 中带标记的虚拟地址 + ================================= + +作者: Will Deacon <will.deacon@arm.com> +日期: 2013 年 06 月 12 日 + +本文档简述了在 AArch64 地址转换系统中提供的带标记的虚拟地址及其在 +AArch64 Linux 中的潜在用途。 + +内核提供的地址转换表配置使通过 TTBR0 完成的虚拟地址转换(即用户空间 +映射),其虚拟地址的最高 8 位(63:56)会被转换硬件所忽略。这种机制 +让这些位可供应用程序自由使用,其注意事项如下: + + (1) 内核要求所有传递到 EL1 的用户空间地址带有 0x00 标记。 + 这意味着任何携带用户空间虚拟地址的系统调用(syscall) + 参数 *必须* 在陷入内核前使它们的最高字节被清零。 + + (2) 非零标记在传递信号时不被保存。这意味着在应用程序中利用了 + 标记的信号处理函数无法依赖 siginfo_t 的用户空间虚拟 + 地址所携带的包含其内部域信息的标记。此规则的一个例外是 + 当信号是在调试观察点的异常处理程序中产生的,此时标记的 + 信息将被保存。 + + (3) 当使用带标记的指针时需特别留心,因为仅对两个虚拟地址 + 的高字节,C 编译器很可能无法判断它们是不同的。 + +此构架会阻止对带标记的 PC 指针的利用,因此在异常返回时,其高字节 +将被设置成一个为 “55” 的扩展符。 diff --git a/Documentation/translations/zh_CN/arch/index.rst b/Documentation/translations/zh_CN/arch/index.rst new file mode 100644 index 0000000000..e3d273d7d5 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/index.rst @@ -0,0 +1,29 @@ +.. SPDX-License-Identifier: GPL-2.0 + +处理器体系结构 +============== + +以下文档提供了具体架构实现的编程细节。 + +.. toctree:: + :maxdepth: 2 + + mips/index + arm64/index + ../riscv/index + openrisc/index + parisc/index + loongarch/index + +TODOList: + +* arm/index +* ia64/index +* m68k/index +* nios2/index +* powerpc/index +* s390/index +* sh/index +* sparc/index +* x86/index +* xtensa/index diff --git a/Documentation/translations/zh_CN/arch/loongarch/booting.rst b/Documentation/translations/zh_CN/arch/loongarch/booting.rst new file mode 100644 index 0000000000..d2f5587290 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/loongarch/booting.rst @@ -0,0 +1,48 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/loongarch/booting.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +==================== +启动 Linux/LoongArch +==================== + +:作者: 司延腾 <siyanteng@loongson.cn> +:日期: 2022年11月18日 + +BootLoader传递给内核的信息 +========================== + +LoongArch支持ACPI和FDT启动,需要传递给内核的信息包括memmap、initrd、cmdline、可 +选的ACPI/FDT表等。 + +内核在 `kernel_entry` 入口处被传递以下参数: + + - a0 = efi_boot: `efi_boot` 是一个标志,表示这个启动环境是否完全符合UEFI + 的要求。 + + - a1 = cmdline: `cmdline` 是一个指向内核命令行的指针。 + + - a2 = systemtable: `systemtable` 指向EFI的系统表,在这个阶段涉及的所有 + 指针都是物理地址。 + +Linux/LoongArch内核镜像文件头 +============================= + +内核镜像是EFI镜像。作为PE文件,它们有一个64字节的头部结构体,如下所示:: + + u32 MZ_MAGIC /* "MZ", MS-DOS 头 */ + u32 res0 = 0 /* 保留 */ + u64 kernel_entry /* 内核入口点 */ + u64 _end - _text /* 内核镜像有效大小 */ + u64 load_offset /* 加载内核镜像相对内存起始地址的偏移量 */ + u64 res1 = 0 /* 保留 */ + u64 res2 = 0 /* 保留 */ + u64 res3 = 0 /* 保留 */ + u32 LINUX_PE_MAGIC /* 魔术数 */ + u32 pe_header - _head /* 到PE头的偏移量 */ diff --git a/Documentation/translations/zh_CN/arch/loongarch/features.rst b/Documentation/translations/zh_CN/arch/loongarch/features.rst new file mode 100644 index 0000000000..cec38dda82 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/loongarch/features.rst @@ -0,0 +1,8 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/loongarch/features.rst +:Translator: Huacai Chen <chenhuacai@loongson.cn> + +.. kernel-feat:: features loongarch diff --git a/Documentation/translations/zh_CN/arch/loongarch/index.rst b/Documentation/translations/zh_CN/arch/loongarch/index.rst new file mode 100644 index 0000000000..4bd24f5ffe --- /dev/null +++ b/Documentation/translations/zh_CN/arch/loongarch/index.rst @@ -0,0 +1,27 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/loongarch/index.rst +:Translator: Huacai Chen <chenhuacai@loongson.cn> + +================= +LoongArch体系结构 +================= + +.. toctree:: + :maxdepth: 2 + :numbered: + + introduction + booting + irq-chip-model + + features + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/translations/zh_CN/arch/loongarch/introduction.rst b/Documentation/translations/zh_CN/arch/loongarch/introduction.rst new file mode 100644 index 0000000000..59d6bf3305 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/loongarch/introduction.rst @@ -0,0 +1,353 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/loongarch/introduction.rst +:Translator: Huacai Chen <chenhuacai@loongson.cn> + +============= +LoongArch介绍 +============= + +LoongArch是一种新的RISC ISA,在一定程度上类似于MIPS和RISC-V。LoongArch指令集 +包括一个精简32位版(LA32R)、一个标准32位版(LA32S)、一个64位版(LA64)。 +LoongArch定义了四个特权级(PLV0~PLV3),其中PLV0是最高特权级,用于内核;而PLV3 +是最低特权级,用于应用程序。本文档介绍了LoongArch的寄存器、基础指令集、虚拟内 +存以及其他一些主题。 + +寄存器 +====== + +LoongArch的寄存器包括通用寄存器(GPRs)、浮点寄存器(FPRs)、向量寄存器(VRs) +和用于特权模式(PLV0)的控制状态寄存器(CSRs)。 + +通用寄存器 +---------- + +LoongArch包括32个通用寄存器( ``$r0`` ~ ``$r31`` ),LA32中每个寄存器为32位宽, +LA64中每个寄存器为64位宽。 ``$r0`` 的内容总是固定为0,而其他寄存器在体系结构层面 +没有特殊功能。( ``$r1`` 算是一个例外,在BL指令中固定用作链接返回寄存器。) + +内核使用了一套LoongArch寄存器约定,定义在LoongArch ELF psABI规范中,详细描述参见 +:ref:`参考文献 <loongarch-references-zh_CN>`: + +================= =============== =================== ========== +寄存器名 别名 用途 跨调用保持 +================= =============== =================== ========== +``$r0`` ``$zero`` 常量0 不使用 +``$r1`` ``$ra`` 返回地址 否 +``$r2`` ``$tp`` TLS/线程信息指针 不使用 +``$r3`` ``$sp`` 栈指针 是 +``$r4``-``$r11`` ``$a0``-``$a7`` 参数寄存器 否 +``$r4``-``$r5`` ``$v0``-``$v1`` 返回值 否 +``$r12``-``$r20`` ``$t0``-``$t8`` 临时寄存器 否 +``$r21`` ``$u0`` 每CPU变量基地址 不使用 +``$r22`` ``$fp`` 帧指针 是 +``$r23``-``$r31`` ``$s0``-``$s8`` 静态寄存器 是 +================= =============== =================== ========== + +.. note:: + 注意: ``$r21`` 寄存器在ELF psABI中保留未使用,但是在Linux内核用于保 + 存每CPU变量基地址。该寄存器没有ABI命名,不过在内核中称为 ``$u0`` 。在 + 一些遗留代码中有时可能见到 ``$v0`` 和 ``$v1`` ,它们是 ``$a0`` 和 + ``$a1`` 的别名,属于已经废弃的用法。 + +浮点寄存器 +---------- + +当系统中存在FPU时,LoongArch有32个浮点寄存器( ``$f0`` ~ ``$f31`` )。在LA64 +的CPU核上,每个寄存器均为64位宽。 + +浮点寄存器的使用约定与LoongArch ELF psABI规范的描述相同: + +================= ================== =================== ========== +寄存器名 别名 用途 跨调用保持 +================= ================== =================== ========== +``$f0``-``$f7`` ``$fa0``-``$fa7`` 参数寄存器 否 +``$f0``-``$f1`` ``$fv0``-``$fv1`` 返回值 否 +``$f8``-``$f23`` ``$ft0``-``$ft15`` 临时寄存器 否 +``$f24``-``$f31`` ``$fs0``-``$fs7`` 静态寄存器 是 +================= ================== =================== ========== + +.. note:: + 注意:在一些遗留代码中有时可能见到 ``$fv0`` 和 ``$fv1`` ,它们是 + ``$fa0`` 和 ``$fa1`` 的别名,属于已经废弃的用法。 + + +向量寄存器 +---------- + +LoongArch现有两种向量扩展: + +- 128位向量扩展LSX(全称Loongson SIMD eXtention), +- 256位向量扩展LASX(全称Loongson Advanced SIMD eXtention)。 + +LSX使用 ``$v0`` ~ ``$v31`` 向量寄存器,而LASX则使用 ``$x0`` ~ ``$x31`` 。 + +浮点寄存器和向量寄存器是复用的,比如:在一个实现了LSX和LASX的核上, ``$x0`` 的 +低128位与 ``$v0`` 共用, ``$v0`` 的低64位与 ``$f0`` 共用,其他寄存器依此类推。 + +控制状态寄存器 +-------------- + +控制状态寄存器只能在特权模式(PLV0)下访问: + +================= ==================================== ========== +地址 全称描述 简称 +================= ==================================== ========== +0x0 当前模式信息 CRMD +0x1 异常前模式信息 PRMD +0x2 扩展部件使能 EUEN +0x3 杂项控制 MISC +0x4 异常配置 ECFG +0x5 异常状态 ESTAT +0x6 异常返回地址 ERA +0x7 出错(Faulting)虚拟地址 BADV +0x8 出错(Faulting)指令字 BADI +0xC 异常入口地址 EENTRY +0x10 TLB索引 TLBIDX +0x11 TLB表项高位 TLBEHI +0x12 TLB表项低位0 TLBELO0 +0x13 TLB表项低位1 TLBELO1 +0x18 地址空间标识符 ASID +0x19 低半地址空间页全局目录基址 PGDL +0x1A 高半地址空间页全局目录基址 PGDH +0x1B 页全局目录基址 PGD +0x1C 页表遍历控制低半部分 PWCL +0x1D 页表遍历控制高半部分 PWCH +0x1E STLB页大小 STLBPS +0x1F 缩减虚地址配置 RVACFG +0x20 CPU编号 CPUID +0x21 特权资源配置信息1 PRCFG1 +0x22 特权资源配置信息2 PRCFG2 +0x23 特权资源配置信息3 PRCFG3 +0x30+n (0≤n≤15) 数据保存寄存器 SAVEn +0x40 定时器编号 TID +0x41 定时器配置 TCFG +0x42 定时器值 TVAL +0x43 计时器补偿 CNTC +0x44 定时器中断清除 TICLR +0x60 LLBit相关控制 LLBCTL +0x80 实现相关控制1 IMPCTL1 +0x81 实现相关控制2 IMPCTL2 +0x88 TLB重填异常入口地址 TLBRENTRY +0x89 TLB重填异常出错(Faulting)虚地址 TLBRBADV +0x8A TLB重填异常返回地址 TLBRERA +0x8B TLB重填异常数据保存 TLBRSAVE +0x8C TLB重填异常表项低位0 TLBRELO0 +0x8D TLB重填异常表项低位1 TLBRELO1 +0x8E TLB重填异常表项高位 TLBEHI +0x8F TLB重填异常前模式信息 TLBRPRMD +0x90 机器错误控制 MERRCTL +0x91 机器错误信息1 MERRINFO1 +0x92 机器错误信息2 MERRINFO2 +0x93 机器错误异常入口地址 MERRENTRY +0x94 机器错误异常返回地址 MERRERA +0x95 机器错误异常数据保存 MERRSAVE +0x98 高速缓存标签 CTAG +0x180+n (0≤n≤3) 直接映射配置窗口n DMWn +0x200+2n (0≤n≤31) 性能监测配置n PMCFGn +0x201+2n (0≤n≤31) 性能监测计数器n PMCNTn +0x300 内存读写监视点整体控制 MWPC +0x301 内存读写监视点整体状态 MWPS +0x310+8n (0≤n≤7) 内存读写监视点n配置1 MWPnCFG1 +0x311+8n (0≤n≤7) 内存读写监视点n配置2 MWPnCFG2 +0x312+8n (0≤n≤7) 内存读写监视点n配置3 MWPnCFG3 +0x313+8n (0≤n≤7) 内存读写监视点n配置4 MWPnCFG4 +0x380 取指监视点整体控制 FWPC +0x381 取指监视点整体状态 FWPS +0x390+8n (0≤n≤7) 取指监视点n配置1 FWPnCFG1 +0x391+8n (0≤n≤7) 取指监视点n配置2 FWPnCFG2 +0x392+8n (0≤n≤7) 取指监视点n配置3 FWPnCFG3 +0x393+8n (0≤n≤7) 取指监视点n配置4 FWPnCFG4 +0x500 调试寄存器 DBG +0x501 调试异常返回地址 DERA +0x502 调试数据保存 DSAVE +================= ==================================== ========== + +ERA,TLBRERA,MERRERA和DERA有时也分别称为EPC,TLBREPC,MERREPC和DEPC。 + +基础指令集 +========== + +指令格式 +-------- + +LoongArch的指令字长为32位,一共有9种基本指令格式(以及一些变体): + +=========== ========================== +格式名称 指令构成 +=========== ========================== +2R Opcode + Rj + Rd +3R Opcode + Rk + Rj + Rd +4R Opcode + Ra + Rk + Rj + Rd +2RI8 Opcode + I8 + Rj + Rd +2RI12 Opcode + I12 + Rj + Rd +2RI14 Opcode + I14 + Rj + Rd +2RI16 Opcode + I16 + Rj + Rd +1RI21 Opcode + I21L + Rj + I21H +I26 Opcode + I26L + I26H +=========== ========================== + +Opcode是指令操作码,Rj和Rk是源操作数(寄存器),Rd是目标操作数(寄存器),Ra是 +4R-type格式特有的附加操作数(寄存器)。I8/I12/I14/I16/I21/I26分别是8位/12位/14位/ +16位/21位/26位的立即数。其中较长的21位和26位立即数在指令字中被分割为高位部分与低位 +部分,所以你们在这里的格式描述中能够看到I21L/I21H和I26L/I26H这样带后缀的表述。 + +指令列表 +-------- + +为了简便起见,我们在此只罗列一下指令名称(助记符),需要详细信息请阅读 +:ref:`参考文献 <loongarch-references-zh_CN>` 中的文档。 + +1. 算术运算指令:: + + ADD.W SUB.W ADDI.W ADD.D SUB.D ADDI.D + SLT SLTU SLTI SLTUI + AND OR NOR XOR ANDN ORN ANDI ORI XORI + MUL.W MULH.W MULH.WU DIV.W DIV.WU MOD.W MOD.WU + MUL.D MULH.D MULH.DU DIV.D DIV.DU MOD.D MOD.DU + PCADDI PCADDU12I PCADDU18I + LU12I.W LU32I.D LU52I.D ADDU16I.D + +2. 移位运算指令:: + + SLL.W SRL.W SRA.W ROTR.W SLLI.W SRLI.W SRAI.W ROTRI.W + SLL.D SRL.D SRA.D ROTR.D SLLI.D SRLI.D SRAI.D ROTRI.D + +3. 位域操作指令:: + + EXT.W.B EXT.W.H CLO.W CLO.D SLZ.W CLZ.D CTO.W CTO.D CTZ.W CTZ.D + BYTEPICK.W BYTEPICK.D BSTRINS.W BSTRINS.D BSTRPICK.W BSTRPICK.D + REVB.2H REVB.4H REVB.2W REVB.D REVH.2W REVH.D BITREV.4B BITREV.8B BITREV.W BITREV.D + MASKEQZ MASKNEZ + +4. 分支转移指令:: + + BEQ BNE BLT BGE BLTU BGEU BEQZ BNEZ B BL JIRL + +5. 访存读写指令:: + + LD.B LD.BU LD.H LD.HU LD.W LD.WU LD.D ST.B ST.H ST.W ST.D + LDX.B LDX.BU LDX.H LDX.HU LDX.W LDX.WU LDX.D STX.B STX.H STX.W STX.D + LDPTR.W LDPTR.D STPTR.W STPTR.D + PRELD PRELDX + +6. 原子操作指令:: + + LL.W SC.W LL.D SC.D + AMSWAP.W AMSWAP.D AMADD.W AMADD.D AMAND.W AMAND.D AMOR.W AMOR.D AMXOR.W AMXOR.D + AMMAX.W AMMAX.D AMMIN.W AMMIN.D + +7. 栅障指令:: + + IBAR DBAR + +8. 特殊指令:: + + SYSCALL BREAK CPUCFG NOP IDLE ERTN(ERET) DBCL(DBGCALL) RDTIMEL.W RDTIMEH.W RDTIME.D + ASRTLE.D ASRTGT.D + +9. 特权指令:: + + CSRRD CSRWR CSRXCHG + IOCSRRD.B IOCSRRD.H IOCSRRD.W IOCSRRD.D IOCSRWR.B IOCSRWR.H IOCSRWR.W IOCSRWR.D + CACOP TLBP(TLBSRCH) TLBRD TLBWR TLBFILL TLBCLR TLBFLUSH INVTLB LDDIR LDPTE + +虚拟内存 +======== + +LoongArch可以使用直接映射虚拟内存和分页映射虚拟内存。 + +直接映射虚拟内存通过CSR.DMWn(n=0~3)来进行配置,虚拟地址(VA)和物理地址(PA) +之间有简单的映射关系:: + + VA = PA + 固定偏移 + +分页映射的虚拟地址(VA)和物理地址(PA)有任意的映射关系,这种关系记录在TLB和页 +表中。LoongArch的TLB包括一个全相联的MTLB(Multiple Page Size TLB,多样页大小TLB) +和一个组相联的STLB(Single Page Size TLB,单一页大小TLB)。 + +缺省状态下,LA32的整个虚拟地址空间配置如下: + +============ =========================== =========================== +区段名 地址范围 属性 +============ =========================== =========================== +``UVRANGE`` ``0x00000000 - 0x7FFFFFFF`` 分页映射, 可缓存, PLV0~3 +``KPRANGE0`` ``0x80000000 - 0x9FFFFFFF`` 直接映射, 非缓存, PLV0 +``KPRANGE1`` ``0xA0000000 - 0xBFFFFFFF`` 直接映射, 可缓存, PLV0 +``KVRANGE`` ``0xC0000000 - 0xFFFFFFFF`` 分页映射, 可缓存, PLV0 +============ =========================== =========================== + +用户态(PLV3)只能访问UVRANGE,对于直接映射的KPRANGE0和KPRANGE1,将虚拟地址的第 +30~31位清零就等于物理地址。例如:物理地址0x00001000对应的非缓存直接映射虚拟地址 +是0x80001000,而其可缓存直接映射虚拟地址是0xA0001000。 + +缺省状态下,LA64的整个虚拟地址空间配置如下: + +============ ====================== ================================== +区段名 地址范围 属性 +============ ====================== ================================== +``XUVRANGE`` ``0x0000000000000000 - 分页映射, 可缓存, PLV0~3 + 0x3FFFFFFFFFFFFFFF`` +``XSPRANGE`` ``0x4000000000000000 - 直接映射, 可缓存 / 非缓存, PLV0 + 0x7FFFFFFFFFFFFFFF`` +``XKPRANGE`` ``0x8000000000000000 - 直接映射, 可缓存 / 非缓存, PLV0 + 0xBFFFFFFFFFFFFFFF`` +``XKVRANGE`` ``0xC000000000000000 - 分页映射, 可缓存, PLV0 + 0xFFFFFFFFFFFFFFFF`` +============ ====================== ================================== + +用户态(PLV3)只能访问XUVRANGE,对于直接映射的XSPRANGE和XKPRANGE,将虚拟地址的第 +60~63位清零就等于物理地址,而其缓存属性是通过虚拟地址的第60~61位配置的(0表示强序 +非缓存,1表示一致可缓存,2表示弱序非缓存)。 + +目前,我们仅用XKPRANGE来进行直接映射,XSPRANGE保留给以后用。 + +此处给出一个直接映射的例子:物理地址0x00000000_00001000的强序非缓存直接映射虚拟地址 +(在XKPRANGE中)是0x80000000_00001000,其一致可缓存直接映射虚拟地址(在XKPRANGE中) +是0x90000000_00001000,而其弱序非缓存直接映射虚拟地址(在XKPRANGE中)是0xA0000000_ +00001000。 + +Loongson与LoongArch的关系 +========================= + +LoongArch是一种RISC指令集架构(ISA),不同于现存的任何一种ISA,而Loongson(即龙 +芯)是一个处理器家族。龙芯包括三个系列:Loongson-1(龙芯1号)是32位处理器系列, +Loongson-2(龙芯2号)是低端64位处理器系列,而Loongson-3(龙芯3号)是高端64位处理 +器系列。旧的龙芯处理器基于MIPS架构,而新的龙芯处理器基于LoongArch架构。以龙芯3号 +为例:龙芯3A1000/3B1500/3A2000/3A3000/3A4000都是兼容MIPS的,而龙芯3A5000(以及将 +来的型号)都是基于LoongArch的。 + +.. _loongarch-references-zh_CN: + +参考文献 +======== + +Loongson官方网站(龙芯中科技术股份有限公司): + + http://www.loongson.cn/ + +Loongson与LoongArch的开发者网站(软件与文档资源): + + http://www.loongnix.cn/ + + https://github.com/loongson/ + + https://loongson.github.io/LoongArch-Documentation/ + +LoongArch指令集架构的文档: + + https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-Vol1-v1.02-CN.pdf (中文版) + + https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-Vol1-v1.02-EN.pdf (英文版) + +LoongArch的ELF psABI文档: + + https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-ELF-ABI-v2.01-CN.pdf (中文版) + + https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-ELF-ABI-v2.01-EN.pdf (英文版) + +Loongson与LoongArch的Linux内核源码仓库: + + https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson.git diff --git a/Documentation/translations/zh_CN/arch/loongarch/irq-chip-model.rst b/Documentation/translations/zh_CN/arch/loongarch/irq-chip-model.rst new file mode 100644 index 0000000000..f1e9ab1820 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/loongarch/irq-chip-model.rst @@ -0,0 +1,157 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/loongarch/irq-chip-model.rst +:Translator: Huacai Chen <chenhuacai@loongson.cn> + +================================== +LoongArch的IRQ芯片模型(层级关系) +================================== + +目前,基于LoongArch的处理器(如龙芯3A5000)只能与LS7A芯片组配合工作。LoongArch计算机 +中的中断控制器(即IRQ芯片)包括CPUINTC(CPU Core Interrupt Controller)、LIOINTC( +Legacy I/O Interrupt Controller)、EIOINTC(Extended I/O Interrupt Controller)、 +HTVECINTC(Hyper-Transport Vector Interrupt Controller)、PCH-PIC(LS7A芯片组的主中 +断控制器)、PCH-LPC(LS7A芯片组的LPC中断控制器)和PCH-MSI(MSI中断控制器)。 + +CPUINTC是一种CPU内部的每个核本地的中断控制器,LIOINTC/EIOINTC/HTVECINTC是CPU内部的 +全局中断控制器(每个芯片一个,所有核共享),而PCH-PIC/PCH-LPC/PCH-MSI是CPU外部的中 +断控制器(在配套芯片组里面)。这些中断控制器(或者说IRQ芯片)以一种层次树的组织形式 +级联在一起,一共有两种层级关系模型(传统IRQ模型和扩展IRQ模型)。 + +传统IRQ模型 +=========== + +在这种模型里面,IPI(Inter-Processor Interrupt)和CPU本地时钟中断直接发送到CPUINTC, +CPU串口(UARTs)中断发送到LIOINTC,而其他所有设备的中断则分别发送到所连接的PCH-PIC/ +PCH-LPC/PCH-MSI,然后被HTVECINTC统一收集,再发送到LIOINTC,最后到达CPUINTC:: + + +-----+ +---------+ +-------+ + | IPI | --> | CPUINTC | <-- | Timer | + +-----+ +---------+ +-------+ + ^ + | + +---------+ +-------+ + | LIOINTC | <-- | UARTs | + +---------+ +-------+ + ^ + | + +-----------+ + | HTVECINTC | + +-----------+ + ^ ^ + | | + +---------+ +---------+ + | PCH-PIC | | PCH-MSI | + +---------+ +---------+ + ^ ^ ^ + | | | + +---------+ +---------+ +---------+ + | PCH-LPC | | Devices | | Devices | + +---------+ +---------+ +---------+ + ^ + | + +---------+ + | Devices | + +---------+ + +扩展IRQ模型 +=========== + +在这种模型里面,IPI(Inter-Processor Interrupt)和CPU本地时钟中断直接发送到CPUINTC, +CPU串口(UARTs)中断发送到LIOINTC,而其他所有设备的中断则分别发送到所连接的PCH-PIC/ +PCH-LPC/PCH-MSI,然后被EIOINTC统一收集,再直接到达CPUINTC:: + + +-----+ +---------+ +-------+ + | IPI | --> | CPUINTC | <-- | Timer | + +-----+ +---------+ +-------+ + ^ ^ + | | + +---------+ +---------+ +-------+ + | EIOINTC | | LIOINTC | <-- | UARTs | + +---------+ +---------+ +-------+ + ^ ^ + | | + +---------+ +---------+ + | PCH-PIC | | PCH-MSI | + +---------+ +---------+ + ^ ^ ^ + | | | + +---------+ +---------+ +---------+ + | PCH-LPC | | Devices | | Devices | + +---------+ +---------+ +---------+ + ^ + | + +---------+ + | Devices | + +---------+ + +ACPI相关的定义 +============== + +CPUINTC:: + + ACPI_MADT_TYPE_CORE_PIC; + struct acpi_madt_core_pic; + enum acpi_madt_core_pic_version; + +LIOINTC:: + + ACPI_MADT_TYPE_LIO_PIC; + struct acpi_madt_lio_pic; + enum acpi_madt_lio_pic_version; + +EIOINTC:: + + ACPI_MADT_TYPE_EIO_PIC; + struct acpi_madt_eio_pic; + enum acpi_madt_eio_pic_version; + +HTVECINTC:: + + ACPI_MADT_TYPE_HT_PIC; + struct acpi_madt_ht_pic; + enum acpi_madt_ht_pic_version; + +PCH-PIC:: + + ACPI_MADT_TYPE_BIO_PIC; + struct acpi_madt_bio_pic; + enum acpi_madt_bio_pic_version; + +PCH-MSI:: + + ACPI_MADT_TYPE_MSI_PIC; + struct acpi_madt_msi_pic; + enum acpi_madt_msi_pic_version; + +PCH-LPC:: + + ACPI_MADT_TYPE_LPC_PIC; + struct acpi_madt_lpc_pic; + enum acpi_madt_lpc_pic_version; + +参考文献 +======== + +龙芯3A5000的文档: + + https://github.com/loongson/LoongArch-Documentation/releases/latest/download/Loongson-3A5000-usermanual-1.02-CN.pdf (中文版) + + https://github.com/loongson/LoongArch-Documentation/releases/latest/download/Loongson-3A5000-usermanual-1.02-EN.pdf (英文版) + +龙芯LS7A芯片组的文档: + + https://github.com/loongson/LoongArch-Documentation/releases/latest/download/Loongson-7A1000-usermanual-2.00-CN.pdf (中文版) + + https://github.com/loongson/LoongArch-Documentation/releases/latest/download/Loongson-7A1000-usermanual-2.00-EN.pdf (英文版) + +.. note:: + - CPUINTC:即《龙芯架构参考手册卷一》第7.4节所描述的CSR.ECFG/CSR.ESTAT寄存器及其 + 中断控制逻辑; + - LIOINTC:即《龙芯3A5000处理器使用手册》第11.1节所描述的“传统I/O中断”; + - EIOINTC:即《龙芯3A5000处理器使用手册》第11.2节所描述的“扩展I/O中断”; + - HTVECINTC:即《龙芯3A5000处理器使用手册》第14.3节所描述的“HyperTransport中断”; + - PCH-PIC/PCH-MSI:即《龙芯7A1000桥片用户手册》第5章所描述的“中断控制器”; + - PCH-LPC:即《龙芯7A1000桥片用户手册》第24.3节所描述的“LPC中断”。 diff --git a/Documentation/translations/zh_CN/arch/mips/booting.rst b/Documentation/translations/zh_CN/arch/mips/booting.rst new file mode 100644 index 0000000000..485b57e0ca --- /dev/null +++ b/Documentation/translations/zh_CN/arch/mips/booting.rst @@ -0,0 +1,34 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/mips/booting.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +.. _cn_booting: + +BMIPS设备树引导 +------------------------ + + 一些bootloaders只支持在内核镜像开始地址处的单一入口点。而其它 + bootloaders将跳转到ELF的开始地址处。两种方案都支持的;因为 + CONFIG_BOOT_RAW=y and CONFIG_NO_EXCEPT_FILL=y, 所以第一条指令 + 会立即跳转到kernel_entry()入口处执行。 + + 与arch/arm情况(b)类似,dt感知的引导加载程序需要设置以下寄存器: + + a0 : 0 + + a1 : 0xffffffff + + a2 : RAM中指向设备树块的物理指针(在chapterII中定义)。 + 设备树可以位于前512MB物理地址空间(0x00000000 - + 0x1fffffff)的任何位置,以64位边界对齐。 + + 传统bootloaders不会使用这样的约定,并且它们不传入DT块。 + 在这种情况下,Linux将通过选中CONFIG_DT_*查找DTB。 + + 以上约定只在32位系统中定义,因为目前没有任何64位的BMIPS实现。 diff --git a/Documentation/translations/zh_CN/arch/mips/features.rst b/Documentation/translations/zh_CN/arch/mips/features.rst new file mode 100644 index 0000000000..0d6df97db0 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/mips/features.rst @@ -0,0 +1,13 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/mips/features.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +.. _cn_features: + +.. kernel-feat:: features mips diff --git a/Documentation/translations/zh_CN/arch/mips/index.rst b/Documentation/translations/zh_CN/arch/mips/index.rst new file mode 100644 index 0000000000..2a34217119 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/mips/index.rst @@ -0,0 +1,29 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/mips/index.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +=========================== +MIPS特性文档 +=========================== + +.. toctree:: + :maxdepth: 2 + :numbered: + + booting + ingenic-tcu + + features + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/translations/zh_CN/arch/mips/ingenic-tcu.rst b/Documentation/translations/zh_CN/arch/mips/ingenic-tcu.rst new file mode 100644 index 0000000000..3d599a36b5 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/mips/ingenic-tcu.rst @@ -0,0 +1,72 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/mips/ingenic-tcu.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +.. _cn_ingenic-tcu: + +=============================================== +君正 JZ47xx SoC定时器/计数器硬件单元 +=============================================== + +君正 JZ47xx SoC中的定时器/计数器单元(TCU)是一个多功能硬件块。它有多达 +8个通道,可以用作计数器,计时器,或脉冲宽度调制器。 + +- JZ4725B, JZ4750, JZ4755 只有6个TCU通道。其它SoC都有8个通道。 + +- JZ4725B引入了一个独立的通道,称为操作系统计时器(OST)。这是一个32位可 + 编程定时器。在JZ4760B及以上型号上,它是64位的。 + +- 每个TCU通道都有自己的时钟源,可以通过 TCSR 寄存器设置通道的父级时钟 + 源(pclk、ext、rtc)、开关以及分频。 + + - 看门狗和OST硬件模块在它们的寄存器空间中也有相同形式的TCSR寄存器。 + - 用于关闭/开启的 TCU 寄存器也可以关闭/开启看门狗和 OST 时钟。 + +- 每个TCU通道在两种模式的其中一种模式下运行: + + - 模式 TCU1:通道无法在睡眠模式下运行,但更易于操作。 + - 模式 TCU2:通道可以在睡眠模式下运行,但操作比 TCU1 通道复杂一些。 + +- 每个 TCU 通道的模式取决于使用的SoC: + + - 在最老的SoC(高于JZ4740),八个通道都运行在TCU1模式。 + - 在 JZ4725B,通道5运行在TCU2,其它通道则运行在TCU1。 + - 在最新的SoC(JZ4750及之后),通道1-2运行在TCU2,其它通道则运行 + 在TCU1。 + +- 每个通道都可以生成中断。有些通道共享一条中断线,而有些没有,其在SoC型 + 号之间的变更: + + - 在很老的SoC(JZ4740及更低),通道0和通道1有它们自己的中断线;通 + 道2-7共享最后一条中断线。 + - 在 JZ4725B,通道0有它自己的中断线;通道1-5共享一条中断线;OST + 使用最后一条中断线。 + - 在比较新的SoC(JZ4750及以后),通道5有它自己的中断线;通 + 道0-4和(如果是8通道)6-7全部共享一条中断线;OST使用最后一条中 + 断线。 + +实现 +==== + +TCU硬件的功能分布在多个驱动程序: + +============== =================================== +时钟 drivers/clk/ingenic/tcu.c +中断 drivers/irqchip/irq-ingenic-tcu.c +定时器 drivers/clocksource/ingenic-timer.c +OST drivers/clocksource/ingenic-ost.c +脉冲宽度调制器 drivers/pwm/pwm-jz4740.c +看门狗 drivers/watchdog/jz4740_wdt.c +============== =================================== + +因为可以从相同的寄存器控制属于不同驱动程序和框架的TCU的各种功能,所以 +所有这些驱动程序都通过相同的控制总线通用接口访问它们的寄存器。 + +有关TCU驱动程序的设备树绑定的更多信息,请参阅: +Documentation/devicetree/bindings/timer/ingenic,tcu.yaml. diff --git a/Documentation/translations/zh_CN/arch/openrisc/index.rst b/Documentation/translations/zh_CN/arch/openrisc/index.rst new file mode 100644 index 0000000000..da21f8ab89 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/openrisc/index.rst @@ -0,0 +1,32 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/openrisc/index.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +.. _cn_openrisc_index: + +================= +OpenRISC 体系架构 +================= + +.. toctree:: + :maxdepth: 2 + + openrisc_port + todo + +Todolist: + features + + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/translations/zh_CN/arch/openrisc/openrisc_port.rst b/Documentation/translations/zh_CN/arch/openrisc/openrisc_port.rst new file mode 100644 index 0000000000..cadc580fa2 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/openrisc/openrisc_port.rst @@ -0,0 +1,127 @@ +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/openrisc/openrisc_port.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +.. _cn_openrisc_port: + +============== +OpenRISC Linux +============== + +这是Linux对OpenRISC类微处理器的移植;具体来说,最早移植目标是32位 +OpenRISC 1000系列(或1k)。 + +关于OpenRISC处理器和正在进行中的开发的信息: + + ======= ============================= + 网站 https://openrisc.io + 邮箱 openrisc@lists.librecores.org + ======= ============================= + +--------------------------------------------------------------------- + +OpenRISC工具链和Linux的构建指南 +=============================== + +为了构建和运行Linux for OpenRISC,你至少需要一个基本的工具链,或许 +还需要架构模拟器。 这里概述了准备就位这些部分的步骤。 + +1) 工具链 + +工具链二进制文件可以从openrisc.io或我们的github发布页面获得。不同 +工具链的构建指南可以在openrisc.io或Stafford的工具链构建和发布脚本 +中找到。 + + ====== ================================================= + 二进制 https://github.com/openrisc/or1k-gcc/releases + 工具链 https://openrisc.io/software + 构建 https://github.com/stffrdhrn/or1k-toolchain-build + ====== ================================================= + +2) 构建 + +像往常一样构建Linux内核:: + + make ARCH=openrisc CROSS_COMPILE="or1k-linux-" defconfig + make ARCH=openrisc CROSS_COMPILE="or1k-linux-" + +3) 在FPGA上运行(可选) + +OpenRISC社区通常使用FuseSoC来管理构建和编程SoC到FPGA中。 下面是用 +OpenRISC SoC对De0 Nano开发板进行编程的一个例子。 在构建过程中, +FPGA RTL是从FuseSoC IP核库中下载的代码,并使用FPGA供应商工具构建。 +二进制文件用openocd加载到电路板上。 + +:: + + git clone https://github.com/olofk/fusesoc + cd fusesoc + sudo pip install -e . + + fusesoc init + fusesoc build de0_nano + fusesoc pgm de0_nano + + openocd -f interface/altera-usb-blaster.cfg \ + -f board/or1k_generic.cfg + + telnet localhost 4444 + > init + > halt; load_image vmlinux ; reset + +4) 在模拟器上运行(可选) + +QEMU是一个处理器仿真器,我们推荐它来模拟OpenRISC平台。 请按照QEMU网 +站上的OpenRISC说明,让Linux在QEMU上运行。 你可以自己构建QEMU,但你的 +Linux发行版可能提供了支持OpenRISC的二进制包。 + + ============= ====================================================== + qemu openrisc https://wiki.qemu.org/Documentation/Platforms/OpenRISC + ============= ====================================================== + +--------------------------------------------------------------------- + +术语表 +====== + +代码中使用了以下符号约定以将范围限制在几个特定处理器实现上: + +========= ======================= +openrisc: OpenRISC类型处理器 +or1k: OpenRISC 1000系列处理器 +or1200: OpenRISC 1200处理器 +========= ======================= + +--------------------------------------------------------------------- + +历史 +==== + +2003-11-18 Matjaz Breskvar (phoenix@bsemi.com) + 将linux初步移植到OpenRISC或32架构。 + 所有的核心功能都实现了,并且可以使用。 + +2003-12-08 Matjaz Breskvar (phoenix@bsemi.com) + 彻底改变TLB失误处理。 + 重写异常处理。 + 在默认的initrd中实现了sash-3.6的所有功能。 + 大幅改进的版本。 + +2004-04-10 Matjaz Breskvar (phoenix@bsemi.com) + 大量的bug修复。 + 支持以太网,http和telnet服务器功能。 + 可以运行许多标准的linux应用程序。 + +2004-06-26 Matjaz Breskvar (phoenix@bsemi.com) + 移植到2.6.x。 + +2004-11-30 Matjaz Breskvar (phoenix@bsemi.com) + 大量的bug修复和增强功能。 + 增加了opencores framebuffer驱动。 + +2010-10-09 Jonas Bonn (jonas@southpole.se) + 重大重写,使其与上游的Linux 2.6.36看齐。 diff --git a/Documentation/translations/zh_CN/arch/openrisc/todo.rst b/Documentation/translations/zh_CN/arch/openrisc/todo.rst new file mode 100644 index 0000000000..1f6f956166 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/openrisc/todo.rst @@ -0,0 +1,23 @@ +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/openrisc/todo.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +.. _cn_openrisc_todo.rst: + +======== +待办事项 +======== + +OpenRISC Linux的移植已经完全投入使用,并且从 2.6.35 开始就一直在上游同步。 +然而,还有一些剩余的项目需要在未来几个月内完成。 下面是一个即将进行调查的已知 +不尽完美的项目列表,即我们的待办事项列表。 + +- 实现其余的DMA API……dma_map_sg等。 + +- 完成重命名清理工作……代码中提到了or32,这是架构的一个老名字。 我们 + 已经确定的名字是or1k,这个改变正在以缓慢积累的方式进行。 目前,or32相当 + 于or1k。 diff --git a/Documentation/translations/zh_CN/arch/parisc/debugging.rst b/Documentation/translations/zh_CN/arch/parisc/debugging.rst new file mode 100644 index 0000000000..c6b9de6d31 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/parisc/debugging.rst @@ -0,0 +1,45 @@ +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/parisc/debugging.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +.. _cn_parisc_debugging: + +================= +调试PA-RISC +================= + +好吧,这里有一些关于调试linux/parisc的较底层部分的信息。 + + +1. 绝对地址 +===================== + +很多汇编代码目前运行在实模式下,这意味着会使用绝对地址,而不是像内核其他 +部分那样使用虚拟地址。要将绝对地址转换为虚拟地址,你可以在System.map中查 +找,添加__PAGE_OFFSET(目前是0x10000000)。 + + +2. HPMCs +======== + +当实模式的代码试图访问不存在的内存时,会出现HPMC(high priority machine +check)而不是内核oops。若要调试HPMC,请尝试找到系统响应程序/请求程序地址。 +系统请求程序地址应该与(某)处理器的HPA(I/O范围内的高地址)相匹配;系统响应程 +序地址是实模式代码试图访问的地址。 + +系统响应程序地址的典型值是大于__PAGE_OFFSET (0x10000000)的地址,这意味着 +在实模式试图访问它之前,虚拟地址没有被翻译成物理地址。 + + +3. 有趣的Q位 +============ + +某些非常关键的代码必须清除PSW中的Q位。当Q位被清除时,CPU不会更新中断处理 +程序所读取的寄存器,以找出机器被中断的位置——所以如果你在清除Q位的指令和再 +次设置Q位的RFI之间遇到中断,你不知道它到底发生在哪里。如果你幸运的话,IAOQ +会指向清除Q位的指令,如果你不幸运的话,它会指向任何地方。通常Q位的问题会 +表现为无法解释的系统挂起或物理内存越界。 diff --git a/Documentation/translations/zh_CN/arch/parisc/index.rst b/Documentation/translations/zh_CN/arch/parisc/index.rst new file mode 100644 index 0000000000..9f69283bd1 --- /dev/null +++ b/Documentation/translations/zh_CN/arch/parisc/index.rst @@ -0,0 +1,31 @@ +.. SPDX-License-Identifier: GPL-2.0 +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/parisc/index.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +.. _cn_parisc_index: + +==================== +PA-RISC体系架构 +==================== + +.. toctree:: + :maxdepth: 2 + + debugging + registers + +Todolist: + + features + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/translations/zh_CN/arch/parisc/registers.rst b/Documentation/translations/zh_CN/arch/parisc/registers.rst new file mode 100644 index 0000000000..a55250afcc --- /dev/null +++ b/Documentation/translations/zh_CN/arch/parisc/registers.rst @@ -0,0 +1,156 @@ +.. include:: ../../disclaimer-zh_CN.rst + +:Original: Documentation/arch/parisc/registers.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +.. _cn_parisc_registers: + +========================= +Linux/PA-RISC的寄存器用法 +========================= + +[ 用星号表示目前尚未实现的计划用途。 ] + +ABI约定的通用寄存器 +=================== + +控制寄存器 +---------- + +============================ ================================= +CR 0 (恢复计数器) 用于ptrace +CR 1-CR 7(无定义) 未使用 +CR 8 (Protection ID) 每进程值* +CR 9, 12, 13 (PIDS) 未使用 +CR10 (CCR) FPU延迟保存* +CR11 按照ABI的规定(SAR) +CR14 (中断向量) 初始化为 fault_vector +CR15 (EIEM) 所有位初始化为1* +CR16 (间隔计时器) 读取周期数/写入开始时间间隔计时器 +CR17-CR22 中断参数 +CR19 中断指令寄存器 +CR20 中断空间寄存器 +CR21 中断偏移量寄存器 +CR22 中断 PSW +CR23 (EIRR) 读取未决中断/写入清除位 +CR24 (TR 0) 内核空间页目录指针 +CR25 (TR 1) 用户空间页目录指针 +CR26 (TR 2) 不使用 +CR27 (TR 3) 线程描述符指针 +CR28 (TR 4) 不使用 +CR29 (TR 5) 不使用 +CR30 (TR 6) 当前 / 0 +CR31 (TR 7) 临时寄存器,在不同地方使用 +============================ ================================= + +空间寄存器(内核模式) +---------------------- + +======== ============================== +SR0 临时空间寄存器 +SR4-SR7 设置为0 +SR1 临时空间寄存器 +SR2 内核不应该破坏它 +SR3 用于用户空间访问(当前进程) +======== ============================== + +空间寄存器(用户模式) +---------------------- + +======== ============================ +SR0 临时空间寄存器 +SR1 临时空间寄存器 +SR2 保存Linux gateway page的空间 +SR3 在内核中保存用户地址空间的值 +SR4-SR7 定义了用户/内核的短地址空间 +======== ============================ + + +处理器状态字 +------------ + +====================== ================================================ +W (64位地址) 0 +E (小尾端) 0 +S (安全间隔计时器) 0 +T (产生分支陷阱) 0 +H (高特权级陷阱) 0 +L (低特权级陷阱) 0 +N (撤销下一条指令) 被C代码使用 +X (数据存储中断禁用) 0 +B (产生分支) 被C代码使用 +C (代码地址转译) 1, 在执行实模式代码时为0 +V (除法步长校正) 被C代码使用 +M (HPMC 掩码) 0, 在执行HPMC操作*时为1 +C/B (进/借 位) 被C代码使用 +O (有序引用) 1* +F (性能监视器) 0 +R (回收计数器陷阱) 0 +Q (收集中断状态) 1 (在rfi之前的代码中为0) +P (保护标识符) 1* +D (数据地址转译) 1, 在执行实模式代码时为0 +I (外部中断掩码) 由cli()/sti()宏使用。 +====================== ================================================ + +“隐形”寄存器(影子寄存器) +--------------------------- + +============= =================== +PSW W 默认值 0 +PSW E 默认值 0 +影子寄存器 被中断处理代码使用 +TOC启用位 1 +============= =================== + +---------------------------------------------------------- + +PA-RISC架构定义了7个寄存器作为“影子寄存器”。这些寄存器在 +RETURN FROM INTERRUPTION AND RESTORE指令中使用,通过消 +除中断处理程序中对一般寄存器(GR)的保存和恢复的需要来减 +少状态保存和恢复时间。影子寄存器是GRs 1, 8, 9, 16, 17, +24和25。 + +------------------------------------------------------------------------- + +寄存器使用说明,最初由John Marvin提供,并由Randolph Chung提供一些补充说明。 + +对于通用寄存器: + +r1,r2,r19-r26,r28,r29 & r31可以在不保存它们的情况下被使用。当然,如果你 +关心它们,在调用另一个程序之前,你也需要保存它们。上面的一些寄存器确实 +有特殊的含义,你应该注意一下: + + r1: + addil指令是硬性规定将其结果放在r1中,所以如果你使用这条指令要 + 注意这点。 + + r2: + 这就是返回指针。一般来说,你不想使用它,因为你需要这个指针来返 + 回给你的调用者。然而,它与这组寄存器组合在一起,因为调用者不能 + 依赖你返回时的值是相同的,也就是说,你可以将r2复制到另一个寄存 + 器,并在作废r2后通过该寄存器返回,这应该不会给调用程序带来问题。 + + r19-r22: + 这些通常被认为是临时寄存器。 + 请注意,在64位中它们是arg7-arg4。 + + r23-r26: + 这些是arg3-arg0,也就是说,如果你不再关心传入的值,你可以使用 + 它们。 + + r28,r29: + 这俩是ret0和ret1。它们是你传入返回值的地方。r28是主返回值。当返回 + 小结构体时,r29也可以用来将数据传回给调用程序。 + + r30: + 栈指针 + + r31: + ble指令将返回指针放在这里。 + + + r3-r18,r27,r30需要被保存和恢复。r3-r18只是一般用途的寄存器。 + r27是数据指针,用来使对全局变量的引用更容易。r30是栈指针。 |