summaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/intel/iwlwifi/mvm/sta.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/net/wireless/intel/iwlwifi/mvm/sta.h
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/wireless/intel/iwlwifi/mvm/sta.h')
-rw-r--r--drivers/net/wireless/intel/iwlwifi/mvm/sta.h668
1 files changed, 668 insertions, 0 deletions
diff --git a/drivers/net/wireless/intel/iwlwifi/mvm/sta.h b/drivers/net/wireless/intel/iwlwifi/mvm/sta.h
new file mode 100644
index 0000000000..7364346a12
--- /dev/null
+++ b/drivers/net/wireless/intel/iwlwifi/mvm/sta.h
@@ -0,0 +1,668 @@
+/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
+/*
+ * Copyright (C) 2012-2014, 2018-2022 Intel Corporation
+ * Copyright (C) 2013-2014 Intel Mobile Communications GmbH
+ * Copyright (C) 2015-2016 Intel Deutschland GmbH
+ */
+#ifndef __sta_h__
+#define __sta_h__
+
+#include <linux/spinlock.h>
+#include <net/mac80211.h>
+#include <linux/wait.h>
+
+#include "iwl-trans.h" /* for IWL_MAX_TID_COUNT */
+#include "fw-api.h" /* IWL_MVM_STATION_COUNT_MAX */
+#include "rs.h"
+
+struct iwl_mvm;
+struct iwl_mvm_vif;
+
+/**
+ * DOC: DQA - Dynamic Queue Allocation -introduction
+ *
+ * Dynamic Queue Allocation (AKA "DQA") is a feature implemented in iwlwifi
+ * driver to allow dynamic allocation of queues on-demand, rather than allocate
+ * them statically ahead of time. Ideally, we would like to allocate one queue
+ * per RA/TID, thus allowing an AP - for example - to send BE traffic to STA2
+ * even if it also needs to send traffic to a sleeping STA1, without being
+ * blocked by the sleeping station.
+ *
+ * Although the queues in DQA mode are dynamically allocated, there are still
+ * some queues that are statically allocated:
+ * TXQ #0 - command queue
+ * TXQ #1 - aux frames
+ * TXQ #2 - P2P device frames
+ * TXQ #3 - P2P GO/SoftAP GCAST/BCAST frames
+ * TXQ #4 - BSS DATA frames queue
+ * TXQ #5-8 - Non-QoS and MGMT frames queue pool
+ * TXQ #9 - P2P GO/SoftAP probe responses
+ * TXQ #10-31 - DATA frames queue pool
+ * The queues are dynamically taken from either the MGMT frames queue pool or
+ * the DATA frames one. See the %iwl_mvm_dqa_txq for more information on every
+ * queue.
+ *
+ * When a frame for a previously unseen RA/TID comes in, it needs to be deferred
+ * until a queue is allocated for it, and only then can be TXed. Therefore, it
+ * is placed into %iwl_mvm_tid_data.deferred_tx_frames, and a worker called
+ * %mvm->add_stream_wk later allocates the queues and TXes the deferred frames.
+ *
+ * For convenience, MGMT is considered as if it has TID=8, and go to the MGMT
+ * queues in the pool. If there is no longer a free MGMT queue to allocate, a
+ * queue will be allocated from the DATA pool instead. Since QoS NDPs can create
+ * a problem for aggregations, they too will use a MGMT queue.
+ *
+ * When adding a STA, a DATA queue is reserved for it so that it can TX from
+ * it. If no such free queue exists for reserving, the STA addition will fail.
+ *
+ * If the DATA queue pool gets exhausted, no new STA will be accepted, and if a
+ * new RA/TID comes in for an existing STA, one of the STA's queues will become
+ * shared and will serve more than the single TID (but always for the same RA!).
+ *
+ * When a RA/TID needs to become aggregated, no new queue is required to be
+ * allocated, only mark the queue as aggregated via the ADD_STA command. Note,
+ * however, that a shared queue cannot be aggregated, and only after the other
+ * TIDs become inactive and are removed - only then can the queue be
+ * reconfigured and become aggregated.
+ *
+ * When removing a station, its queues are returned to the pool for reuse. Here
+ * we also need to make sure that we are synced with the worker thread that TXes
+ * the deferred frames so we don't get into a situation where the queues are
+ * removed and then the worker puts deferred frames onto the released queues or
+ * tries to allocate new queues for a STA we don't need anymore.
+ */
+
+/**
+ * DOC: station table - introduction
+ *
+ * The station table is a list of data structure that reprensent the stations.
+ * In STA/P2P client mode, the driver will hold one station for the AP/ GO.
+ * In GO/AP mode, the driver will have as many stations as associated clients.
+ * All these stations are reflected in the fw's station table. The driver
+ * keeps the fw's station table up to date with the ADD_STA command. Stations
+ * can be removed by the REMOVE_STA command.
+ *
+ * All the data related to a station is held in the structure %iwl_mvm_sta
+ * which is embed in the mac80211's %ieee80211_sta (in the drv_priv) area.
+ * This data includes the index of the station in the fw, per tid information
+ * (sequence numbers, Block-ack state machine, etc...). The stations are
+ * created and deleted by the %sta_state callback from %ieee80211_ops.
+ *
+ * The driver holds a map: %fw_id_to_mac_id that allows to fetch a
+ * %ieee80211_sta (and the %iwl_mvm_sta embedded into it) based on a fw
+ * station index. That way, the driver is able to get the tid related data in
+ * O(1) in time sensitive paths (Tx / Tx response / BA notification). These
+ * paths are triggered by the fw, and the driver needs to get a pointer to the
+ * %ieee80211 structure. This map helps to get that pointer quickly.
+ */
+
+/**
+ * DOC: station table - locking
+ *
+ * As stated before, the station is created / deleted by mac80211's %sta_state
+ * callback from %ieee80211_ops which can sleep. The next paragraph explains
+ * the locking of a single stations, the next ones relates to the station
+ * table.
+ *
+ * The station holds the sequence number per tid. So this data needs to be
+ * accessed in the Tx path (which is softIRQ). It also holds the Block-Ack
+ * information (the state machine / and the logic that checks if the queues
+ * were drained), so it also needs to be accessible from the Tx response flow.
+ * In short, the station needs to be access from sleepable context as well as
+ * from tasklets, so the station itself needs a spinlock.
+ *
+ * The writers of %fw_id_to_mac_id map are serialized by the global mutex of
+ * the mvm op_mode. This is possible since %sta_state can sleep.
+ * The pointers in this map are RCU protected, hence we won't replace the
+ * station while we have Tx / Tx response / BA notification running.
+ *
+ * If a station is deleted while it still has packets in its A-MPDU queues,
+ * then the reclaim flow will notice that there is no station in the map for
+ * sta_id and it will dump the responses.
+ */
+
+/**
+ * DOC: station table - internal stations
+ *
+ * The FW needs a few internal stations that are not reflected in
+ * mac80211, such as broadcast station in AP / GO mode, or AUX sta for
+ * scanning and P2P device (during the GO negotiation).
+ * For these kind of stations we have %iwl_mvm_int_sta struct which holds the
+ * data relevant for them from both %iwl_mvm_sta and %ieee80211_sta.
+ * Usually the data for these stations is static, so no locking is required,
+ * and no TID data as this is also not needed.
+ * One thing to note, is that these stations have an ID in the fw, but not
+ * in mac80211. In order to "reserve" them a sta_id in %fw_id_to_mac_id
+ * we fill ERR_PTR(EINVAL) in this mapping and all other dereferencing of
+ * pointers from this mapping need to check that the value is not error
+ * or NULL.
+ *
+ * Currently there is only one auxiliary station for scanning, initialized
+ * on init.
+ */
+
+/**
+ * DOC: station table - AP Station in STA mode
+ *
+ * %iwl_mvm_vif includes the index of the AP station in the fw's STA table:
+ * %ap_sta_id. To get the point to the corresponding %ieee80211_sta,
+ * &fw_id_to_mac_id can be used. Due to the way the fw works, we must not remove
+ * the AP station from the fw before setting the MAC context as unassociated.
+ * Hence, %fw_id_to_mac_id[%ap_sta_id] will be NULLed when the AP station is
+ * removed by mac80211, but the station won't be removed in the fw until the
+ * VIF is set as unassociated. Then, %ap_sta_id will be invalidated.
+ */
+
+/**
+ * DOC: station table - Drain vs. Flush
+ *
+ * Flush means that all the frames in the SCD queue are dumped regardless the
+ * station to which they were sent. We do that when we disassociate and before
+ * we remove the STA of the AP. The flush can be done synchronously against the
+ * fw.
+ * Drain means that the fw will drop all the frames sent to a specific station.
+ * This is useful when a client (if we are IBSS / GO or AP) disassociates.
+ */
+
+/**
+ * DOC: station table - fw restart
+ *
+ * When the fw asserts, or we have any other issue that requires to reset the
+ * driver, we require mac80211 to reconfigure the driver. Since the private
+ * data of the stations is embed in mac80211's %ieee80211_sta, that data will
+ * not be zeroed and needs to be reinitialized manually.
+ * %IWL_MVM_STATUS_IN_HW_RESTART is set during restart and that will hint us
+ * that we must not allocate a new sta_id but reuse the previous one. This
+ * means that the stations being re-added after the reset will have the same
+ * place in the fw as before the reset. We do need to zero the %fw_id_to_mac_id
+ * map, since the stations aren't in the fw any more. Internal stations that
+ * are not added by mac80211 will be re-added in the init flow that is called
+ * after the restart: mac80211 call's %iwl_mvm_mac_start which calls to
+ * %iwl_mvm_up.
+ */
+
+/**
+ * DOC: AP mode - PS
+ *
+ * When a station is asleep, the fw will set it as "asleep". All frames on
+ * shared queues (i.e. non-aggregation queues) to that station will be dropped
+ * by the fw (%TX_STATUS_FAIL_DEST_PS failure code).
+ *
+ * AMPDUs are in a separate queue that is stopped by the fw. We just need to
+ * let mac80211 know when there are frames in these queues so that it can
+ * properly handle trigger frames.
+ *
+ * When a trigger frame is received, mac80211 tells the driver to send frames
+ * from the AMPDU queues or sends frames to non-aggregation queues itself,
+ * depending on which ACs are delivery-enabled and what TID has frames to
+ * transmit. Note that mac80211 has all the knowledge since all the non-agg
+ * frames are buffered / filtered, and the driver tells mac80211 about agg
+ * frames). The driver needs to tell the fw to let frames out even if the
+ * station is asleep. This is done by %iwl_mvm_sta_modify_sleep_tx_count.
+ *
+ * When we receive a frame from that station with PM bit unset, the driver
+ * needs to let the fw know that this station isn't asleep any more. This is
+ * done by %iwl_mvm_sta_modify_ps_wake in response to mac80211 signaling the
+ * station's wakeup.
+ *
+ * For a GO, the Service Period might be cut short due to an absence period
+ * of the GO. In this (and all other cases) the firmware notifies us with the
+ * EOSP_NOTIFICATION, and we notify mac80211 of that. Further frames that we
+ * already sent to the device will be rejected again.
+ *
+ * See also "AP support for powersaving clients" in mac80211.h.
+ */
+
+/**
+ * enum iwl_mvm_agg_state
+ *
+ * The state machine of the BA agreement establishment / tear down.
+ * These states relate to a specific RA / TID.
+ *
+ * @IWL_AGG_OFF: aggregation is not used
+ * @IWL_AGG_QUEUED: aggregation start work has been queued
+ * @IWL_AGG_STARTING: aggregation are starting (between start and oper)
+ * @IWL_AGG_ON: aggregation session is up
+ * @IWL_EMPTYING_HW_QUEUE_ADDBA: establishing a BA session - waiting for the
+ * HW queue to be empty from packets for this RA /TID.
+ * @IWL_EMPTYING_HW_QUEUE_DELBA: tearing down a BA session - waiting for the
+ * HW queue to be empty from packets for this RA /TID.
+ */
+enum iwl_mvm_agg_state {
+ IWL_AGG_OFF = 0,
+ IWL_AGG_QUEUED,
+ IWL_AGG_STARTING,
+ IWL_AGG_ON,
+ IWL_EMPTYING_HW_QUEUE_ADDBA,
+ IWL_EMPTYING_HW_QUEUE_DELBA,
+};
+
+/**
+ * struct iwl_mvm_tid_data - holds the states for each RA / TID
+ * @seq_number: the next WiFi sequence number to use
+ * @next_reclaimed: the WiFi sequence number of the next packet to be acked.
+ * This is basically (last acked packet++).
+ * @rate_n_flags: Rate at which Tx was attempted. Holds the data between the
+ * Tx response (TX_CMD), and the block ack notification (COMPRESSED_BA).
+ * @lq_color: the color of the LQ command as it appears in tx response.
+ * @amsdu_in_ampdu_allowed: true if A-MSDU in A-MPDU is allowed.
+ * @state: state of the BA agreement establishment / tear down.
+ * @txq_id: Tx queue used by the BA session / DQA
+ * @ssn: the first packet to be sent in AGG HW queue in Tx AGG start flow, or
+ * the first packet to be sent in legacy HW queue in Tx AGG stop flow.
+ * Basically when next_reclaimed reaches ssn, we can tell mac80211 that
+ * we are ready to finish the Tx AGG stop / start flow.
+ * @tx_time: medium time consumed by this A-MPDU
+ * @tpt_meas_start: time of the throughput measurements start, is reset every HZ
+ * @tx_count_last: number of frames transmitted during the last second
+ * @tx_count: counts the number of frames transmitted since the last reset of
+ * tpt_meas_start
+ */
+struct iwl_mvm_tid_data {
+ u16 seq_number;
+ u16 next_reclaimed;
+ /* The rest is Tx AGG related */
+ u32 rate_n_flags;
+ u8 lq_color;
+ bool amsdu_in_ampdu_allowed;
+ enum iwl_mvm_agg_state state;
+ u16 txq_id;
+ u16 ssn;
+ u16 tx_time;
+ unsigned long tpt_meas_start;
+ u32 tx_count_last;
+ u32 tx_count;
+};
+
+struct iwl_mvm_key_pn {
+ struct rcu_head rcu_head;
+ struct {
+ u8 pn[IWL_MAX_TID_COUNT][IEEE80211_CCMP_PN_LEN];
+ } ____cacheline_aligned_in_smp q[];
+};
+
+/**
+ * enum iwl_mvm_rxq_notif_type - Internal message identifier
+ *
+ * @IWL_MVM_RXQ_EMPTY: empty sync notification
+ * @IWL_MVM_RXQ_NOTIF_DEL_BA: notify RSS queues of delBA
+ * @IWL_MVM_RXQ_NSSN_SYNC: notify all the RSS queues with the new NSSN
+ */
+enum iwl_mvm_rxq_notif_type {
+ IWL_MVM_RXQ_EMPTY,
+ IWL_MVM_RXQ_NOTIF_DEL_BA,
+ IWL_MVM_RXQ_NSSN_SYNC,
+};
+
+/**
+ * struct iwl_mvm_internal_rxq_notif - Internal representation of the data sent
+ * in &iwl_rxq_sync_cmd. Should be DWORD aligned.
+ * FW is agnostic to the payload, so there are no endianity requirements.
+ *
+ * @type: value from &iwl_mvm_rxq_notif_type
+ * @sync: ctrl path is waiting for all notifications to be received
+ * @cookie: internal cookie to identify old notifications
+ * @data: payload
+ */
+struct iwl_mvm_internal_rxq_notif {
+ u16 type;
+ u16 sync;
+ u32 cookie;
+ u8 data[];
+} __packed;
+
+struct iwl_mvm_delba_data {
+ u32 baid;
+} __packed;
+
+struct iwl_mvm_nssn_sync_data {
+ u32 baid;
+ u32 nssn;
+} __packed;
+
+/**
+ * struct iwl_mvm_rxq_dup_data - per station per rx queue data
+ * @last_seq: last sequence per tid for duplicate packet detection
+ * @last_sub_frame: last subframe packet
+ */
+struct iwl_mvm_rxq_dup_data {
+ __le16 last_seq[IWL_MAX_TID_COUNT + 1];
+ u8 last_sub_frame[IWL_MAX_TID_COUNT + 1];
+} ____cacheline_aligned_in_smp;
+
+/**
+ * struct iwl_mvm_link_sta - link specific parameters of a station
+ * @rcu_head: used for freeing the data
+ * @sta_id: the index of the station in the fw
+ * @lq_sta: holds rate scaling data, either for the case when RS is done in
+ * the driver - %rs_drv or in the FW - %rs_fw.
+ * @orig_amsdu_len: used to save the original amsdu_len when it is changed via
+ * debugfs. If it's set to 0, it means that it is it's not set via
+ * debugfs.
+ * @avg_energy: energy as reported by FW statistics notification
+ */
+struct iwl_mvm_link_sta {
+ struct rcu_head rcu_head;
+ u32 sta_id;
+ union {
+ struct iwl_lq_sta_rs_fw rs_fw;
+ struct iwl_lq_sta rs_drv;
+ } lq_sta;
+
+ u16 orig_amsdu_len;
+
+ u8 avg_energy;
+};
+
+/**
+ * struct iwl_mvm_sta - representation of a station in the driver
+ * @tfd_queue_msk: the tfd queues used by the station
+ * @mac_id_n_color: the MAC context this station is linked to
+ * @tid_disable_agg: bitmap: if bit(tid) is set, the fw won't send ampdus for
+ * tid.
+ * @sta_type: station type
+ * @authorized: indicates station is authorized
+ * @sta_state: station state according to enum %ieee80211_sta_state
+ * @bt_reduced_txpower: is reduced tx power enabled for this station
+ * @next_status_eosp: the next reclaimed packet is a PS-Poll response and
+ * we need to signal the EOSP
+ * @lock: lock to protect the whole struct. Since %tid_data is access from Tx
+ * and from Tx response flow, it needs a spinlock.
+ * @tid_data: per tid data + mgmt. Look at %iwl_mvm_tid_data.
+ * @tid_to_baid: a simple map of TID to baid
+ * @vif: a vif pointer
+ * @reserved_queue: the queue reserved for this STA for DQA purposes
+ * Every STA has is given one reserved queue to allow it to operate. If no
+ * such queue can be guaranteed, the STA addition will fail.
+ * @tx_protection: reference counter for controlling the Tx protection.
+ * @tt_tx_protection: is thermal throttling enable Tx protection?
+ * @disable_tx: is tx to this STA disabled?
+ * @amsdu_enabled: bitmap of TX AMSDU allowed TIDs.
+ * In case TLC offload is not active it is either 0xFFFF or 0.
+ * @max_amsdu_len: max AMSDU length
+ * @agg_tids: bitmap of tids whose status is operational aggregated (IWL_AGG_ON)
+ * @sleeping: sta sleep transitions in power management
+ * @sleep_tx_count: the number of frames that we told the firmware to let out
+ * even when that station is asleep. This is useful in case the queue
+ * gets empty before all the frames were sent, which can happen when
+ * we are sending frames from an AMPDU queue and there was a hole in
+ * the BA window. To be used for UAPSD only.
+ * @ptk_pn: per-queue PTK PN data structures
+ * @dup_data: per queue duplicate packet detection data
+ * @deferred_traffic_tid_map: indication bitmap of deferred traffic per-TID
+ * @tx_ant: the index of the antenna to use for data tx to this station. Only
+ * used during connection establishment (e.g. for the 4 way handshake
+ * exchange).
+ * @pairwise_cipher: used to feed iwlmei upon authorization
+ * @deflink: the default link station, for non-MLO STA, all link specific data
+ * is accessed via deflink (or link[0]). For MLO, it will hold data of the
+ * first added link STA.
+ * @link: per link sta entries. For non-MLO only link[0] holds data. For MLO,
+ * link[0] points to deflink and link[link_id] is allocated when new link
+ * sta is added.
+ *
+ * When mac80211 creates a station it reserves some space (hw->sta_data_size)
+ * in the structure for use by driver. This structure is placed in that
+ * space.
+ *
+ */
+struct iwl_mvm_sta {
+ u32 tfd_queue_msk;
+ u32 mac_id_n_color;
+ u16 tid_disable_agg;
+ u8 sta_type;
+ enum ieee80211_sta_state sta_state;
+ bool bt_reduced_txpower;
+ bool next_status_eosp;
+ bool authorized;
+ spinlock_t lock;
+ struct iwl_mvm_tid_data tid_data[IWL_MAX_TID_COUNT + 1];
+ u8 tid_to_baid[IWL_MAX_TID_COUNT];
+ struct ieee80211_vif *vif;
+ struct iwl_mvm_key_pn __rcu *ptk_pn[4];
+ struct iwl_mvm_rxq_dup_data *dup_data;
+
+ u8 reserved_queue;
+
+ /* Temporary, until the new TLC will control the Tx protection */
+ s8 tx_protection;
+ bool tt_tx_protection;
+
+ bool disable_tx;
+ u16 amsdu_enabled;
+ u16 max_amsdu_len;
+ bool sleeping;
+ u8 agg_tids;
+ u8 sleep_tx_count;
+ u8 tx_ant;
+ u32 pairwise_cipher;
+
+ struct iwl_mvm_link_sta deflink;
+ struct iwl_mvm_link_sta __rcu *link[IEEE80211_MLD_MAX_NUM_LINKS];
+};
+
+u16 iwl_mvm_tid_queued(struct iwl_mvm *mvm, struct iwl_mvm_tid_data *tid_data);
+
+static inline struct iwl_mvm_sta *
+iwl_mvm_sta_from_mac80211(struct ieee80211_sta *sta)
+{
+ return (void *)sta->drv_priv;
+}
+
+/**
+ * struct iwl_mvm_int_sta - representation of an internal station (auxiliary or
+ * broadcast)
+ * @sta_id: the index of the station in the fw (will be replaced by id_n_color)
+ * @type: station type
+ * @tfd_queue_msk: the tfd queues used by the station
+ */
+struct iwl_mvm_int_sta {
+ u32 sta_id;
+ u8 type;
+ u32 tfd_queue_msk;
+};
+
+/**
+ * Send the STA info to the FW.
+ *
+ * @mvm: the iwl_mvm* to use
+ * @sta: the STA
+ * @update: this is true if the FW is being updated about a STA it already knows
+ * about. Otherwise (if this is a new STA), this should be false.
+ * @flags: if update==true, this marks what is being changed via ORs of values
+ * from enum iwl_sta_modify_flag. Otherwise, this is ignored.
+ */
+int iwl_mvm_sta_send_to_fw(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
+ bool update, unsigned int flags);
+int iwl_mvm_find_free_sta_id(struct iwl_mvm *mvm, enum nl80211_iftype iftype);
+int iwl_mvm_sta_init(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta, int sta_id, u8 sta_type);
+int iwl_mvm_add_sta(struct iwl_mvm *mvm,
+ struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta);
+
+static inline int iwl_mvm_update_sta(struct iwl_mvm *mvm,
+ struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta)
+{
+ return iwl_mvm_sta_send_to_fw(mvm, sta, true, 0);
+}
+
+void iwl_mvm_realloc_queues_after_restart(struct iwl_mvm *mvm,
+ struct ieee80211_sta *sta);
+int iwl_mvm_wait_sta_queues_empty(struct iwl_mvm *mvm,
+ struct iwl_mvm_sta *mvm_sta);
+bool iwl_mvm_sta_del(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta,
+ struct ieee80211_link_sta *link_sta, int *ret);
+int iwl_mvm_rm_sta(struct iwl_mvm *mvm,
+ struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta);
+int iwl_mvm_rm_sta_id(struct iwl_mvm *mvm,
+ struct ieee80211_vif *vif,
+ u8 sta_id);
+int iwl_mvm_set_sta_key(struct iwl_mvm *mvm,
+ struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta,
+ struct ieee80211_key_conf *keyconf,
+ u8 key_offset);
+int iwl_mvm_remove_sta_key(struct iwl_mvm *mvm,
+ struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta,
+ struct ieee80211_key_conf *keyconf);
+
+void iwl_mvm_update_tkip_key(struct iwl_mvm *mvm,
+ struct ieee80211_vif *vif,
+ struct ieee80211_key_conf *keyconf,
+ struct ieee80211_sta *sta, u32 iv32,
+ u16 *phase1key);
+
+void iwl_mvm_rx_eosp_notif(struct iwl_mvm *mvm,
+ struct iwl_rx_cmd_buffer *rxb);
+
+/* AMPDU */
+int iwl_mvm_sta_rx_agg(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
+ int tid, u16 ssn, bool start, u16 buf_size, u16 timeout);
+int iwl_mvm_sta_tx_agg_start(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta, u16 tid, u16 *ssn);
+int iwl_mvm_sta_tx_agg_oper(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta, u16 tid, u16 buf_size,
+ bool amsdu);
+int iwl_mvm_sta_tx_agg_stop(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta, u16 tid);
+int iwl_mvm_sta_tx_agg_flush(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta, u16 tid);
+
+int iwl_mvm_sta_tx_agg(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
+ int tid, u8 queue, bool start);
+
+int iwl_mvm_add_aux_sta(struct iwl_mvm *mvm, u32 lmac_id);
+int iwl_mvm_rm_aux_sta(struct iwl_mvm *mvm);
+
+int iwl_mvm_alloc_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+void iwl_mvm_free_bcast_sta_queues(struct iwl_mvm *mvm,
+ struct ieee80211_vif *vif);
+int iwl_mvm_send_add_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+int iwl_mvm_add_p2p_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+int iwl_mvm_send_rm_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+int iwl_mvm_rm_p2p_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+int iwl_mvm_add_mcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+int iwl_mvm_rm_mcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+int iwl_mvm_allocate_int_sta(struct iwl_mvm *mvm,
+ struct iwl_mvm_int_sta *sta,
+ u32 qmask, enum nl80211_iftype iftype,
+ u8 type);
+void iwl_mvm_dealloc_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+void iwl_mvm_dealloc_int_sta(struct iwl_mvm *mvm, struct iwl_mvm_int_sta *sta);
+int iwl_mvm_add_snif_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+int iwl_mvm_rm_snif_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+void iwl_mvm_dealloc_snif_sta(struct iwl_mvm *mvm);
+
+void iwl_mvm_sta_modify_ps_wake(struct iwl_mvm *mvm,
+ struct ieee80211_sta *sta);
+void iwl_mvm_sta_modify_sleep_tx_count(struct iwl_mvm *mvm,
+ struct ieee80211_sta *sta,
+ enum ieee80211_frame_release_type reason,
+ u16 cnt, u16 tids, bool more_data,
+ bool single_sta_queue);
+int iwl_mvm_drain_sta(struct iwl_mvm *mvm, struct iwl_mvm_sta *mvmsta,
+ bool drain);
+void iwl_mvm_sta_modify_disable_tx(struct iwl_mvm *mvm,
+ struct iwl_mvm_sta *mvmsta, bool disable);
+void iwl_mvm_sta_modify_disable_tx_ap(struct iwl_mvm *mvm,
+ struct ieee80211_sta *sta,
+ bool disable);
+void iwl_mvm_modify_all_sta_disable_tx(struct iwl_mvm *mvm,
+ struct iwl_mvm_vif *mvmvif,
+ bool disable);
+
+void iwl_mvm_csa_client_absent(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+void iwl_mvm_add_new_dqa_stream_wk(struct work_struct *wk);
+int iwl_mvm_add_pasn_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct iwl_mvm_int_sta *sta, u8 *addr, u32 cipher,
+ u8 *key, u32 key_len);
+void iwl_mvm_cancel_channel_switch(struct iwl_mvm *mvm,
+ struct ieee80211_vif *vif,
+ u32 id);
+/* Queues */
+int iwl_mvm_tvqm_enable_txq(struct iwl_mvm *mvm,
+ struct ieee80211_sta *sta,
+ u8 sta_id, u8 tid, unsigned int timeout);
+
+/* Sta state */
+/**
+ * struct iwl_mvm_sta_state_ops - callbacks for the sta_state() ops
+ *
+ * Since the only difference between both MLD and
+ * non-MLD versions of sta_state() is these function calls,
+ * each version will send its specific function calls to
+ * %iwl_mvm_mac_sta_state_common().
+ *
+ * @add_sta: pointer to the function that adds a new sta
+ * @update_sta: pointer to the function that updates a sta
+ * @rm_sta: pointer to the functions that removes a sta
+ * @mac_ctxt_changed: pointer to the function that handles a change in mac ctxt
+ */
+struct iwl_mvm_sta_state_ops {
+ int (*add_sta)(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta);
+ int (*update_sta)(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta);
+ int (*rm_sta)(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta);
+ int (*mac_ctxt_changed)(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ bool force_assoc_off);
+};
+
+int iwl_mvm_mac_sta_state_common(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta,
+ enum ieee80211_sta_state old_state,
+ enum ieee80211_sta_state new_state,
+ const struct iwl_mvm_sta_state_ops *callbacks);
+
+/* New MLD STA related APIs */
+/* STA */
+int iwl_mvm_mld_add_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_bss_conf *link_conf);
+int iwl_mvm_mld_add_snif_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_bss_conf *link_conf);
+int iwl_mvm_mld_add_mcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_bss_conf *link_conf);
+int iwl_mvm_mld_add_aux_sta(struct iwl_mvm *mvm, u32 lmac_id);
+int iwl_mvm_mld_rm_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_bss_conf *link_conf);
+int iwl_mvm_mld_rm_snif_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
+int iwl_mvm_mld_rm_mcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_bss_conf *link_conf);
+int iwl_mvm_mld_rm_aux_sta(struct iwl_mvm *mvm);
+int iwl_mvm_mld_add_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta);
+int iwl_mvm_mld_update_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta);
+int iwl_mvm_mld_rm_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta);
+int iwl_mvm_mld_rm_sta_id(struct iwl_mvm *mvm, u8 sta_id);
+int iwl_mvm_mld_update_sta_links(struct iwl_mvm *mvm,
+ struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta,
+ u16 old_links, u16 new_links);
+u32 iwl_mvm_sta_fw_id_mask(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
+ int filter_link_id);
+int iwl_mvm_mld_add_int_sta_with_queue(struct iwl_mvm *mvm,
+ struct iwl_mvm_int_sta *sta,
+ const u8 *addr, int link_id,
+ u16 *queue, u8 tid,
+ unsigned int *_wdg_timeout);
+
+/* Queues */
+void iwl_mvm_mld_modify_all_sta_disable_tx(struct iwl_mvm *mvm,
+ struct iwl_mvm_vif *mvmvif,
+ bool disable);
+void iwl_mvm_mld_sta_modify_disable_tx(struct iwl_mvm *mvm,
+ struct iwl_mvm_sta *mvm_sta,
+ bool disable);
+void iwl_mvm_mld_sta_modify_disable_tx_ap(struct iwl_mvm *mvm,
+ struct ieee80211_sta *sta,
+ bool disable);
+#endif /* __sta_h__ */