summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kvm/book3s_hv.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /arch/powerpc/kvm/book3s_hv.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/powerpc/kvm/book3s_hv.c')
-rw-r--r--arch/powerpc/kvm/book3s_hv.c6360
1 files changed, 6360 insertions, 0 deletions
diff --git a/arch/powerpc/kvm/book3s_hv.c b/arch/powerpc/kvm/book3s_hv.c
new file mode 100644
index 0000000000..0429488ba1
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv.c
@@ -0,0 +1,6360 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
+ *
+ * Authors:
+ * Paul Mackerras <paulus@au1.ibm.com>
+ * Alexander Graf <agraf@suse.de>
+ * Kevin Wolf <mail@kevin-wolf.de>
+ *
+ * Description: KVM functions specific to running on Book 3S
+ * processors in hypervisor mode (specifically POWER7 and later).
+ *
+ * This file is derived from arch/powerpc/kvm/book3s.c,
+ * by Alexander Graf <agraf@suse.de>.
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/kernel.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/preempt.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/stat.h>
+#include <linux/delay.h>
+#include <linux/export.h>
+#include <linux/fs.h>
+#include <linux/anon_inodes.h>
+#include <linux/cpu.h>
+#include <linux/cpumask.h>
+#include <linux/spinlock.h>
+#include <linux/page-flags.h>
+#include <linux/srcu.h>
+#include <linux/miscdevice.h>
+#include <linux/debugfs.h>
+#include <linux/gfp.h>
+#include <linux/vmalloc.h>
+#include <linux/highmem.h>
+#include <linux/hugetlb.h>
+#include <linux/kvm_irqfd.h>
+#include <linux/irqbypass.h>
+#include <linux/module.h>
+#include <linux/compiler.h>
+#include <linux/of.h>
+#include <linux/irqdomain.h>
+#include <linux/smp.h>
+
+#include <asm/ftrace.h>
+#include <asm/reg.h>
+#include <asm/ppc-opcode.h>
+#include <asm/asm-prototypes.h>
+#include <asm/archrandom.h>
+#include <asm/debug.h>
+#include <asm/disassemble.h>
+#include <asm/cputable.h>
+#include <asm/cacheflush.h>
+#include <linux/uaccess.h>
+#include <asm/interrupt.h>
+#include <asm/io.h>
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/mmu_context.h>
+#include <asm/lppaca.h>
+#include <asm/pmc.h>
+#include <asm/processor.h>
+#include <asm/cputhreads.h>
+#include <asm/page.h>
+#include <asm/hvcall.h>
+#include <asm/switch_to.h>
+#include <asm/smp.h>
+#include <asm/dbell.h>
+#include <asm/hmi.h>
+#include <asm/pnv-pci.h>
+#include <asm/mmu.h>
+#include <asm/opal.h>
+#include <asm/xics.h>
+#include <asm/xive.h>
+#include <asm/hw_breakpoint.h>
+#include <asm/kvm_book3s_uvmem.h>
+#include <asm/ultravisor.h>
+#include <asm/dtl.h>
+#include <asm/plpar_wrappers.h>
+
+#include <trace/events/ipi.h>
+
+#include "book3s.h"
+#include "book3s_hv.h"
+
+#define CREATE_TRACE_POINTS
+#include "trace_hv.h"
+
+/* #define EXIT_DEBUG */
+/* #define EXIT_DEBUG_SIMPLE */
+/* #define EXIT_DEBUG_INT */
+
+/* Used to indicate that a guest page fault needs to be handled */
+#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
+/* Used to indicate that a guest passthrough interrupt needs to be handled */
+#define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
+
+/* Used as a "null" value for timebase values */
+#define TB_NIL (~(u64)0)
+
+static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
+
+static int dynamic_mt_modes = 6;
+module_param(dynamic_mt_modes, int, 0644);
+MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
+static int target_smt_mode;
+module_param(target_smt_mode, int, 0644);
+MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
+
+static bool one_vm_per_core;
+module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
+
+#ifdef CONFIG_KVM_XICS
+static const struct kernel_param_ops module_param_ops = {
+ .set = param_set_int,
+ .get = param_get_int,
+};
+
+module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
+MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
+
+module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
+MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
+#endif
+
+/* If set, guests are allowed to create and control nested guests */
+static bool nested = true;
+module_param(nested, bool, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
+
+static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
+
+/*
+ * RWMR values for POWER8. These control the rate at which PURR
+ * and SPURR count and should be set according to the number of
+ * online threads in the vcore being run.
+ */
+#define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
+#define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
+#define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
+#define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
+#define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
+#define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
+#define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
+#define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
+
+static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
+ RWMR_RPA_P8_1THREAD,
+ RWMR_RPA_P8_1THREAD,
+ RWMR_RPA_P8_2THREAD,
+ RWMR_RPA_P8_3THREAD,
+ RWMR_RPA_P8_4THREAD,
+ RWMR_RPA_P8_5THREAD,
+ RWMR_RPA_P8_6THREAD,
+ RWMR_RPA_P8_7THREAD,
+ RWMR_RPA_P8_8THREAD,
+};
+
+static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
+ int *ip)
+{
+ int i = *ip;
+ struct kvm_vcpu *vcpu;
+
+ while (++i < MAX_SMT_THREADS) {
+ vcpu = READ_ONCE(vc->runnable_threads[i]);
+ if (vcpu) {
+ *ip = i;
+ return vcpu;
+ }
+ }
+ return NULL;
+}
+
+/* Used to traverse the list of runnable threads for a given vcore */
+#define for_each_runnable_thread(i, vcpu, vc) \
+ for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
+
+static bool kvmppc_ipi_thread(int cpu)
+{
+ unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
+
+ /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
+ if (kvmhv_on_pseries())
+ return false;
+
+ /* On POWER9 we can use msgsnd to IPI any cpu */
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ msg |= get_hard_smp_processor_id(cpu);
+ smp_mb();
+ __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
+ return true;
+ }
+
+ /* On POWER8 for IPIs to threads in the same core, use msgsnd */
+ if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
+ preempt_disable();
+ if (cpu_first_thread_sibling(cpu) ==
+ cpu_first_thread_sibling(smp_processor_id())) {
+ msg |= cpu_thread_in_core(cpu);
+ smp_mb();
+ __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
+ preempt_enable();
+ return true;
+ }
+ preempt_enable();
+ }
+
+#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
+ if (cpu >= 0 && cpu < nr_cpu_ids) {
+ if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
+ xics_wake_cpu(cpu);
+ return true;
+ }
+ opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
+ return true;
+ }
+#endif
+
+ return false;
+}
+
+static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
+{
+ int cpu;
+ struct rcuwait *waitp;
+
+ /*
+ * rcuwait_wake_up contains smp_mb() which orders prior stores that
+ * create pending work vs below loads of cpu fields. The other side
+ * is the barrier in vcpu run that orders setting the cpu fields vs
+ * testing for pending work.
+ */
+
+ waitp = kvm_arch_vcpu_get_wait(vcpu);
+ if (rcuwait_wake_up(waitp))
+ ++vcpu->stat.generic.halt_wakeup;
+
+ cpu = READ_ONCE(vcpu->arch.thread_cpu);
+ if (cpu >= 0 && kvmppc_ipi_thread(cpu))
+ return;
+
+ /* CPU points to the first thread of the core */
+ cpu = vcpu->cpu;
+ if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
+ smp_send_reschedule(cpu);
+}
+
+/*
+ * We use the vcpu_load/put functions to measure stolen time.
+ *
+ * Stolen time is counted as time when either the vcpu is able to
+ * run as part of a virtual core, but the task running the vcore
+ * is preempted or sleeping, or when the vcpu needs something done
+ * in the kernel by the task running the vcpu, but that task is
+ * preempted or sleeping. Those two things have to be counted
+ * separately, since one of the vcpu tasks will take on the job
+ * of running the core, and the other vcpu tasks in the vcore will
+ * sleep waiting for it to do that, but that sleep shouldn't count
+ * as stolen time.
+ *
+ * Hence we accumulate stolen time when the vcpu can run as part of
+ * a vcore using vc->stolen_tb, and the stolen time when the vcpu
+ * needs its task to do other things in the kernel (for example,
+ * service a page fault) in busy_stolen. We don't accumulate
+ * stolen time for a vcore when it is inactive, or for a vcpu
+ * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
+ * a misnomer; it means that the vcpu task is not executing in
+ * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
+ * the kernel. We don't have any way of dividing up that time
+ * between time that the vcpu is genuinely stopped, time that
+ * the task is actively working on behalf of the vcpu, and time
+ * that the task is preempted, so we don't count any of it as
+ * stolen.
+ *
+ * Updates to busy_stolen are protected by arch.tbacct_lock;
+ * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
+ * lock. The stolen times are measured in units of timebase ticks.
+ * (Note that the != TB_NIL checks below are purely defensive;
+ * they should never fail.)
+ *
+ * The POWER9 path is simpler, one vcpu per virtual core so the
+ * former case does not exist. If a vcpu is preempted when it is
+ * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
+ * the stolen cycles in busy_stolen. RUNNING is not a preemptible
+ * state in the P9 path.
+ */
+
+static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
+{
+ unsigned long flags;
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ spin_lock_irqsave(&vc->stoltb_lock, flags);
+ vc->preempt_tb = tb;
+ spin_unlock_irqrestore(&vc->stoltb_lock, flags);
+}
+
+static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
+{
+ unsigned long flags;
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ spin_lock_irqsave(&vc->stoltb_lock, flags);
+ if (vc->preempt_tb != TB_NIL) {
+ vc->stolen_tb += tb - vc->preempt_tb;
+ vc->preempt_tb = TB_NIL;
+ }
+ spin_unlock_irqrestore(&vc->stoltb_lock, flags);
+}
+
+static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ unsigned long flags;
+ u64 now;
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ if (vcpu->arch.busy_preempt != TB_NIL) {
+ WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
+ vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
+ vcpu->arch.busy_preempt = TB_NIL;
+ }
+ return;
+ }
+
+ now = mftb();
+
+ /*
+ * We can test vc->runner without taking the vcore lock,
+ * because only this task ever sets vc->runner to this
+ * vcpu, and once it is set to this vcpu, only this task
+ * ever sets it to NULL.
+ */
+ if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
+ kvmppc_core_end_stolen(vc, now);
+
+ spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
+ if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
+ vcpu->arch.busy_preempt != TB_NIL) {
+ vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
+ vcpu->arch.busy_preempt = TB_NIL;
+ }
+ spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
+}
+
+static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ unsigned long flags;
+ u64 now;
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ /*
+ * In the P9 path, RUNNABLE is not preemptible
+ * (nor takes host interrupts)
+ */
+ WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
+ /*
+ * Account stolen time when preempted while the vcpu task is
+ * running in the kernel (but not in qemu, which is INACTIVE).
+ */
+ if (task_is_running(current) &&
+ vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
+ vcpu->arch.busy_preempt = mftb();
+ return;
+ }
+
+ now = mftb();
+
+ if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
+ kvmppc_core_start_stolen(vc, now);
+
+ spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
+ if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
+ vcpu->arch.busy_preempt = now;
+ spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
+}
+
+static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
+{
+ vcpu->arch.pvr = pvr;
+}
+
+/* Dummy value used in computing PCR value below */
+#define PCR_ARCH_31 (PCR_ARCH_300 << 1)
+
+static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
+{
+ unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+
+ /* We can (emulate) our own architecture version and anything older */
+ if (cpu_has_feature(CPU_FTR_ARCH_31))
+ host_pcr_bit = PCR_ARCH_31;
+ else if (cpu_has_feature(CPU_FTR_ARCH_300))
+ host_pcr_bit = PCR_ARCH_300;
+ else if (cpu_has_feature(CPU_FTR_ARCH_207S))
+ host_pcr_bit = PCR_ARCH_207;
+ else if (cpu_has_feature(CPU_FTR_ARCH_206))
+ host_pcr_bit = PCR_ARCH_206;
+ else
+ host_pcr_bit = PCR_ARCH_205;
+
+ /* Determine lowest PCR bit needed to run guest in given PVR level */
+ guest_pcr_bit = host_pcr_bit;
+ if (arch_compat) {
+ switch (arch_compat) {
+ case PVR_ARCH_205:
+ guest_pcr_bit = PCR_ARCH_205;
+ break;
+ case PVR_ARCH_206:
+ case PVR_ARCH_206p:
+ guest_pcr_bit = PCR_ARCH_206;
+ break;
+ case PVR_ARCH_207:
+ guest_pcr_bit = PCR_ARCH_207;
+ break;
+ case PVR_ARCH_300:
+ guest_pcr_bit = PCR_ARCH_300;
+ break;
+ case PVR_ARCH_31:
+ guest_pcr_bit = PCR_ARCH_31;
+ break;
+ default:
+ return -EINVAL;
+ }
+ }
+
+ /* Check requested PCR bits don't exceed our capabilities */
+ if (guest_pcr_bit > host_pcr_bit)
+ return -EINVAL;
+
+ spin_lock(&vc->lock);
+ vc->arch_compat = arch_compat;
+ /*
+ * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
+ * Also set all reserved PCR bits
+ */
+ vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
+ spin_unlock(&vc->lock);
+
+ return 0;
+}
+
+static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
+{
+ int r;
+
+ pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
+ pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
+ vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
+ for (r = 0; r < 16; ++r)
+ pr_err("r%2d = %.16lx r%d = %.16lx\n",
+ r, kvmppc_get_gpr(vcpu, r),
+ r+16, kvmppc_get_gpr(vcpu, r+16));
+ pr_err("ctr = %.16lx lr = %.16lx\n",
+ vcpu->arch.regs.ctr, vcpu->arch.regs.link);
+ pr_err("srr0 = %.16llx srr1 = %.16llx\n",
+ vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
+ pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
+ vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
+ pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
+ vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
+ pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
+ vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
+ pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
+ pr_err("fault dar = %.16lx dsisr = %.8x\n",
+ vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
+ pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
+ for (r = 0; r < vcpu->arch.slb_max; ++r)
+ pr_err(" ESID = %.16llx VSID = %.16llx\n",
+ vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
+ pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
+ vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
+ vcpu->arch.last_inst);
+}
+
+static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
+{
+ return kvm_get_vcpu_by_id(kvm, id);
+}
+
+static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
+{
+ vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
+ vpa->yield_count = cpu_to_be32(1);
+}
+
+static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
+ unsigned long addr, unsigned long len)
+{
+ /* check address is cacheline aligned */
+ if (addr & (L1_CACHE_BYTES - 1))
+ return -EINVAL;
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ if (v->next_gpa != addr || v->len != len) {
+ v->next_gpa = addr;
+ v->len = addr ? len : 0;
+ v->update_pending = 1;
+ }
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ return 0;
+}
+
+/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
+struct reg_vpa {
+ u32 dummy;
+ union {
+ __be16 hword;
+ __be32 word;
+ } length;
+};
+
+static int vpa_is_registered(struct kvmppc_vpa *vpap)
+{
+ if (vpap->update_pending)
+ return vpap->next_gpa != 0;
+ return vpap->pinned_addr != NULL;
+}
+
+static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
+ unsigned long flags,
+ unsigned long vcpuid, unsigned long vpa)
+{
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long len, nb;
+ void *va;
+ struct kvm_vcpu *tvcpu;
+ int err;
+ int subfunc;
+ struct kvmppc_vpa *vpap;
+
+ tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
+ if (!tvcpu)
+ return H_PARAMETER;
+
+ subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
+ if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
+ subfunc == H_VPA_REG_SLB) {
+ /* Registering new area - address must be cache-line aligned */
+ if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
+ return H_PARAMETER;
+
+ /* convert logical addr to kernel addr and read length */
+ va = kvmppc_pin_guest_page(kvm, vpa, &nb);
+ if (va == NULL)
+ return H_PARAMETER;
+ if (subfunc == H_VPA_REG_VPA)
+ len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
+ else
+ len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
+ kvmppc_unpin_guest_page(kvm, va, vpa, false);
+
+ /* Check length */
+ if (len > nb || len < sizeof(struct reg_vpa))
+ return H_PARAMETER;
+ } else {
+ vpa = 0;
+ len = 0;
+ }
+
+ err = H_PARAMETER;
+ vpap = NULL;
+ spin_lock(&tvcpu->arch.vpa_update_lock);
+
+ switch (subfunc) {
+ case H_VPA_REG_VPA: /* register VPA */
+ /*
+ * The size of our lppaca is 1kB because of the way we align
+ * it for the guest to avoid crossing a 4kB boundary. We only
+ * use 640 bytes of the structure though, so we should accept
+ * clients that set a size of 640.
+ */
+ BUILD_BUG_ON(sizeof(struct lppaca) != 640);
+ if (len < sizeof(struct lppaca))
+ break;
+ vpap = &tvcpu->arch.vpa;
+ err = 0;
+ break;
+
+ case H_VPA_REG_DTL: /* register DTL */
+ if (len < sizeof(struct dtl_entry))
+ break;
+ len -= len % sizeof(struct dtl_entry);
+
+ /* Check that they have previously registered a VPA */
+ err = H_RESOURCE;
+ if (!vpa_is_registered(&tvcpu->arch.vpa))
+ break;
+
+ vpap = &tvcpu->arch.dtl;
+ err = 0;
+ break;
+
+ case H_VPA_REG_SLB: /* register SLB shadow buffer */
+ /* Check that they have previously registered a VPA */
+ err = H_RESOURCE;
+ if (!vpa_is_registered(&tvcpu->arch.vpa))
+ break;
+
+ vpap = &tvcpu->arch.slb_shadow;
+ err = 0;
+ break;
+
+ case H_VPA_DEREG_VPA: /* deregister VPA */
+ /* Check they don't still have a DTL or SLB buf registered */
+ err = H_RESOURCE;
+ if (vpa_is_registered(&tvcpu->arch.dtl) ||
+ vpa_is_registered(&tvcpu->arch.slb_shadow))
+ break;
+
+ vpap = &tvcpu->arch.vpa;
+ err = 0;
+ break;
+
+ case H_VPA_DEREG_DTL: /* deregister DTL */
+ vpap = &tvcpu->arch.dtl;
+ err = 0;
+ break;
+
+ case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
+ vpap = &tvcpu->arch.slb_shadow;
+ err = 0;
+ break;
+ }
+
+ if (vpap) {
+ vpap->next_gpa = vpa;
+ vpap->len = len;
+ vpap->update_pending = 1;
+ }
+
+ spin_unlock(&tvcpu->arch.vpa_update_lock);
+
+ return err;
+}
+
+static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
+{
+ struct kvm *kvm = vcpu->kvm;
+ void *va;
+ unsigned long nb;
+ unsigned long gpa;
+
+ /*
+ * We need to pin the page pointed to by vpap->next_gpa,
+ * but we can't call kvmppc_pin_guest_page under the lock
+ * as it does get_user_pages() and down_read(). So we
+ * have to drop the lock, pin the page, then get the lock
+ * again and check that a new area didn't get registered
+ * in the meantime.
+ */
+ for (;;) {
+ gpa = vpap->next_gpa;
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ va = NULL;
+ nb = 0;
+ if (gpa)
+ va = kvmppc_pin_guest_page(kvm, gpa, &nb);
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ if (gpa == vpap->next_gpa)
+ break;
+ /* sigh... unpin that one and try again */
+ if (va)
+ kvmppc_unpin_guest_page(kvm, va, gpa, false);
+ }
+
+ vpap->update_pending = 0;
+ if (va && nb < vpap->len) {
+ /*
+ * If it's now too short, it must be that userspace
+ * has changed the mappings underlying guest memory,
+ * so unregister the region.
+ */
+ kvmppc_unpin_guest_page(kvm, va, gpa, false);
+ va = NULL;
+ }
+ if (vpap->pinned_addr)
+ kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
+ vpap->dirty);
+ vpap->gpa = gpa;
+ vpap->pinned_addr = va;
+ vpap->dirty = false;
+ if (va)
+ vpap->pinned_end = va + vpap->len;
+}
+
+static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.vpa.update_pending ||
+ vcpu->arch.slb_shadow.update_pending ||
+ vcpu->arch.dtl.update_pending))
+ return;
+
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ if (vcpu->arch.vpa.update_pending) {
+ kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
+ if (vcpu->arch.vpa.pinned_addr)
+ init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
+ }
+ if (vcpu->arch.dtl.update_pending) {
+ kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
+ vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
+ vcpu->arch.dtl_index = 0;
+ }
+ if (vcpu->arch.slb_shadow.update_pending)
+ kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+}
+
+/*
+ * Return the accumulated stolen time for the vcore up until `now'.
+ * The caller should hold the vcore lock.
+ */
+static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
+{
+ u64 p;
+ unsigned long flags;
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ spin_lock_irqsave(&vc->stoltb_lock, flags);
+ p = vc->stolen_tb;
+ if (vc->vcore_state != VCORE_INACTIVE &&
+ vc->preempt_tb != TB_NIL)
+ p += now - vc->preempt_tb;
+ spin_unlock_irqrestore(&vc->stoltb_lock, flags);
+ return p;
+}
+
+static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
+ struct lppaca *vpa,
+ unsigned int pcpu, u64 now,
+ unsigned long stolen)
+{
+ struct dtl_entry *dt;
+
+ dt = vcpu->arch.dtl_ptr;
+
+ if (!dt)
+ return;
+
+ dt->dispatch_reason = 7;
+ dt->preempt_reason = 0;
+ dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
+ dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
+ dt->ready_to_enqueue_time = 0;
+ dt->waiting_to_ready_time = 0;
+ dt->timebase = cpu_to_be64(now);
+ dt->fault_addr = 0;
+ dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
+ dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
+
+ ++dt;
+ if (dt == vcpu->arch.dtl.pinned_end)
+ dt = vcpu->arch.dtl.pinned_addr;
+ vcpu->arch.dtl_ptr = dt;
+ /* order writing *dt vs. writing vpa->dtl_idx */
+ smp_wmb();
+ vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
+
+ /* vcpu->arch.dtl.dirty is set by the caller */
+}
+
+static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
+ struct kvmppc_vcore *vc)
+{
+ struct lppaca *vpa;
+ unsigned long stolen;
+ unsigned long core_stolen;
+ u64 now;
+ unsigned long flags;
+
+ vpa = vcpu->arch.vpa.pinned_addr;
+ if (!vpa)
+ return;
+
+ now = mftb();
+
+ core_stolen = vcore_stolen_time(vc, now);
+ stolen = core_stolen - vcpu->arch.stolen_logged;
+ vcpu->arch.stolen_logged = core_stolen;
+ spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
+ stolen += vcpu->arch.busy_stolen;
+ vcpu->arch.busy_stolen = 0;
+ spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
+
+ vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
+
+ __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + vc->tb_offset, stolen);
+
+ vcpu->arch.vpa.dirty = true;
+}
+
+static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
+ struct kvmppc_vcore *vc,
+ u64 now)
+{
+ struct lppaca *vpa;
+ unsigned long stolen;
+ unsigned long stolen_delta;
+
+ vpa = vcpu->arch.vpa.pinned_addr;
+ if (!vpa)
+ return;
+
+ stolen = vc->stolen_tb;
+ stolen_delta = stolen - vcpu->arch.stolen_logged;
+ vcpu->arch.stolen_logged = stolen;
+
+ vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
+
+ __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
+
+ vcpu->arch.vpa.dirty = true;
+}
+
+/* See if there is a doorbell interrupt pending for a vcpu */
+static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
+{
+ int thr;
+ struct kvmppc_vcore *vc;
+
+ if (vcpu->arch.doorbell_request)
+ return true;
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ return false;
+ /*
+ * Ensure that the read of vcore->dpdes comes after the read
+ * of vcpu->doorbell_request. This barrier matches the
+ * smp_wmb() in kvmppc_guest_entry_inject().
+ */
+ smp_rmb();
+ vc = vcpu->arch.vcore;
+ thr = vcpu->vcpu_id - vc->first_vcpuid;
+ return !!(vc->dpdes & (1 << thr));
+}
+
+static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
+ return true;
+ if ((!vcpu->arch.vcore->arch_compat) &&
+ cpu_has_feature(CPU_FTR_ARCH_207S))
+ return true;
+ return false;
+}
+
+static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
+ unsigned long resource, unsigned long value1,
+ unsigned long value2)
+{
+ switch (resource) {
+ case H_SET_MODE_RESOURCE_SET_CIABR:
+ if (!kvmppc_power8_compatible(vcpu))
+ return H_P2;
+ if (value2)
+ return H_P4;
+ if (mflags)
+ return H_UNSUPPORTED_FLAG_START;
+ /* Guests can't breakpoint the hypervisor */
+ if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
+ return H_P3;
+ kvmppc_set_ciabr_hv(vcpu, value1);
+ return H_SUCCESS;
+ case H_SET_MODE_RESOURCE_SET_DAWR0:
+ if (!kvmppc_power8_compatible(vcpu))
+ return H_P2;
+ if (!ppc_breakpoint_available())
+ return H_P2;
+ if (mflags)
+ return H_UNSUPPORTED_FLAG_START;
+ if (value2 & DABRX_HYP)
+ return H_P4;
+ kvmppc_set_dawr0_hv(vcpu, value1);
+ kvmppc_set_dawrx0_hv(vcpu, value2);
+ return H_SUCCESS;
+ case H_SET_MODE_RESOURCE_SET_DAWR1:
+ if (!kvmppc_power8_compatible(vcpu))
+ return H_P2;
+ if (!ppc_breakpoint_available())
+ return H_P2;
+ if (!cpu_has_feature(CPU_FTR_DAWR1))
+ return H_P2;
+ if (!vcpu->kvm->arch.dawr1_enabled)
+ return H_FUNCTION;
+ if (mflags)
+ return H_UNSUPPORTED_FLAG_START;
+ if (value2 & DABRX_HYP)
+ return H_P4;
+ kvmppc_set_dawr1_hv(vcpu, value1);
+ kvmppc_set_dawrx1_hv(vcpu, value2);
+ return H_SUCCESS;
+ case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
+ /*
+ * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
+ * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
+ */
+ if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
+ kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
+ return H_UNSUPPORTED_FLAG_START;
+ return H_TOO_HARD;
+ default:
+ return H_TOO_HARD;
+ }
+}
+
+/* Copy guest memory in place - must reside within a single memslot */
+static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
+ unsigned long len)
+{
+ struct kvm_memory_slot *to_memslot = NULL;
+ struct kvm_memory_slot *from_memslot = NULL;
+ unsigned long to_addr, from_addr;
+ int r;
+
+ /* Get HPA for from address */
+ from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
+ if (!from_memslot)
+ return -EFAULT;
+ if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
+ << PAGE_SHIFT))
+ return -EINVAL;
+ from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
+ if (kvm_is_error_hva(from_addr))
+ return -EFAULT;
+ from_addr |= (from & (PAGE_SIZE - 1));
+
+ /* Get HPA for to address */
+ to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
+ if (!to_memslot)
+ return -EFAULT;
+ if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
+ << PAGE_SHIFT))
+ return -EINVAL;
+ to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
+ if (kvm_is_error_hva(to_addr))
+ return -EFAULT;
+ to_addr |= (to & (PAGE_SIZE - 1));
+
+ /* Perform copy */
+ r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
+ len);
+ if (r)
+ return -EFAULT;
+ mark_page_dirty(kvm, to >> PAGE_SHIFT);
+ return 0;
+}
+
+static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
+ unsigned long dest, unsigned long src)
+{
+ u64 pg_sz = SZ_4K; /* 4K page size */
+ u64 pg_mask = SZ_4K - 1;
+ int ret;
+
+ /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
+ if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
+ H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
+ return H_PARAMETER;
+
+ /* dest (and src if copy_page flag set) must be page aligned */
+ if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
+ return H_PARAMETER;
+
+ /* zero and/or copy the page as determined by the flags */
+ if (flags & H_COPY_PAGE) {
+ ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
+ if (ret < 0)
+ return H_PARAMETER;
+ } else if (flags & H_ZERO_PAGE) {
+ ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
+ if (ret < 0)
+ return H_PARAMETER;
+ }
+
+ /* We can ignore the remaining flags */
+
+ return H_SUCCESS;
+}
+
+static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
+{
+ struct kvmppc_vcore *vcore = target->arch.vcore;
+
+ /*
+ * We expect to have been called by the real mode handler
+ * (kvmppc_rm_h_confer()) which would have directly returned
+ * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
+ * have useful work to do and should not confer) so we don't
+ * recheck that here.
+ *
+ * In the case of the P9 single vcpu per vcore case, the real
+ * mode handler is not called but no other threads are in the
+ * source vcore.
+ */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
+ spin_lock(&vcore->lock);
+ if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
+ vcore->vcore_state != VCORE_INACTIVE &&
+ vcore->runner)
+ target = vcore->runner;
+ spin_unlock(&vcore->lock);
+ }
+
+ return kvm_vcpu_yield_to(target);
+}
+
+static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
+{
+ int yield_count = 0;
+ struct lppaca *lppaca;
+
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
+ if (lppaca)
+ yield_count = be32_to_cpu(lppaca->yield_count);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ return yield_count;
+}
+
+/*
+ * H_RPT_INVALIDATE hcall handler for nested guests.
+ *
+ * Handles only nested process-scoped invalidation requests in L0.
+ */
+static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
+{
+ unsigned long type = kvmppc_get_gpr(vcpu, 6);
+ unsigned long pid, pg_sizes, start, end;
+
+ /*
+ * The partition-scoped invalidations aren't handled here in L0.
+ */
+ if (type & H_RPTI_TYPE_NESTED)
+ return RESUME_HOST;
+
+ pid = kvmppc_get_gpr(vcpu, 4);
+ pg_sizes = kvmppc_get_gpr(vcpu, 7);
+ start = kvmppc_get_gpr(vcpu, 8);
+ end = kvmppc_get_gpr(vcpu, 9);
+
+ do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
+ type, pg_sizes, start, end);
+
+ kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
+ return RESUME_GUEST;
+}
+
+static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
+ unsigned long id, unsigned long target,
+ unsigned long type, unsigned long pg_sizes,
+ unsigned long start, unsigned long end)
+{
+ if (!kvm_is_radix(vcpu->kvm))
+ return H_UNSUPPORTED;
+
+ if (end < start)
+ return H_P5;
+
+ /*
+ * Partition-scoped invalidation for nested guests.
+ */
+ if (type & H_RPTI_TYPE_NESTED) {
+ if (!nesting_enabled(vcpu->kvm))
+ return H_FUNCTION;
+
+ /* Support only cores as target */
+ if (target != H_RPTI_TARGET_CMMU)
+ return H_P2;
+
+ return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
+ start, end);
+ }
+
+ /*
+ * Process-scoped invalidation for L1 guests.
+ */
+ do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
+ type, pg_sizes, start, end);
+ return H_SUCCESS;
+}
+
+int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long req = kvmppc_get_gpr(vcpu, 3);
+ unsigned long target, ret = H_SUCCESS;
+ int yield_count;
+ struct kvm_vcpu *tvcpu;
+ int idx, rc;
+
+ if (req <= MAX_HCALL_OPCODE &&
+ !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
+ return RESUME_HOST;
+
+ switch (req) {
+ case H_REMOVE:
+ ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_ENTER:
+ ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6),
+ kvmppc_get_gpr(vcpu, 7));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_READ:
+ ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_CLEAR_MOD:
+ ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_CLEAR_REF:
+ ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_PROTECT:
+ ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_BULK_REMOVE:
+ ret = kvmppc_h_bulk_remove(vcpu);
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+
+ case H_CEDE:
+ break;
+ case H_PROD:
+ target = kvmppc_get_gpr(vcpu, 4);
+ tvcpu = kvmppc_find_vcpu(kvm, target);
+ if (!tvcpu) {
+ ret = H_PARAMETER;
+ break;
+ }
+ tvcpu->arch.prodded = 1;
+ smp_mb(); /* This orders prodded store vs ceded load */
+ if (tvcpu->arch.ceded)
+ kvmppc_fast_vcpu_kick_hv(tvcpu);
+ break;
+ case H_CONFER:
+ target = kvmppc_get_gpr(vcpu, 4);
+ if (target == -1)
+ break;
+ tvcpu = kvmppc_find_vcpu(kvm, target);
+ if (!tvcpu) {
+ ret = H_PARAMETER;
+ break;
+ }
+ yield_count = kvmppc_get_gpr(vcpu, 5);
+ if (kvmppc_get_yield_count(tvcpu) != yield_count)
+ break;
+ kvm_arch_vcpu_yield_to(tvcpu);
+ break;
+ case H_REGISTER_VPA:
+ ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ break;
+ case H_RTAS:
+ if (list_empty(&kvm->arch.rtas_tokens))
+ return RESUME_HOST;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ rc = kvmppc_rtas_hcall(vcpu);
+ srcu_read_unlock(&kvm->srcu, idx);
+
+ if (rc == -ENOENT)
+ return RESUME_HOST;
+ else if (rc == 0)
+ break;
+
+ /* Send the error out to userspace via KVM_RUN */
+ return rc;
+ case H_LOGICAL_CI_LOAD:
+ ret = kvmppc_h_logical_ci_load(vcpu);
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_LOGICAL_CI_STORE:
+ ret = kvmppc_h_logical_ci_store(vcpu);
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_SET_MODE:
+ ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6),
+ kvmppc_get_gpr(vcpu, 7));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_XIRR:
+ case H_CPPR:
+ case H_EOI:
+ case H_IPI:
+ case H_IPOLL:
+ case H_XIRR_X:
+ if (kvmppc_xics_enabled(vcpu)) {
+ if (xics_on_xive()) {
+ ret = H_NOT_AVAILABLE;
+ return RESUME_GUEST;
+ }
+ ret = kvmppc_xics_hcall(vcpu, req);
+ break;
+ }
+ return RESUME_HOST;
+ case H_SET_DABR:
+ ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
+ break;
+ case H_SET_XDABR:
+ ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ break;
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+ case H_GET_TCE:
+ ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_PUT_TCE:
+ ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_PUT_TCE_INDIRECT:
+ ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6),
+ kvmppc_get_gpr(vcpu, 7));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_STUFF_TCE:
+ ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6),
+ kvmppc_get_gpr(vcpu, 7));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+#endif
+ case H_RANDOM:
+ if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1))
+ ret = H_HARDWARE;
+ break;
+ case H_RPT_INVALIDATE:
+ ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6),
+ kvmppc_get_gpr(vcpu, 7),
+ kvmppc_get_gpr(vcpu, 8),
+ kvmppc_get_gpr(vcpu, 9));
+ break;
+
+ case H_SET_PARTITION_TABLE:
+ ret = H_FUNCTION;
+ if (nesting_enabled(kvm))
+ ret = kvmhv_set_partition_table(vcpu);
+ break;
+ case H_ENTER_NESTED:
+ ret = H_FUNCTION;
+ if (!nesting_enabled(kvm))
+ break;
+ ret = kvmhv_enter_nested_guest(vcpu);
+ if (ret == H_INTERRUPT) {
+ kvmppc_set_gpr(vcpu, 3, 0);
+ vcpu->arch.hcall_needed = 0;
+ return -EINTR;
+ } else if (ret == H_TOO_HARD) {
+ kvmppc_set_gpr(vcpu, 3, 0);
+ vcpu->arch.hcall_needed = 0;
+ return RESUME_HOST;
+ }
+ break;
+ case H_TLB_INVALIDATE:
+ ret = H_FUNCTION;
+ if (nesting_enabled(kvm))
+ ret = kvmhv_do_nested_tlbie(vcpu);
+ break;
+ case H_COPY_TOFROM_GUEST:
+ ret = H_FUNCTION;
+ if (nesting_enabled(kvm))
+ ret = kvmhv_copy_tofrom_guest_nested(vcpu);
+ break;
+ case H_PAGE_INIT:
+ ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ break;
+ case H_SVM_PAGE_IN:
+ ret = H_UNSUPPORTED;
+ if (kvmppc_get_srr1(vcpu) & MSR_S)
+ ret = kvmppc_h_svm_page_in(kvm,
+ kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ break;
+ case H_SVM_PAGE_OUT:
+ ret = H_UNSUPPORTED;
+ if (kvmppc_get_srr1(vcpu) & MSR_S)
+ ret = kvmppc_h_svm_page_out(kvm,
+ kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ break;
+ case H_SVM_INIT_START:
+ ret = H_UNSUPPORTED;
+ if (kvmppc_get_srr1(vcpu) & MSR_S)
+ ret = kvmppc_h_svm_init_start(kvm);
+ break;
+ case H_SVM_INIT_DONE:
+ ret = H_UNSUPPORTED;
+ if (kvmppc_get_srr1(vcpu) & MSR_S)
+ ret = kvmppc_h_svm_init_done(kvm);
+ break;
+ case H_SVM_INIT_ABORT:
+ /*
+ * Even if that call is made by the Ultravisor, the SSR1 value
+ * is the guest context one, with the secure bit clear as it has
+ * not yet been secured. So we can't check it here.
+ * Instead the kvm->arch.secure_guest flag is checked inside
+ * kvmppc_h_svm_init_abort().
+ */
+ ret = kvmppc_h_svm_init_abort(kvm);
+ break;
+
+ default:
+ return RESUME_HOST;
+ }
+ WARN_ON_ONCE(ret == H_TOO_HARD);
+ kvmppc_set_gpr(vcpu, 3, ret);
+ vcpu->arch.hcall_needed = 0;
+ return RESUME_GUEST;
+}
+
+/*
+ * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
+ * handlers in book3s_hv_rmhandlers.S.
+ *
+ * This has to be done early, not in kvmppc_pseries_do_hcall(), so
+ * that the cede logic in kvmppc_run_single_vcpu() works properly.
+ */
+static void kvmppc_cede(struct kvm_vcpu *vcpu)
+{
+ __kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE);
+ vcpu->arch.ceded = 1;
+ smp_mb();
+ if (vcpu->arch.prodded) {
+ vcpu->arch.prodded = 0;
+ smp_mb();
+ vcpu->arch.ceded = 0;
+ }
+}
+
+static int kvmppc_hcall_impl_hv(unsigned long cmd)
+{
+ switch (cmd) {
+ case H_CEDE:
+ case H_PROD:
+ case H_CONFER:
+ case H_REGISTER_VPA:
+ case H_SET_MODE:
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+ case H_GET_TCE:
+ case H_PUT_TCE:
+ case H_PUT_TCE_INDIRECT:
+ case H_STUFF_TCE:
+#endif
+ case H_LOGICAL_CI_LOAD:
+ case H_LOGICAL_CI_STORE:
+#ifdef CONFIG_KVM_XICS
+ case H_XIRR:
+ case H_CPPR:
+ case H_EOI:
+ case H_IPI:
+ case H_IPOLL:
+ case H_XIRR_X:
+#endif
+ case H_PAGE_INIT:
+ case H_RPT_INVALIDATE:
+ return 1;
+ }
+
+ /* See if it's in the real-mode table */
+ return kvmppc_hcall_impl_hv_realmode(cmd);
+}
+
+static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
+{
+ ppc_inst_t last_inst;
+
+ if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
+ EMULATE_DONE) {
+ /*
+ * Fetch failed, so return to guest and
+ * try executing it again.
+ */
+ return RESUME_GUEST;
+ }
+
+ if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
+ vcpu->run->exit_reason = KVM_EXIT_DEBUG;
+ vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
+ return RESUME_HOST;
+ } else {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
+ (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
+ return RESUME_GUEST;
+ }
+}
+
+static void do_nothing(void *x)
+{
+}
+
+static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
+{
+ int thr, cpu, pcpu, nthreads;
+ struct kvm_vcpu *v;
+ unsigned long dpdes;
+
+ nthreads = vcpu->kvm->arch.emul_smt_mode;
+ dpdes = 0;
+ cpu = vcpu->vcpu_id & ~(nthreads - 1);
+ for (thr = 0; thr < nthreads; ++thr, ++cpu) {
+ v = kvmppc_find_vcpu(vcpu->kvm, cpu);
+ if (!v)
+ continue;
+ /*
+ * If the vcpu is currently running on a physical cpu thread,
+ * interrupt it in order to pull it out of the guest briefly,
+ * which will update its vcore->dpdes value.
+ */
+ pcpu = READ_ONCE(v->cpu);
+ if (pcpu >= 0)
+ smp_call_function_single(pcpu, do_nothing, NULL, 1);
+ if (kvmppc_doorbell_pending(v))
+ dpdes |= 1 << thr;
+ }
+ return dpdes;
+}
+
+/*
+ * On POWER9, emulate doorbell-related instructions in order to
+ * give the guest the illusion of running on a multi-threaded core.
+ * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
+ * and mfspr DPDES.
+ */
+static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
+{
+ u32 inst, rb, thr;
+ unsigned long arg;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_vcpu *tvcpu;
+ ppc_inst_t pinst;
+
+ if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
+ return RESUME_GUEST;
+ inst = ppc_inst_val(pinst);
+ if (get_op(inst) != 31)
+ return EMULATE_FAIL;
+ rb = get_rb(inst);
+ thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
+ switch (get_xop(inst)) {
+ case OP_31_XOP_MSGSNDP:
+ arg = kvmppc_get_gpr(vcpu, rb);
+ if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
+ break;
+ arg &= 0x7f;
+ if (arg >= kvm->arch.emul_smt_mode)
+ break;
+ tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
+ if (!tvcpu)
+ break;
+ if (!tvcpu->arch.doorbell_request) {
+ tvcpu->arch.doorbell_request = 1;
+ kvmppc_fast_vcpu_kick_hv(tvcpu);
+ }
+ break;
+ case OP_31_XOP_MSGCLRP:
+ arg = kvmppc_get_gpr(vcpu, rb);
+ if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
+ break;
+ vcpu->arch.vcore->dpdes = 0;
+ vcpu->arch.doorbell_request = 0;
+ break;
+ case OP_31_XOP_MFSPR:
+ switch (get_sprn(inst)) {
+ case SPRN_TIR:
+ arg = thr;
+ break;
+ case SPRN_DPDES:
+ arg = kvmppc_read_dpdes(vcpu);
+ break;
+ default:
+ return EMULATE_FAIL;
+ }
+ kvmppc_set_gpr(vcpu, get_rt(inst), arg);
+ break;
+ default:
+ return EMULATE_FAIL;
+ }
+ kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
+ return RESUME_GUEST;
+}
+
+/*
+ * If the lppaca had pmcregs_in_use clear when we exited the guest, then
+ * HFSCR_PM is cleared for next entry. If the guest then tries to access
+ * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
+ * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
+ * allow the guest access to continue.
+ */
+static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
+ return EMULATE_FAIL;
+
+ kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM);
+
+ return RESUME_GUEST;
+}
+
+static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
+ return EMULATE_FAIL;
+
+ kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB);
+
+ return RESUME_GUEST;
+}
+
+static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
+ return EMULATE_FAIL;
+
+ kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
+
+ return RESUME_GUEST;
+}
+
+static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
+ struct task_struct *tsk)
+{
+ struct kvm_run *run = vcpu->run;
+ int r = RESUME_HOST;
+
+ vcpu->stat.sum_exits++;
+
+ /*
+ * This can happen if an interrupt occurs in the last stages
+ * of guest entry or the first stages of guest exit (i.e. after
+ * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
+ * and before setting it to KVM_GUEST_MODE_HOST_HV).
+ * That can happen due to a bug, or due to a machine check
+ * occurring at just the wrong time.
+ */
+ if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
+ printk(KERN_EMERG "KVM trap in HV mode!\n");
+ printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
+ vcpu->arch.trap, kvmppc_get_pc(vcpu),
+ vcpu->arch.shregs.msr);
+ kvmppc_dump_regs(vcpu);
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ run->hw.hardware_exit_reason = vcpu->arch.trap;
+ return RESUME_HOST;
+ }
+ run->exit_reason = KVM_EXIT_UNKNOWN;
+ run->ready_for_interrupt_injection = 1;
+ switch (vcpu->arch.trap) {
+ /* We're good on these - the host merely wanted to get our attention */
+ case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
+ WARN_ON_ONCE(1); /* Should never happen */
+ vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
+ fallthrough;
+ case BOOK3S_INTERRUPT_HV_DECREMENTER:
+ vcpu->stat.dec_exits++;
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_EXTERNAL:
+ case BOOK3S_INTERRUPT_H_DOORBELL:
+ case BOOK3S_INTERRUPT_H_VIRT:
+ vcpu->stat.ext_intr_exits++;
+ r = RESUME_GUEST;
+ break;
+ /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
+ case BOOK3S_INTERRUPT_HMI:
+ case BOOK3S_INTERRUPT_PERFMON:
+ case BOOK3S_INTERRUPT_SYSTEM_RESET:
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_MACHINE_CHECK: {
+ static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
+ DEFAULT_RATELIMIT_BURST);
+ /*
+ * Print the MCE event to host console. Ratelimit so the guest
+ * can't flood the host log.
+ */
+ if (__ratelimit(&rs))
+ machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
+
+ /*
+ * If the guest can do FWNMI, exit to userspace so it can
+ * deliver a FWNMI to the guest.
+ * Otherwise we synthesize a machine check for the guest
+ * so that it knows that the machine check occurred.
+ */
+ if (!vcpu->kvm->arch.fwnmi_enabled) {
+ ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) |
+ (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
+ kvmppc_core_queue_machine_check(vcpu, flags);
+ r = RESUME_GUEST;
+ break;
+ }
+
+ /* Exit to guest with KVM_EXIT_NMI as exit reason */
+ run->exit_reason = KVM_EXIT_NMI;
+ run->hw.hardware_exit_reason = vcpu->arch.trap;
+ /* Clear out the old NMI status from run->flags */
+ run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
+ /* Now set the NMI status */
+ if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
+ run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
+ else
+ run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
+
+ r = RESUME_HOST;
+ break;
+ }
+ case BOOK3S_INTERRUPT_PROGRAM:
+ {
+ ulong flags;
+ /*
+ * Normally program interrupts are delivered directly
+ * to the guest by the hardware, but we can get here
+ * as a result of a hypervisor emulation interrupt
+ * (e40) getting turned into a 700 by BML RTAS.
+ */
+ flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) |
+ (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
+ kvmppc_core_queue_program(vcpu, flags);
+ r = RESUME_GUEST;
+ break;
+ }
+ case BOOK3S_INTERRUPT_SYSCALL:
+ {
+ int i;
+
+ if (unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
+ /*
+ * Guest userspace executed sc 1. This can only be
+ * reached by the P9 path because the old path
+ * handles this case in realmode hcall handlers.
+ */
+ if (!kvmhv_vcpu_is_radix(vcpu)) {
+ /*
+ * A guest could be running PR KVM, so this
+ * may be a PR KVM hcall. It must be reflected
+ * to the guest kernel as a sc interrupt.
+ */
+ kvmppc_core_queue_syscall(vcpu);
+ } else {
+ /*
+ * Radix guests can not run PR KVM or nested HV
+ * hash guests which might run PR KVM, so this
+ * is always a privilege fault. Send a program
+ * check to guest kernel.
+ */
+ kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
+ }
+ r = RESUME_GUEST;
+ break;
+ }
+
+ /*
+ * hcall - gather args and set exit_reason. This will next be
+ * handled by kvmppc_pseries_do_hcall which may be able to deal
+ * with it and resume guest, or may punt to userspace.
+ */
+ run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
+ for (i = 0; i < 9; ++i)
+ run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
+ run->exit_reason = KVM_EXIT_PAPR_HCALL;
+ vcpu->arch.hcall_needed = 1;
+ r = RESUME_HOST;
+ break;
+ }
+ /*
+ * We get these next two if the guest accesses a page which it thinks
+ * it has mapped but which is not actually present, either because
+ * it is for an emulated I/O device or because the corresonding
+ * host page has been paged out.
+ *
+ * Any other HDSI/HISI interrupts have been handled already for P7/8
+ * guests. For POWER9 hash guests not using rmhandlers, basic hash
+ * fault handling is done here.
+ */
+ case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
+ unsigned long vsid;
+ long err;
+
+ if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
+ unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
+ r = RESUME_GUEST; /* Just retry if it's the canary */
+ break;
+ }
+
+ if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
+ /*
+ * Radix doesn't require anything, and pre-ISAv3.0 hash
+ * already attempted to handle this in rmhandlers. The
+ * hash fault handling below is v3 only (it uses ASDR
+ * via fault_gpa).
+ */
+ r = RESUME_PAGE_FAULT;
+ break;
+ }
+
+ if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
+ kvmppc_core_queue_data_storage(vcpu,
+ kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
+ vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
+ r = RESUME_GUEST;
+ break;
+ }
+
+ if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR))
+ vsid = vcpu->kvm->arch.vrma_slb_v;
+ else
+ vsid = vcpu->arch.fault_gpa;
+
+ err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
+ vsid, vcpu->arch.fault_dsisr, true);
+ if (err == 0) {
+ r = RESUME_GUEST;
+ } else if (err == -1 || err == -2) {
+ r = RESUME_PAGE_FAULT;
+ } else {
+ kvmppc_core_queue_data_storage(vcpu,
+ kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
+ vcpu->arch.fault_dar, err);
+ r = RESUME_GUEST;
+ }
+ break;
+ }
+ case BOOK3S_INTERRUPT_H_INST_STORAGE: {
+ unsigned long vsid;
+ long err;
+
+ vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
+ vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) &
+ DSISR_SRR1_MATCH_64S;
+ if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
+ /*
+ * Radix doesn't require anything, and pre-ISAv3.0 hash
+ * already attempted to handle this in rmhandlers. The
+ * hash fault handling below is v3 only (it uses ASDR
+ * via fault_gpa).
+ */
+ if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
+ vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
+ r = RESUME_PAGE_FAULT;
+ break;
+ }
+
+ if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
+ kvmppc_core_queue_inst_storage(vcpu,
+ vcpu->arch.fault_dsisr |
+ (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
+ r = RESUME_GUEST;
+ break;
+ }
+
+ if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR))
+ vsid = vcpu->kvm->arch.vrma_slb_v;
+ else
+ vsid = vcpu->arch.fault_gpa;
+
+ err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
+ vsid, vcpu->arch.fault_dsisr, false);
+ if (err == 0) {
+ r = RESUME_GUEST;
+ } else if (err == -1) {
+ r = RESUME_PAGE_FAULT;
+ } else {
+ kvmppc_core_queue_inst_storage(vcpu,
+ err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
+ r = RESUME_GUEST;
+ }
+ break;
+ }
+
+ /*
+ * This occurs if the guest executes an illegal instruction.
+ * If the guest debug is disabled, generate a program interrupt
+ * to the guest. If guest debug is enabled, we need to check
+ * whether the instruction is a software breakpoint instruction.
+ * Accordingly return to Guest or Host.
+ */
+ case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
+ if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
+ vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
+ swab32(vcpu->arch.emul_inst) :
+ vcpu->arch.emul_inst;
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
+ r = kvmppc_emulate_debug_inst(vcpu);
+ } else {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
+ (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
+ r = RESUME_GUEST;
+ }
+ break;
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case BOOK3S_INTERRUPT_HV_SOFTPATCH:
+ /*
+ * This occurs for various TM-related instructions that
+ * we need to emulate on POWER9 DD2.2. We have already
+ * handled the cases where the guest was in real-suspend
+ * mode and was transitioning to transactional state.
+ */
+ r = kvmhv_p9_tm_emulation(vcpu);
+ if (r != -1)
+ break;
+ fallthrough; /* go to facility unavailable handler */
+#endif
+
+ /*
+ * This occurs if the guest (kernel or userspace), does something that
+ * is prohibited by HFSCR.
+ * On POWER9, this could be a doorbell instruction that we need
+ * to emulate.
+ * Otherwise, we just generate a program interrupt to the guest.
+ */
+ case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
+ u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56;
+
+ r = EMULATE_FAIL;
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ if (cause == FSCR_MSGP_LG)
+ r = kvmppc_emulate_doorbell_instr(vcpu);
+ if (cause == FSCR_PM_LG)
+ r = kvmppc_pmu_unavailable(vcpu);
+ if (cause == FSCR_EBB_LG)
+ r = kvmppc_ebb_unavailable(vcpu);
+ if (cause == FSCR_TM_LG)
+ r = kvmppc_tm_unavailable(vcpu);
+ }
+ if (r == EMULATE_FAIL) {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
+ (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
+ r = RESUME_GUEST;
+ }
+ break;
+ }
+
+ case BOOK3S_INTERRUPT_HV_RM_HARD:
+ r = RESUME_PASSTHROUGH;
+ break;
+ default:
+ kvmppc_dump_regs(vcpu);
+ printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
+ vcpu->arch.trap, kvmppc_get_pc(vcpu),
+ __kvmppc_get_msr_hv(vcpu));
+ run->hw.hardware_exit_reason = vcpu->arch.trap;
+ r = RESUME_HOST;
+ break;
+ }
+
+ return r;
+}
+
+static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
+{
+ int r;
+ int srcu_idx;
+
+ vcpu->stat.sum_exits++;
+
+ /*
+ * This can happen if an interrupt occurs in the last stages
+ * of guest entry or the first stages of guest exit (i.e. after
+ * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
+ * and before setting it to KVM_GUEST_MODE_HOST_HV).
+ * That can happen due to a bug, or due to a machine check
+ * occurring at just the wrong time.
+ */
+ if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
+ pr_emerg("KVM trap in HV mode while nested!\n");
+ pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
+ vcpu->arch.trap, kvmppc_get_pc(vcpu),
+ __kvmppc_get_msr_hv(vcpu));
+ kvmppc_dump_regs(vcpu);
+ return RESUME_HOST;
+ }
+ switch (vcpu->arch.trap) {
+ /* We're good on these - the host merely wanted to get our attention */
+ case BOOK3S_INTERRUPT_HV_DECREMENTER:
+ vcpu->stat.dec_exits++;
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_EXTERNAL:
+ vcpu->stat.ext_intr_exits++;
+ r = RESUME_HOST;
+ break;
+ case BOOK3S_INTERRUPT_H_DOORBELL:
+ case BOOK3S_INTERRUPT_H_VIRT:
+ vcpu->stat.ext_intr_exits++;
+ r = RESUME_GUEST;
+ break;
+ /* These need to go to the nested HV */
+ case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
+ vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
+ vcpu->stat.dec_exits++;
+ r = RESUME_HOST;
+ break;
+ /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
+ case BOOK3S_INTERRUPT_HMI:
+ case BOOK3S_INTERRUPT_PERFMON:
+ case BOOK3S_INTERRUPT_SYSTEM_RESET:
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_MACHINE_CHECK:
+ {
+ static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
+ DEFAULT_RATELIMIT_BURST);
+ /* Pass the machine check to the L1 guest */
+ r = RESUME_HOST;
+ /* Print the MCE event to host console. */
+ if (__ratelimit(&rs))
+ machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
+ break;
+ }
+ /*
+ * We get these next two if the guest accesses a page which it thinks
+ * it has mapped but which is not actually present, either because
+ * it is for an emulated I/O device or because the corresonding
+ * host page has been paged out.
+ */
+ case BOOK3S_INTERRUPT_H_DATA_STORAGE:
+ srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = kvmhv_nested_page_fault(vcpu);
+ srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
+ break;
+ case BOOK3S_INTERRUPT_H_INST_STORAGE:
+ vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
+ vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
+ DSISR_SRR1_MATCH_64S;
+ if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
+ vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
+ srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = kvmhv_nested_page_fault(vcpu);
+ srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
+ break;
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case BOOK3S_INTERRUPT_HV_SOFTPATCH:
+ /*
+ * This occurs for various TM-related instructions that
+ * we need to emulate on POWER9 DD2.2. We have already
+ * handled the cases where the guest was in real-suspend
+ * mode and was transitioning to transactional state.
+ */
+ r = kvmhv_p9_tm_emulation(vcpu);
+ if (r != -1)
+ break;
+ fallthrough; /* go to facility unavailable handler */
+#endif
+
+ case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
+ u64 cause = vcpu->arch.hfscr >> 56;
+
+ /*
+ * Only pass HFU interrupts to the L1 if the facility is
+ * permitted but disabled by the L1's HFSCR, otherwise
+ * the interrupt does not make sense to the L1 so turn
+ * it into a HEAI.
+ */
+ if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
+ (vcpu->arch.nested_hfscr & (1UL << cause))) {
+ ppc_inst_t pinst;
+ vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
+
+ /*
+ * If the fetch failed, return to guest and
+ * try executing it again.
+ */
+ r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
+ vcpu->arch.emul_inst = ppc_inst_val(pinst);
+ if (r != EMULATE_DONE)
+ r = RESUME_GUEST;
+ else
+ r = RESUME_HOST;
+ } else {
+ r = RESUME_HOST;
+ }
+
+ break;
+ }
+
+ case BOOK3S_INTERRUPT_HV_RM_HARD:
+ vcpu->arch.trap = 0;
+ r = RESUME_GUEST;
+ if (!xics_on_xive())
+ kvmppc_xics_rm_complete(vcpu, 0);
+ break;
+ case BOOK3S_INTERRUPT_SYSCALL:
+ {
+ unsigned long req = kvmppc_get_gpr(vcpu, 3);
+
+ /*
+ * The H_RPT_INVALIDATE hcalls issued by nested
+ * guests for process-scoped invalidations when
+ * GTSE=0, are handled here in L0.
+ */
+ if (req == H_RPT_INVALIDATE) {
+ r = kvmppc_nested_h_rpt_invalidate(vcpu);
+ break;
+ }
+
+ r = RESUME_HOST;
+ break;
+ }
+ default:
+ r = RESUME_HOST;
+ break;
+ }
+
+ return r;
+}
+
+static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ int i;
+
+ memset(sregs, 0, sizeof(struct kvm_sregs));
+ sregs->pvr = vcpu->arch.pvr;
+ for (i = 0; i < vcpu->arch.slb_max; i++) {
+ sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
+ sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
+ }
+
+ return 0;
+}
+
+static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ int i, j;
+
+ /* Only accept the same PVR as the host's, since we can't spoof it */
+ if (sregs->pvr != vcpu->arch.pvr)
+ return -EINVAL;
+
+ j = 0;
+ for (i = 0; i < vcpu->arch.slb_nr; i++) {
+ if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
+ vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
+ vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
+ ++j;
+ }
+ }
+ vcpu->arch.slb_max = j;
+
+ return 0;
+}
+
+/*
+ * Enforce limits on guest LPCR values based on hardware availability,
+ * guest configuration, and possibly hypervisor support and security
+ * concerns.
+ */
+unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
+{
+ /* LPCR_TC only applies to HPT guests */
+ if (kvm_is_radix(kvm))
+ lpcr &= ~LPCR_TC;
+
+ /* On POWER8 and above, userspace can modify AIL */
+ if (!cpu_has_feature(CPU_FTR_ARCH_207S))
+ lpcr &= ~LPCR_AIL;
+ if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
+ lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
+ /*
+ * On some POWER9s we force AIL off for radix guests to prevent
+ * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
+ * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
+ * be cached, which the host TLB management does not expect.
+ */
+ if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
+ lpcr &= ~LPCR_AIL;
+
+ /*
+ * On POWER9, allow userspace to enable large decrementer for the
+ * guest, whether or not the host has it enabled.
+ */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ lpcr &= ~LPCR_LD;
+
+ return lpcr;
+}
+
+static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
+{
+ if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
+ WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
+ lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
+ }
+}
+
+static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
+ bool preserve_top32)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ u64 mask;
+
+ spin_lock(&vc->lock);
+
+ /*
+ * Userspace can only modify
+ * DPFD (default prefetch depth), ILE (interrupt little-endian),
+ * TC (translation control), AIL (alternate interrupt location),
+ * LD (large decrementer).
+ * These are subject to restrictions from kvmppc_filter_lcpr_hv().
+ */
+ mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
+
+ /* Broken 32-bit version of LPCR must not clear top bits */
+ if (preserve_top32)
+ mask &= 0xFFFFFFFF;
+
+ new_lpcr = kvmppc_filter_lpcr_hv(kvm,
+ (vc->lpcr & ~mask) | (new_lpcr & mask));
+
+ /*
+ * If ILE (interrupt little-endian) has changed, update the
+ * MSR_LE bit in the intr_msr for each vcpu in this vcore.
+ */
+ if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (vcpu->arch.vcore != vc)
+ continue;
+ if (new_lpcr & LPCR_ILE)
+ vcpu->arch.intr_msr |= MSR_LE;
+ else
+ vcpu->arch.intr_msr &= ~MSR_LE;
+ }
+ }
+
+ vc->lpcr = new_lpcr;
+
+ spin_unlock(&vc->lock);
+}
+
+static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+ long int i;
+
+ switch (id) {
+ case KVM_REG_PPC_DEBUG_INST:
+ *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
+ break;
+ case KVM_REG_PPC_HIOR:
+ *val = get_reg_val(id, 0);
+ break;
+ case KVM_REG_PPC_DABR:
+ *val = get_reg_val(id, vcpu->arch.dabr);
+ break;
+ case KVM_REG_PPC_DABRX:
+ *val = get_reg_val(id, vcpu->arch.dabrx);
+ break;
+ case KVM_REG_PPC_DSCR:
+ *val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu));
+ break;
+ case KVM_REG_PPC_PURR:
+ *val = get_reg_val(id, kvmppc_get_purr_hv(vcpu));
+ break;
+ case KVM_REG_PPC_SPURR:
+ *val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu));
+ break;
+ case KVM_REG_PPC_AMR:
+ *val = get_reg_val(id, kvmppc_get_amr_hv(vcpu));
+ break;
+ case KVM_REG_PPC_UAMOR:
+ *val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu));
+ break;
+ case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
+ i = id - KVM_REG_PPC_MMCR0;
+ *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i));
+ break;
+ case KVM_REG_PPC_MMCR2:
+ *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2));
+ break;
+ case KVM_REG_PPC_MMCRA:
+ *val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu));
+ break;
+ case KVM_REG_PPC_MMCRS:
+ *val = get_reg_val(id, vcpu->arch.mmcrs);
+ break;
+ case KVM_REG_PPC_MMCR3:
+ *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3));
+ break;
+ case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
+ i = id - KVM_REG_PPC_PMC1;
+ *val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i));
+ break;
+ case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
+ i = id - KVM_REG_PPC_SPMC1;
+ *val = get_reg_val(id, vcpu->arch.spmc[i]);
+ break;
+ case KVM_REG_PPC_SIAR:
+ *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
+ break;
+ case KVM_REG_PPC_SDAR:
+ *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
+ break;
+ case KVM_REG_PPC_SIER:
+ *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0));
+ break;
+ case KVM_REG_PPC_SIER2:
+ *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1));
+ break;
+ case KVM_REG_PPC_SIER3:
+ *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2));
+ break;
+ case KVM_REG_PPC_IAMR:
+ *val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu));
+ break;
+ case KVM_REG_PPC_PSPB:
+ *val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu));
+ break;
+ case KVM_REG_PPC_DPDES:
+ /*
+ * On POWER9, where we are emulating msgsndp etc.,
+ * we return 1 bit for each vcpu, which can come from
+ * either vcore->dpdes or doorbell_request.
+ * On POWER8, doorbell_request is 0.
+ */
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ *val = get_reg_val(id, vcpu->arch.doorbell_request);
+ else
+ *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
+ break;
+ case KVM_REG_PPC_VTB:
+ *val = get_reg_val(id, vcpu->arch.vcore->vtb);
+ break;
+ case KVM_REG_PPC_DAWR:
+ *val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu));
+ break;
+ case KVM_REG_PPC_DAWRX:
+ *val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu));
+ break;
+ case KVM_REG_PPC_DAWR1:
+ *val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu));
+ break;
+ case KVM_REG_PPC_DAWRX1:
+ *val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu));
+ break;
+ case KVM_REG_PPC_CIABR:
+ *val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu));
+ break;
+ case KVM_REG_PPC_CSIGR:
+ *val = get_reg_val(id, vcpu->arch.csigr);
+ break;
+ case KVM_REG_PPC_TACR:
+ *val = get_reg_val(id, vcpu->arch.tacr);
+ break;
+ case KVM_REG_PPC_TCSCR:
+ *val = get_reg_val(id, vcpu->arch.tcscr);
+ break;
+ case KVM_REG_PPC_PID:
+ *val = get_reg_val(id, vcpu->arch.pid);
+ break;
+ case KVM_REG_PPC_ACOP:
+ *val = get_reg_val(id, vcpu->arch.acop);
+ break;
+ case KVM_REG_PPC_WORT:
+ *val = get_reg_val(id, kvmppc_get_wort_hv(vcpu));
+ break;
+ case KVM_REG_PPC_TIDR:
+ *val = get_reg_val(id, vcpu->arch.tid);
+ break;
+ case KVM_REG_PPC_PSSCR:
+ *val = get_reg_val(id, vcpu->arch.psscr);
+ break;
+ case KVM_REG_PPC_VPA_ADDR:
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ break;
+ case KVM_REG_PPC_VPA_SLB:
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
+ val->vpaval.length = vcpu->arch.slb_shadow.len;
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ break;
+ case KVM_REG_PPC_VPA_DTL:
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ val->vpaval.addr = vcpu->arch.dtl.next_gpa;
+ val->vpaval.length = vcpu->arch.dtl.len;
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ break;
+ case KVM_REG_PPC_TB_OFFSET:
+ *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
+ break;
+ case KVM_REG_PPC_LPCR:
+ case KVM_REG_PPC_LPCR_64:
+ *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
+ break;
+ case KVM_REG_PPC_PPR:
+ *val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu));
+ break;
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case KVM_REG_PPC_TFHAR:
+ *val = get_reg_val(id, vcpu->arch.tfhar);
+ break;
+ case KVM_REG_PPC_TFIAR:
+ *val = get_reg_val(id, vcpu->arch.tfiar);
+ break;
+ case KVM_REG_PPC_TEXASR:
+ *val = get_reg_val(id, vcpu->arch.texasr);
+ break;
+ case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
+ i = id - KVM_REG_PPC_TM_GPR0;
+ *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
+ break;
+ case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
+ {
+ int j;
+ i = id - KVM_REG_PPC_TM_VSR0;
+ if (i < 32)
+ for (j = 0; j < TS_FPRWIDTH; j++)
+ val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
+ else {
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ val->vval = vcpu->arch.vr_tm.vr[i-32];
+ else
+ r = -ENXIO;
+ }
+ break;
+ }
+ case KVM_REG_PPC_TM_CR:
+ *val = get_reg_val(id, vcpu->arch.cr_tm);
+ break;
+ case KVM_REG_PPC_TM_XER:
+ *val = get_reg_val(id, vcpu->arch.xer_tm);
+ break;
+ case KVM_REG_PPC_TM_LR:
+ *val = get_reg_val(id, vcpu->arch.lr_tm);
+ break;
+ case KVM_REG_PPC_TM_CTR:
+ *val = get_reg_val(id, vcpu->arch.ctr_tm);
+ break;
+ case KVM_REG_PPC_TM_FPSCR:
+ *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
+ break;
+ case KVM_REG_PPC_TM_AMR:
+ *val = get_reg_val(id, vcpu->arch.amr_tm);
+ break;
+ case KVM_REG_PPC_TM_PPR:
+ *val = get_reg_val(id, vcpu->arch.ppr_tm);
+ break;
+ case KVM_REG_PPC_TM_VRSAVE:
+ *val = get_reg_val(id, vcpu->arch.vrsave_tm);
+ break;
+ case KVM_REG_PPC_TM_VSCR:
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
+ else
+ r = -ENXIO;
+ break;
+ case KVM_REG_PPC_TM_DSCR:
+ *val = get_reg_val(id, vcpu->arch.dscr_tm);
+ break;
+ case KVM_REG_PPC_TM_TAR:
+ *val = get_reg_val(id, vcpu->arch.tar_tm);
+ break;
+#endif
+ case KVM_REG_PPC_ARCH_COMPAT:
+ *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
+ break;
+ case KVM_REG_PPC_DEC_EXPIRY:
+ *val = get_reg_val(id, vcpu->arch.dec_expires);
+ break;
+ case KVM_REG_PPC_ONLINE:
+ *val = get_reg_val(id, vcpu->arch.online);
+ break;
+ case KVM_REG_PPC_PTCR:
+ *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
+ break;
+ case KVM_REG_PPC_FSCR:
+ *val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu));
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+ long int i;
+ unsigned long addr, len;
+
+ switch (id) {
+ case KVM_REG_PPC_HIOR:
+ /* Only allow this to be set to zero */
+ if (set_reg_val(id, *val))
+ r = -EINVAL;
+ break;
+ case KVM_REG_PPC_DABR:
+ vcpu->arch.dabr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_DABRX:
+ vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
+ break;
+ case KVM_REG_PPC_DSCR:
+ kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_PURR:
+ kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_SPURR:
+ kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_AMR:
+ kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_UAMOR:
+ kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
+ i = id - KVM_REG_PPC_MMCR0;
+ kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_MMCR2:
+ kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_MMCRA:
+ kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_MMCRS:
+ vcpu->arch.mmcrs = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_MMCR3:
+ *val = get_reg_val(id, vcpu->arch.mmcr[3]);
+ break;
+ case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
+ i = id - KVM_REG_PPC_PMC1;
+ kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
+ i = id - KVM_REG_PPC_SPMC1;
+ vcpu->arch.spmc[i] = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_SIAR:
+ kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_SDAR:
+ kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_SIER:
+ kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_SIER2:
+ kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_SIER3:
+ kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_IAMR:
+ kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_PSPB:
+ kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_DPDES:
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
+ else
+ vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_VTB:
+ vcpu->arch.vcore->vtb = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_DAWR:
+ kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_DAWRX:
+ kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
+ break;
+ case KVM_REG_PPC_DAWR1:
+ kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_DAWRX1:
+ kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
+ break;
+ case KVM_REG_PPC_CIABR:
+ kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val));
+ /* Don't allow setting breakpoints in hypervisor code */
+ if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER)
+ kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV);
+ break;
+ case KVM_REG_PPC_CSIGR:
+ vcpu->arch.csigr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TACR:
+ vcpu->arch.tacr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TCSCR:
+ vcpu->arch.tcscr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_PID:
+ vcpu->arch.pid = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_ACOP:
+ vcpu->arch.acop = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_WORT:
+ kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_TIDR:
+ vcpu->arch.tid = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_PSSCR:
+ vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
+ break;
+ case KVM_REG_PPC_VPA_ADDR:
+ addr = set_reg_val(id, *val);
+ r = -EINVAL;
+ if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
+ vcpu->arch.dtl.next_gpa))
+ break;
+ r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
+ break;
+ case KVM_REG_PPC_VPA_SLB:
+ addr = val->vpaval.addr;
+ len = val->vpaval.length;
+ r = -EINVAL;
+ if (addr && !vcpu->arch.vpa.next_gpa)
+ break;
+ r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
+ break;
+ case KVM_REG_PPC_VPA_DTL:
+ addr = val->vpaval.addr;
+ len = val->vpaval.length;
+ r = -EINVAL;
+ if (addr && (len < sizeof(struct dtl_entry) ||
+ !vcpu->arch.vpa.next_gpa))
+ break;
+ len -= len % sizeof(struct dtl_entry);
+ r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
+ break;
+ case KVM_REG_PPC_TB_OFFSET:
+ {
+ /* round up to multiple of 2^24 */
+ u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
+
+ /*
+ * Now that we know the timebase offset, update the
+ * decrementer expiry with a guest timebase value. If
+ * the userspace does not set DEC_EXPIRY, this ensures
+ * a migrated vcpu at least starts with an expired
+ * decrementer, which is better than a large one that
+ * causes a hang.
+ */
+ if (!vcpu->arch.dec_expires && tb_offset)
+ vcpu->arch.dec_expires = get_tb() + tb_offset;
+
+ vcpu->arch.vcore->tb_offset = tb_offset;
+ break;
+ }
+ case KVM_REG_PPC_LPCR:
+ kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
+ break;
+ case KVM_REG_PPC_LPCR_64:
+ kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
+ break;
+ case KVM_REG_PPC_PPR:
+ kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val));
+ break;
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case KVM_REG_PPC_TFHAR:
+ vcpu->arch.tfhar = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TFIAR:
+ vcpu->arch.tfiar = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TEXASR:
+ vcpu->arch.texasr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
+ i = id - KVM_REG_PPC_TM_GPR0;
+ vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
+ {
+ int j;
+ i = id - KVM_REG_PPC_TM_VSR0;
+ if (i < 32)
+ for (j = 0; j < TS_FPRWIDTH; j++)
+ vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
+ else
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ vcpu->arch.vr_tm.vr[i-32] = val->vval;
+ else
+ r = -ENXIO;
+ break;
+ }
+ case KVM_REG_PPC_TM_CR:
+ vcpu->arch.cr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_XER:
+ vcpu->arch.xer_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_LR:
+ vcpu->arch.lr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_CTR:
+ vcpu->arch.ctr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_FPSCR:
+ vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_AMR:
+ vcpu->arch.amr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_PPR:
+ vcpu->arch.ppr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_VRSAVE:
+ vcpu->arch.vrsave_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_VSCR:
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
+ else
+ r = - ENXIO;
+ break;
+ case KVM_REG_PPC_TM_DSCR:
+ vcpu->arch.dscr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_TAR:
+ vcpu->arch.tar_tm = set_reg_val(id, *val);
+ break;
+#endif
+ case KVM_REG_PPC_ARCH_COMPAT:
+ r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_DEC_EXPIRY:
+ vcpu->arch.dec_expires = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_ONLINE:
+ i = set_reg_val(id, *val);
+ if (i && !vcpu->arch.online)
+ atomic_inc(&vcpu->arch.vcore->online_count);
+ else if (!i && vcpu->arch.online)
+ atomic_dec(&vcpu->arch.vcore->online_count);
+ vcpu->arch.online = i;
+ break;
+ case KVM_REG_PPC_PTCR:
+ vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_FSCR:
+ kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val));
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+/*
+ * On POWER9, threads are independent and can be in different partitions.
+ * Therefore we consider each thread to be a subcore.
+ * There is a restriction that all threads have to be in the same
+ * MMU mode (radix or HPT), unfortunately, but since we only support
+ * HPT guests on a HPT host so far, that isn't an impediment yet.
+ */
+static int threads_per_vcore(struct kvm *kvm)
+{
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ return 1;
+ return threads_per_subcore;
+}
+
+static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
+{
+ struct kvmppc_vcore *vcore;
+
+ vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
+
+ if (vcore == NULL)
+ return NULL;
+
+ spin_lock_init(&vcore->lock);
+ spin_lock_init(&vcore->stoltb_lock);
+ rcuwait_init(&vcore->wait);
+ vcore->preempt_tb = TB_NIL;
+ vcore->lpcr = kvm->arch.lpcr;
+ vcore->first_vcpuid = id;
+ vcore->kvm = kvm;
+ INIT_LIST_HEAD(&vcore->preempt_list);
+
+ return vcore;
+}
+
+#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
+static struct debugfs_timings_element {
+ const char *name;
+ size_t offset;
+} timings[] = {
+#ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
+ {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)},
+ {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
+ {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)},
+ {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)},
+ {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)},
+ {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)},
+ {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)},
+#else
+ {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
+ {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
+ {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
+ {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
+ {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
+#endif
+};
+
+#define N_TIMINGS (ARRAY_SIZE(timings))
+
+struct debugfs_timings_state {
+ struct kvm_vcpu *vcpu;
+ unsigned int buflen;
+ char buf[N_TIMINGS * 100];
+};
+
+static int debugfs_timings_open(struct inode *inode, struct file *file)
+{
+ struct kvm_vcpu *vcpu = inode->i_private;
+ struct debugfs_timings_state *p;
+
+ p = kzalloc(sizeof(*p), GFP_KERNEL);
+ if (!p)
+ return -ENOMEM;
+
+ kvm_get_kvm(vcpu->kvm);
+ p->vcpu = vcpu;
+ file->private_data = p;
+
+ return nonseekable_open(inode, file);
+}
+
+static int debugfs_timings_release(struct inode *inode, struct file *file)
+{
+ struct debugfs_timings_state *p = file->private_data;
+
+ kvm_put_kvm(p->vcpu->kvm);
+ kfree(p);
+ return 0;
+}
+
+static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
+ size_t len, loff_t *ppos)
+{
+ struct debugfs_timings_state *p = file->private_data;
+ struct kvm_vcpu *vcpu = p->vcpu;
+ char *s, *buf_end;
+ struct kvmhv_tb_accumulator tb;
+ u64 count;
+ loff_t pos;
+ ssize_t n;
+ int i, loops;
+ bool ok;
+
+ if (!p->buflen) {
+ s = p->buf;
+ buf_end = s + sizeof(p->buf);
+ for (i = 0; i < N_TIMINGS; ++i) {
+ struct kvmhv_tb_accumulator *acc;
+
+ acc = (struct kvmhv_tb_accumulator *)
+ ((unsigned long)vcpu + timings[i].offset);
+ ok = false;
+ for (loops = 0; loops < 1000; ++loops) {
+ count = acc->seqcount;
+ if (!(count & 1)) {
+ smp_rmb();
+ tb = *acc;
+ smp_rmb();
+ if (count == acc->seqcount) {
+ ok = true;
+ break;
+ }
+ }
+ udelay(1);
+ }
+ if (!ok)
+ snprintf(s, buf_end - s, "%s: stuck\n",
+ timings[i].name);
+ else
+ snprintf(s, buf_end - s,
+ "%s: %llu %llu %llu %llu\n",
+ timings[i].name, count / 2,
+ tb_to_ns(tb.tb_total),
+ tb_to_ns(tb.tb_min),
+ tb_to_ns(tb.tb_max));
+ s += strlen(s);
+ }
+ p->buflen = s - p->buf;
+ }
+
+ pos = *ppos;
+ if (pos >= p->buflen)
+ return 0;
+ if (len > p->buflen - pos)
+ len = p->buflen - pos;
+ n = copy_to_user(buf, p->buf + pos, len);
+ if (n) {
+ if (n == len)
+ return -EFAULT;
+ len -= n;
+ }
+ *ppos = pos + len;
+ return len;
+}
+
+static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
+ size_t len, loff_t *ppos)
+{
+ return -EACCES;
+}
+
+static const struct file_operations debugfs_timings_ops = {
+ .owner = THIS_MODULE,
+ .open = debugfs_timings_open,
+ .release = debugfs_timings_release,
+ .read = debugfs_timings_read,
+ .write = debugfs_timings_write,
+ .llseek = generic_file_llseek,
+};
+
+/* Create a debugfs directory for the vcpu */
+static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
+{
+ if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
+ debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
+ &debugfs_timings_ops);
+ return 0;
+}
+
+#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
+static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
+{
+ return 0;
+}
+#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
+
+static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
+{
+ int err;
+ int core;
+ struct kvmppc_vcore *vcore;
+ struct kvm *kvm;
+ unsigned int id;
+
+ kvm = vcpu->kvm;
+ id = vcpu->vcpu_id;
+
+ vcpu->arch.shared = &vcpu->arch.shregs;
+#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
+ /*
+ * The shared struct is never shared on HV,
+ * so we can always use host endianness
+ */
+#ifdef __BIG_ENDIAN__
+ vcpu->arch.shared_big_endian = true;
+#else
+ vcpu->arch.shared_big_endian = false;
+#endif
+#endif
+ kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC);
+
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT);
+ kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE);
+ }
+
+ kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH);
+ /* default to host PVR, since we can't spoof it */
+ kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
+ spin_lock_init(&vcpu->arch.vpa_update_lock);
+ spin_lock_init(&vcpu->arch.tbacct_lock);
+ vcpu->arch.busy_preempt = TB_NIL;
+ __kvmppc_set_msr_hv(vcpu, MSR_ME);
+ vcpu->arch.intr_msr = MSR_SF | MSR_ME;
+
+ /*
+ * Set the default HFSCR for the guest from the host value.
+ * This value is only used on POWER9 and later.
+ * On >= POWER9, we want to virtualize the doorbell facility, so we
+ * don't set the HFSCR_MSGP bit, and that causes those instructions
+ * to trap and then we emulate them.
+ */
+ kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
+ HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP);
+
+ /* On POWER10 and later, allow prefixed instructions */
+ if (cpu_has_feature(CPU_FTR_ARCH_31))
+ kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX);
+
+ if (cpu_has_feature(CPU_FTR_HVMODE)) {
+ kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR));
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
+ kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
+#endif
+ }
+ if (cpu_has_feature(CPU_FTR_TM_COMP))
+ vcpu->arch.hfscr |= HFSCR_TM;
+
+ vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu);
+
+ /*
+ * PM, EBB, TM are demand-faulted so start with it clear.
+ */
+ kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM));
+
+ kvmppc_mmu_book3s_hv_init(vcpu);
+
+ vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
+
+ init_waitqueue_head(&vcpu->arch.cpu_run);
+
+ mutex_lock(&kvm->lock);
+ vcore = NULL;
+ err = -EINVAL;
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
+ pr_devel("KVM: VCPU ID too high\n");
+ core = KVM_MAX_VCORES;
+ } else {
+ BUG_ON(kvm->arch.smt_mode != 1);
+ core = kvmppc_pack_vcpu_id(kvm, id);
+ }
+ } else {
+ core = id / kvm->arch.smt_mode;
+ }
+ if (core < KVM_MAX_VCORES) {
+ vcore = kvm->arch.vcores[core];
+ if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
+ pr_devel("KVM: collision on id %u", id);
+ vcore = NULL;
+ } else if (!vcore) {
+ /*
+ * Take mmu_setup_lock for mutual exclusion
+ * with kvmppc_update_lpcr().
+ */
+ err = -ENOMEM;
+ vcore = kvmppc_vcore_create(kvm,
+ id & ~(kvm->arch.smt_mode - 1));
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+ kvm->arch.vcores[core] = vcore;
+ kvm->arch.online_vcores++;
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ }
+ }
+ mutex_unlock(&kvm->lock);
+
+ if (!vcore)
+ return err;
+
+ spin_lock(&vcore->lock);
+ ++vcore->num_threads;
+ spin_unlock(&vcore->lock);
+ vcpu->arch.vcore = vcore;
+ vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
+ vcpu->arch.thread_cpu = -1;
+ vcpu->arch.prev_cpu = -1;
+
+ vcpu->arch.cpu_type = KVM_CPU_3S_64;
+ kvmppc_sanity_check(vcpu);
+
+ return 0;
+}
+
+static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
+ unsigned long flags)
+{
+ int err;
+ int esmt = 0;
+
+ if (flags)
+ return -EINVAL;
+ if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
+ return -EINVAL;
+ if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
+ /*
+ * On POWER8 (or POWER7), the threading mode is "strict",
+ * so we pack smt_mode vcpus per vcore.
+ */
+ if (smt_mode > threads_per_subcore)
+ return -EINVAL;
+ } else {
+ /*
+ * On POWER9, the threading mode is "loose",
+ * so each vcpu gets its own vcore.
+ */
+ esmt = smt_mode;
+ smt_mode = 1;
+ }
+ mutex_lock(&kvm->lock);
+ err = -EBUSY;
+ if (!kvm->arch.online_vcores) {
+ kvm->arch.smt_mode = smt_mode;
+ kvm->arch.emul_smt_mode = esmt;
+ err = 0;
+ }
+ mutex_unlock(&kvm->lock);
+
+ return err;
+}
+
+static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
+{
+ if (vpa->pinned_addr)
+ kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
+ vpa->dirty);
+}
+
+static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
+{
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
+ unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
+ unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+}
+
+static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
+{
+ /* Indicate we want to get back into the guest */
+ return 1;
+}
+
+static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
+{
+ unsigned long dec_nsec, now;
+
+ now = get_tb();
+ if (now > kvmppc_dec_expires_host_tb(vcpu)) {
+ /* decrementer has already gone negative */
+ kvmppc_core_queue_dec(vcpu);
+ kvmppc_core_prepare_to_enter(vcpu);
+ return;
+ }
+ dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
+ hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
+ vcpu->arch.timer_running = 1;
+}
+
+extern int __kvmppc_vcore_entry(void);
+
+static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
+ struct kvm_vcpu *vcpu, u64 tb)
+{
+ u64 now;
+
+ if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
+ return;
+ spin_lock_irq(&vcpu->arch.tbacct_lock);
+ now = tb;
+ vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
+ vcpu->arch.stolen_logged;
+ vcpu->arch.busy_preempt = now;
+ vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
+ spin_unlock_irq(&vcpu->arch.tbacct_lock);
+ --vc->n_runnable;
+ WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
+}
+
+static int kvmppc_grab_hwthread(int cpu)
+{
+ struct paca_struct *tpaca;
+ long timeout = 10000;
+
+ tpaca = paca_ptrs[cpu];
+
+ /* Ensure the thread won't go into the kernel if it wakes */
+ tpaca->kvm_hstate.kvm_vcpu = NULL;
+ tpaca->kvm_hstate.kvm_vcore = NULL;
+ tpaca->kvm_hstate.napping = 0;
+ smp_wmb();
+ tpaca->kvm_hstate.hwthread_req = 1;
+
+ /*
+ * If the thread is already executing in the kernel (e.g. handling
+ * a stray interrupt), wait for it to get back to nap mode.
+ * The smp_mb() is to ensure that our setting of hwthread_req
+ * is visible before we look at hwthread_state, so if this
+ * races with the code at system_reset_pSeries and the thread
+ * misses our setting of hwthread_req, we are sure to see its
+ * setting of hwthread_state, and vice versa.
+ */
+ smp_mb();
+ while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
+ if (--timeout <= 0) {
+ pr_err("KVM: couldn't grab cpu %d\n", cpu);
+ return -EBUSY;
+ }
+ udelay(1);
+ }
+ return 0;
+}
+
+static void kvmppc_release_hwthread(int cpu)
+{
+ struct paca_struct *tpaca;
+
+ tpaca = paca_ptrs[cpu];
+ tpaca->kvm_hstate.hwthread_req = 0;
+ tpaca->kvm_hstate.kvm_vcpu = NULL;
+ tpaca->kvm_hstate.kvm_vcore = NULL;
+ tpaca->kvm_hstate.kvm_split_mode = NULL;
+}
+
+static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
+
+static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
+{
+ struct kvm_nested_guest *nested = vcpu->arch.nested;
+ cpumask_t *need_tlb_flush;
+ int i;
+
+ if (nested)
+ need_tlb_flush = &nested->need_tlb_flush;
+ else
+ need_tlb_flush = &kvm->arch.need_tlb_flush;
+
+ cpu = cpu_first_tlb_thread_sibling(cpu);
+ for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
+ i += cpu_tlb_thread_sibling_step())
+ cpumask_set_cpu(i, need_tlb_flush);
+
+ /*
+ * Make sure setting of bit in need_tlb_flush precedes testing of
+ * cpu_in_guest. The matching barrier on the other side is hwsync
+ * when switching to guest MMU mode, which happens between
+ * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
+ * being tested.
+ */
+ smp_mb();
+
+ for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
+ i += cpu_tlb_thread_sibling_step()) {
+ struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
+
+ if (running == kvm)
+ smp_call_function_single(i, do_nothing, NULL, 1);
+ }
+}
+
+static void do_migrate_away_vcpu(void *arg)
+{
+ struct kvm_vcpu *vcpu = arg;
+ struct kvm *kvm = vcpu->kvm;
+
+ /*
+ * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
+ * ptesync sequence on the old CPU before migrating to a new one, in
+ * case we interrupted the guest between a tlbie ; eieio ;
+ * tlbsync; ptesync sequence.
+ *
+ * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
+ */
+ if (kvm->arch.lpcr & LPCR_GTSE)
+ asm volatile("eieio; tlbsync; ptesync");
+ else
+ asm volatile("ptesync");
+}
+
+static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
+{
+ struct kvm_nested_guest *nested = vcpu->arch.nested;
+ struct kvm *kvm = vcpu->kvm;
+ int prev_cpu;
+
+ if (!cpu_has_feature(CPU_FTR_HVMODE))
+ return;
+
+ if (nested)
+ prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
+ else
+ prev_cpu = vcpu->arch.prev_cpu;
+
+ /*
+ * With radix, the guest can do TLB invalidations itself,
+ * and it could choose to use the local form (tlbiel) if
+ * it is invalidating a translation that has only ever been
+ * used on one vcpu. However, that doesn't mean it has
+ * only ever been used on one physical cpu, since vcpus
+ * can move around between pcpus. To cope with this, when
+ * a vcpu moves from one pcpu to another, we need to tell
+ * any vcpus running on the same core as this vcpu previously
+ * ran to flush the TLB.
+ */
+ if (prev_cpu != pcpu) {
+ if (prev_cpu >= 0) {
+ if (cpu_first_tlb_thread_sibling(prev_cpu) !=
+ cpu_first_tlb_thread_sibling(pcpu))
+ radix_flush_cpu(kvm, prev_cpu, vcpu);
+
+ smp_call_function_single(prev_cpu,
+ do_migrate_away_vcpu, vcpu, 1);
+ }
+ if (nested)
+ nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
+ else
+ vcpu->arch.prev_cpu = pcpu;
+ }
+}
+
+static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
+{
+ int cpu;
+ struct paca_struct *tpaca;
+
+ cpu = vc->pcpu;
+ if (vcpu) {
+ if (vcpu->arch.timer_running) {
+ hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
+ vcpu->arch.timer_running = 0;
+ }
+ cpu += vcpu->arch.ptid;
+ vcpu->cpu = vc->pcpu;
+ vcpu->arch.thread_cpu = cpu;
+ }
+ tpaca = paca_ptrs[cpu];
+ tpaca->kvm_hstate.kvm_vcpu = vcpu;
+ tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
+ tpaca->kvm_hstate.fake_suspend = 0;
+ /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
+ smp_wmb();
+ tpaca->kvm_hstate.kvm_vcore = vc;
+ if (cpu != smp_processor_id())
+ kvmppc_ipi_thread(cpu);
+}
+
+static void kvmppc_wait_for_nap(int n_threads)
+{
+ int cpu = smp_processor_id();
+ int i, loops;
+
+ if (n_threads <= 1)
+ return;
+ for (loops = 0; loops < 1000000; ++loops) {
+ /*
+ * Check if all threads are finished.
+ * We set the vcore pointer when starting a thread
+ * and the thread clears it when finished, so we look
+ * for any threads that still have a non-NULL vcore ptr.
+ */
+ for (i = 1; i < n_threads; ++i)
+ if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
+ break;
+ if (i == n_threads) {
+ HMT_medium();
+ return;
+ }
+ HMT_low();
+ }
+ HMT_medium();
+ for (i = 1; i < n_threads; ++i)
+ if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
+ pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
+}
+
+/*
+ * Check that we are on thread 0 and that any other threads in
+ * this core are off-line. Then grab the threads so they can't
+ * enter the kernel.
+ */
+static int on_primary_thread(void)
+{
+ int cpu = smp_processor_id();
+ int thr;
+
+ /* Are we on a primary subcore? */
+ if (cpu_thread_in_subcore(cpu))
+ return 0;
+
+ thr = 0;
+ while (++thr < threads_per_subcore)
+ if (cpu_online(cpu + thr))
+ return 0;
+
+ /* Grab all hw threads so they can't go into the kernel */
+ for (thr = 1; thr < threads_per_subcore; ++thr) {
+ if (kvmppc_grab_hwthread(cpu + thr)) {
+ /* Couldn't grab one; let the others go */
+ do {
+ kvmppc_release_hwthread(cpu + thr);
+ } while (--thr > 0);
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/*
+ * A list of virtual cores for each physical CPU.
+ * These are vcores that could run but their runner VCPU tasks are
+ * (or may be) preempted.
+ */
+struct preempted_vcore_list {
+ struct list_head list;
+ spinlock_t lock;
+};
+
+static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
+
+static void init_vcore_lists(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
+ spin_lock_init(&lp->lock);
+ INIT_LIST_HEAD(&lp->list);
+ }
+}
+
+static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
+{
+ struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ vc->vcore_state = VCORE_PREEMPT;
+ vc->pcpu = smp_processor_id();
+ if (vc->num_threads < threads_per_vcore(vc->kvm)) {
+ spin_lock(&lp->lock);
+ list_add_tail(&vc->preempt_list, &lp->list);
+ spin_unlock(&lp->lock);
+ }
+
+ /* Start accumulating stolen time */
+ kvmppc_core_start_stolen(vc, mftb());
+}
+
+static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
+{
+ struct preempted_vcore_list *lp;
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ kvmppc_core_end_stolen(vc, mftb());
+ if (!list_empty(&vc->preempt_list)) {
+ lp = &per_cpu(preempted_vcores, vc->pcpu);
+ spin_lock(&lp->lock);
+ list_del_init(&vc->preempt_list);
+ spin_unlock(&lp->lock);
+ }
+ vc->vcore_state = VCORE_INACTIVE;
+}
+
+/*
+ * This stores information about the virtual cores currently
+ * assigned to a physical core.
+ */
+struct core_info {
+ int n_subcores;
+ int max_subcore_threads;
+ int total_threads;
+ int subcore_threads[MAX_SUBCORES];
+ struct kvmppc_vcore *vc[MAX_SUBCORES];
+};
+
+/*
+ * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
+ * respectively in 2-way micro-threading (split-core) mode on POWER8.
+ */
+static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
+
+static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
+{
+ memset(cip, 0, sizeof(*cip));
+ cip->n_subcores = 1;
+ cip->max_subcore_threads = vc->num_threads;
+ cip->total_threads = vc->num_threads;
+ cip->subcore_threads[0] = vc->num_threads;
+ cip->vc[0] = vc;
+}
+
+static bool subcore_config_ok(int n_subcores, int n_threads)
+{
+ /*
+ * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
+ * split-core mode, with one thread per subcore.
+ */
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ return n_subcores <= 4 && n_threads == 1;
+
+ /* On POWER8, can only dynamically split if unsplit to begin with */
+ if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
+ return false;
+ if (n_subcores > MAX_SUBCORES)
+ return false;
+ if (n_subcores > 1) {
+ if (!(dynamic_mt_modes & 2))
+ n_subcores = 4;
+ if (n_subcores > 2 && !(dynamic_mt_modes & 4))
+ return false;
+ }
+
+ return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
+}
+
+static void init_vcore_to_run(struct kvmppc_vcore *vc)
+{
+ vc->entry_exit_map = 0;
+ vc->in_guest = 0;
+ vc->napping_threads = 0;
+ vc->conferring_threads = 0;
+ vc->tb_offset_applied = 0;
+}
+
+static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
+{
+ int n_threads = vc->num_threads;
+ int sub;
+
+ if (!cpu_has_feature(CPU_FTR_ARCH_207S))
+ return false;
+
+ /* In one_vm_per_core mode, require all vcores to be from the same vm */
+ if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
+ return false;
+
+ if (n_threads < cip->max_subcore_threads)
+ n_threads = cip->max_subcore_threads;
+ if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
+ return false;
+ cip->max_subcore_threads = n_threads;
+
+ sub = cip->n_subcores;
+ ++cip->n_subcores;
+ cip->total_threads += vc->num_threads;
+ cip->subcore_threads[sub] = vc->num_threads;
+ cip->vc[sub] = vc;
+ init_vcore_to_run(vc);
+ list_del_init(&vc->preempt_list);
+
+ return true;
+}
+
+/*
+ * Work out whether it is possible to piggyback the execution of
+ * vcore *pvc onto the execution of the other vcores described in *cip.
+ */
+static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
+ int target_threads)
+{
+ if (cip->total_threads + pvc->num_threads > target_threads)
+ return false;
+
+ return can_dynamic_split(pvc, cip);
+}
+
+static void prepare_threads(struct kvmppc_vcore *vc)
+{
+ int i;
+ struct kvm_vcpu *vcpu;
+
+ for_each_runnable_thread(i, vcpu, vc) {
+ if (signal_pending(vcpu->arch.run_task))
+ vcpu->arch.ret = -EINTR;
+ else if (vcpu->arch.vpa.update_pending ||
+ vcpu->arch.slb_shadow.update_pending ||
+ vcpu->arch.dtl.update_pending)
+ vcpu->arch.ret = RESUME_GUEST;
+ else
+ continue;
+ kvmppc_remove_runnable(vc, vcpu, mftb());
+ wake_up(&vcpu->arch.cpu_run);
+ }
+}
+
+static void collect_piggybacks(struct core_info *cip, int target_threads)
+{
+ struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
+ struct kvmppc_vcore *pvc, *vcnext;
+
+ spin_lock(&lp->lock);
+ list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
+ if (!spin_trylock(&pvc->lock))
+ continue;
+ prepare_threads(pvc);
+ if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
+ list_del_init(&pvc->preempt_list);
+ if (pvc->runner == NULL) {
+ pvc->vcore_state = VCORE_INACTIVE;
+ kvmppc_core_end_stolen(pvc, mftb());
+ }
+ spin_unlock(&pvc->lock);
+ continue;
+ }
+ if (!can_piggyback(pvc, cip, target_threads)) {
+ spin_unlock(&pvc->lock);
+ continue;
+ }
+ kvmppc_core_end_stolen(pvc, mftb());
+ pvc->vcore_state = VCORE_PIGGYBACK;
+ if (cip->total_threads >= target_threads)
+ break;
+ }
+ spin_unlock(&lp->lock);
+}
+
+static bool recheck_signals_and_mmu(struct core_info *cip)
+{
+ int sub, i;
+ struct kvm_vcpu *vcpu;
+ struct kvmppc_vcore *vc;
+
+ for (sub = 0; sub < cip->n_subcores; ++sub) {
+ vc = cip->vc[sub];
+ if (!vc->kvm->arch.mmu_ready)
+ return true;
+ for_each_runnable_thread(i, vcpu, vc)
+ if (signal_pending(vcpu->arch.run_task))
+ return true;
+ }
+ return false;
+}
+
+static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
+{
+ int still_running = 0, i;
+ u64 now;
+ long ret;
+ struct kvm_vcpu *vcpu;
+
+ spin_lock(&vc->lock);
+ now = get_tb();
+ for_each_runnable_thread(i, vcpu, vc) {
+ /*
+ * It's safe to unlock the vcore in the loop here, because
+ * for_each_runnable_thread() is safe against removal of
+ * the vcpu, and the vcore state is VCORE_EXITING here,
+ * so any vcpus becoming runnable will have their arch.trap
+ * set to zero and can't actually run in the guest.
+ */
+ spin_unlock(&vc->lock);
+ /* cancel pending dec exception if dec is positive */
+ if (now < kvmppc_dec_expires_host_tb(vcpu) &&
+ kvmppc_core_pending_dec(vcpu))
+ kvmppc_core_dequeue_dec(vcpu);
+
+ trace_kvm_guest_exit(vcpu);
+
+ ret = RESUME_GUEST;
+ if (vcpu->arch.trap)
+ ret = kvmppc_handle_exit_hv(vcpu,
+ vcpu->arch.run_task);
+
+ vcpu->arch.ret = ret;
+ vcpu->arch.trap = 0;
+
+ spin_lock(&vc->lock);
+ if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
+ if (vcpu->arch.pending_exceptions)
+ kvmppc_core_prepare_to_enter(vcpu);
+ if (vcpu->arch.ceded)
+ kvmppc_set_timer(vcpu);
+ else
+ ++still_running;
+ } else {
+ kvmppc_remove_runnable(vc, vcpu, mftb());
+ wake_up(&vcpu->arch.cpu_run);
+ }
+ }
+ if (!is_master) {
+ if (still_running > 0) {
+ kvmppc_vcore_preempt(vc);
+ } else if (vc->runner) {
+ vc->vcore_state = VCORE_PREEMPT;
+ kvmppc_core_start_stolen(vc, mftb());
+ } else {
+ vc->vcore_state = VCORE_INACTIVE;
+ }
+ if (vc->n_runnable > 0 && vc->runner == NULL) {
+ /* make sure there's a candidate runner awake */
+ i = -1;
+ vcpu = next_runnable_thread(vc, &i);
+ wake_up(&vcpu->arch.cpu_run);
+ }
+ }
+ spin_unlock(&vc->lock);
+}
+
+/*
+ * Clear core from the list of active host cores as we are about to
+ * enter the guest. Only do this if it is the primary thread of the
+ * core (not if a subcore) that is entering the guest.
+ */
+static inline int kvmppc_clear_host_core(unsigned int cpu)
+{
+ int core;
+
+ if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
+ return 0;
+ /*
+ * Memory barrier can be omitted here as we will do a smp_wmb()
+ * later in kvmppc_start_thread and we need ensure that state is
+ * visible to other CPUs only after we enter guest.
+ */
+ core = cpu >> threads_shift;
+ kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
+ return 0;
+}
+
+/*
+ * Advertise this core as an active host core since we exited the guest
+ * Only need to do this if it is the primary thread of the core that is
+ * exiting.
+ */
+static inline int kvmppc_set_host_core(unsigned int cpu)
+{
+ int core;
+
+ if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
+ return 0;
+
+ /*
+ * Memory barrier can be omitted here because we do a spin_unlock
+ * immediately after this which provides the memory barrier.
+ */
+ core = cpu >> threads_shift;
+ kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
+ return 0;
+}
+
+static void set_irq_happened(int trap)
+{
+ switch (trap) {
+ case BOOK3S_INTERRUPT_EXTERNAL:
+ local_paca->irq_happened |= PACA_IRQ_EE;
+ break;
+ case BOOK3S_INTERRUPT_H_DOORBELL:
+ local_paca->irq_happened |= PACA_IRQ_DBELL;
+ break;
+ case BOOK3S_INTERRUPT_HMI:
+ local_paca->irq_happened |= PACA_IRQ_HMI;
+ break;
+ case BOOK3S_INTERRUPT_SYSTEM_RESET:
+ replay_system_reset();
+ break;
+ }
+}
+
+/*
+ * Run a set of guest threads on a physical core.
+ * Called with vc->lock held.
+ */
+static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+ int srcu_idx;
+ struct core_info core_info;
+ struct kvmppc_vcore *pvc;
+ struct kvm_split_mode split_info, *sip;
+ int split, subcore_size, active;
+ int sub;
+ bool thr0_done;
+ unsigned long cmd_bit, stat_bit;
+ int pcpu, thr;
+ int target_threads;
+ int controlled_threads;
+ int trap;
+ bool is_power8;
+
+ if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
+ return;
+
+ /*
+ * Remove from the list any threads that have a signal pending
+ * or need a VPA update done
+ */
+ prepare_threads(vc);
+
+ /* if the runner is no longer runnable, let the caller pick a new one */
+ if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
+ return;
+
+ /*
+ * Initialize *vc.
+ */
+ init_vcore_to_run(vc);
+ vc->preempt_tb = TB_NIL;
+
+ /*
+ * Number of threads that we will be controlling: the same as
+ * the number of threads per subcore, except on POWER9,
+ * where it's 1 because the threads are (mostly) independent.
+ */
+ controlled_threads = threads_per_vcore(vc->kvm);
+
+ /*
+ * Make sure we are running on primary threads, and that secondary
+ * threads are offline. Also check if the number of threads in this
+ * guest are greater than the current system threads per guest.
+ */
+ if ((controlled_threads > 1) &&
+ ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
+ for_each_runnable_thread(i, vcpu, vc) {
+ vcpu->arch.ret = -EBUSY;
+ kvmppc_remove_runnable(vc, vcpu, mftb());
+ wake_up(&vcpu->arch.cpu_run);
+ }
+ goto out;
+ }
+
+ /*
+ * See if we could run any other vcores on the physical core
+ * along with this one.
+ */
+ init_core_info(&core_info, vc);
+ pcpu = smp_processor_id();
+ target_threads = controlled_threads;
+ if (target_smt_mode && target_smt_mode < target_threads)
+ target_threads = target_smt_mode;
+ if (vc->num_threads < target_threads)
+ collect_piggybacks(&core_info, target_threads);
+
+ /*
+ * Hard-disable interrupts, and check resched flag and signals.
+ * If we need to reschedule or deliver a signal, clean up
+ * and return without going into the guest(s).
+ * If the mmu_ready flag has been cleared, don't go into the
+ * guest because that means a HPT resize operation is in progress.
+ */
+ local_irq_disable();
+ hard_irq_disable();
+ if (lazy_irq_pending() || need_resched() ||
+ recheck_signals_and_mmu(&core_info)) {
+ local_irq_enable();
+ vc->vcore_state = VCORE_INACTIVE;
+ /* Unlock all except the primary vcore */
+ for (sub = 1; sub < core_info.n_subcores; ++sub) {
+ pvc = core_info.vc[sub];
+ /* Put back on to the preempted vcores list */
+ kvmppc_vcore_preempt(pvc);
+ spin_unlock(&pvc->lock);
+ }
+ for (i = 0; i < controlled_threads; ++i)
+ kvmppc_release_hwthread(pcpu + i);
+ return;
+ }
+
+ kvmppc_clear_host_core(pcpu);
+
+ /* Decide on micro-threading (split-core) mode */
+ subcore_size = threads_per_subcore;
+ cmd_bit = stat_bit = 0;
+ split = core_info.n_subcores;
+ sip = NULL;
+ is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
+
+ if (split > 1) {
+ sip = &split_info;
+ memset(&split_info, 0, sizeof(split_info));
+ for (sub = 0; sub < core_info.n_subcores; ++sub)
+ split_info.vc[sub] = core_info.vc[sub];
+
+ if (is_power8) {
+ if (split == 2 && (dynamic_mt_modes & 2)) {
+ cmd_bit = HID0_POWER8_1TO2LPAR;
+ stat_bit = HID0_POWER8_2LPARMODE;
+ } else {
+ split = 4;
+ cmd_bit = HID0_POWER8_1TO4LPAR;
+ stat_bit = HID0_POWER8_4LPARMODE;
+ }
+ subcore_size = MAX_SMT_THREADS / split;
+ split_info.rpr = mfspr(SPRN_RPR);
+ split_info.pmmar = mfspr(SPRN_PMMAR);
+ split_info.ldbar = mfspr(SPRN_LDBAR);
+ split_info.subcore_size = subcore_size;
+ } else {
+ split_info.subcore_size = 1;
+ }
+
+ /* order writes to split_info before kvm_split_mode pointer */
+ smp_wmb();
+ }
+
+ for (thr = 0; thr < controlled_threads; ++thr) {
+ struct paca_struct *paca = paca_ptrs[pcpu + thr];
+
+ paca->kvm_hstate.napping = 0;
+ paca->kvm_hstate.kvm_split_mode = sip;
+ }
+
+ /* Initiate micro-threading (split-core) on POWER8 if required */
+ if (cmd_bit) {
+ unsigned long hid0 = mfspr(SPRN_HID0);
+
+ hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
+ mb();
+ mtspr(SPRN_HID0, hid0);
+ isync();
+ for (;;) {
+ hid0 = mfspr(SPRN_HID0);
+ if (hid0 & stat_bit)
+ break;
+ cpu_relax();
+ }
+ }
+
+ /*
+ * On POWER8, set RWMR register.
+ * Since it only affects PURR and SPURR, it doesn't affect
+ * the host, so we don't save/restore the host value.
+ */
+ if (is_power8) {
+ unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
+ int n_online = atomic_read(&vc->online_count);
+
+ /*
+ * Use the 8-thread value if we're doing split-core
+ * or if the vcore's online count looks bogus.
+ */
+ if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
+ n_online >= 1 && n_online <= MAX_SMT_THREADS)
+ rwmr_val = p8_rwmr_values[n_online];
+ mtspr(SPRN_RWMR, rwmr_val);
+ }
+
+ /* Start all the threads */
+ active = 0;
+ for (sub = 0; sub < core_info.n_subcores; ++sub) {
+ thr = is_power8 ? subcore_thread_map[sub] : sub;
+ thr0_done = false;
+ active |= 1 << thr;
+ pvc = core_info.vc[sub];
+ pvc->pcpu = pcpu + thr;
+ for_each_runnable_thread(i, vcpu, pvc) {
+ /*
+ * XXX: is kvmppc_start_thread called too late here?
+ * It updates vcpu->cpu and vcpu->arch.thread_cpu
+ * which are used by kvmppc_fast_vcpu_kick_hv(), but
+ * kick is called after new exceptions become available
+ * and exceptions are checked earlier than here, by
+ * kvmppc_core_prepare_to_enter.
+ */
+ kvmppc_start_thread(vcpu, pvc);
+ kvmppc_update_vpa_dispatch(vcpu, pvc);
+ trace_kvm_guest_enter(vcpu);
+ if (!vcpu->arch.ptid)
+ thr0_done = true;
+ active |= 1 << (thr + vcpu->arch.ptid);
+ }
+ /*
+ * We need to start the first thread of each subcore
+ * even if it doesn't have a vcpu.
+ */
+ if (!thr0_done)
+ kvmppc_start_thread(NULL, pvc);
+ }
+
+ /*
+ * Ensure that split_info.do_nap is set after setting
+ * the vcore pointer in the PACA of the secondaries.
+ */
+ smp_mb();
+
+ /*
+ * When doing micro-threading, poke the inactive threads as well.
+ * This gets them to the nap instruction after kvm_do_nap,
+ * which reduces the time taken to unsplit later.
+ */
+ if (cmd_bit) {
+ split_info.do_nap = 1; /* ask secondaries to nap when done */
+ for (thr = 1; thr < threads_per_subcore; ++thr)
+ if (!(active & (1 << thr)))
+ kvmppc_ipi_thread(pcpu + thr);
+ }
+
+ vc->vcore_state = VCORE_RUNNING;
+ preempt_disable();
+
+ trace_kvmppc_run_core(vc, 0);
+
+ for (sub = 0; sub < core_info.n_subcores; ++sub)
+ spin_unlock(&core_info.vc[sub]->lock);
+
+ guest_timing_enter_irqoff();
+
+ srcu_idx = srcu_read_lock(&vc->kvm->srcu);
+
+ guest_state_enter_irqoff();
+ this_cpu_disable_ftrace();
+
+ trap = __kvmppc_vcore_entry();
+
+ this_cpu_enable_ftrace();
+ guest_state_exit_irqoff();
+
+ srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
+
+ set_irq_happened(trap);
+
+ spin_lock(&vc->lock);
+ /* prevent other vcpu threads from doing kvmppc_start_thread() now */
+ vc->vcore_state = VCORE_EXITING;
+
+ /* wait for secondary threads to finish writing their state to memory */
+ kvmppc_wait_for_nap(controlled_threads);
+
+ /* Return to whole-core mode if we split the core earlier */
+ if (cmd_bit) {
+ unsigned long hid0 = mfspr(SPRN_HID0);
+ unsigned long loops = 0;
+
+ hid0 &= ~HID0_POWER8_DYNLPARDIS;
+ stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
+ mb();
+ mtspr(SPRN_HID0, hid0);
+ isync();
+ for (;;) {
+ hid0 = mfspr(SPRN_HID0);
+ if (!(hid0 & stat_bit))
+ break;
+ cpu_relax();
+ ++loops;
+ }
+ split_info.do_nap = 0;
+ }
+
+ kvmppc_set_host_core(pcpu);
+
+ if (!vtime_accounting_enabled_this_cpu()) {
+ local_irq_enable();
+ /*
+ * Service IRQs here before guest_timing_exit_irqoff() so any
+ * ticks that occurred while running the guest are accounted to
+ * the guest. If vtime accounting is enabled, accounting uses
+ * TB rather than ticks, so it can be done without enabling
+ * interrupts here, which has the problem that it accounts
+ * interrupt processing overhead to the host.
+ */
+ local_irq_disable();
+ }
+ guest_timing_exit_irqoff();
+
+ local_irq_enable();
+
+ /* Let secondaries go back to the offline loop */
+ for (i = 0; i < controlled_threads; ++i) {
+ kvmppc_release_hwthread(pcpu + i);
+ if (sip && sip->napped[i])
+ kvmppc_ipi_thread(pcpu + i);
+ }
+
+ spin_unlock(&vc->lock);
+
+ /* make sure updates to secondary vcpu structs are visible now */
+ smp_mb();
+
+ preempt_enable();
+
+ for (sub = 0; sub < core_info.n_subcores; ++sub) {
+ pvc = core_info.vc[sub];
+ post_guest_process(pvc, pvc == vc);
+ }
+
+ spin_lock(&vc->lock);
+
+ out:
+ vc->vcore_state = VCORE_INACTIVE;
+ trace_kvmppc_run_core(vc, 1);
+}
+
+static inline bool hcall_is_xics(unsigned long req)
+{
+ return req == H_EOI || req == H_CPPR || req == H_IPI ||
+ req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
+}
+
+static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
+{
+ struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
+ if (lp) {
+ u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
+ lp->yield_count = cpu_to_be32(yield_count);
+ vcpu->arch.vpa.dirty = 1;
+ }
+}
+
+/* call our hypervisor to load up HV regs and go */
+static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ unsigned long host_psscr;
+ unsigned long msr;
+ struct hv_guest_state hvregs;
+ struct p9_host_os_sprs host_os_sprs;
+ s64 dec;
+ int trap;
+
+ msr = mfmsr();
+
+ save_p9_host_os_sprs(&host_os_sprs);
+
+ /*
+ * We need to save and restore the guest visible part of the
+ * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
+ * doesn't do this for us. Note only required if pseries since
+ * this is done in kvmhv_vcpu_entry_p9() below otherwise.
+ */
+ host_psscr = mfspr(SPRN_PSSCR_PR);
+
+ kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
+ if (lazy_irq_pending())
+ return 0;
+
+ if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
+ msr = mfmsr(); /* TM restore can update msr */
+
+ if (vcpu->arch.psscr != host_psscr)
+ mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
+
+ kvmhv_save_hv_regs(vcpu, &hvregs);
+ hvregs.lpcr = lpcr;
+ hvregs.amor = ~0;
+ vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
+ hvregs.version = HV_GUEST_STATE_VERSION;
+ if (vcpu->arch.nested) {
+ hvregs.lpid = vcpu->arch.nested->shadow_lpid;
+ hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
+ } else {
+ hvregs.lpid = vcpu->kvm->arch.lpid;
+ hvregs.vcpu_token = vcpu->vcpu_id;
+ }
+ hvregs.hdec_expiry = time_limit;
+
+ /*
+ * When setting DEC, we must always deal with irq_work_raise
+ * via NMI vs setting DEC. The problem occurs right as we
+ * switch into guest mode if a NMI hits and sets pending work
+ * and sets DEC, then that will apply to the guest and not
+ * bring us back to the host.
+ *
+ * irq_work_raise could check a flag (or possibly LPCR[HDICE]
+ * for example) and set HDEC to 1? That wouldn't solve the
+ * nested hv case which needs to abort the hcall or zero the
+ * time limit.
+ *
+ * XXX: Another day's problem.
+ */
+ mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
+
+ mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
+ mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
+ switch_pmu_to_guest(vcpu, &host_os_sprs);
+ accumulate_time(vcpu, &vcpu->arch.in_guest);
+ trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
+ __pa(&vcpu->arch.regs));
+ accumulate_time(vcpu, &vcpu->arch.guest_exit);
+ kvmhv_restore_hv_return_state(vcpu, &hvregs);
+ switch_pmu_to_host(vcpu, &host_os_sprs);
+ vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
+ vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
+ vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
+ vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
+
+ store_vcpu_state(vcpu);
+
+ dec = mfspr(SPRN_DEC);
+ if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
+ dec = (s32) dec;
+ *tb = mftb();
+ vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
+
+ timer_rearm_host_dec(*tb);
+
+ restore_p9_host_os_sprs(vcpu, &host_os_sprs);
+ if (vcpu->arch.psscr != host_psscr)
+ mtspr(SPRN_PSSCR_PR, host_psscr);
+
+ return trap;
+}
+
+/*
+ * Guest entry for POWER9 and later CPUs.
+ */
+static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
+ unsigned long lpcr, u64 *tb)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_nested_guest *nested = vcpu->arch.nested;
+ u64 next_timer;
+ int trap;
+
+ next_timer = timer_get_next_tb();
+ if (*tb >= next_timer)
+ return BOOK3S_INTERRUPT_HV_DECREMENTER;
+ if (next_timer < time_limit)
+ time_limit = next_timer;
+ else if (*tb >= time_limit) /* nested time limit */
+ return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
+
+ vcpu->arch.ceded = 0;
+
+ vcpu_vpa_increment_dispatch(vcpu);
+
+ if (kvmhv_on_pseries()) {
+ trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
+
+ /* H_CEDE has to be handled now, not later */
+ if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
+ kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
+ kvmppc_cede(vcpu);
+ kvmppc_set_gpr(vcpu, 3, 0);
+ trap = 0;
+ }
+
+ } else if (nested) {
+ __this_cpu_write(cpu_in_guest, kvm);
+ trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
+ __this_cpu_write(cpu_in_guest, NULL);
+
+ } else {
+ kvmppc_xive_push_vcpu(vcpu);
+
+ __this_cpu_write(cpu_in_guest, kvm);
+ trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
+ __this_cpu_write(cpu_in_guest, NULL);
+
+ if (trap == BOOK3S_INTERRUPT_SYSCALL &&
+ !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
+ unsigned long req = kvmppc_get_gpr(vcpu, 3);
+
+ /*
+ * XIVE rearm and XICS hcalls must be handled
+ * before xive context is pulled (is this
+ * true?)
+ */
+ if (req == H_CEDE) {
+ /* H_CEDE has to be handled now */
+ kvmppc_cede(vcpu);
+ if (!kvmppc_xive_rearm_escalation(vcpu)) {
+ /*
+ * Pending escalation so abort
+ * the cede.
+ */
+ vcpu->arch.ceded = 0;
+ }
+ kvmppc_set_gpr(vcpu, 3, 0);
+ trap = 0;
+
+ } else if (req == H_ENTER_NESTED) {
+ /*
+ * L2 should not run with the L1
+ * context so rearm and pull it.
+ */
+ if (!kvmppc_xive_rearm_escalation(vcpu)) {
+ /*
+ * Pending escalation so abort
+ * H_ENTER_NESTED.
+ */
+ kvmppc_set_gpr(vcpu, 3, 0);
+ trap = 0;
+ }
+
+ } else if (hcall_is_xics(req)) {
+ int ret;
+
+ ret = kvmppc_xive_xics_hcall(vcpu, req);
+ if (ret != H_TOO_HARD) {
+ kvmppc_set_gpr(vcpu, 3, ret);
+ trap = 0;
+ }
+ }
+ }
+ kvmppc_xive_pull_vcpu(vcpu);
+
+ if (kvm_is_radix(kvm))
+ vcpu->arch.slb_max = 0;
+ }
+
+ vcpu_vpa_increment_dispatch(vcpu);
+
+ return trap;
+}
+
+/*
+ * Wait for some other vcpu thread to execute us, and
+ * wake us up when we need to handle something in the host.
+ */
+static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
+ struct kvm_vcpu *vcpu, int wait_state)
+{
+ DEFINE_WAIT(wait);
+
+ prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
+ if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
+ spin_unlock(&vc->lock);
+ schedule();
+ spin_lock(&vc->lock);
+ }
+ finish_wait(&vcpu->arch.cpu_run, &wait);
+}
+
+static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
+{
+ if (!halt_poll_ns_grow)
+ return;
+
+ vc->halt_poll_ns *= halt_poll_ns_grow;
+ if (vc->halt_poll_ns < halt_poll_ns_grow_start)
+ vc->halt_poll_ns = halt_poll_ns_grow_start;
+}
+
+static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
+{
+ if (halt_poll_ns_shrink == 0)
+ vc->halt_poll_ns = 0;
+ else
+ vc->halt_poll_ns /= halt_poll_ns_shrink;
+}
+
+#ifdef CONFIG_KVM_XICS
+static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
+{
+ if (!xics_on_xive())
+ return false;
+ return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
+ vcpu->arch.xive_saved_state.cppr;
+}
+#else
+static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
+{
+ return false;
+}
+#endif /* CONFIG_KVM_XICS */
+
+static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
+ kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
+ return true;
+
+ return false;
+}
+
+static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
+ return true;
+ return false;
+}
+
+/*
+ * Check to see if any of the runnable vcpus on the vcore have pending
+ * exceptions or are no longer ceded
+ */
+static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ for_each_runnable_thread(i, vcpu, vc) {
+ if (kvmppc_vcpu_check_block(vcpu))
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * All the vcpus in this vcore are idle, so wait for a decrementer
+ * or external interrupt to one of the vcpus. vc->lock is held.
+ */
+static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
+{
+ ktime_t cur, start_poll, start_wait;
+ int do_sleep = 1;
+ u64 block_ns;
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ /* Poll for pending exceptions and ceded state */
+ cur = start_poll = ktime_get();
+ if (vc->halt_poll_ns) {
+ ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
+ ++vc->runner->stat.generic.halt_attempted_poll;
+
+ vc->vcore_state = VCORE_POLLING;
+ spin_unlock(&vc->lock);
+
+ do {
+ if (kvmppc_vcore_check_block(vc)) {
+ do_sleep = 0;
+ break;
+ }
+ cur = ktime_get();
+ } while (kvm_vcpu_can_poll(cur, stop));
+
+ spin_lock(&vc->lock);
+ vc->vcore_state = VCORE_INACTIVE;
+
+ if (!do_sleep) {
+ ++vc->runner->stat.generic.halt_successful_poll;
+ goto out;
+ }
+ }
+
+ prepare_to_rcuwait(&vc->wait);
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (kvmppc_vcore_check_block(vc)) {
+ finish_rcuwait(&vc->wait);
+ do_sleep = 0;
+ /* If we polled, count this as a successful poll */
+ if (vc->halt_poll_ns)
+ ++vc->runner->stat.generic.halt_successful_poll;
+ goto out;
+ }
+
+ start_wait = ktime_get();
+
+ vc->vcore_state = VCORE_SLEEPING;
+ trace_kvmppc_vcore_blocked(vc->runner, 0);
+ spin_unlock(&vc->lock);
+ schedule();
+ finish_rcuwait(&vc->wait);
+ spin_lock(&vc->lock);
+ vc->vcore_state = VCORE_INACTIVE;
+ trace_kvmppc_vcore_blocked(vc->runner, 1);
+ ++vc->runner->stat.halt_successful_wait;
+
+ cur = ktime_get();
+
+out:
+ block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
+
+ /* Attribute wait time */
+ if (do_sleep) {
+ vc->runner->stat.generic.halt_wait_ns +=
+ ktime_to_ns(cur) - ktime_to_ns(start_wait);
+ KVM_STATS_LOG_HIST_UPDATE(
+ vc->runner->stat.generic.halt_wait_hist,
+ ktime_to_ns(cur) - ktime_to_ns(start_wait));
+ /* Attribute failed poll time */
+ if (vc->halt_poll_ns) {
+ vc->runner->stat.generic.halt_poll_fail_ns +=
+ ktime_to_ns(start_wait) -
+ ktime_to_ns(start_poll);
+ KVM_STATS_LOG_HIST_UPDATE(
+ vc->runner->stat.generic.halt_poll_fail_hist,
+ ktime_to_ns(start_wait) -
+ ktime_to_ns(start_poll));
+ }
+ } else {
+ /* Attribute successful poll time */
+ if (vc->halt_poll_ns) {
+ vc->runner->stat.generic.halt_poll_success_ns +=
+ ktime_to_ns(cur) -
+ ktime_to_ns(start_poll);
+ KVM_STATS_LOG_HIST_UPDATE(
+ vc->runner->stat.generic.halt_poll_success_hist,
+ ktime_to_ns(cur) - ktime_to_ns(start_poll));
+ }
+ }
+
+ /* Adjust poll time */
+ if (halt_poll_ns) {
+ if (block_ns <= vc->halt_poll_ns)
+ ;
+ /* We slept and blocked for longer than the max halt time */
+ else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
+ shrink_halt_poll_ns(vc);
+ /* We slept and our poll time is too small */
+ else if (vc->halt_poll_ns < halt_poll_ns &&
+ block_ns < halt_poll_ns)
+ grow_halt_poll_ns(vc);
+ if (vc->halt_poll_ns > halt_poll_ns)
+ vc->halt_poll_ns = halt_poll_ns;
+ } else
+ vc->halt_poll_ns = 0;
+
+ trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
+}
+
+/*
+ * This never fails for a radix guest, as none of the operations it does
+ * for a radix guest can fail or have a way to report failure.
+ */
+static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
+{
+ int r = 0;
+ struct kvm *kvm = vcpu->kvm;
+
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+ if (!kvm->arch.mmu_ready) {
+ if (!kvm_is_radix(kvm))
+ r = kvmppc_hv_setup_htab_rma(vcpu);
+ if (!r) {
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ kvmppc_setup_partition_table(kvm);
+ kvm->arch.mmu_ready = 1;
+ }
+ }
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ return r;
+}
+
+static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ int n_ceded, i, r;
+ struct kvmppc_vcore *vc;
+ struct kvm_vcpu *v;
+
+ trace_kvmppc_run_vcpu_enter(vcpu);
+
+ run->exit_reason = 0;
+ vcpu->arch.ret = RESUME_GUEST;
+ vcpu->arch.trap = 0;
+ kvmppc_update_vpas(vcpu);
+
+ /*
+ * Synchronize with other threads in this virtual core
+ */
+ vc = vcpu->arch.vcore;
+ spin_lock(&vc->lock);
+ vcpu->arch.ceded = 0;
+ vcpu->arch.run_task = current;
+ vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
+ vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
+ vcpu->arch.busy_preempt = TB_NIL;
+ WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
+ ++vc->n_runnable;
+
+ /*
+ * This happens the first time this is called for a vcpu.
+ * If the vcore is already running, we may be able to start
+ * this thread straight away and have it join in.
+ */
+ if (!signal_pending(current)) {
+ if ((vc->vcore_state == VCORE_PIGGYBACK ||
+ vc->vcore_state == VCORE_RUNNING) &&
+ !VCORE_IS_EXITING(vc)) {
+ kvmppc_update_vpa_dispatch(vcpu, vc);
+ kvmppc_start_thread(vcpu, vc);
+ trace_kvm_guest_enter(vcpu);
+ } else if (vc->vcore_state == VCORE_SLEEPING) {
+ rcuwait_wake_up(&vc->wait);
+ }
+
+ }
+
+ while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
+ !signal_pending(current)) {
+ /* See if the MMU is ready to go */
+ if (!vcpu->kvm->arch.mmu_ready) {
+ spin_unlock(&vc->lock);
+ r = kvmhv_setup_mmu(vcpu);
+ spin_lock(&vc->lock);
+ if (r) {
+ run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ run->fail_entry.
+ hardware_entry_failure_reason = 0;
+ vcpu->arch.ret = r;
+ break;
+ }
+ }
+
+ if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
+ kvmppc_vcore_end_preempt(vc);
+
+ if (vc->vcore_state != VCORE_INACTIVE) {
+ kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
+ continue;
+ }
+ for_each_runnable_thread(i, v, vc) {
+ kvmppc_core_prepare_to_enter(v);
+ if (signal_pending(v->arch.run_task)) {
+ kvmppc_remove_runnable(vc, v, mftb());
+ v->stat.signal_exits++;
+ v->run->exit_reason = KVM_EXIT_INTR;
+ v->arch.ret = -EINTR;
+ wake_up(&v->arch.cpu_run);
+ }
+ }
+ if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
+ break;
+ n_ceded = 0;
+ for_each_runnable_thread(i, v, vc) {
+ if (!kvmppc_vcpu_woken(v))
+ n_ceded += v->arch.ceded;
+ else
+ v->arch.ceded = 0;
+ }
+ vc->runner = vcpu;
+ if (n_ceded == vc->n_runnable) {
+ kvmppc_vcore_blocked(vc);
+ } else if (need_resched()) {
+ kvmppc_vcore_preempt(vc);
+ /* Let something else run */
+ cond_resched_lock(&vc->lock);
+ if (vc->vcore_state == VCORE_PREEMPT)
+ kvmppc_vcore_end_preempt(vc);
+ } else {
+ kvmppc_run_core(vc);
+ }
+ vc->runner = NULL;
+ }
+
+ while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
+ (vc->vcore_state == VCORE_RUNNING ||
+ vc->vcore_state == VCORE_EXITING ||
+ vc->vcore_state == VCORE_PIGGYBACK))
+ kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
+
+ if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
+ kvmppc_vcore_end_preempt(vc);
+
+ if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
+ kvmppc_remove_runnable(vc, vcpu, mftb());
+ vcpu->stat.signal_exits++;
+ run->exit_reason = KVM_EXIT_INTR;
+ vcpu->arch.ret = -EINTR;
+ }
+
+ if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
+ /* Wake up some vcpu to run the core */
+ i = -1;
+ v = next_runnable_thread(vc, &i);
+ wake_up(&v->arch.cpu_run);
+ }
+
+ trace_kvmppc_run_vcpu_exit(vcpu);
+ spin_unlock(&vc->lock);
+ return vcpu->arch.ret;
+}
+
+int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
+ unsigned long lpcr)
+{
+ struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
+ struct kvm_run *run = vcpu->run;
+ int trap, r, pcpu;
+ int srcu_idx;
+ struct kvmppc_vcore *vc;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_nested_guest *nested = vcpu->arch.nested;
+ unsigned long flags;
+ u64 tb;
+
+ trace_kvmppc_run_vcpu_enter(vcpu);
+
+ run->exit_reason = 0;
+ vcpu->arch.ret = RESUME_GUEST;
+ vcpu->arch.trap = 0;
+
+ vc = vcpu->arch.vcore;
+ vcpu->arch.ceded = 0;
+ vcpu->arch.run_task = current;
+ vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
+
+ /* See if the MMU is ready to go */
+ if (unlikely(!kvm->arch.mmu_ready)) {
+ r = kvmhv_setup_mmu(vcpu);
+ if (r) {
+ run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ run->fail_entry.hardware_entry_failure_reason = 0;
+ vcpu->arch.ret = r;
+ return r;
+ }
+ }
+
+ if (need_resched())
+ cond_resched();
+
+ kvmppc_update_vpas(vcpu);
+
+ preempt_disable();
+ pcpu = smp_processor_id();
+ if (kvm_is_radix(kvm))
+ kvmppc_prepare_radix_vcpu(vcpu, pcpu);
+
+ /* flags save not required, but irq_pmu has no disable/enable API */
+ powerpc_local_irq_pmu_save(flags);
+
+ vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
+
+ if (signal_pending(current))
+ goto sigpend;
+ if (need_resched() || !kvm->arch.mmu_ready)
+ goto out;
+
+ vcpu->cpu = pcpu;
+ vcpu->arch.thread_cpu = pcpu;
+ vc->pcpu = pcpu;
+ local_paca->kvm_hstate.kvm_vcpu = vcpu;
+ local_paca->kvm_hstate.ptid = 0;
+ local_paca->kvm_hstate.fake_suspend = 0;
+
+ /*
+ * Orders set cpu/thread_cpu vs testing for pending interrupts and
+ * doorbells below. The other side is when these fields are set vs
+ * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
+ * kick a vCPU to notice the pending interrupt.
+ */
+ smp_mb();
+
+ if (!nested) {
+ kvmppc_core_prepare_to_enter(vcpu);
+ if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
+ &vcpu->arch.pending_exceptions) ||
+ xive_interrupt_pending(vcpu)) {
+ /*
+ * For nested HV, don't synthesize but always pass MER,
+ * the L0 will be able to optimise that more
+ * effectively than manipulating registers directly.
+ */
+ if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE))
+ kvmppc_inject_interrupt_hv(vcpu,
+ BOOK3S_INTERRUPT_EXTERNAL, 0);
+ else
+ lpcr |= LPCR_MER;
+ }
+ } else if (vcpu->arch.pending_exceptions ||
+ vcpu->arch.doorbell_request ||
+ xive_interrupt_pending(vcpu)) {
+ vcpu->arch.ret = RESUME_HOST;
+ goto out;
+ }
+
+ if (vcpu->arch.timer_running) {
+ hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
+ vcpu->arch.timer_running = 0;
+ }
+
+ tb = mftb();
+
+ kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + vc->tb_offset);
+
+ trace_kvm_guest_enter(vcpu);
+
+ guest_timing_enter_irqoff();
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+
+ guest_state_enter_irqoff();
+ this_cpu_disable_ftrace();
+
+ trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
+ vcpu->arch.trap = trap;
+
+ this_cpu_enable_ftrace();
+ guest_state_exit_irqoff();
+
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ set_irq_happened(trap);
+
+ vcpu->cpu = -1;
+ vcpu->arch.thread_cpu = -1;
+ vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
+
+ if (!vtime_accounting_enabled_this_cpu()) {
+ powerpc_local_irq_pmu_restore(flags);
+ /*
+ * Service IRQs here before guest_timing_exit_irqoff() so any
+ * ticks that occurred while running the guest are accounted to
+ * the guest. If vtime accounting is enabled, accounting uses
+ * TB rather than ticks, so it can be done without enabling
+ * interrupts here, which has the problem that it accounts
+ * interrupt processing overhead to the host.
+ */
+ powerpc_local_irq_pmu_save(flags);
+ }
+ guest_timing_exit_irqoff();
+
+ powerpc_local_irq_pmu_restore(flags);
+
+ preempt_enable();
+
+ /*
+ * cancel pending decrementer exception if DEC is now positive, or if
+ * entering a nested guest in which case the decrementer is now owned
+ * by L2 and the L1 decrementer is provided in hdec_expires
+ */
+ if (kvmppc_core_pending_dec(vcpu) &&
+ ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
+ (trap == BOOK3S_INTERRUPT_SYSCALL &&
+ kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
+ kvmppc_core_dequeue_dec(vcpu);
+
+ trace_kvm_guest_exit(vcpu);
+ r = RESUME_GUEST;
+ if (trap) {
+ if (!nested)
+ r = kvmppc_handle_exit_hv(vcpu, current);
+ else
+ r = kvmppc_handle_nested_exit(vcpu);
+ }
+ vcpu->arch.ret = r;
+
+ if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
+ kvmppc_set_timer(vcpu);
+
+ prepare_to_rcuwait(wait);
+ for (;;) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (signal_pending(current)) {
+ vcpu->stat.signal_exits++;
+ run->exit_reason = KVM_EXIT_INTR;
+ vcpu->arch.ret = -EINTR;
+ break;
+ }
+
+ if (kvmppc_vcpu_check_block(vcpu))
+ break;
+
+ trace_kvmppc_vcore_blocked(vcpu, 0);
+ schedule();
+ trace_kvmppc_vcore_blocked(vcpu, 1);
+ }
+ finish_rcuwait(wait);
+ }
+ vcpu->arch.ceded = 0;
+
+ done:
+ trace_kvmppc_run_vcpu_exit(vcpu);
+
+ return vcpu->arch.ret;
+
+ sigpend:
+ vcpu->stat.signal_exits++;
+ run->exit_reason = KVM_EXIT_INTR;
+ vcpu->arch.ret = -EINTR;
+ out:
+ vcpu->cpu = -1;
+ vcpu->arch.thread_cpu = -1;
+ vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
+ powerpc_local_irq_pmu_restore(flags);
+ preempt_enable();
+ goto done;
+}
+
+static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ int r;
+ int srcu_idx;
+ struct kvm *kvm;
+ unsigned long msr;
+
+ start_timing(vcpu, &vcpu->arch.vcpu_entry);
+
+ if (!vcpu->arch.sane) {
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ return -EINVAL;
+ }
+
+ /* No need to go into the guest when all we'll do is come back out */
+ if (signal_pending(current)) {
+ run->exit_reason = KVM_EXIT_INTR;
+ return -EINTR;
+ }
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ /*
+ * Don't allow entry with a suspended transaction, because
+ * the guest entry/exit code will lose it.
+ */
+ if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
+ (current->thread.regs->msr & MSR_TM)) {
+ if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
+ run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ run->fail_entry.hardware_entry_failure_reason = 0;
+ return -EINVAL;
+ }
+ }
+#endif
+
+ /*
+ * Force online to 1 for the sake of old userspace which doesn't
+ * set it.
+ */
+ if (!vcpu->arch.online) {
+ atomic_inc(&vcpu->arch.vcore->online_count);
+ vcpu->arch.online = 1;
+ }
+
+ kvmppc_core_prepare_to_enter(vcpu);
+
+ kvm = vcpu->kvm;
+ atomic_inc(&kvm->arch.vcpus_running);
+ /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
+ smp_mb();
+
+ msr = 0;
+ if (IS_ENABLED(CONFIG_PPC_FPU))
+ msr |= MSR_FP;
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ msr |= MSR_VEC;
+ if (cpu_has_feature(CPU_FTR_VSX))
+ msr |= MSR_VSX;
+ if ((cpu_has_feature(CPU_FTR_TM) ||
+ cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
+ (kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM))
+ msr |= MSR_TM;
+ msr = msr_check_and_set(msr);
+
+ kvmppc_save_user_regs();
+
+ kvmppc_save_current_sprs();
+
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ vcpu->arch.waitp = &vcpu->arch.vcore->wait;
+ vcpu->arch.pgdir = kvm->mm->pgd;
+ vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
+
+ do {
+ accumulate_time(vcpu, &vcpu->arch.guest_entry);
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
+ vcpu->arch.vcore->lpcr);
+ else
+ r = kvmppc_run_vcpu(vcpu);
+
+ if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
+ accumulate_time(vcpu, &vcpu->arch.hcall);
+
+ if (WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
+ /*
+ * These should have been caught reflected
+ * into the guest by now. Final sanity check:
+ * don't allow userspace to execute hcalls in
+ * the hypervisor.
+ */
+ r = RESUME_GUEST;
+ continue;
+ }
+ trace_kvm_hcall_enter(vcpu);
+ r = kvmppc_pseries_do_hcall(vcpu);
+ trace_kvm_hcall_exit(vcpu, r);
+ kvmppc_core_prepare_to_enter(vcpu);
+ } else if (r == RESUME_PAGE_FAULT) {
+ accumulate_time(vcpu, &vcpu->arch.pg_fault);
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ r = kvmppc_book3s_hv_page_fault(vcpu,
+ vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ } else if (r == RESUME_PASSTHROUGH) {
+ if (WARN_ON(xics_on_xive()))
+ r = H_SUCCESS;
+ else
+ r = kvmppc_xics_rm_complete(vcpu, 0);
+ }
+ } while (is_kvmppc_resume_guest(r));
+ accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
+
+ vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
+ atomic_dec(&kvm->arch.vcpus_running);
+
+ srr_regs_clobbered();
+
+ end_timing(vcpu);
+
+ return r;
+}
+
+static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
+ int shift, int sllp)
+{
+ (*sps)->page_shift = shift;
+ (*sps)->slb_enc = sllp;
+ (*sps)->enc[0].page_shift = shift;
+ (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
+ /*
+ * Add 16MB MPSS support (may get filtered out by userspace)
+ */
+ if (shift != 24) {
+ int penc = kvmppc_pgsize_lp_encoding(shift, 24);
+ if (penc != -1) {
+ (*sps)->enc[1].page_shift = 24;
+ (*sps)->enc[1].pte_enc = penc;
+ }
+ }
+ (*sps)++;
+}
+
+static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
+ struct kvm_ppc_smmu_info *info)
+{
+ struct kvm_ppc_one_seg_page_size *sps;
+
+ /*
+ * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
+ * POWER7 doesn't support keys for instruction accesses,
+ * POWER8 and POWER9 do.
+ */
+ info->data_keys = 32;
+ info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
+
+ /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
+ info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
+ info->slb_size = 32;
+
+ /* We only support these sizes for now, and no muti-size segments */
+ sps = &info->sps[0];
+ kvmppc_add_seg_page_size(&sps, 12, 0);
+ kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
+ kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
+
+ /* If running as a nested hypervisor, we don't support HPT guests */
+ if (kvmhv_on_pseries())
+ info->flags |= KVM_PPC_NO_HASH;
+
+ return 0;
+}
+
+/*
+ * Get (and clear) the dirty memory log for a memory slot.
+ */
+static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
+ struct kvm_dirty_log *log)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int r;
+ unsigned long n, i;
+ unsigned long *buf, *p;
+ struct kvm_vcpu *vcpu;
+
+ mutex_lock(&kvm->slots_lock);
+
+ r = -EINVAL;
+ if (log->slot >= KVM_USER_MEM_SLOTS)
+ goto out;
+
+ slots = kvm_memslots(kvm);
+ memslot = id_to_memslot(slots, log->slot);
+ r = -ENOENT;
+ if (!memslot || !memslot->dirty_bitmap)
+ goto out;
+
+ /*
+ * Use second half of bitmap area because both HPT and radix
+ * accumulate bits in the first half.
+ */
+ n = kvm_dirty_bitmap_bytes(memslot);
+ buf = memslot->dirty_bitmap + n / sizeof(long);
+ memset(buf, 0, n);
+
+ if (kvm_is_radix(kvm))
+ r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
+ else
+ r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
+ if (r)
+ goto out;
+
+ /*
+ * We accumulate dirty bits in the first half of the
+ * memslot's dirty_bitmap area, for when pages are paged
+ * out or modified by the host directly. Pick up these
+ * bits and add them to the map.
+ */
+ p = memslot->dirty_bitmap;
+ for (i = 0; i < n / sizeof(long); ++i)
+ buf[i] |= xchg(&p[i], 0);
+
+ /* Harvest dirty bits from VPA and DTL updates */
+ /* Note: we never modify the SLB shadow buffer areas */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
+ kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ }
+
+ r = -EFAULT;
+ if (copy_to_user(log->dirty_bitmap, buf, n))
+ goto out;
+
+ r = 0;
+out:
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
+{
+ vfree(slot->arch.rmap);
+ slot->arch.rmap = NULL;
+}
+
+static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
+ const struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ if (change == KVM_MR_CREATE) {
+ unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
+
+ if ((size >> PAGE_SHIFT) > totalram_pages())
+ return -ENOMEM;
+
+ new->arch.rmap = vzalloc(size);
+ if (!new->arch.rmap)
+ return -ENOMEM;
+ } else if (change != KVM_MR_DELETE) {
+ new->arch.rmap = old->arch.rmap;
+ }
+
+ return 0;
+}
+
+static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ const struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ /*
+ * If we are creating or modifying a memslot, it might make
+ * some address that was previously cached as emulated
+ * MMIO be no longer emulated MMIO, so invalidate
+ * all the caches of emulated MMIO translations.
+ */
+ if (change != KVM_MR_DELETE)
+ atomic64_inc(&kvm->arch.mmio_update);
+
+ /*
+ * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
+ * have already called kvm_arch_flush_shadow_memslot() to
+ * flush shadow mappings. For KVM_MR_CREATE we have no
+ * previous mappings. So the only case to handle is
+ * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
+ * has been changed.
+ * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
+ * to get rid of any THP PTEs in the partition-scoped page tables
+ * so we can track dirtiness at the page level; we flush when
+ * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
+ * using THP PTEs.
+ */
+ if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
+ ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
+ kvmppc_radix_flush_memslot(kvm, old);
+ /*
+ * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
+ */
+ if (!kvm->arch.secure_guest)
+ return;
+
+ switch (change) {
+ case KVM_MR_CREATE:
+ /*
+ * @TODO kvmppc_uvmem_memslot_create() can fail and
+ * return error. Fix this.
+ */
+ kvmppc_uvmem_memslot_create(kvm, new);
+ break;
+ case KVM_MR_DELETE:
+ kvmppc_uvmem_memslot_delete(kvm, old);
+ break;
+ default:
+ /* TODO: Handle KVM_MR_MOVE */
+ break;
+ }
+}
+
+/*
+ * Update LPCR values in kvm->arch and in vcores.
+ * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
+ * of kvm->arch.lpcr update).
+ */
+void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
+{
+ long int i;
+ u32 cores_done = 0;
+
+ if ((kvm->arch.lpcr & mask) == lpcr)
+ return;
+
+ kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
+
+ for (i = 0; i < KVM_MAX_VCORES; ++i) {
+ struct kvmppc_vcore *vc = kvm->arch.vcores[i];
+ if (!vc)
+ continue;
+
+ spin_lock(&vc->lock);
+ vc->lpcr = (vc->lpcr & ~mask) | lpcr;
+ verify_lpcr(kvm, vc->lpcr);
+ spin_unlock(&vc->lock);
+ if (++cores_done >= kvm->arch.online_vcores)
+ break;
+ }
+}
+
+void kvmppc_setup_partition_table(struct kvm *kvm)
+{
+ unsigned long dw0, dw1;
+
+ if (!kvm_is_radix(kvm)) {
+ /* PS field - page size for VRMA */
+ dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
+ ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
+ /* HTABSIZE and HTABORG fields */
+ dw0 |= kvm->arch.sdr1;
+
+ /* Second dword as set by userspace */
+ dw1 = kvm->arch.process_table;
+ } else {
+ dw0 = PATB_HR | radix__get_tree_size() |
+ __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
+ dw1 = PATB_GR | kvm->arch.process_table;
+ }
+ kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
+}
+
+/*
+ * Set up HPT (hashed page table) and RMA (real-mode area).
+ * Must be called with kvm->arch.mmu_setup_lock held.
+ */
+static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
+{
+ int err = 0;
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long hva;
+ struct kvm_memory_slot *memslot;
+ struct vm_area_struct *vma;
+ unsigned long lpcr = 0, senc;
+ unsigned long psize, porder;
+ int srcu_idx;
+
+ /* Allocate hashed page table (if not done already) and reset it */
+ if (!kvm->arch.hpt.virt) {
+ int order = KVM_DEFAULT_HPT_ORDER;
+ struct kvm_hpt_info info;
+
+ err = kvmppc_allocate_hpt(&info, order);
+ /* If we get here, it means userspace didn't specify a
+ * size explicitly. So, try successively smaller
+ * sizes if the default failed. */
+ while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
+ err = kvmppc_allocate_hpt(&info, order);
+
+ if (err < 0) {
+ pr_err("KVM: Couldn't alloc HPT\n");
+ goto out;
+ }
+
+ kvmppc_set_hpt(kvm, &info);
+ }
+
+ /* Look up the memslot for guest physical address 0 */
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ memslot = gfn_to_memslot(kvm, 0);
+
+ /* We must have some memory at 0 by now */
+ err = -EINVAL;
+ if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
+ goto out_srcu;
+
+ /* Look up the VMA for the start of this memory slot */
+ hva = memslot->userspace_addr;
+ mmap_read_lock(kvm->mm);
+ vma = vma_lookup(kvm->mm, hva);
+ if (!vma || (vma->vm_flags & VM_IO))
+ goto up_out;
+
+ psize = vma_kernel_pagesize(vma);
+
+ mmap_read_unlock(kvm->mm);
+
+ /* We can handle 4k, 64k or 16M pages in the VRMA */
+ if (psize >= 0x1000000)
+ psize = 0x1000000;
+ else if (psize >= 0x10000)
+ psize = 0x10000;
+ else
+ psize = 0x1000;
+ porder = __ilog2(psize);
+
+ senc = slb_pgsize_encoding(psize);
+ kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
+ (VRMA_VSID << SLB_VSID_SHIFT_1T);
+ /* Create HPTEs in the hash page table for the VRMA */
+ kvmppc_map_vrma(vcpu, memslot, porder);
+
+ /* Update VRMASD field in the LPCR */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
+ /* the -4 is to account for senc values starting at 0x10 */
+ lpcr = senc << (LPCR_VRMASD_SH - 4);
+ kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
+ }
+
+ /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
+ smp_wmb();
+ err = 0;
+ out_srcu:
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ out:
+ return err;
+
+ up_out:
+ mmap_read_unlock(kvm->mm);
+ goto out_srcu;
+}
+
+/*
+ * Must be called with kvm->arch.mmu_setup_lock held and
+ * mmu_ready = 0 and no vcpus running.
+ */
+int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
+{
+ unsigned long lpcr, lpcr_mask;
+
+ if (nesting_enabled(kvm))
+ kvmhv_release_all_nested(kvm);
+ kvmppc_rmap_reset(kvm);
+ kvm->arch.process_table = 0;
+ /* Mutual exclusion with kvm_unmap_gfn_range etc. */
+ spin_lock(&kvm->mmu_lock);
+ kvm->arch.radix = 0;
+ spin_unlock(&kvm->mmu_lock);
+ kvmppc_free_radix(kvm);
+
+ lpcr = LPCR_VPM1;
+ lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
+ if (cpu_has_feature(CPU_FTR_ARCH_31))
+ lpcr_mask |= LPCR_HAIL;
+ kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
+
+ return 0;
+}
+
+/*
+ * Must be called with kvm->arch.mmu_setup_lock held and
+ * mmu_ready = 0 and no vcpus running.
+ */
+int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
+{
+ unsigned long lpcr, lpcr_mask;
+ int err;
+
+ err = kvmppc_init_vm_radix(kvm);
+ if (err)
+ return err;
+ kvmppc_rmap_reset(kvm);
+ /* Mutual exclusion with kvm_unmap_gfn_range etc. */
+ spin_lock(&kvm->mmu_lock);
+ kvm->arch.radix = 1;
+ spin_unlock(&kvm->mmu_lock);
+ kvmppc_free_hpt(&kvm->arch.hpt);
+
+ lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
+ lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ lpcr_mask |= LPCR_HAIL;
+ if (cpu_has_feature(CPU_FTR_HVMODE) &&
+ (kvm->arch.host_lpcr & LPCR_HAIL))
+ lpcr |= LPCR_HAIL;
+ }
+ kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
+
+ return 0;
+}
+
+#ifdef CONFIG_KVM_XICS
+/*
+ * Allocate a per-core structure for managing state about which cores are
+ * running in the host versus the guest and for exchanging data between
+ * real mode KVM and CPU running in the host.
+ * This is only done for the first VM.
+ * The allocated structure stays even if all VMs have stopped.
+ * It is only freed when the kvm-hv module is unloaded.
+ * It's OK for this routine to fail, we just don't support host
+ * core operations like redirecting H_IPI wakeups.
+ */
+void kvmppc_alloc_host_rm_ops(void)
+{
+ struct kvmppc_host_rm_ops *ops;
+ unsigned long l_ops;
+ int cpu, core;
+ int size;
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ return;
+
+ /* Not the first time here ? */
+ if (kvmppc_host_rm_ops_hv != NULL)
+ return;
+
+ ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
+ if (!ops)
+ return;
+
+ size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
+ ops->rm_core = kzalloc(size, GFP_KERNEL);
+
+ if (!ops->rm_core) {
+ kfree(ops);
+ return;
+ }
+
+ cpus_read_lock();
+
+ for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
+ if (!cpu_online(cpu))
+ continue;
+
+ core = cpu >> threads_shift;
+ ops->rm_core[core].rm_state.in_host = 1;
+ }
+
+ ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
+
+ /*
+ * Make the contents of the kvmppc_host_rm_ops structure visible
+ * to other CPUs before we assign it to the global variable.
+ * Do an atomic assignment (no locks used here), but if someone
+ * beats us to it, just free our copy and return.
+ */
+ smp_wmb();
+ l_ops = (unsigned long) ops;
+
+ if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
+ cpus_read_unlock();
+ kfree(ops->rm_core);
+ kfree(ops);
+ return;
+ }
+
+ cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
+ "ppc/kvm_book3s:prepare",
+ kvmppc_set_host_core,
+ kvmppc_clear_host_core);
+ cpus_read_unlock();
+}
+
+void kvmppc_free_host_rm_ops(void)
+{
+ if (kvmppc_host_rm_ops_hv) {
+ cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
+ kfree(kvmppc_host_rm_ops_hv->rm_core);
+ kfree(kvmppc_host_rm_ops_hv);
+ kvmppc_host_rm_ops_hv = NULL;
+ }
+}
+#endif
+
+static int kvmppc_core_init_vm_hv(struct kvm *kvm)
+{
+ unsigned long lpcr, lpid;
+ int ret;
+
+ mutex_init(&kvm->arch.uvmem_lock);
+ INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
+ mutex_init(&kvm->arch.mmu_setup_lock);
+
+ /* Allocate the guest's logical partition ID */
+
+ lpid = kvmppc_alloc_lpid();
+ if ((long)lpid < 0)
+ return -ENOMEM;
+ kvm->arch.lpid = lpid;
+
+ kvmppc_alloc_host_rm_ops();
+
+ kvmhv_vm_nested_init(kvm);
+
+ /*
+ * Since we don't flush the TLB when tearing down a VM,
+ * and this lpid might have previously been used,
+ * make sure we flush on each core before running the new VM.
+ * On POWER9, the tlbie in mmu_partition_table_set_entry()
+ * does this flush for us.
+ */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ cpumask_setall(&kvm->arch.need_tlb_flush);
+
+ /* Start out with the default set of hcalls enabled */
+ memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
+ sizeof(kvm->arch.enabled_hcalls));
+
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
+
+ /* Init LPCR for virtual RMA mode */
+ if (cpu_has_feature(CPU_FTR_HVMODE)) {
+ kvm->arch.host_lpid = mfspr(SPRN_LPID);
+ kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
+ lpcr &= LPCR_PECE | LPCR_LPES;
+ } else {
+ /*
+ * The L2 LPES mode will be set by the L0 according to whether
+ * or not it needs to take external interrupts in HV mode.
+ */
+ lpcr = 0;
+ }
+ lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
+ LPCR_VPM0 | LPCR_VPM1;
+ kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
+ (VRMA_VSID << SLB_VSID_SHIFT_1T);
+ /* On POWER8 turn on online bit to enable PURR/SPURR */
+ if (cpu_has_feature(CPU_FTR_ARCH_207S))
+ lpcr |= LPCR_ONL;
+ /*
+ * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
+ * Set HVICE bit to enable hypervisor virtualization interrupts.
+ * Set HEIC to prevent OS interrupts to go to hypervisor (should
+ * be unnecessary but better safe than sorry in case we re-enable
+ * EE in HV mode with this LPCR still set)
+ */
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ lpcr &= ~LPCR_VPM0;
+ lpcr |= LPCR_HVICE | LPCR_HEIC;
+
+ /*
+ * If xive is enabled, we route 0x500 interrupts directly
+ * to the guest.
+ */
+ if (xics_on_xive())
+ lpcr |= LPCR_LPES;
+ }
+
+ /*
+ * If the host uses radix, the guest starts out as radix.
+ */
+ if (radix_enabled()) {
+ kvm->arch.radix = 1;
+ kvm->arch.mmu_ready = 1;
+ lpcr &= ~LPCR_VPM1;
+ lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
+ if (cpu_has_feature(CPU_FTR_HVMODE) &&
+ cpu_has_feature(CPU_FTR_ARCH_31) &&
+ (kvm->arch.host_lpcr & LPCR_HAIL))
+ lpcr |= LPCR_HAIL;
+ ret = kvmppc_init_vm_radix(kvm);
+ if (ret) {
+ kvmppc_free_lpid(kvm->arch.lpid);
+ return ret;
+ }
+ kvmppc_setup_partition_table(kvm);
+ }
+
+ verify_lpcr(kvm, lpcr);
+ kvm->arch.lpcr = lpcr;
+
+ /* Initialization for future HPT resizes */
+ kvm->arch.resize_hpt = NULL;
+
+ /*
+ * Work out how many sets the TLB has, for the use of
+ * the TLB invalidation loop in book3s_hv_rmhandlers.S.
+ */
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ /*
+ * P10 will flush all the congruence class with a single tlbiel
+ */
+ kvm->arch.tlb_sets = 1;
+ } else if (radix_enabled())
+ kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
+ else if (cpu_has_feature(CPU_FTR_ARCH_300))
+ kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
+ else if (cpu_has_feature(CPU_FTR_ARCH_207S))
+ kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
+ else
+ kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
+
+ /*
+ * Track that we now have a HV mode VM active. This blocks secondary
+ * CPU threads from coming online.
+ */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ kvm_hv_vm_activated();
+
+ /*
+ * Initialize smt_mode depending on processor.
+ * POWER8 and earlier have to use "strict" threading, where
+ * all vCPUs in a vcore have to run on the same (sub)core,
+ * whereas on POWER9 the threads can each run a different
+ * guest.
+ */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ kvm->arch.smt_mode = threads_per_subcore;
+ else
+ kvm->arch.smt_mode = 1;
+ kvm->arch.emul_smt_mode = 1;
+
+ return 0;
+}
+
+static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
+{
+ kvmppc_mmu_debugfs_init(kvm);
+ if (radix_enabled())
+ kvmhv_radix_debugfs_init(kvm);
+ return 0;
+}
+
+static void kvmppc_free_vcores(struct kvm *kvm)
+{
+ long int i;
+
+ for (i = 0; i < KVM_MAX_VCORES; ++i)
+ kfree(kvm->arch.vcores[i]);
+ kvm->arch.online_vcores = 0;
+}
+
+static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
+{
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ kvm_hv_vm_deactivated();
+
+ kvmppc_free_vcores(kvm);
+
+
+ if (kvm_is_radix(kvm))
+ kvmppc_free_radix(kvm);
+ else
+ kvmppc_free_hpt(&kvm->arch.hpt);
+
+ /* Perform global invalidation and return lpid to the pool */
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ if (nesting_enabled(kvm))
+ kvmhv_release_all_nested(kvm);
+ kvm->arch.process_table = 0;
+ if (kvm->arch.secure_guest)
+ uv_svm_terminate(kvm->arch.lpid);
+ kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
+ }
+
+ kvmppc_free_lpid(kvm->arch.lpid);
+
+ kvmppc_free_pimap(kvm);
+}
+
+/* We don't need to emulate any privileged instructions or dcbz */
+static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
+ unsigned int inst, int *advance)
+{
+ return EMULATE_FAIL;
+}
+
+static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
+ ulong spr_val)
+{
+ return EMULATE_FAIL;
+}
+
+static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
+ ulong *spr_val)
+{
+ return EMULATE_FAIL;
+}
+
+static int kvmppc_core_check_processor_compat_hv(void)
+{
+ if (cpu_has_feature(CPU_FTR_HVMODE) &&
+ cpu_has_feature(CPU_FTR_ARCH_206))
+ return 0;
+
+ /* POWER9 in radix mode is capable of being a nested hypervisor. */
+ if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
+ return 0;
+
+ return -EIO;
+}
+
+#ifdef CONFIG_KVM_XICS
+
+void kvmppc_free_pimap(struct kvm *kvm)
+{
+ kfree(kvm->arch.pimap);
+}
+
+static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
+{
+ return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
+}
+
+static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
+{
+ struct irq_desc *desc;
+ struct kvmppc_irq_map *irq_map;
+ struct kvmppc_passthru_irqmap *pimap;
+ struct irq_chip *chip;
+ int i, rc = 0;
+ struct irq_data *host_data;
+
+ if (!kvm_irq_bypass)
+ return 1;
+
+ desc = irq_to_desc(host_irq);
+ if (!desc)
+ return -EIO;
+
+ mutex_lock(&kvm->lock);
+
+ pimap = kvm->arch.pimap;
+ if (pimap == NULL) {
+ /* First call, allocate structure to hold IRQ map */
+ pimap = kvmppc_alloc_pimap();
+ if (pimap == NULL) {
+ mutex_unlock(&kvm->lock);
+ return -ENOMEM;
+ }
+ kvm->arch.pimap = pimap;
+ }
+
+ /*
+ * For now, we only support interrupts for which the EOI operation
+ * is an OPAL call followed by a write to XIRR, since that's
+ * what our real-mode EOI code does, or a XIVE interrupt
+ */
+ chip = irq_data_get_irq_chip(&desc->irq_data);
+ if (!chip || !is_pnv_opal_msi(chip)) {
+ pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
+ host_irq, guest_gsi);
+ mutex_unlock(&kvm->lock);
+ return -ENOENT;
+ }
+
+ /*
+ * See if we already have an entry for this guest IRQ number.
+ * If it's mapped to a hardware IRQ number, that's an error,
+ * otherwise re-use this entry.
+ */
+ for (i = 0; i < pimap->n_mapped; i++) {
+ if (guest_gsi == pimap->mapped[i].v_hwirq) {
+ if (pimap->mapped[i].r_hwirq) {
+ mutex_unlock(&kvm->lock);
+ return -EINVAL;
+ }
+ break;
+ }
+ }
+
+ if (i == KVMPPC_PIRQ_MAPPED) {
+ mutex_unlock(&kvm->lock);
+ return -EAGAIN; /* table is full */
+ }
+
+ irq_map = &pimap->mapped[i];
+
+ irq_map->v_hwirq = guest_gsi;
+ irq_map->desc = desc;
+
+ /*
+ * Order the above two stores before the next to serialize with
+ * the KVM real mode handler.
+ */
+ smp_wmb();
+
+ /*
+ * The 'host_irq' number is mapped in the PCI-MSI domain but
+ * the underlying calls, which will EOI the interrupt in real
+ * mode, need an HW IRQ number mapped in the XICS IRQ domain.
+ */
+ host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
+ irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
+
+ if (i == pimap->n_mapped)
+ pimap->n_mapped++;
+
+ if (xics_on_xive())
+ rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
+ else
+ kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
+ if (rc)
+ irq_map->r_hwirq = 0;
+
+ mutex_unlock(&kvm->lock);
+
+ return 0;
+}
+
+static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
+{
+ struct irq_desc *desc;
+ struct kvmppc_passthru_irqmap *pimap;
+ int i, rc = 0;
+
+ if (!kvm_irq_bypass)
+ return 0;
+
+ desc = irq_to_desc(host_irq);
+ if (!desc)
+ return -EIO;
+
+ mutex_lock(&kvm->lock);
+ if (!kvm->arch.pimap)
+ goto unlock;
+
+ pimap = kvm->arch.pimap;
+
+ for (i = 0; i < pimap->n_mapped; i++) {
+ if (guest_gsi == pimap->mapped[i].v_hwirq)
+ break;
+ }
+
+ if (i == pimap->n_mapped) {
+ mutex_unlock(&kvm->lock);
+ return -ENODEV;
+ }
+
+ if (xics_on_xive())
+ rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
+ else
+ kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
+
+ /* invalidate the entry (what to do on error from the above ?) */
+ pimap->mapped[i].r_hwirq = 0;
+
+ /*
+ * We don't free this structure even when the count goes to
+ * zero. The structure is freed when we destroy the VM.
+ */
+ unlock:
+ mutex_unlock(&kvm->lock);
+ return rc;
+}
+
+static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ int ret = 0;
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ irqfd->producer = prod;
+
+ ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
+ if (ret)
+ pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
+ prod->irq, irqfd->gsi, ret);
+
+ return ret;
+}
+
+static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ int ret;
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ irqfd->producer = NULL;
+
+ /*
+ * When producer of consumer is unregistered, we change back to
+ * default external interrupt handling mode - KVM real mode
+ * will switch back to host.
+ */
+ ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
+ if (ret)
+ pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
+ prod->irq, irqfd->gsi, ret);
+}
+#endif
+
+static int kvm_arch_vm_ioctl_hv(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm *kvm __maybe_unused = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ int r;
+
+ switch (ioctl) {
+
+ case KVM_PPC_ALLOCATE_HTAB: {
+ u32 htab_order;
+
+ /* If we're a nested hypervisor, we currently only support radix */
+ if (kvmhv_on_pseries()) {
+ r = -EOPNOTSUPP;
+ break;
+ }
+
+ r = -EFAULT;
+ if (get_user(htab_order, (u32 __user *)argp))
+ break;
+ r = kvmppc_alloc_reset_hpt(kvm, htab_order);
+ if (r)
+ break;
+ r = 0;
+ break;
+ }
+
+ case KVM_PPC_GET_HTAB_FD: {
+ struct kvm_get_htab_fd ghf;
+
+ r = -EFAULT;
+ if (copy_from_user(&ghf, argp, sizeof(ghf)))
+ break;
+ r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
+ break;
+ }
+
+ case KVM_PPC_RESIZE_HPT_PREPARE: {
+ struct kvm_ppc_resize_hpt rhpt;
+
+ r = -EFAULT;
+ if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
+ break;
+
+ r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
+ break;
+ }
+
+ case KVM_PPC_RESIZE_HPT_COMMIT: {
+ struct kvm_ppc_resize_hpt rhpt;
+
+ r = -EFAULT;
+ if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
+ break;
+
+ r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
+ break;
+ }
+
+ default:
+ r = -ENOTTY;
+ }
+
+ return r;
+}
+
+/*
+ * List of hcall numbers to enable by default.
+ * For compatibility with old userspace, we enable by default
+ * all hcalls that were implemented before the hcall-enabling
+ * facility was added. Note this list should not include H_RTAS.
+ */
+static unsigned int default_hcall_list[] = {
+ H_REMOVE,
+ H_ENTER,
+ H_READ,
+ H_PROTECT,
+ H_BULK_REMOVE,
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+ H_GET_TCE,
+ H_PUT_TCE,
+#endif
+ H_SET_DABR,
+ H_SET_XDABR,
+ H_CEDE,
+ H_PROD,
+ H_CONFER,
+ H_REGISTER_VPA,
+#ifdef CONFIG_KVM_XICS
+ H_EOI,
+ H_CPPR,
+ H_IPI,
+ H_IPOLL,
+ H_XIRR,
+ H_XIRR_X,
+#endif
+ 0
+};
+
+static void init_default_hcalls(void)
+{
+ int i;
+ unsigned int hcall;
+
+ for (i = 0; default_hcall_list[i]; ++i) {
+ hcall = default_hcall_list[i];
+ WARN_ON(!kvmppc_hcall_impl_hv(hcall));
+ __set_bit(hcall / 4, default_enabled_hcalls);
+ }
+}
+
+static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
+{
+ unsigned long lpcr;
+ int radix;
+ int err;
+
+ /* If not on a POWER9, reject it */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ return -ENODEV;
+
+ /* If any unknown flags set, reject it */
+ if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
+ return -EINVAL;
+
+ /* GR (guest radix) bit in process_table field must match */
+ radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
+ if (!!(cfg->process_table & PATB_GR) != radix)
+ return -EINVAL;
+
+ /* Process table size field must be reasonable, i.e. <= 24 */
+ if ((cfg->process_table & PRTS_MASK) > 24)
+ return -EINVAL;
+
+ /* We can change a guest to/from radix now, if the host is radix */
+ if (radix && !radix_enabled())
+ return -EINVAL;
+
+ /* If we're a nested hypervisor, we currently only support radix */
+ if (kvmhv_on_pseries() && !radix)
+ return -EINVAL;
+
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+ if (radix != kvm_is_radix(kvm)) {
+ if (kvm->arch.mmu_ready) {
+ kvm->arch.mmu_ready = 0;
+ /* order mmu_ready vs. vcpus_running */
+ smp_mb();
+ if (atomic_read(&kvm->arch.vcpus_running)) {
+ kvm->arch.mmu_ready = 1;
+ err = -EBUSY;
+ goto out_unlock;
+ }
+ }
+ if (radix)
+ err = kvmppc_switch_mmu_to_radix(kvm);
+ else
+ err = kvmppc_switch_mmu_to_hpt(kvm);
+ if (err)
+ goto out_unlock;
+ }
+
+ kvm->arch.process_table = cfg->process_table;
+ kvmppc_setup_partition_table(kvm);
+
+ lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
+ kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
+ err = 0;
+
+ out_unlock:
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ return err;
+}
+
+static int kvmhv_enable_nested(struct kvm *kvm)
+{
+ if (!nested)
+ return -EPERM;
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ return -ENODEV;
+ if (!radix_enabled())
+ return -ENODEV;
+
+ /* kvm == NULL means the caller is testing if the capability exists */
+ if (kvm)
+ kvm->arch.nested_enable = true;
+ return 0;
+}
+
+static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
+ int size)
+{
+ int rc = -EINVAL;
+
+ if (kvmhv_vcpu_is_radix(vcpu)) {
+ rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
+
+ if (rc > 0)
+ rc = -EINVAL;
+ }
+
+ /* For now quadrants are the only way to access nested guest memory */
+ if (rc && vcpu->arch.nested)
+ rc = -EAGAIN;
+
+ return rc;
+}
+
+static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
+ int size)
+{
+ int rc = -EINVAL;
+
+ if (kvmhv_vcpu_is_radix(vcpu)) {
+ rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
+
+ if (rc > 0)
+ rc = -EINVAL;
+ }
+
+ /* For now quadrants are the only way to access nested guest memory */
+ if (rc && vcpu->arch.nested)
+ rc = -EAGAIN;
+
+ return rc;
+}
+
+static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
+{
+ unpin_vpa(kvm, vpa);
+ vpa->gpa = 0;
+ vpa->pinned_addr = NULL;
+ vpa->dirty = false;
+ vpa->update_pending = 0;
+}
+
+/*
+ * Enable a guest to become a secure VM, or test whether
+ * that could be enabled.
+ * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
+ * tested (kvm == NULL) or enabled (kvm != NULL).
+ */
+static int kvmhv_enable_svm(struct kvm *kvm)
+{
+ if (!kvmppc_uvmem_available())
+ return -EINVAL;
+ if (kvm)
+ kvm->arch.svm_enabled = 1;
+ return 0;
+}
+
+/*
+ * IOCTL handler to turn off secure mode of guest
+ *
+ * - Release all device pages
+ * - Issue ucall to terminate the guest on the UV side
+ * - Unpin the VPA pages.
+ * - Reinit the partition scoped page tables
+ */
+static int kvmhv_svm_off(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ int mmu_was_ready;
+ int srcu_idx;
+ int ret = 0;
+ unsigned long i;
+
+ if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
+ return ret;
+
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+ mmu_was_ready = kvm->arch.mmu_ready;
+ if (kvm->arch.mmu_ready) {
+ kvm->arch.mmu_ready = 0;
+ /* order mmu_ready vs. vcpus_running */
+ smp_mb();
+ if (atomic_read(&kvm->arch.vcpus_running)) {
+ kvm->arch.mmu_ready = 1;
+ ret = -EBUSY;
+ goto out;
+ }
+ }
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
+ struct kvm_memory_slot *memslot;
+ struct kvm_memslots *slots = __kvm_memslots(kvm, i);
+ int bkt;
+
+ if (!slots)
+ continue;
+
+ kvm_for_each_memslot(memslot, bkt, slots) {
+ kvmppc_uvmem_drop_pages(memslot, kvm, true);
+ uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
+ }
+ }
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ ret = uv_svm_terminate(kvm->arch.lpid);
+ if (ret != U_SUCCESS) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /*
+ * When secure guest is reset, all the guest pages are sent
+ * to UV via UV_PAGE_IN before the non-boot vcpus get a
+ * chance to run and unpin their VPA pages. Unpinning of all
+ * VPA pages is done here explicitly so that VPA pages
+ * can be migrated to the secure side.
+ *
+ * This is required to for the secure SMP guest to reboot
+ * correctly.
+ */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ unpin_vpa_reset(kvm, &vcpu->arch.dtl);
+ unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
+ unpin_vpa_reset(kvm, &vcpu->arch.vpa);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ }
+
+ kvmppc_setup_partition_table(kvm);
+ kvm->arch.secure_guest = 0;
+ kvm->arch.mmu_ready = mmu_was_ready;
+out:
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ return ret;
+}
+
+static int kvmhv_enable_dawr1(struct kvm *kvm)
+{
+ if (!cpu_has_feature(CPU_FTR_DAWR1))
+ return -ENODEV;
+
+ /* kvm == NULL means the caller is testing if the capability exists */
+ if (kvm)
+ kvm->arch.dawr1_enabled = true;
+ return 0;
+}
+
+static bool kvmppc_hash_v3_possible(void)
+{
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ return false;
+
+ if (!cpu_has_feature(CPU_FTR_HVMODE))
+ return false;
+
+ /*
+ * POWER9 chips before version 2.02 can't have some threads in
+ * HPT mode and some in radix mode on the same core.
+ */
+ if (radix_enabled()) {
+ unsigned int pvr = mfspr(SPRN_PVR);
+ if ((pvr >> 16) == PVR_POWER9 &&
+ (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
+ ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
+ return false;
+ }
+
+ return true;
+}
+
+static struct kvmppc_ops kvm_ops_hv = {
+ .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
+ .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
+ .get_one_reg = kvmppc_get_one_reg_hv,
+ .set_one_reg = kvmppc_set_one_reg_hv,
+ .vcpu_load = kvmppc_core_vcpu_load_hv,
+ .vcpu_put = kvmppc_core_vcpu_put_hv,
+ .inject_interrupt = kvmppc_inject_interrupt_hv,
+ .set_msr = kvmppc_set_msr_hv,
+ .vcpu_run = kvmppc_vcpu_run_hv,
+ .vcpu_create = kvmppc_core_vcpu_create_hv,
+ .vcpu_free = kvmppc_core_vcpu_free_hv,
+ .check_requests = kvmppc_core_check_requests_hv,
+ .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
+ .flush_memslot = kvmppc_core_flush_memslot_hv,
+ .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
+ .commit_memory_region = kvmppc_core_commit_memory_region_hv,
+ .unmap_gfn_range = kvm_unmap_gfn_range_hv,
+ .age_gfn = kvm_age_gfn_hv,
+ .test_age_gfn = kvm_test_age_gfn_hv,
+ .set_spte_gfn = kvm_set_spte_gfn_hv,
+ .free_memslot = kvmppc_core_free_memslot_hv,
+ .init_vm = kvmppc_core_init_vm_hv,
+ .destroy_vm = kvmppc_core_destroy_vm_hv,
+ .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
+ .emulate_op = kvmppc_core_emulate_op_hv,
+ .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
+ .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
+ .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
+ .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
+ .hcall_implemented = kvmppc_hcall_impl_hv,
+#ifdef CONFIG_KVM_XICS
+ .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
+ .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
+#endif
+ .configure_mmu = kvmhv_configure_mmu,
+ .get_rmmu_info = kvmhv_get_rmmu_info,
+ .set_smt_mode = kvmhv_set_smt_mode,
+ .enable_nested = kvmhv_enable_nested,
+ .load_from_eaddr = kvmhv_load_from_eaddr,
+ .store_to_eaddr = kvmhv_store_to_eaddr,
+ .enable_svm = kvmhv_enable_svm,
+ .svm_off = kvmhv_svm_off,
+ .enable_dawr1 = kvmhv_enable_dawr1,
+ .hash_v3_possible = kvmppc_hash_v3_possible,
+ .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
+ .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
+};
+
+static int kvm_init_subcore_bitmap(void)
+{
+ int i, j;
+ int nr_cores = cpu_nr_cores();
+ struct sibling_subcore_state *sibling_subcore_state;
+
+ for (i = 0; i < nr_cores; i++) {
+ int first_cpu = i * threads_per_core;
+ int node = cpu_to_node(first_cpu);
+
+ /* Ignore if it is already allocated. */
+ if (paca_ptrs[first_cpu]->sibling_subcore_state)
+ continue;
+
+ sibling_subcore_state =
+ kzalloc_node(sizeof(struct sibling_subcore_state),
+ GFP_KERNEL, node);
+ if (!sibling_subcore_state)
+ return -ENOMEM;
+
+
+ for (j = 0; j < threads_per_core; j++) {
+ int cpu = first_cpu + j;
+
+ paca_ptrs[cpu]->sibling_subcore_state =
+ sibling_subcore_state;
+ }
+ }
+ return 0;
+}
+
+static int kvmppc_radix_possible(void)
+{
+ return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
+}
+
+static int kvmppc_book3s_init_hv(void)
+{
+ int r;
+
+ if (!tlbie_capable) {
+ pr_err("KVM-HV: Host does not support TLBIE\n");
+ return -ENODEV;
+ }
+
+ /*
+ * FIXME!! Do we need to check on all cpus ?
+ */
+ r = kvmppc_core_check_processor_compat_hv();
+ if (r < 0)
+ return -ENODEV;
+
+ r = kvmhv_nested_init();
+ if (r)
+ return r;
+
+ if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
+ r = kvm_init_subcore_bitmap();
+ if (r)
+ goto err;
+ }
+
+ /*
+ * We need a way of accessing the XICS interrupt controller,
+ * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
+ * indirectly, via OPAL.
+ */
+#ifdef CONFIG_SMP
+ if (!xics_on_xive() && !kvmhv_on_pseries() &&
+ !local_paca->kvm_hstate.xics_phys) {
+ struct device_node *np;
+
+ np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
+ if (!np) {
+ pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
+ r = -ENODEV;
+ goto err;
+ }
+ /* presence of intc confirmed - node can be dropped again */
+ of_node_put(np);
+ }
+#endif
+
+ init_default_hcalls();
+
+ init_vcore_lists();
+
+ r = kvmppc_mmu_hv_init();
+ if (r)
+ goto err;
+
+ if (kvmppc_radix_possible()) {
+ r = kvmppc_radix_init();
+ if (r)
+ goto err;
+ }
+
+ r = kvmppc_uvmem_init();
+ if (r < 0) {
+ pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
+ return r;
+ }
+
+ kvm_ops_hv.owner = THIS_MODULE;
+ kvmppc_hv_ops = &kvm_ops_hv;
+
+ return 0;
+
+err:
+ kvmhv_nested_exit();
+ kvmppc_radix_exit();
+
+ return r;
+}
+
+static void kvmppc_book3s_exit_hv(void)
+{
+ kvmppc_uvmem_free();
+ kvmppc_free_host_rm_ops();
+ if (kvmppc_radix_possible())
+ kvmppc_radix_exit();
+ kvmppc_hv_ops = NULL;
+ kvmhv_nested_exit();
+}
+
+module_init(kvmppc_book3s_init_hv);
+module_exit(kvmppc_book3s_exit_hv);
+MODULE_LICENSE("GPL");
+MODULE_ALIAS_MISCDEV(KVM_MINOR);
+MODULE_ALIAS("devname:kvm");