summaryrefslogtreecommitdiffstats
path: root/drivers/regulator/core.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/regulator/core.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/regulator/core.c')
-rw-r--r--drivers/regulator/core.c6288
1 files changed, 6288 insertions, 0 deletions
diff --git a/drivers/regulator/core.c b/drivers/regulator/core.c
new file mode 100644
index 000000000..3137e40fc
--- /dev/null
+++ b/drivers/regulator/core.c
@@ -0,0 +1,6288 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+//
+// core.c -- Voltage/Current Regulator framework.
+//
+// Copyright 2007, 2008 Wolfson Microelectronics PLC.
+// Copyright 2008 SlimLogic Ltd.
+//
+// Author: Liam Girdwood <lrg@slimlogic.co.uk>
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/debugfs.h>
+#include <linux/device.h>
+#include <linux/slab.h>
+#include <linux/async.h>
+#include <linux/err.h>
+#include <linux/mutex.h>
+#include <linux/suspend.h>
+#include <linux/delay.h>
+#include <linux/gpio/consumer.h>
+#include <linux/of.h>
+#include <linux/regmap.h>
+#include <linux/regulator/of_regulator.h>
+#include <linux/regulator/consumer.h>
+#include <linux/regulator/coupler.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/module.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/regulator.h>
+
+#include "dummy.h"
+#include "internal.h"
+
+static DEFINE_WW_CLASS(regulator_ww_class);
+static DEFINE_MUTEX(regulator_nesting_mutex);
+static DEFINE_MUTEX(regulator_list_mutex);
+static LIST_HEAD(regulator_map_list);
+static LIST_HEAD(regulator_ena_gpio_list);
+static LIST_HEAD(regulator_supply_alias_list);
+static LIST_HEAD(regulator_coupler_list);
+static bool has_full_constraints;
+
+static struct dentry *debugfs_root;
+
+/*
+ * struct regulator_map
+ *
+ * Used to provide symbolic supply names to devices.
+ */
+struct regulator_map {
+ struct list_head list;
+ const char *dev_name; /* The dev_name() for the consumer */
+ const char *supply;
+ struct regulator_dev *regulator;
+};
+
+/*
+ * struct regulator_enable_gpio
+ *
+ * Management for shared enable GPIO pin
+ */
+struct regulator_enable_gpio {
+ struct list_head list;
+ struct gpio_desc *gpiod;
+ u32 enable_count; /* a number of enabled shared GPIO */
+ u32 request_count; /* a number of requested shared GPIO */
+};
+
+/*
+ * struct regulator_supply_alias
+ *
+ * Used to map lookups for a supply onto an alternative device.
+ */
+struct regulator_supply_alias {
+ struct list_head list;
+ struct device *src_dev;
+ const char *src_supply;
+ struct device *alias_dev;
+ const char *alias_supply;
+};
+
+static int _regulator_is_enabled(struct regulator_dev *rdev);
+static int _regulator_disable(struct regulator *regulator);
+static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
+static int _regulator_get_current_limit(struct regulator_dev *rdev);
+static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
+static int _notifier_call_chain(struct regulator_dev *rdev,
+ unsigned long event, void *data);
+static int _regulator_do_set_voltage(struct regulator_dev *rdev,
+ int min_uV, int max_uV);
+static int regulator_balance_voltage(struct regulator_dev *rdev,
+ suspend_state_t state);
+static struct regulator *create_regulator(struct regulator_dev *rdev,
+ struct device *dev,
+ const char *supply_name);
+static void destroy_regulator(struct regulator *regulator);
+static void _regulator_put(struct regulator *regulator);
+
+const char *rdev_get_name(struct regulator_dev *rdev)
+{
+ if (rdev->constraints && rdev->constraints->name)
+ return rdev->constraints->name;
+ else if (rdev->desc->name)
+ return rdev->desc->name;
+ else
+ return "";
+}
+EXPORT_SYMBOL_GPL(rdev_get_name);
+
+static bool have_full_constraints(void)
+{
+ return has_full_constraints || of_have_populated_dt();
+}
+
+static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
+{
+ if (!rdev->constraints) {
+ rdev_err(rdev, "no constraints\n");
+ return false;
+ }
+
+ if (rdev->constraints->valid_ops_mask & ops)
+ return true;
+
+ return false;
+}
+
+/**
+ * regulator_lock_nested - lock a single regulator
+ * @rdev: regulator source
+ * @ww_ctx: w/w mutex acquire context
+ *
+ * This function can be called many times by one task on
+ * a single regulator and its mutex will be locked only
+ * once. If a task, which is calling this function is other
+ * than the one, which initially locked the mutex, it will
+ * wait on mutex.
+ */
+static inline int regulator_lock_nested(struct regulator_dev *rdev,
+ struct ww_acquire_ctx *ww_ctx)
+{
+ bool lock = false;
+ int ret = 0;
+
+ mutex_lock(&regulator_nesting_mutex);
+
+ if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
+ if (rdev->mutex_owner == current)
+ rdev->ref_cnt++;
+ else
+ lock = true;
+
+ if (lock) {
+ mutex_unlock(&regulator_nesting_mutex);
+ ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
+ mutex_lock(&regulator_nesting_mutex);
+ }
+ } else {
+ lock = true;
+ }
+
+ if (lock && ret != -EDEADLK) {
+ rdev->ref_cnt++;
+ rdev->mutex_owner = current;
+ }
+
+ mutex_unlock(&regulator_nesting_mutex);
+
+ return ret;
+}
+
+/**
+ * regulator_lock - lock a single regulator
+ * @rdev: regulator source
+ *
+ * This function can be called many times by one task on
+ * a single regulator and its mutex will be locked only
+ * once. If a task, which is calling this function is other
+ * than the one, which initially locked the mutex, it will
+ * wait on mutex.
+ */
+static void regulator_lock(struct regulator_dev *rdev)
+{
+ regulator_lock_nested(rdev, NULL);
+}
+
+/**
+ * regulator_unlock - unlock a single regulator
+ * @rdev: regulator_source
+ *
+ * This function unlocks the mutex when the
+ * reference counter reaches 0.
+ */
+static void regulator_unlock(struct regulator_dev *rdev)
+{
+ mutex_lock(&regulator_nesting_mutex);
+
+ if (--rdev->ref_cnt == 0) {
+ rdev->mutex_owner = NULL;
+ ww_mutex_unlock(&rdev->mutex);
+ }
+
+ WARN_ON_ONCE(rdev->ref_cnt < 0);
+
+ mutex_unlock(&regulator_nesting_mutex);
+}
+
+/**
+ * regulator_lock_two - lock two regulators
+ * @rdev1: first regulator
+ * @rdev2: second regulator
+ * @ww_ctx: w/w mutex acquire context
+ *
+ * Locks both rdevs using the regulator_ww_class.
+ */
+static void regulator_lock_two(struct regulator_dev *rdev1,
+ struct regulator_dev *rdev2,
+ struct ww_acquire_ctx *ww_ctx)
+{
+ struct regulator_dev *held, *contended;
+ int ret;
+
+ ww_acquire_init(ww_ctx, &regulator_ww_class);
+
+ /* Try to just grab both of them */
+ ret = regulator_lock_nested(rdev1, ww_ctx);
+ WARN_ON(ret);
+ ret = regulator_lock_nested(rdev2, ww_ctx);
+ if (ret != -EDEADLOCK) {
+ WARN_ON(ret);
+ goto exit;
+ }
+
+ held = rdev1;
+ contended = rdev2;
+ while (true) {
+ regulator_unlock(held);
+
+ ww_mutex_lock_slow(&contended->mutex, ww_ctx);
+ contended->ref_cnt++;
+ contended->mutex_owner = current;
+ swap(held, contended);
+ ret = regulator_lock_nested(contended, ww_ctx);
+
+ if (ret != -EDEADLOCK) {
+ WARN_ON(ret);
+ break;
+ }
+ }
+
+exit:
+ ww_acquire_done(ww_ctx);
+}
+
+/**
+ * regulator_unlock_two - unlock two regulators
+ * @rdev1: first regulator
+ * @rdev2: second regulator
+ * @ww_ctx: w/w mutex acquire context
+ *
+ * The inverse of regulator_lock_two().
+ */
+
+static void regulator_unlock_two(struct regulator_dev *rdev1,
+ struct regulator_dev *rdev2,
+ struct ww_acquire_ctx *ww_ctx)
+{
+ regulator_unlock(rdev2);
+ regulator_unlock(rdev1);
+ ww_acquire_fini(ww_ctx);
+}
+
+static bool regulator_supply_is_couple(struct regulator_dev *rdev)
+{
+ struct regulator_dev *c_rdev;
+ int i;
+
+ for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
+ c_rdev = rdev->coupling_desc.coupled_rdevs[i];
+
+ if (rdev->supply->rdev == c_rdev)
+ return true;
+ }
+
+ return false;
+}
+
+static void regulator_unlock_recursive(struct regulator_dev *rdev,
+ unsigned int n_coupled)
+{
+ struct regulator_dev *c_rdev, *supply_rdev;
+ int i, supply_n_coupled;
+
+ for (i = n_coupled; i > 0; i--) {
+ c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
+
+ if (!c_rdev)
+ continue;
+
+ if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
+ supply_rdev = c_rdev->supply->rdev;
+ supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
+
+ regulator_unlock_recursive(supply_rdev,
+ supply_n_coupled);
+ }
+
+ regulator_unlock(c_rdev);
+ }
+}
+
+static int regulator_lock_recursive(struct regulator_dev *rdev,
+ struct regulator_dev **new_contended_rdev,
+ struct regulator_dev **old_contended_rdev,
+ struct ww_acquire_ctx *ww_ctx)
+{
+ struct regulator_dev *c_rdev;
+ int i, err;
+
+ for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
+ c_rdev = rdev->coupling_desc.coupled_rdevs[i];
+
+ if (!c_rdev)
+ continue;
+
+ if (c_rdev != *old_contended_rdev) {
+ err = regulator_lock_nested(c_rdev, ww_ctx);
+ if (err) {
+ if (err == -EDEADLK) {
+ *new_contended_rdev = c_rdev;
+ goto err_unlock;
+ }
+
+ /* shouldn't happen */
+ WARN_ON_ONCE(err != -EALREADY);
+ }
+ } else {
+ *old_contended_rdev = NULL;
+ }
+
+ if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
+ err = regulator_lock_recursive(c_rdev->supply->rdev,
+ new_contended_rdev,
+ old_contended_rdev,
+ ww_ctx);
+ if (err) {
+ regulator_unlock(c_rdev);
+ goto err_unlock;
+ }
+ }
+ }
+
+ return 0;
+
+err_unlock:
+ regulator_unlock_recursive(rdev, i);
+
+ return err;
+}
+
+/**
+ * regulator_unlock_dependent - unlock regulator's suppliers and coupled
+ * regulators
+ * @rdev: regulator source
+ * @ww_ctx: w/w mutex acquire context
+ *
+ * Unlock all regulators related with rdev by coupling or supplying.
+ */
+static void regulator_unlock_dependent(struct regulator_dev *rdev,
+ struct ww_acquire_ctx *ww_ctx)
+{
+ regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
+ ww_acquire_fini(ww_ctx);
+}
+
+/**
+ * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
+ * @rdev: regulator source
+ * @ww_ctx: w/w mutex acquire context
+ *
+ * This function as a wrapper on regulator_lock_recursive(), which locks
+ * all regulators related with rdev by coupling or supplying.
+ */
+static void regulator_lock_dependent(struct regulator_dev *rdev,
+ struct ww_acquire_ctx *ww_ctx)
+{
+ struct regulator_dev *new_contended_rdev = NULL;
+ struct regulator_dev *old_contended_rdev = NULL;
+ int err;
+
+ mutex_lock(&regulator_list_mutex);
+
+ ww_acquire_init(ww_ctx, &regulator_ww_class);
+
+ do {
+ if (new_contended_rdev) {
+ ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
+ old_contended_rdev = new_contended_rdev;
+ old_contended_rdev->ref_cnt++;
+ old_contended_rdev->mutex_owner = current;
+ }
+
+ err = regulator_lock_recursive(rdev,
+ &new_contended_rdev,
+ &old_contended_rdev,
+ ww_ctx);
+
+ if (old_contended_rdev)
+ regulator_unlock(old_contended_rdev);
+
+ } while (err == -EDEADLK);
+
+ ww_acquire_done(ww_ctx);
+
+ mutex_unlock(&regulator_list_mutex);
+}
+
+/**
+ * of_get_child_regulator - get a child regulator device node
+ * based on supply name
+ * @parent: Parent device node
+ * @prop_name: Combination regulator supply name and "-supply"
+ *
+ * Traverse all child nodes.
+ * Extract the child regulator device node corresponding to the supply name.
+ * returns the device node corresponding to the regulator if found, else
+ * returns NULL.
+ */
+static struct device_node *of_get_child_regulator(struct device_node *parent,
+ const char *prop_name)
+{
+ struct device_node *regnode = NULL;
+ struct device_node *child = NULL;
+
+ for_each_child_of_node(parent, child) {
+ regnode = of_parse_phandle(child, prop_name, 0);
+
+ if (!regnode) {
+ regnode = of_get_child_regulator(child, prop_name);
+ if (regnode)
+ goto err_node_put;
+ } else {
+ goto err_node_put;
+ }
+ }
+ return NULL;
+
+err_node_put:
+ of_node_put(child);
+ return regnode;
+}
+
+/**
+ * of_get_regulator - get a regulator device node based on supply name
+ * @dev: Device pointer for the consumer (of regulator) device
+ * @supply: regulator supply name
+ *
+ * Extract the regulator device node corresponding to the supply name.
+ * returns the device node corresponding to the regulator if found, else
+ * returns NULL.
+ */
+static struct device_node *of_get_regulator(struct device *dev, const char *supply)
+{
+ struct device_node *regnode = NULL;
+ char prop_name[64]; /* 64 is max size of property name */
+
+ dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
+
+ snprintf(prop_name, 64, "%s-supply", supply);
+ regnode = of_parse_phandle(dev->of_node, prop_name, 0);
+
+ if (!regnode) {
+ regnode = of_get_child_regulator(dev->of_node, prop_name);
+ if (regnode)
+ return regnode;
+
+ dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
+ prop_name, dev->of_node);
+ return NULL;
+ }
+ return regnode;
+}
+
+/* Platform voltage constraint check */
+int regulator_check_voltage(struct regulator_dev *rdev,
+ int *min_uV, int *max_uV)
+{
+ BUG_ON(*min_uV > *max_uV);
+
+ if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
+ rdev_err(rdev, "voltage operation not allowed\n");
+ return -EPERM;
+ }
+
+ if (*max_uV > rdev->constraints->max_uV)
+ *max_uV = rdev->constraints->max_uV;
+ if (*min_uV < rdev->constraints->min_uV)
+ *min_uV = rdev->constraints->min_uV;
+
+ if (*min_uV > *max_uV) {
+ rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
+ *min_uV, *max_uV);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/* return 0 if the state is valid */
+static int regulator_check_states(suspend_state_t state)
+{
+ return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
+}
+
+/* Make sure we select a voltage that suits the needs of all
+ * regulator consumers
+ */
+int regulator_check_consumers(struct regulator_dev *rdev,
+ int *min_uV, int *max_uV,
+ suspend_state_t state)
+{
+ struct regulator *regulator;
+ struct regulator_voltage *voltage;
+
+ list_for_each_entry(regulator, &rdev->consumer_list, list) {
+ voltage = &regulator->voltage[state];
+ /*
+ * Assume consumers that didn't say anything are OK
+ * with anything in the constraint range.
+ */
+ if (!voltage->min_uV && !voltage->max_uV)
+ continue;
+
+ if (*max_uV > voltage->max_uV)
+ *max_uV = voltage->max_uV;
+ if (*min_uV < voltage->min_uV)
+ *min_uV = voltage->min_uV;
+ }
+
+ if (*min_uV > *max_uV) {
+ rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
+ *min_uV, *max_uV);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/* current constraint check */
+static int regulator_check_current_limit(struct regulator_dev *rdev,
+ int *min_uA, int *max_uA)
+{
+ BUG_ON(*min_uA > *max_uA);
+
+ if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
+ rdev_err(rdev, "current operation not allowed\n");
+ return -EPERM;
+ }
+
+ if (*max_uA > rdev->constraints->max_uA)
+ *max_uA = rdev->constraints->max_uA;
+ if (*min_uA < rdev->constraints->min_uA)
+ *min_uA = rdev->constraints->min_uA;
+
+ if (*min_uA > *max_uA) {
+ rdev_err(rdev, "unsupportable current range: %d-%duA\n",
+ *min_uA, *max_uA);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/* operating mode constraint check */
+static int regulator_mode_constrain(struct regulator_dev *rdev,
+ unsigned int *mode)
+{
+ switch (*mode) {
+ case REGULATOR_MODE_FAST:
+ case REGULATOR_MODE_NORMAL:
+ case REGULATOR_MODE_IDLE:
+ case REGULATOR_MODE_STANDBY:
+ break;
+ default:
+ rdev_err(rdev, "invalid mode %x specified\n", *mode);
+ return -EINVAL;
+ }
+
+ if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
+ rdev_err(rdev, "mode operation not allowed\n");
+ return -EPERM;
+ }
+
+ /* The modes are bitmasks, the most power hungry modes having
+ * the lowest values. If the requested mode isn't supported
+ * try higher modes.
+ */
+ while (*mode) {
+ if (rdev->constraints->valid_modes_mask & *mode)
+ return 0;
+ *mode /= 2;
+ }
+
+ return -EINVAL;
+}
+
+static inline struct regulator_state *
+regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
+{
+ if (rdev->constraints == NULL)
+ return NULL;
+
+ switch (state) {
+ case PM_SUSPEND_STANDBY:
+ return &rdev->constraints->state_standby;
+ case PM_SUSPEND_MEM:
+ return &rdev->constraints->state_mem;
+ case PM_SUSPEND_MAX:
+ return &rdev->constraints->state_disk;
+ default:
+ return NULL;
+ }
+}
+
+static const struct regulator_state *
+regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
+{
+ const struct regulator_state *rstate;
+
+ rstate = regulator_get_suspend_state(rdev, state);
+ if (rstate == NULL)
+ return NULL;
+
+ /* If we have no suspend mode configuration don't set anything;
+ * only warn if the driver implements set_suspend_voltage or
+ * set_suspend_mode callback.
+ */
+ if (rstate->enabled != ENABLE_IN_SUSPEND &&
+ rstate->enabled != DISABLE_IN_SUSPEND) {
+ if (rdev->desc->ops->set_suspend_voltage ||
+ rdev->desc->ops->set_suspend_mode)
+ rdev_warn(rdev, "No configuration\n");
+ return NULL;
+ }
+
+ return rstate;
+}
+
+static ssize_t microvolts_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+ int uV;
+
+ regulator_lock(rdev);
+ uV = regulator_get_voltage_rdev(rdev);
+ regulator_unlock(rdev);
+
+ if (uV < 0)
+ return uV;
+ return sprintf(buf, "%d\n", uV);
+}
+static DEVICE_ATTR_RO(microvolts);
+
+static ssize_t microamps_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
+}
+static DEVICE_ATTR_RO(microamps);
+
+static ssize_t name_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return sprintf(buf, "%s\n", rdev_get_name(rdev));
+}
+static DEVICE_ATTR_RO(name);
+
+static const char *regulator_opmode_to_str(int mode)
+{
+ switch (mode) {
+ case REGULATOR_MODE_FAST:
+ return "fast";
+ case REGULATOR_MODE_NORMAL:
+ return "normal";
+ case REGULATOR_MODE_IDLE:
+ return "idle";
+ case REGULATOR_MODE_STANDBY:
+ return "standby";
+ }
+ return "unknown";
+}
+
+static ssize_t regulator_print_opmode(char *buf, int mode)
+{
+ return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
+}
+
+static ssize_t opmode_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return regulator_print_opmode(buf, _regulator_get_mode(rdev));
+}
+static DEVICE_ATTR_RO(opmode);
+
+static ssize_t regulator_print_state(char *buf, int state)
+{
+ if (state > 0)
+ return sprintf(buf, "enabled\n");
+ else if (state == 0)
+ return sprintf(buf, "disabled\n");
+ else
+ return sprintf(buf, "unknown\n");
+}
+
+static ssize_t state_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+ ssize_t ret;
+
+ regulator_lock(rdev);
+ ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
+ regulator_unlock(rdev);
+
+ return ret;
+}
+static DEVICE_ATTR_RO(state);
+
+static ssize_t status_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+ int status;
+ char *label;
+
+ status = rdev->desc->ops->get_status(rdev);
+ if (status < 0)
+ return status;
+
+ switch (status) {
+ case REGULATOR_STATUS_OFF:
+ label = "off";
+ break;
+ case REGULATOR_STATUS_ON:
+ label = "on";
+ break;
+ case REGULATOR_STATUS_ERROR:
+ label = "error";
+ break;
+ case REGULATOR_STATUS_FAST:
+ label = "fast";
+ break;
+ case REGULATOR_STATUS_NORMAL:
+ label = "normal";
+ break;
+ case REGULATOR_STATUS_IDLE:
+ label = "idle";
+ break;
+ case REGULATOR_STATUS_STANDBY:
+ label = "standby";
+ break;
+ case REGULATOR_STATUS_BYPASS:
+ label = "bypass";
+ break;
+ case REGULATOR_STATUS_UNDEFINED:
+ label = "undefined";
+ break;
+ default:
+ return -ERANGE;
+ }
+
+ return sprintf(buf, "%s\n", label);
+}
+static DEVICE_ATTR_RO(status);
+
+static ssize_t min_microamps_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ if (!rdev->constraints)
+ return sprintf(buf, "constraint not defined\n");
+
+ return sprintf(buf, "%d\n", rdev->constraints->min_uA);
+}
+static DEVICE_ATTR_RO(min_microamps);
+
+static ssize_t max_microamps_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ if (!rdev->constraints)
+ return sprintf(buf, "constraint not defined\n");
+
+ return sprintf(buf, "%d\n", rdev->constraints->max_uA);
+}
+static DEVICE_ATTR_RO(max_microamps);
+
+static ssize_t min_microvolts_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ if (!rdev->constraints)
+ return sprintf(buf, "constraint not defined\n");
+
+ return sprintf(buf, "%d\n", rdev->constraints->min_uV);
+}
+static DEVICE_ATTR_RO(min_microvolts);
+
+static ssize_t max_microvolts_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ if (!rdev->constraints)
+ return sprintf(buf, "constraint not defined\n");
+
+ return sprintf(buf, "%d\n", rdev->constraints->max_uV);
+}
+static DEVICE_ATTR_RO(max_microvolts);
+
+static ssize_t requested_microamps_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+ struct regulator *regulator;
+ int uA = 0;
+
+ regulator_lock(rdev);
+ list_for_each_entry(regulator, &rdev->consumer_list, list) {
+ if (regulator->enable_count)
+ uA += regulator->uA_load;
+ }
+ regulator_unlock(rdev);
+ return sprintf(buf, "%d\n", uA);
+}
+static DEVICE_ATTR_RO(requested_microamps);
+
+static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+ return sprintf(buf, "%d\n", rdev->use_count);
+}
+static DEVICE_ATTR_RO(num_users);
+
+static ssize_t type_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ switch (rdev->desc->type) {
+ case REGULATOR_VOLTAGE:
+ return sprintf(buf, "voltage\n");
+ case REGULATOR_CURRENT:
+ return sprintf(buf, "current\n");
+ }
+ return sprintf(buf, "unknown\n");
+}
+static DEVICE_ATTR_RO(type);
+
+static ssize_t suspend_mem_microvolts_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
+}
+static DEVICE_ATTR_RO(suspend_mem_microvolts);
+
+static ssize_t suspend_disk_microvolts_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
+}
+static DEVICE_ATTR_RO(suspend_disk_microvolts);
+
+static ssize_t suspend_standby_microvolts_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
+}
+static DEVICE_ATTR_RO(suspend_standby_microvolts);
+
+static ssize_t suspend_mem_mode_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return regulator_print_opmode(buf,
+ rdev->constraints->state_mem.mode);
+}
+static DEVICE_ATTR_RO(suspend_mem_mode);
+
+static ssize_t suspend_disk_mode_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return regulator_print_opmode(buf,
+ rdev->constraints->state_disk.mode);
+}
+static DEVICE_ATTR_RO(suspend_disk_mode);
+
+static ssize_t suspend_standby_mode_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return regulator_print_opmode(buf,
+ rdev->constraints->state_standby.mode);
+}
+static DEVICE_ATTR_RO(suspend_standby_mode);
+
+static ssize_t suspend_mem_state_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return regulator_print_state(buf,
+ rdev->constraints->state_mem.enabled);
+}
+static DEVICE_ATTR_RO(suspend_mem_state);
+
+static ssize_t suspend_disk_state_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return regulator_print_state(buf,
+ rdev->constraints->state_disk.enabled);
+}
+static DEVICE_ATTR_RO(suspend_disk_state);
+
+static ssize_t suspend_standby_state_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ return regulator_print_state(buf,
+ rdev->constraints->state_standby.enabled);
+}
+static DEVICE_ATTR_RO(suspend_standby_state);
+
+static ssize_t bypass_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+ const char *report;
+ bool bypass;
+ int ret;
+
+ ret = rdev->desc->ops->get_bypass(rdev, &bypass);
+
+ if (ret != 0)
+ report = "unknown";
+ else if (bypass)
+ report = "enabled";
+ else
+ report = "disabled";
+
+ return sprintf(buf, "%s\n", report);
+}
+static DEVICE_ATTR_RO(bypass);
+
+#define REGULATOR_ERROR_ATTR(name, bit) \
+ static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
+ char *buf) \
+ { \
+ int ret; \
+ unsigned int flags; \
+ struct regulator_dev *rdev = dev_get_drvdata(dev); \
+ ret = _regulator_get_error_flags(rdev, &flags); \
+ if (ret) \
+ return ret; \
+ return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
+ } \
+ static DEVICE_ATTR_RO(name)
+
+REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
+REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
+REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
+REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
+REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
+REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
+REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
+REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
+REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
+
+/* Calculate the new optimum regulator operating mode based on the new total
+ * consumer load. All locks held by caller
+ */
+static int drms_uA_update(struct regulator_dev *rdev)
+{
+ struct regulator *sibling;
+ int current_uA = 0, output_uV, input_uV, err;
+ unsigned int mode;
+
+ /*
+ * first check to see if we can set modes at all, otherwise just
+ * tell the consumer everything is OK.
+ */
+ if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
+ rdev_dbg(rdev, "DRMS operation not allowed\n");
+ return 0;
+ }
+
+ if (!rdev->desc->ops->get_optimum_mode &&
+ !rdev->desc->ops->set_load)
+ return 0;
+
+ if (!rdev->desc->ops->set_mode &&
+ !rdev->desc->ops->set_load)
+ return -EINVAL;
+
+ /* calc total requested load */
+ list_for_each_entry(sibling, &rdev->consumer_list, list) {
+ if (sibling->enable_count)
+ current_uA += sibling->uA_load;
+ }
+
+ current_uA += rdev->constraints->system_load;
+
+ if (rdev->desc->ops->set_load) {
+ /* set the optimum mode for our new total regulator load */
+ err = rdev->desc->ops->set_load(rdev, current_uA);
+ if (err < 0)
+ rdev_err(rdev, "failed to set load %d: %pe\n",
+ current_uA, ERR_PTR(err));
+ } else {
+ /*
+ * Unfortunately in some cases the constraints->valid_ops has
+ * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
+ * That's not really legit but we won't consider it a fatal
+ * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
+ * wasn't set.
+ */
+ if (!rdev->constraints->valid_modes_mask) {
+ rdev_dbg(rdev, "Can change modes; but no valid mode\n");
+ return 0;
+ }
+
+ /* get output voltage */
+ output_uV = regulator_get_voltage_rdev(rdev);
+
+ /*
+ * Don't return an error; if regulator driver cares about
+ * output_uV then it's up to the driver to validate.
+ */
+ if (output_uV <= 0)
+ rdev_dbg(rdev, "invalid output voltage found\n");
+
+ /* get input voltage */
+ input_uV = 0;
+ if (rdev->supply)
+ input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
+ if (input_uV <= 0)
+ input_uV = rdev->constraints->input_uV;
+
+ /*
+ * Don't return an error; if regulator driver cares about
+ * input_uV then it's up to the driver to validate.
+ */
+ if (input_uV <= 0)
+ rdev_dbg(rdev, "invalid input voltage found\n");
+
+ /* now get the optimum mode for our new total regulator load */
+ mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
+ output_uV, current_uA);
+
+ /* check the new mode is allowed */
+ err = regulator_mode_constrain(rdev, &mode);
+ if (err < 0) {
+ rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
+ current_uA, input_uV, output_uV, ERR_PTR(err));
+ return err;
+ }
+
+ err = rdev->desc->ops->set_mode(rdev, mode);
+ if (err < 0)
+ rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
+ mode, ERR_PTR(err));
+ }
+
+ return err;
+}
+
+static int __suspend_set_state(struct regulator_dev *rdev,
+ const struct regulator_state *rstate)
+{
+ int ret = 0;
+
+ if (rstate->enabled == ENABLE_IN_SUSPEND &&
+ rdev->desc->ops->set_suspend_enable)
+ ret = rdev->desc->ops->set_suspend_enable(rdev);
+ else if (rstate->enabled == DISABLE_IN_SUSPEND &&
+ rdev->desc->ops->set_suspend_disable)
+ ret = rdev->desc->ops->set_suspend_disable(rdev);
+ else /* OK if set_suspend_enable or set_suspend_disable is NULL */
+ ret = 0;
+
+ if (ret < 0) {
+ rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
+ return ret;
+ }
+
+ if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
+ ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
+ return ret;
+ }
+ }
+
+ if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
+ ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
+ return ret;
+ }
+ }
+
+ return ret;
+}
+
+static int suspend_set_initial_state(struct regulator_dev *rdev)
+{
+ const struct regulator_state *rstate;
+
+ rstate = regulator_get_suspend_state_check(rdev,
+ rdev->constraints->initial_state);
+ if (!rstate)
+ return 0;
+
+ return __suspend_set_state(rdev, rstate);
+}
+
+#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
+static void print_constraints_debug(struct regulator_dev *rdev)
+{
+ struct regulation_constraints *constraints = rdev->constraints;
+ char buf[160] = "";
+ size_t len = sizeof(buf) - 1;
+ int count = 0;
+ int ret;
+
+ if (constraints->min_uV && constraints->max_uV) {
+ if (constraints->min_uV == constraints->max_uV)
+ count += scnprintf(buf + count, len - count, "%d mV ",
+ constraints->min_uV / 1000);
+ else
+ count += scnprintf(buf + count, len - count,
+ "%d <--> %d mV ",
+ constraints->min_uV / 1000,
+ constraints->max_uV / 1000);
+ }
+
+ if (!constraints->min_uV ||
+ constraints->min_uV != constraints->max_uV) {
+ ret = regulator_get_voltage_rdev(rdev);
+ if (ret > 0)
+ count += scnprintf(buf + count, len - count,
+ "at %d mV ", ret / 1000);
+ }
+
+ if (constraints->uV_offset)
+ count += scnprintf(buf + count, len - count, "%dmV offset ",
+ constraints->uV_offset / 1000);
+
+ if (constraints->min_uA && constraints->max_uA) {
+ if (constraints->min_uA == constraints->max_uA)
+ count += scnprintf(buf + count, len - count, "%d mA ",
+ constraints->min_uA / 1000);
+ else
+ count += scnprintf(buf + count, len - count,
+ "%d <--> %d mA ",
+ constraints->min_uA / 1000,
+ constraints->max_uA / 1000);
+ }
+
+ if (!constraints->min_uA ||
+ constraints->min_uA != constraints->max_uA) {
+ ret = _regulator_get_current_limit(rdev);
+ if (ret > 0)
+ count += scnprintf(buf + count, len - count,
+ "at %d mA ", ret / 1000);
+ }
+
+ if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
+ count += scnprintf(buf + count, len - count, "fast ");
+ if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
+ count += scnprintf(buf + count, len - count, "normal ");
+ if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
+ count += scnprintf(buf + count, len - count, "idle ");
+ if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
+ count += scnprintf(buf + count, len - count, "standby ");
+
+ if (!count)
+ count = scnprintf(buf, len, "no parameters");
+ else
+ --count;
+
+ count += scnprintf(buf + count, len - count, ", %s",
+ _regulator_is_enabled(rdev) ? "enabled" : "disabled");
+
+ rdev_dbg(rdev, "%s\n", buf);
+}
+#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
+static inline void print_constraints_debug(struct regulator_dev *rdev) {}
+#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
+
+static void print_constraints(struct regulator_dev *rdev)
+{
+ struct regulation_constraints *constraints = rdev->constraints;
+
+ print_constraints_debug(rdev);
+
+ if ((constraints->min_uV != constraints->max_uV) &&
+ !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
+ rdev_warn(rdev,
+ "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
+}
+
+static int machine_constraints_voltage(struct regulator_dev *rdev,
+ struct regulation_constraints *constraints)
+{
+ const struct regulator_ops *ops = rdev->desc->ops;
+ int ret;
+
+ /* do we need to apply the constraint voltage */
+ if (rdev->constraints->apply_uV &&
+ rdev->constraints->min_uV && rdev->constraints->max_uV) {
+ int target_min, target_max;
+ int current_uV = regulator_get_voltage_rdev(rdev);
+
+ if (current_uV == -ENOTRECOVERABLE) {
+ /* This regulator can't be read and must be initialized */
+ rdev_info(rdev, "Setting %d-%duV\n",
+ rdev->constraints->min_uV,
+ rdev->constraints->max_uV);
+ _regulator_do_set_voltage(rdev,
+ rdev->constraints->min_uV,
+ rdev->constraints->max_uV);
+ current_uV = regulator_get_voltage_rdev(rdev);
+ }
+
+ if (current_uV < 0) {
+ if (current_uV != -EPROBE_DEFER)
+ rdev_err(rdev,
+ "failed to get the current voltage: %pe\n",
+ ERR_PTR(current_uV));
+ return current_uV;
+ }
+
+ /*
+ * If we're below the minimum voltage move up to the
+ * minimum voltage, if we're above the maximum voltage
+ * then move down to the maximum.
+ */
+ target_min = current_uV;
+ target_max = current_uV;
+
+ if (current_uV < rdev->constraints->min_uV) {
+ target_min = rdev->constraints->min_uV;
+ target_max = rdev->constraints->min_uV;
+ }
+
+ if (current_uV > rdev->constraints->max_uV) {
+ target_min = rdev->constraints->max_uV;
+ target_max = rdev->constraints->max_uV;
+ }
+
+ if (target_min != current_uV || target_max != current_uV) {
+ rdev_info(rdev, "Bringing %duV into %d-%duV\n",
+ current_uV, target_min, target_max);
+ ret = _regulator_do_set_voltage(
+ rdev, target_min, target_max);
+ if (ret < 0) {
+ rdev_err(rdev,
+ "failed to apply %d-%duV constraint: %pe\n",
+ target_min, target_max, ERR_PTR(ret));
+ return ret;
+ }
+ }
+ }
+
+ /* constrain machine-level voltage specs to fit
+ * the actual range supported by this regulator.
+ */
+ if (ops->list_voltage && rdev->desc->n_voltages) {
+ int count = rdev->desc->n_voltages;
+ int i;
+ int min_uV = INT_MAX;
+ int max_uV = INT_MIN;
+ int cmin = constraints->min_uV;
+ int cmax = constraints->max_uV;
+
+ /* it's safe to autoconfigure fixed-voltage supplies
+ * and the constraints are used by list_voltage.
+ */
+ if (count == 1 && !cmin) {
+ cmin = 1;
+ cmax = INT_MAX;
+ constraints->min_uV = cmin;
+ constraints->max_uV = cmax;
+ }
+
+ /* voltage constraints are optional */
+ if ((cmin == 0) && (cmax == 0))
+ return 0;
+
+ /* else require explicit machine-level constraints */
+ if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
+ rdev_err(rdev, "invalid voltage constraints\n");
+ return -EINVAL;
+ }
+
+ /* no need to loop voltages if range is continuous */
+ if (rdev->desc->continuous_voltage_range)
+ return 0;
+
+ /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
+ for (i = 0; i < count; i++) {
+ int value;
+
+ value = ops->list_voltage(rdev, i);
+ if (value <= 0)
+ continue;
+
+ /* maybe adjust [min_uV..max_uV] */
+ if (value >= cmin && value < min_uV)
+ min_uV = value;
+ if (value <= cmax && value > max_uV)
+ max_uV = value;
+ }
+
+ /* final: [min_uV..max_uV] valid iff constraints valid */
+ if (max_uV < min_uV) {
+ rdev_err(rdev,
+ "unsupportable voltage constraints %u-%uuV\n",
+ min_uV, max_uV);
+ return -EINVAL;
+ }
+
+ /* use regulator's subset of machine constraints */
+ if (constraints->min_uV < min_uV) {
+ rdev_dbg(rdev, "override min_uV, %d -> %d\n",
+ constraints->min_uV, min_uV);
+ constraints->min_uV = min_uV;
+ }
+ if (constraints->max_uV > max_uV) {
+ rdev_dbg(rdev, "override max_uV, %d -> %d\n",
+ constraints->max_uV, max_uV);
+ constraints->max_uV = max_uV;
+ }
+ }
+
+ return 0;
+}
+
+static int machine_constraints_current(struct regulator_dev *rdev,
+ struct regulation_constraints *constraints)
+{
+ const struct regulator_ops *ops = rdev->desc->ops;
+ int ret;
+
+ if (!constraints->min_uA && !constraints->max_uA)
+ return 0;
+
+ if (constraints->min_uA > constraints->max_uA) {
+ rdev_err(rdev, "Invalid current constraints\n");
+ return -EINVAL;
+ }
+
+ if (!ops->set_current_limit || !ops->get_current_limit) {
+ rdev_warn(rdev, "Operation of current configuration missing\n");
+ return 0;
+ }
+
+ /* Set regulator current in constraints range */
+ ret = ops->set_current_limit(rdev, constraints->min_uA,
+ constraints->max_uA);
+ if (ret < 0) {
+ rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int _regulator_do_enable(struct regulator_dev *rdev);
+
+static int notif_set_limit(struct regulator_dev *rdev,
+ int (*set)(struct regulator_dev *, int, int, bool),
+ int limit, int severity)
+{
+ bool enable;
+
+ if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
+ enable = false;
+ limit = 0;
+ } else {
+ enable = true;
+ }
+
+ if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
+ limit = 0;
+
+ return set(rdev, limit, severity, enable);
+}
+
+static int handle_notify_limits(struct regulator_dev *rdev,
+ int (*set)(struct regulator_dev *, int, int, bool),
+ struct notification_limit *limits)
+{
+ int ret = 0;
+
+ if (!set)
+ return -EOPNOTSUPP;
+
+ if (limits->prot)
+ ret = notif_set_limit(rdev, set, limits->prot,
+ REGULATOR_SEVERITY_PROT);
+ if (ret)
+ return ret;
+
+ if (limits->err)
+ ret = notif_set_limit(rdev, set, limits->err,
+ REGULATOR_SEVERITY_ERR);
+ if (ret)
+ return ret;
+
+ if (limits->warn)
+ ret = notif_set_limit(rdev, set, limits->warn,
+ REGULATOR_SEVERITY_WARN);
+
+ return ret;
+}
+/**
+ * set_machine_constraints - sets regulator constraints
+ * @rdev: regulator source
+ *
+ * Allows platform initialisation code to define and constrain
+ * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
+ * Constraints *must* be set by platform code in order for some
+ * regulator operations to proceed i.e. set_voltage, set_current_limit,
+ * set_mode.
+ */
+static int set_machine_constraints(struct regulator_dev *rdev)
+{
+ int ret = 0;
+ const struct regulator_ops *ops = rdev->desc->ops;
+
+ ret = machine_constraints_voltage(rdev, rdev->constraints);
+ if (ret != 0)
+ return ret;
+
+ ret = machine_constraints_current(rdev, rdev->constraints);
+ if (ret != 0)
+ return ret;
+
+ if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
+ ret = ops->set_input_current_limit(rdev,
+ rdev->constraints->ilim_uA);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
+ return ret;
+ }
+ }
+
+ /* do we need to setup our suspend state */
+ if (rdev->constraints->initial_state) {
+ ret = suspend_set_initial_state(rdev);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
+ return ret;
+ }
+ }
+
+ if (rdev->constraints->initial_mode) {
+ if (!ops->set_mode) {
+ rdev_err(rdev, "no set_mode operation\n");
+ return -EINVAL;
+ }
+
+ ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
+ return ret;
+ }
+ } else if (rdev->constraints->system_load) {
+ /*
+ * We'll only apply the initial system load if an
+ * initial mode wasn't specified.
+ */
+ drms_uA_update(rdev);
+ }
+
+ if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
+ && ops->set_ramp_delay) {
+ ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
+ return ret;
+ }
+ }
+
+ if (rdev->constraints->pull_down && ops->set_pull_down) {
+ ret = ops->set_pull_down(rdev);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
+ return ret;
+ }
+ }
+
+ if (rdev->constraints->soft_start && ops->set_soft_start) {
+ ret = ops->set_soft_start(rdev);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
+ return ret;
+ }
+ }
+
+ /*
+ * Existing logic does not warn if over_current_protection is given as
+ * a constraint but driver does not support that. I think we should
+ * warn about this type of issues as it is possible someone changes
+ * PMIC on board to another type - and the another PMIC's driver does
+ * not support setting protection. Board composer may happily believe
+ * the DT limits are respected - especially if the new PMIC HW also
+ * supports protection but the driver does not. I won't change the logic
+ * without hearing more experienced opinion on this though.
+ *
+ * If warning is seen as a good idea then we can merge handling the
+ * over-curret protection and detection and get rid of this special
+ * handling.
+ */
+ if (rdev->constraints->over_current_protection
+ && ops->set_over_current_protection) {
+ int lim = rdev->constraints->over_curr_limits.prot;
+
+ ret = ops->set_over_current_protection(rdev, lim,
+ REGULATOR_SEVERITY_PROT,
+ true);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to set over current protection: %pe\n",
+ ERR_PTR(ret));
+ return ret;
+ }
+ }
+
+ if (rdev->constraints->over_current_detection)
+ ret = handle_notify_limits(rdev,
+ ops->set_over_current_protection,
+ &rdev->constraints->over_curr_limits);
+ if (ret) {
+ if (ret != -EOPNOTSUPP) {
+ rdev_err(rdev, "failed to set over current limits: %pe\n",
+ ERR_PTR(ret));
+ return ret;
+ }
+ rdev_warn(rdev,
+ "IC does not support requested over-current limits\n");
+ }
+
+ if (rdev->constraints->over_voltage_detection)
+ ret = handle_notify_limits(rdev,
+ ops->set_over_voltage_protection,
+ &rdev->constraints->over_voltage_limits);
+ if (ret) {
+ if (ret != -EOPNOTSUPP) {
+ rdev_err(rdev, "failed to set over voltage limits %pe\n",
+ ERR_PTR(ret));
+ return ret;
+ }
+ rdev_warn(rdev,
+ "IC does not support requested over voltage limits\n");
+ }
+
+ if (rdev->constraints->under_voltage_detection)
+ ret = handle_notify_limits(rdev,
+ ops->set_under_voltage_protection,
+ &rdev->constraints->under_voltage_limits);
+ if (ret) {
+ if (ret != -EOPNOTSUPP) {
+ rdev_err(rdev, "failed to set under voltage limits %pe\n",
+ ERR_PTR(ret));
+ return ret;
+ }
+ rdev_warn(rdev,
+ "IC does not support requested under voltage limits\n");
+ }
+
+ if (rdev->constraints->over_temp_detection)
+ ret = handle_notify_limits(rdev,
+ ops->set_thermal_protection,
+ &rdev->constraints->temp_limits);
+ if (ret) {
+ if (ret != -EOPNOTSUPP) {
+ rdev_err(rdev, "failed to set temperature limits %pe\n",
+ ERR_PTR(ret));
+ return ret;
+ }
+ rdev_warn(rdev,
+ "IC does not support requested temperature limits\n");
+ }
+
+ if (rdev->constraints->active_discharge && ops->set_active_discharge) {
+ bool ad_state = (rdev->constraints->active_discharge ==
+ REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
+
+ ret = ops->set_active_discharge(rdev, ad_state);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
+ return ret;
+ }
+ }
+
+ /*
+ * If there is no mechanism for controlling the regulator then
+ * flag it as always_on so we don't end up duplicating checks
+ * for this so much. Note that we could control the state of
+ * a supply to control the output on a regulator that has no
+ * direct control.
+ */
+ if (!rdev->ena_pin && !ops->enable) {
+ if (rdev->supply_name && !rdev->supply)
+ return -EPROBE_DEFER;
+
+ if (rdev->supply)
+ rdev->constraints->always_on =
+ rdev->supply->rdev->constraints->always_on;
+ else
+ rdev->constraints->always_on = true;
+ }
+
+ /* If the constraints say the regulator should be on at this point
+ * and we have control then make sure it is enabled.
+ */
+ if (rdev->constraints->always_on || rdev->constraints->boot_on) {
+ /* If we want to enable this regulator, make sure that we know
+ * the supplying regulator.
+ */
+ if (rdev->supply_name && !rdev->supply)
+ return -EPROBE_DEFER;
+
+ /* If supplying regulator has already been enabled,
+ * it's not intended to have use_count increment
+ * when rdev is only boot-on.
+ */
+ if (rdev->supply &&
+ (rdev->constraints->always_on ||
+ !regulator_is_enabled(rdev->supply))) {
+ ret = regulator_enable(rdev->supply);
+ if (ret < 0) {
+ _regulator_put(rdev->supply);
+ rdev->supply = NULL;
+ return ret;
+ }
+ }
+
+ ret = _regulator_do_enable(rdev);
+ if (ret < 0 && ret != -EINVAL) {
+ rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
+ return ret;
+ }
+
+ if (rdev->constraints->always_on)
+ rdev->use_count++;
+ } else if (rdev->desc->off_on_delay) {
+ rdev->last_off = ktime_get();
+ }
+
+ print_constraints(rdev);
+ return 0;
+}
+
+/**
+ * set_supply - set regulator supply regulator
+ * @rdev: regulator (locked)
+ * @supply_rdev: supply regulator (locked))
+ *
+ * Called by platform initialisation code to set the supply regulator for this
+ * regulator. This ensures that a regulators supply will also be enabled by the
+ * core if it's child is enabled.
+ */
+static int set_supply(struct regulator_dev *rdev,
+ struct regulator_dev *supply_rdev)
+{
+ int err;
+
+ rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
+
+ if (!try_module_get(supply_rdev->owner))
+ return -ENODEV;
+
+ rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
+ if (rdev->supply == NULL) {
+ module_put(supply_rdev->owner);
+ err = -ENOMEM;
+ return err;
+ }
+ supply_rdev->open_count++;
+
+ return 0;
+}
+
+/**
+ * set_consumer_device_supply - Bind a regulator to a symbolic supply
+ * @rdev: regulator source
+ * @consumer_dev_name: dev_name() string for device supply applies to
+ * @supply: symbolic name for supply
+ *
+ * Allows platform initialisation code to map physical regulator
+ * sources to symbolic names for supplies for use by devices. Devices
+ * should use these symbolic names to request regulators, avoiding the
+ * need to provide board-specific regulator names as platform data.
+ */
+static int set_consumer_device_supply(struct regulator_dev *rdev,
+ const char *consumer_dev_name,
+ const char *supply)
+{
+ struct regulator_map *node, *new_node;
+ int has_dev;
+
+ if (supply == NULL)
+ return -EINVAL;
+
+ if (consumer_dev_name != NULL)
+ has_dev = 1;
+ else
+ has_dev = 0;
+
+ new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
+ if (new_node == NULL)
+ return -ENOMEM;
+
+ new_node->regulator = rdev;
+ new_node->supply = supply;
+
+ if (has_dev) {
+ new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
+ if (new_node->dev_name == NULL) {
+ kfree(new_node);
+ return -ENOMEM;
+ }
+ }
+
+ mutex_lock(&regulator_list_mutex);
+ list_for_each_entry(node, &regulator_map_list, list) {
+ if (node->dev_name && consumer_dev_name) {
+ if (strcmp(node->dev_name, consumer_dev_name) != 0)
+ continue;
+ } else if (node->dev_name || consumer_dev_name) {
+ continue;
+ }
+
+ if (strcmp(node->supply, supply) != 0)
+ continue;
+
+ pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
+ consumer_dev_name,
+ dev_name(&node->regulator->dev),
+ node->regulator->desc->name,
+ supply,
+ dev_name(&rdev->dev), rdev_get_name(rdev));
+ goto fail;
+ }
+
+ list_add(&new_node->list, &regulator_map_list);
+ mutex_unlock(&regulator_list_mutex);
+
+ return 0;
+
+fail:
+ mutex_unlock(&regulator_list_mutex);
+ kfree(new_node->dev_name);
+ kfree(new_node);
+ return -EBUSY;
+}
+
+static void unset_regulator_supplies(struct regulator_dev *rdev)
+{
+ struct regulator_map *node, *n;
+
+ list_for_each_entry_safe(node, n, &regulator_map_list, list) {
+ if (rdev == node->regulator) {
+ list_del(&node->list);
+ kfree(node->dev_name);
+ kfree(node);
+ }
+ }
+}
+
+#ifdef CONFIG_DEBUG_FS
+static ssize_t constraint_flags_read_file(struct file *file,
+ char __user *user_buf,
+ size_t count, loff_t *ppos)
+{
+ const struct regulator *regulator = file->private_data;
+ const struct regulation_constraints *c = regulator->rdev->constraints;
+ char *buf;
+ ssize_t ret;
+
+ if (!c)
+ return 0;
+
+ buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ ret = snprintf(buf, PAGE_SIZE,
+ "always_on: %u\n"
+ "boot_on: %u\n"
+ "apply_uV: %u\n"
+ "ramp_disable: %u\n"
+ "soft_start: %u\n"
+ "pull_down: %u\n"
+ "over_current_protection: %u\n",
+ c->always_on,
+ c->boot_on,
+ c->apply_uV,
+ c->ramp_disable,
+ c->soft_start,
+ c->pull_down,
+ c->over_current_protection);
+
+ ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
+ kfree(buf);
+
+ return ret;
+}
+
+#endif
+
+static const struct file_operations constraint_flags_fops = {
+#ifdef CONFIG_DEBUG_FS
+ .open = simple_open,
+ .read = constraint_flags_read_file,
+ .llseek = default_llseek,
+#endif
+};
+
+#define REG_STR_SIZE 64
+
+static struct regulator *create_regulator(struct regulator_dev *rdev,
+ struct device *dev,
+ const char *supply_name)
+{
+ struct regulator *regulator;
+ int err = 0;
+
+ lockdep_assert_held_once(&rdev->mutex.base);
+
+ if (dev) {
+ char buf[REG_STR_SIZE];
+ int size;
+
+ size = snprintf(buf, REG_STR_SIZE, "%s-%s",
+ dev->kobj.name, supply_name);
+ if (size >= REG_STR_SIZE)
+ return NULL;
+
+ supply_name = kstrdup(buf, GFP_KERNEL);
+ if (supply_name == NULL)
+ return NULL;
+ } else {
+ supply_name = kstrdup_const(supply_name, GFP_KERNEL);
+ if (supply_name == NULL)
+ return NULL;
+ }
+
+ regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
+ if (regulator == NULL) {
+ kfree_const(supply_name);
+ return NULL;
+ }
+
+ regulator->rdev = rdev;
+ regulator->supply_name = supply_name;
+
+ list_add(&regulator->list, &rdev->consumer_list);
+
+ if (dev) {
+ regulator->dev = dev;
+
+ /* Add a link to the device sysfs entry */
+ err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
+ supply_name);
+ if (err) {
+ rdev_dbg(rdev, "could not add device link %s: %pe\n",
+ dev->kobj.name, ERR_PTR(err));
+ /* non-fatal */
+ }
+ }
+
+ if (err != -EEXIST)
+ regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
+ if (IS_ERR(regulator->debugfs))
+ rdev_dbg(rdev, "Failed to create debugfs directory\n");
+
+ debugfs_create_u32("uA_load", 0444, regulator->debugfs,
+ &regulator->uA_load);
+ debugfs_create_u32("min_uV", 0444, regulator->debugfs,
+ &regulator->voltage[PM_SUSPEND_ON].min_uV);
+ debugfs_create_u32("max_uV", 0444, regulator->debugfs,
+ &regulator->voltage[PM_SUSPEND_ON].max_uV);
+ debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
+ regulator, &constraint_flags_fops);
+
+ /*
+ * Check now if the regulator is an always on regulator - if
+ * it is then we don't need to do nearly so much work for
+ * enable/disable calls.
+ */
+ if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
+ _regulator_is_enabled(rdev))
+ regulator->always_on = true;
+
+ return regulator;
+}
+
+static int _regulator_get_enable_time(struct regulator_dev *rdev)
+{
+ if (rdev->constraints && rdev->constraints->enable_time)
+ return rdev->constraints->enable_time;
+ if (rdev->desc->ops->enable_time)
+ return rdev->desc->ops->enable_time(rdev);
+ return rdev->desc->enable_time;
+}
+
+static struct regulator_supply_alias *regulator_find_supply_alias(
+ struct device *dev, const char *supply)
+{
+ struct regulator_supply_alias *map;
+
+ list_for_each_entry(map, &regulator_supply_alias_list, list)
+ if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
+ return map;
+
+ return NULL;
+}
+
+static void regulator_supply_alias(struct device **dev, const char **supply)
+{
+ struct regulator_supply_alias *map;
+
+ map = regulator_find_supply_alias(*dev, *supply);
+ if (map) {
+ dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
+ *supply, map->alias_supply,
+ dev_name(map->alias_dev));
+ *dev = map->alias_dev;
+ *supply = map->alias_supply;
+ }
+}
+
+static int regulator_match(struct device *dev, const void *data)
+{
+ struct regulator_dev *r = dev_to_rdev(dev);
+
+ return strcmp(rdev_get_name(r), data) == 0;
+}
+
+static struct regulator_dev *regulator_lookup_by_name(const char *name)
+{
+ struct device *dev;
+
+ dev = class_find_device(&regulator_class, NULL, name, regulator_match);
+
+ return dev ? dev_to_rdev(dev) : NULL;
+}
+
+/**
+ * regulator_dev_lookup - lookup a regulator device.
+ * @dev: device for regulator "consumer".
+ * @supply: Supply name or regulator ID.
+ *
+ * If successful, returns a struct regulator_dev that corresponds to the name
+ * @supply and with the embedded struct device refcount incremented by one.
+ * The refcount must be dropped by calling put_device().
+ * On failure one of the following ERR-PTR-encoded values is returned:
+ * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
+ * in the future.
+ */
+static struct regulator_dev *regulator_dev_lookup(struct device *dev,
+ const char *supply)
+{
+ struct regulator_dev *r = NULL;
+ struct device_node *node;
+ struct regulator_map *map;
+ const char *devname = NULL;
+
+ regulator_supply_alias(&dev, &supply);
+
+ /* first do a dt based lookup */
+ if (dev && dev->of_node) {
+ node = of_get_regulator(dev, supply);
+ if (node) {
+ r = of_find_regulator_by_node(node);
+ of_node_put(node);
+ if (r)
+ return r;
+
+ /*
+ * We have a node, but there is no device.
+ * assume it has not registered yet.
+ */
+ return ERR_PTR(-EPROBE_DEFER);
+ }
+ }
+
+ /* if not found, try doing it non-dt way */
+ if (dev)
+ devname = dev_name(dev);
+
+ mutex_lock(&regulator_list_mutex);
+ list_for_each_entry(map, &regulator_map_list, list) {
+ /* If the mapping has a device set up it must match */
+ if (map->dev_name &&
+ (!devname || strcmp(map->dev_name, devname)))
+ continue;
+
+ if (strcmp(map->supply, supply) == 0 &&
+ get_device(&map->regulator->dev)) {
+ r = map->regulator;
+ break;
+ }
+ }
+ mutex_unlock(&regulator_list_mutex);
+
+ if (r)
+ return r;
+
+ r = regulator_lookup_by_name(supply);
+ if (r)
+ return r;
+
+ return ERR_PTR(-ENODEV);
+}
+
+static int regulator_resolve_supply(struct regulator_dev *rdev)
+{
+ struct regulator_dev *r;
+ struct device *dev = rdev->dev.parent;
+ struct ww_acquire_ctx ww_ctx;
+ int ret = 0;
+
+ /* No supply to resolve? */
+ if (!rdev->supply_name)
+ return 0;
+
+ /* Supply already resolved? (fast-path without locking contention) */
+ if (rdev->supply)
+ return 0;
+
+ r = regulator_dev_lookup(dev, rdev->supply_name);
+ if (IS_ERR(r)) {
+ ret = PTR_ERR(r);
+
+ /* Did the lookup explicitly defer for us? */
+ if (ret == -EPROBE_DEFER)
+ goto out;
+
+ if (have_full_constraints()) {
+ r = dummy_regulator_rdev;
+ get_device(&r->dev);
+ } else {
+ dev_err(dev, "Failed to resolve %s-supply for %s\n",
+ rdev->supply_name, rdev->desc->name);
+ ret = -EPROBE_DEFER;
+ goto out;
+ }
+ }
+
+ if (r == rdev) {
+ dev_err(dev, "Supply for %s (%s) resolved to itself\n",
+ rdev->desc->name, rdev->supply_name);
+ if (!have_full_constraints()) {
+ ret = -EINVAL;
+ goto out;
+ }
+ r = dummy_regulator_rdev;
+ get_device(&r->dev);
+ }
+
+ /*
+ * If the supply's parent device is not the same as the
+ * regulator's parent device, then ensure the parent device
+ * is bound before we resolve the supply, in case the parent
+ * device get probe deferred and unregisters the supply.
+ */
+ if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
+ if (!device_is_bound(r->dev.parent)) {
+ put_device(&r->dev);
+ ret = -EPROBE_DEFER;
+ goto out;
+ }
+ }
+
+ /* Recursively resolve the supply of the supply */
+ ret = regulator_resolve_supply(r);
+ if (ret < 0) {
+ put_device(&r->dev);
+ goto out;
+ }
+
+ /*
+ * Recheck rdev->supply with rdev->mutex lock held to avoid a race
+ * between rdev->supply null check and setting rdev->supply in
+ * set_supply() from concurrent tasks.
+ */
+ regulator_lock_two(rdev, r, &ww_ctx);
+
+ /* Supply just resolved by a concurrent task? */
+ if (rdev->supply) {
+ regulator_unlock_two(rdev, r, &ww_ctx);
+ put_device(&r->dev);
+ goto out;
+ }
+
+ ret = set_supply(rdev, r);
+ if (ret < 0) {
+ regulator_unlock_two(rdev, r, &ww_ctx);
+ put_device(&r->dev);
+ goto out;
+ }
+
+ regulator_unlock_two(rdev, r, &ww_ctx);
+
+ /*
+ * In set_machine_constraints() we may have turned this regulator on
+ * but we couldn't propagate to the supply if it hadn't been resolved
+ * yet. Do it now.
+ */
+ if (rdev->use_count) {
+ ret = regulator_enable(rdev->supply);
+ if (ret < 0) {
+ _regulator_put(rdev->supply);
+ rdev->supply = NULL;
+ goto out;
+ }
+ }
+
+out:
+ return ret;
+}
+
+/* Internal regulator request function */
+struct regulator *_regulator_get(struct device *dev, const char *id,
+ enum regulator_get_type get_type)
+{
+ struct regulator_dev *rdev;
+ struct regulator *regulator;
+ struct device_link *link;
+ int ret;
+
+ if (get_type >= MAX_GET_TYPE) {
+ dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
+ return ERR_PTR(-EINVAL);
+ }
+
+ if (id == NULL) {
+ pr_err("get() with no identifier\n");
+ return ERR_PTR(-EINVAL);
+ }
+
+ rdev = regulator_dev_lookup(dev, id);
+ if (IS_ERR(rdev)) {
+ ret = PTR_ERR(rdev);
+
+ /*
+ * If regulator_dev_lookup() fails with error other
+ * than -ENODEV our job here is done, we simply return it.
+ */
+ if (ret != -ENODEV)
+ return ERR_PTR(ret);
+
+ if (!have_full_constraints()) {
+ dev_warn(dev,
+ "incomplete constraints, dummy supplies not allowed\n");
+ return ERR_PTR(-ENODEV);
+ }
+
+ switch (get_type) {
+ case NORMAL_GET:
+ /*
+ * Assume that a regulator is physically present and
+ * enabled, even if it isn't hooked up, and just
+ * provide a dummy.
+ */
+ dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
+ rdev = dummy_regulator_rdev;
+ get_device(&rdev->dev);
+ break;
+
+ case EXCLUSIVE_GET:
+ dev_warn(dev,
+ "dummy supplies not allowed for exclusive requests\n");
+ fallthrough;
+
+ default:
+ return ERR_PTR(-ENODEV);
+ }
+ }
+
+ if (rdev->exclusive) {
+ regulator = ERR_PTR(-EPERM);
+ put_device(&rdev->dev);
+ return regulator;
+ }
+
+ if (get_type == EXCLUSIVE_GET && rdev->open_count) {
+ regulator = ERR_PTR(-EBUSY);
+ put_device(&rdev->dev);
+ return regulator;
+ }
+
+ mutex_lock(&regulator_list_mutex);
+ ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
+ mutex_unlock(&regulator_list_mutex);
+
+ if (ret != 0) {
+ regulator = ERR_PTR(-EPROBE_DEFER);
+ put_device(&rdev->dev);
+ return regulator;
+ }
+
+ ret = regulator_resolve_supply(rdev);
+ if (ret < 0) {
+ regulator = ERR_PTR(ret);
+ put_device(&rdev->dev);
+ return regulator;
+ }
+
+ if (!try_module_get(rdev->owner)) {
+ regulator = ERR_PTR(-EPROBE_DEFER);
+ put_device(&rdev->dev);
+ return regulator;
+ }
+
+ regulator_lock(rdev);
+ regulator = create_regulator(rdev, dev, id);
+ regulator_unlock(rdev);
+ if (regulator == NULL) {
+ regulator = ERR_PTR(-ENOMEM);
+ module_put(rdev->owner);
+ put_device(&rdev->dev);
+ return regulator;
+ }
+
+ rdev->open_count++;
+ if (get_type == EXCLUSIVE_GET) {
+ rdev->exclusive = 1;
+
+ ret = _regulator_is_enabled(rdev);
+ if (ret > 0) {
+ rdev->use_count = 1;
+ regulator->enable_count = 1;
+ } else {
+ rdev->use_count = 0;
+ regulator->enable_count = 0;
+ }
+ }
+
+ link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
+ if (!IS_ERR_OR_NULL(link))
+ regulator->device_link = true;
+
+ return regulator;
+}
+
+/**
+ * regulator_get - lookup and obtain a reference to a regulator.
+ * @dev: device for regulator "consumer"
+ * @id: Supply name or regulator ID.
+ *
+ * Returns a struct regulator corresponding to the regulator producer,
+ * or IS_ERR() condition containing errno.
+ *
+ * Use of supply names configured via set_consumer_device_supply() is
+ * strongly encouraged. It is recommended that the supply name used
+ * should match the name used for the supply and/or the relevant
+ * device pins in the datasheet.
+ */
+struct regulator *regulator_get(struct device *dev, const char *id)
+{
+ return _regulator_get(dev, id, NORMAL_GET);
+}
+EXPORT_SYMBOL_GPL(regulator_get);
+
+/**
+ * regulator_get_exclusive - obtain exclusive access to a regulator.
+ * @dev: device for regulator "consumer"
+ * @id: Supply name or regulator ID.
+ *
+ * Returns a struct regulator corresponding to the regulator producer,
+ * or IS_ERR() condition containing errno. Other consumers will be
+ * unable to obtain this regulator while this reference is held and the
+ * use count for the regulator will be initialised to reflect the current
+ * state of the regulator.
+ *
+ * This is intended for use by consumers which cannot tolerate shared
+ * use of the regulator such as those which need to force the
+ * regulator off for correct operation of the hardware they are
+ * controlling.
+ *
+ * Use of supply names configured via set_consumer_device_supply() is
+ * strongly encouraged. It is recommended that the supply name used
+ * should match the name used for the supply and/or the relevant
+ * device pins in the datasheet.
+ */
+struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
+{
+ return _regulator_get(dev, id, EXCLUSIVE_GET);
+}
+EXPORT_SYMBOL_GPL(regulator_get_exclusive);
+
+/**
+ * regulator_get_optional - obtain optional access to a regulator.
+ * @dev: device for regulator "consumer"
+ * @id: Supply name or regulator ID.
+ *
+ * Returns a struct regulator corresponding to the regulator producer,
+ * or IS_ERR() condition containing errno.
+ *
+ * This is intended for use by consumers for devices which can have
+ * some supplies unconnected in normal use, such as some MMC devices.
+ * It can allow the regulator core to provide stub supplies for other
+ * supplies requested using normal regulator_get() calls without
+ * disrupting the operation of drivers that can handle absent
+ * supplies.
+ *
+ * Use of supply names configured via set_consumer_device_supply() is
+ * strongly encouraged. It is recommended that the supply name used
+ * should match the name used for the supply and/or the relevant
+ * device pins in the datasheet.
+ */
+struct regulator *regulator_get_optional(struct device *dev, const char *id)
+{
+ return _regulator_get(dev, id, OPTIONAL_GET);
+}
+EXPORT_SYMBOL_GPL(regulator_get_optional);
+
+static void destroy_regulator(struct regulator *regulator)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+
+ debugfs_remove_recursive(regulator->debugfs);
+
+ if (regulator->dev) {
+ if (regulator->device_link)
+ device_link_remove(regulator->dev, &rdev->dev);
+
+ /* remove any sysfs entries */
+ sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
+ }
+
+ regulator_lock(rdev);
+ list_del(&regulator->list);
+
+ rdev->open_count--;
+ rdev->exclusive = 0;
+ regulator_unlock(rdev);
+
+ kfree_const(regulator->supply_name);
+ kfree(regulator);
+}
+
+/* regulator_list_mutex lock held by regulator_put() */
+static void _regulator_put(struct regulator *regulator)
+{
+ struct regulator_dev *rdev;
+
+ if (IS_ERR_OR_NULL(regulator))
+ return;
+
+ lockdep_assert_held_once(&regulator_list_mutex);
+
+ /* Docs say you must disable before calling regulator_put() */
+ WARN_ON(regulator->enable_count);
+
+ rdev = regulator->rdev;
+
+ destroy_regulator(regulator);
+
+ module_put(rdev->owner);
+ put_device(&rdev->dev);
+}
+
+/**
+ * regulator_put - "free" the regulator source
+ * @regulator: regulator source
+ *
+ * Note: drivers must ensure that all regulator_enable calls made on this
+ * regulator source are balanced by regulator_disable calls prior to calling
+ * this function.
+ */
+void regulator_put(struct regulator *regulator)
+{
+ mutex_lock(&regulator_list_mutex);
+ _regulator_put(regulator);
+ mutex_unlock(&regulator_list_mutex);
+}
+EXPORT_SYMBOL_GPL(regulator_put);
+
+/**
+ * regulator_register_supply_alias - Provide device alias for supply lookup
+ *
+ * @dev: device that will be given as the regulator "consumer"
+ * @id: Supply name or regulator ID
+ * @alias_dev: device that should be used to lookup the supply
+ * @alias_id: Supply name or regulator ID that should be used to lookup the
+ * supply
+ *
+ * All lookups for id on dev will instead be conducted for alias_id on
+ * alias_dev.
+ */
+int regulator_register_supply_alias(struct device *dev, const char *id,
+ struct device *alias_dev,
+ const char *alias_id)
+{
+ struct regulator_supply_alias *map;
+
+ map = regulator_find_supply_alias(dev, id);
+ if (map)
+ return -EEXIST;
+
+ map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
+ if (!map)
+ return -ENOMEM;
+
+ map->src_dev = dev;
+ map->src_supply = id;
+ map->alias_dev = alias_dev;
+ map->alias_supply = alias_id;
+
+ list_add(&map->list, &regulator_supply_alias_list);
+
+ pr_info("Adding alias for supply %s,%s -> %s,%s\n",
+ id, dev_name(dev), alias_id, dev_name(alias_dev));
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
+
+/**
+ * regulator_unregister_supply_alias - Remove device alias
+ *
+ * @dev: device that will be given as the regulator "consumer"
+ * @id: Supply name or regulator ID
+ *
+ * Remove a lookup alias if one exists for id on dev.
+ */
+void regulator_unregister_supply_alias(struct device *dev, const char *id)
+{
+ struct regulator_supply_alias *map;
+
+ map = regulator_find_supply_alias(dev, id);
+ if (map) {
+ list_del(&map->list);
+ kfree(map);
+ }
+}
+EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
+
+/**
+ * regulator_bulk_register_supply_alias - register multiple aliases
+ *
+ * @dev: device that will be given as the regulator "consumer"
+ * @id: List of supply names or regulator IDs
+ * @alias_dev: device that should be used to lookup the supply
+ * @alias_id: List of supply names or regulator IDs that should be used to
+ * lookup the supply
+ * @num_id: Number of aliases to register
+ *
+ * @return 0 on success, an errno on failure.
+ *
+ * This helper function allows drivers to register several supply
+ * aliases in one operation. If any of the aliases cannot be
+ * registered any aliases that were registered will be removed
+ * before returning to the caller.
+ */
+int regulator_bulk_register_supply_alias(struct device *dev,
+ const char *const *id,
+ struct device *alias_dev,
+ const char *const *alias_id,
+ int num_id)
+{
+ int i;
+ int ret;
+
+ for (i = 0; i < num_id; ++i) {
+ ret = regulator_register_supply_alias(dev, id[i], alias_dev,
+ alias_id[i]);
+ if (ret < 0)
+ goto err;
+ }
+
+ return 0;
+
+err:
+ dev_err(dev,
+ "Failed to create supply alias %s,%s -> %s,%s\n",
+ id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
+
+ while (--i >= 0)
+ regulator_unregister_supply_alias(dev, id[i]);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
+
+/**
+ * regulator_bulk_unregister_supply_alias - unregister multiple aliases
+ *
+ * @dev: device that will be given as the regulator "consumer"
+ * @id: List of supply names or regulator IDs
+ * @num_id: Number of aliases to unregister
+ *
+ * This helper function allows drivers to unregister several supply
+ * aliases in one operation.
+ */
+void regulator_bulk_unregister_supply_alias(struct device *dev,
+ const char *const *id,
+ int num_id)
+{
+ int i;
+
+ for (i = 0; i < num_id; ++i)
+ regulator_unregister_supply_alias(dev, id[i]);
+}
+EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
+
+
+/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
+static int regulator_ena_gpio_request(struct regulator_dev *rdev,
+ const struct regulator_config *config)
+{
+ struct regulator_enable_gpio *pin, *new_pin;
+ struct gpio_desc *gpiod;
+
+ gpiod = config->ena_gpiod;
+ new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
+
+ mutex_lock(&regulator_list_mutex);
+
+ list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
+ if (pin->gpiod == gpiod) {
+ rdev_dbg(rdev, "GPIO is already used\n");
+ goto update_ena_gpio_to_rdev;
+ }
+ }
+
+ if (new_pin == NULL) {
+ mutex_unlock(&regulator_list_mutex);
+ return -ENOMEM;
+ }
+
+ pin = new_pin;
+ new_pin = NULL;
+
+ pin->gpiod = gpiod;
+ list_add(&pin->list, &regulator_ena_gpio_list);
+
+update_ena_gpio_to_rdev:
+ pin->request_count++;
+ rdev->ena_pin = pin;
+
+ mutex_unlock(&regulator_list_mutex);
+ kfree(new_pin);
+
+ return 0;
+}
+
+static void regulator_ena_gpio_free(struct regulator_dev *rdev)
+{
+ struct regulator_enable_gpio *pin, *n;
+
+ if (!rdev->ena_pin)
+ return;
+
+ /* Free the GPIO only in case of no use */
+ list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
+ if (pin != rdev->ena_pin)
+ continue;
+
+ if (--pin->request_count)
+ break;
+
+ gpiod_put(pin->gpiod);
+ list_del(&pin->list);
+ kfree(pin);
+ break;
+ }
+
+ rdev->ena_pin = NULL;
+}
+
+/**
+ * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
+ * @rdev: regulator_dev structure
+ * @enable: enable GPIO at initial use?
+ *
+ * GPIO is enabled in case of initial use. (enable_count is 0)
+ * GPIO is disabled when it is not shared any more. (enable_count <= 1)
+ */
+static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
+{
+ struct regulator_enable_gpio *pin = rdev->ena_pin;
+
+ if (!pin)
+ return -EINVAL;
+
+ if (enable) {
+ /* Enable GPIO at initial use */
+ if (pin->enable_count == 0)
+ gpiod_set_value_cansleep(pin->gpiod, 1);
+
+ pin->enable_count++;
+ } else {
+ if (pin->enable_count > 1) {
+ pin->enable_count--;
+ return 0;
+ }
+
+ /* Disable GPIO if not used */
+ if (pin->enable_count <= 1) {
+ gpiod_set_value_cansleep(pin->gpiod, 0);
+ pin->enable_count = 0;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * _regulator_delay_helper - a delay helper function
+ * @delay: time to delay in microseconds
+ *
+ * Delay for the requested amount of time as per the guidelines in:
+ *
+ * Documentation/timers/timers-howto.rst
+ *
+ * The assumption here is that these regulator operations will never used in
+ * atomic context and therefore sleeping functions can be used.
+ */
+static void _regulator_delay_helper(unsigned int delay)
+{
+ unsigned int ms = delay / 1000;
+ unsigned int us = delay % 1000;
+
+ if (ms > 0) {
+ /*
+ * For small enough values, handle super-millisecond
+ * delays in the usleep_range() call below.
+ */
+ if (ms < 20)
+ us += ms * 1000;
+ else
+ msleep(ms);
+ }
+
+ /*
+ * Give the scheduler some room to coalesce with any other
+ * wakeup sources. For delays shorter than 10 us, don't even
+ * bother setting up high-resolution timers and just busy-
+ * loop.
+ */
+ if (us >= 10)
+ usleep_range(us, us + 100);
+ else
+ udelay(us);
+}
+
+/**
+ * _regulator_check_status_enabled
+ *
+ * A helper function to check if the regulator status can be interpreted
+ * as 'regulator is enabled'.
+ * @rdev: the regulator device to check
+ *
+ * Return:
+ * * 1 - if status shows regulator is in enabled state
+ * * 0 - if not enabled state
+ * * Error Value - as received from ops->get_status()
+ */
+static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
+{
+ int ret = rdev->desc->ops->get_status(rdev);
+
+ if (ret < 0) {
+ rdev_info(rdev, "get_status returned error: %d\n", ret);
+ return ret;
+ }
+
+ switch (ret) {
+ case REGULATOR_STATUS_OFF:
+ case REGULATOR_STATUS_ERROR:
+ case REGULATOR_STATUS_UNDEFINED:
+ return 0;
+ default:
+ return 1;
+ }
+}
+
+static int _regulator_do_enable(struct regulator_dev *rdev)
+{
+ int ret, delay;
+
+ /* Query before enabling in case configuration dependent. */
+ ret = _regulator_get_enable_time(rdev);
+ if (ret >= 0) {
+ delay = ret;
+ } else {
+ rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
+ delay = 0;
+ }
+
+ trace_regulator_enable(rdev_get_name(rdev));
+
+ if (rdev->desc->off_on_delay) {
+ /* if needed, keep a distance of off_on_delay from last time
+ * this regulator was disabled.
+ */
+ ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
+ s64 remaining = ktime_us_delta(end, ktime_get_boottime());
+
+ if (remaining > 0)
+ _regulator_delay_helper(remaining);
+ }
+
+ if (rdev->ena_pin) {
+ if (!rdev->ena_gpio_state) {
+ ret = regulator_ena_gpio_ctrl(rdev, true);
+ if (ret < 0)
+ return ret;
+ rdev->ena_gpio_state = 1;
+ }
+ } else if (rdev->desc->ops->enable) {
+ ret = rdev->desc->ops->enable(rdev);
+ if (ret < 0)
+ return ret;
+ } else {
+ return -EINVAL;
+ }
+
+ /* Allow the regulator to ramp; it would be useful to extend
+ * this for bulk operations so that the regulators can ramp
+ * together.
+ */
+ trace_regulator_enable_delay(rdev_get_name(rdev));
+
+ /* If poll_enabled_time is set, poll upto the delay calculated
+ * above, delaying poll_enabled_time uS to check if the regulator
+ * actually got enabled.
+ * If the regulator isn't enabled after our delay helper has expired,
+ * return -ETIMEDOUT.
+ */
+ if (rdev->desc->poll_enabled_time) {
+ int time_remaining = delay;
+
+ while (time_remaining > 0) {
+ _regulator_delay_helper(rdev->desc->poll_enabled_time);
+
+ if (rdev->desc->ops->get_status) {
+ ret = _regulator_check_status_enabled(rdev);
+ if (ret < 0)
+ return ret;
+ else if (ret)
+ break;
+ } else if (rdev->desc->ops->is_enabled(rdev))
+ break;
+
+ time_remaining -= rdev->desc->poll_enabled_time;
+ }
+
+ if (time_remaining <= 0) {
+ rdev_err(rdev, "Enabled check timed out\n");
+ return -ETIMEDOUT;
+ }
+ } else {
+ _regulator_delay_helper(delay);
+ }
+
+ trace_regulator_enable_complete(rdev_get_name(rdev));
+
+ return 0;
+}
+
+/**
+ * _regulator_handle_consumer_enable - handle that a consumer enabled
+ * @regulator: regulator source
+ *
+ * Some things on a regulator consumer (like the contribution towards total
+ * load on the regulator) only have an effect when the consumer wants the
+ * regulator enabled. Explained in example with two consumers of the same
+ * regulator:
+ * consumer A: set_load(100); => total load = 0
+ * consumer A: regulator_enable(); => total load = 100
+ * consumer B: set_load(1000); => total load = 100
+ * consumer B: regulator_enable(); => total load = 1100
+ * consumer A: regulator_disable(); => total_load = 1000
+ *
+ * This function (together with _regulator_handle_consumer_disable) is
+ * responsible for keeping track of the refcount for a given regulator consumer
+ * and applying / unapplying these things.
+ *
+ * Returns 0 upon no error; -error upon error.
+ */
+static int _regulator_handle_consumer_enable(struct regulator *regulator)
+{
+ int ret;
+ struct regulator_dev *rdev = regulator->rdev;
+
+ lockdep_assert_held_once(&rdev->mutex.base);
+
+ regulator->enable_count++;
+ if (regulator->uA_load && regulator->enable_count == 1) {
+ ret = drms_uA_update(rdev);
+ if (ret)
+ regulator->enable_count--;
+ return ret;
+ }
+
+ return 0;
+}
+
+/**
+ * _regulator_handle_consumer_disable - handle that a consumer disabled
+ * @regulator: regulator source
+ *
+ * The opposite of _regulator_handle_consumer_enable().
+ *
+ * Returns 0 upon no error; -error upon error.
+ */
+static int _regulator_handle_consumer_disable(struct regulator *regulator)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+
+ lockdep_assert_held_once(&rdev->mutex.base);
+
+ if (!regulator->enable_count) {
+ rdev_err(rdev, "Underflow of regulator enable count\n");
+ return -EINVAL;
+ }
+
+ regulator->enable_count--;
+ if (regulator->uA_load && regulator->enable_count == 0)
+ return drms_uA_update(rdev);
+
+ return 0;
+}
+
+/* locks held by regulator_enable() */
+static int _regulator_enable(struct regulator *regulator)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ int ret;
+
+ lockdep_assert_held_once(&rdev->mutex.base);
+
+ if (rdev->use_count == 0 && rdev->supply) {
+ ret = _regulator_enable(rdev->supply);
+ if (ret < 0)
+ return ret;
+ }
+
+ /* balance only if there are regulators coupled */
+ if (rdev->coupling_desc.n_coupled > 1) {
+ ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
+ if (ret < 0)
+ goto err_disable_supply;
+ }
+
+ ret = _regulator_handle_consumer_enable(regulator);
+ if (ret < 0)
+ goto err_disable_supply;
+
+ if (rdev->use_count == 0) {
+ /*
+ * The regulator may already be enabled if it's not switchable
+ * or was left on
+ */
+ ret = _regulator_is_enabled(rdev);
+ if (ret == -EINVAL || ret == 0) {
+ if (!regulator_ops_is_valid(rdev,
+ REGULATOR_CHANGE_STATUS)) {
+ ret = -EPERM;
+ goto err_consumer_disable;
+ }
+
+ ret = _regulator_do_enable(rdev);
+ if (ret < 0)
+ goto err_consumer_disable;
+
+ _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
+ NULL);
+ } else if (ret < 0) {
+ rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
+ goto err_consumer_disable;
+ }
+ /* Fallthrough on positive return values - already enabled */
+ }
+
+ rdev->use_count++;
+
+ return 0;
+
+err_consumer_disable:
+ _regulator_handle_consumer_disable(regulator);
+
+err_disable_supply:
+ if (rdev->use_count == 0 && rdev->supply)
+ _regulator_disable(rdev->supply);
+
+ return ret;
+}
+
+/**
+ * regulator_enable - enable regulator output
+ * @regulator: regulator source
+ *
+ * Request that the regulator be enabled with the regulator output at
+ * the predefined voltage or current value. Calls to regulator_enable()
+ * must be balanced with calls to regulator_disable().
+ *
+ * NOTE: the output value can be set by other drivers, boot loader or may be
+ * hardwired in the regulator.
+ */
+int regulator_enable(struct regulator *regulator)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ struct ww_acquire_ctx ww_ctx;
+ int ret;
+
+ regulator_lock_dependent(rdev, &ww_ctx);
+ ret = _regulator_enable(regulator);
+ regulator_unlock_dependent(rdev, &ww_ctx);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_enable);
+
+static int _regulator_do_disable(struct regulator_dev *rdev)
+{
+ int ret;
+
+ trace_regulator_disable(rdev_get_name(rdev));
+
+ if (rdev->ena_pin) {
+ if (rdev->ena_gpio_state) {
+ ret = regulator_ena_gpio_ctrl(rdev, false);
+ if (ret < 0)
+ return ret;
+ rdev->ena_gpio_state = 0;
+ }
+
+ } else if (rdev->desc->ops->disable) {
+ ret = rdev->desc->ops->disable(rdev);
+ if (ret != 0)
+ return ret;
+ }
+
+ if (rdev->desc->off_on_delay)
+ rdev->last_off = ktime_get_boottime();
+
+ trace_regulator_disable_complete(rdev_get_name(rdev));
+
+ return 0;
+}
+
+/* locks held by regulator_disable() */
+static int _regulator_disable(struct regulator *regulator)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ int ret = 0;
+
+ lockdep_assert_held_once(&rdev->mutex.base);
+
+ if (WARN(rdev->use_count <= 0,
+ "unbalanced disables for %s\n", rdev_get_name(rdev)))
+ return -EIO;
+
+ /* are we the last user and permitted to disable ? */
+ if (rdev->use_count == 1 &&
+ (rdev->constraints && !rdev->constraints->always_on)) {
+
+ /* we are last user */
+ if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
+ ret = _notifier_call_chain(rdev,
+ REGULATOR_EVENT_PRE_DISABLE,
+ NULL);
+ if (ret & NOTIFY_STOP_MASK)
+ return -EINVAL;
+
+ ret = _regulator_do_disable(rdev);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
+ _notifier_call_chain(rdev,
+ REGULATOR_EVENT_ABORT_DISABLE,
+ NULL);
+ return ret;
+ }
+ _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
+ NULL);
+ }
+
+ rdev->use_count = 0;
+ } else if (rdev->use_count > 1) {
+ rdev->use_count--;
+ }
+
+ if (ret == 0)
+ ret = _regulator_handle_consumer_disable(regulator);
+
+ if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
+ ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
+
+ if (ret == 0 && rdev->use_count == 0 && rdev->supply)
+ ret = _regulator_disable(rdev->supply);
+
+ return ret;
+}
+
+/**
+ * regulator_disable - disable regulator output
+ * @regulator: regulator source
+ *
+ * Disable the regulator output voltage or current. Calls to
+ * regulator_enable() must be balanced with calls to
+ * regulator_disable().
+ *
+ * NOTE: this will only disable the regulator output if no other consumer
+ * devices have it enabled, the regulator device supports disabling and
+ * machine constraints permit this operation.
+ */
+int regulator_disable(struct regulator *regulator)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ struct ww_acquire_ctx ww_ctx;
+ int ret;
+
+ regulator_lock_dependent(rdev, &ww_ctx);
+ ret = _regulator_disable(regulator);
+ regulator_unlock_dependent(rdev, &ww_ctx);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_disable);
+
+/* locks held by regulator_force_disable() */
+static int _regulator_force_disable(struct regulator_dev *rdev)
+{
+ int ret = 0;
+
+ lockdep_assert_held_once(&rdev->mutex.base);
+
+ ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
+ REGULATOR_EVENT_PRE_DISABLE, NULL);
+ if (ret & NOTIFY_STOP_MASK)
+ return -EINVAL;
+
+ ret = _regulator_do_disable(rdev);
+ if (ret < 0) {
+ rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
+ _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
+ REGULATOR_EVENT_ABORT_DISABLE, NULL);
+ return ret;
+ }
+
+ _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
+ REGULATOR_EVENT_DISABLE, NULL);
+
+ return 0;
+}
+
+/**
+ * regulator_force_disable - force disable regulator output
+ * @regulator: regulator source
+ *
+ * Forcibly disable the regulator output voltage or current.
+ * NOTE: this *will* disable the regulator output even if other consumer
+ * devices have it enabled. This should be used for situations when device
+ * damage will likely occur if the regulator is not disabled (e.g. over temp).
+ */
+int regulator_force_disable(struct regulator *regulator)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ struct ww_acquire_ctx ww_ctx;
+ int ret;
+
+ regulator_lock_dependent(rdev, &ww_ctx);
+
+ ret = _regulator_force_disable(regulator->rdev);
+
+ if (rdev->coupling_desc.n_coupled > 1)
+ regulator_balance_voltage(rdev, PM_SUSPEND_ON);
+
+ if (regulator->uA_load) {
+ regulator->uA_load = 0;
+ ret = drms_uA_update(rdev);
+ }
+
+ if (rdev->use_count != 0 && rdev->supply)
+ _regulator_disable(rdev->supply);
+
+ regulator_unlock_dependent(rdev, &ww_ctx);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_force_disable);
+
+static void regulator_disable_work(struct work_struct *work)
+{
+ struct regulator_dev *rdev = container_of(work, struct regulator_dev,
+ disable_work.work);
+ struct ww_acquire_ctx ww_ctx;
+ int count, i, ret;
+ struct regulator *regulator;
+ int total_count = 0;
+
+ regulator_lock_dependent(rdev, &ww_ctx);
+
+ /*
+ * Workqueue functions queue the new work instance while the previous
+ * work instance is being processed. Cancel the queued work instance
+ * as the work instance under processing does the job of the queued
+ * work instance.
+ */
+ cancel_delayed_work(&rdev->disable_work);
+
+ list_for_each_entry(regulator, &rdev->consumer_list, list) {
+ count = regulator->deferred_disables;
+
+ if (!count)
+ continue;
+
+ total_count += count;
+ regulator->deferred_disables = 0;
+
+ for (i = 0; i < count; i++) {
+ ret = _regulator_disable(regulator);
+ if (ret != 0)
+ rdev_err(rdev, "Deferred disable failed: %pe\n",
+ ERR_PTR(ret));
+ }
+ }
+ WARN_ON(!total_count);
+
+ if (rdev->coupling_desc.n_coupled > 1)
+ regulator_balance_voltage(rdev, PM_SUSPEND_ON);
+
+ regulator_unlock_dependent(rdev, &ww_ctx);
+}
+
+/**
+ * regulator_disable_deferred - disable regulator output with delay
+ * @regulator: regulator source
+ * @ms: milliseconds until the regulator is disabled
+ *
+ * Execute regulator_disable() on the regulator after a delay. This
+ * is intended for use with devices that require some time to quiesce.
+ *
+ * NOTE: this will only disable the regulator output if no other consumer
+ * devices have it enabled, the regulator device supports disabling and
+ * machine constraints permit this operation.
+ */
+int regulator_disable_deferred(struct regulator *regulator, int ms)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+
+ if (!ms)
+ return regulator_disable(regulator);
+
+ regulator_lock(rdev);
+ regulator->deferred_disables++;
+ mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
+ msecs_to_jiffies(ms));
+ regulator_unlock(rdev);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(regulator_disable_deferred);
+
+static int _regulator_is_enabled(struct regulator_dev *rdev)
+{
+ /* A GPIO control always takes precedence */
+ if (rdev->ena_pin)
+ return rdev->ena_gpio_state;
+
+ /* If we don't know then assume that the regulator is always on */
+ if (!rdev->desc->ops->is_enabled)
+ return 1;
+
+ return rdev->desc->ops->is_enabled(rdev);
+}
+
+static int _regulator_list_voltage(struct regulator_dev *rdev,
+ unsigned selector, int lock)
+{
+ const struct regulator_ops *ops = rdev->desc->ops;
+ int ret;
+
+ if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
+ return rdev->desc->fixed_uV;
+
+ if (ops->list_voltage) {
+ if (selector >= rdev->desc->n_voltages)
+ return -EINVAL;
+ if (selector < rdev->desc->linear_min_sel)
+ return 0;
+ if (lock)
+ regulator_lock(rdev);
+ ret = ops->list_voltage(rdev, selector);
+ if (lock)
+ regulator_unlock(rdev);
+ } else if (rdev->is_switch && rdev->supply) {
+ ret = _regulator_list_voltage(rdev->supply->rdev,
+ selector, lock);
+ } else {
+ return -EINVAL;
+ }
+
+ if (ret > 0) {
+ if (ret < rdev->constraints->min_uV)
+ ret = 0;
+ else if (ret > rdev->constraints->max_uV)
+ ret = 0;
+ }
+
+ return ret;
+}
+
+/**
+ * regulator_is_enabled - is the regulator output enabled
+ * @regulator: regulator source
+ *
+ * Returns positive if the regulator driver backing the source/client
+ * has requested that the device be enabled, zero if it hasn't, else a
+ * negative errno code.
+ *
+ * Note that the device backing this regulator handle can have multiple
+ * users, so it might be enabled even if regulator_enable() was never
+ * called for this particular source.
+ */
+int regulator_is_enabled(struct regulator *regulator)
+{
+ int ret;
+
+ if (regulator->always_on)
+ return 1;
+
+ regulator_lock(regulator->rdev);
+ ret = _regulator_is_enabled(regulator->rdev);
+ regulator_unlock(regulator->rdev);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_is_enabled);
+
+/**
+ * regulator_count_voltages - count regulator_list_voltage() selectors
+ * @regulator: regulator source
+ *
+ * Returns number of selectors, or negative errno. Selectors are
+ * numbered starting at zero, and typically correspond to bitfields
+ * in hardware registers.
+ */
+int regulator_count_voltages(struct regulator *regulator)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+
+ if (rdev->desc->n_voltages)
+ return rdev->desc->n_voltages;
+
+ if (!rdev->is_switch || !rdev->supply)
+ return -EINVAL;
+
+ return regulator_count_voltages(rdev->supply);
+}
+EXPORT_SYMBOL_GPL(regulator_count_voltages);
+
+/**
+ * regulator_list_voltage - enumerate supported voltages
+ * @regulator: regulator source
+ * @selector: identify voltage to list
+ * Context: can sleep
+ *
+ * Returns a voltage that can be passed to @regulator_set_voltage(),
+ * zero if this selector code can't be used on this system, or a
+ * negative errno.
+ */
+int regulator_list_voltage(struct regulator *regulator, unsigned selector)
+{
+ return _regulator_list_voltage(regulator->rdev, selector, 1);
+}
+EXPORT_SYMBOL_GPL(regulator_list_voltage);
+
+/**
+ * regulator_get_regmap - get the regulator's register map
+ * @regulator: regulator source
+ *
+ * Returns the register map for the given regulator, or an ERR_PTR value
+ * if the regulator doesn't use regmap.
+ */
+struct regmap *regulator_get_regmap(struct regulator *regulator)
+{
+ struct regmap *map = regulator->rdev->regmap;
+
+ return map ? map : ERR_PTR(-EOPNOTSUPP);
+}
+
+/**
+ * regulator_get_hardware_vsel_register - get the HW voltage selector register
+ * @regulator: regulator source
+ * @vsel_reg: voltage selector register, output parameter
+ * @vsel_mask: mask for voltage selector bitfield, output parameter
+ *
+ * Returns the hardware register offset and bitmask used for setting the
+ * regulator voltage. This might be useful when configuring voltage-scaling
+ * hardware or firmware that can make I2C requests behind the kernel's back,
+ * for example.
+ *
+ * On success, the output parameters @vsel_reg and @vsel_mask are filled in
+ * and 0 is returned, otherwise a negative errno is returned.
+ */
+int regulator_get_hardware_vsel_register(struct regulator *regulator,
+ unsigned *vsel_reg,
+ unsigned *vsel_mask)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ const struct regulator_ops *ops = rdev->desc->ops;
+
+ if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
+ return -EOPNOTSUPP;
+
+ *vsel_reg = rdev->desc->vsel_reg;
+ *vsel_mask = rdev->desc->vsel_mask;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
+
+/**
+ * regulator_list_hardware_vsel - get the HW-specific register value for a selector
+ * @regulator: regulator source
+ * @selector: identify voltage to list
+ *
+ * Converts the selector to a hardware-specific voltage selector that can be
+ * directly written to the regulator registers. The address of the voltage
+ * register can be determined by calling @regulator_get_hardware_vsel_register.
+ *
+ * On error a negative errno is returned.
+ */
+int regulator_list_hardware_vsel(struct regulator *regulator,
+ unsigned selector)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ const struct regulator_ops *ops = rdev->desc->ops;
+
+ if (selector >= rdev->desc->n_voltages)
+ return -EINVAL;
+ if (selector < rdev->desc->linear_min_sel)
+ return 0;
+ if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
+ return -EOPNOTSUPP;
+
+ return selector;
+}
+EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
+
+/**
+ * regulator_get_linear_step - return the voltage step size between VSEL values
+ * @regulator: regulator source
+ *
+ * Returns the voltage step size between VSEL values for linear
+ * regulators, or return 0 if the regulator isn't a linear regulator.
+ */
+unsigned int regulator_get_linear_step(struct regulator *regulator)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+
+ return rdev->desc->uV_step;
+}
+EXPORT_SYMBOL_GPL(regulator_get_linear_step);
+
+/**
+ * regulator_is_supported_voltage - check if a voltage range can be supported
+ *
+ * @regulator: Regulator to check.
+ * @min_uV: Minimum required voltage in uV.
+ * @max_uV: Maximum required voltage in uV.
+ *
+ * Returns a boolean.
+ */
+int regulator_is_supported_voltage(struct regulator *regulator,
+ int min_uV, int max_uV)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ int i, voltages, ret;
+
+ /* If we can't change voltage check the current voltage */
+ if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
+ ret = regulator_get_voltage(regulator);
+ if (ret >= 0)
+ return min_uV <= ret && ret <= max_uV;
+ else
+ return ret;
+ }
+
+ /* Any voltage within constrains range is fine? */
+ if (rdev->desc->continuous_voltage_range)
+ return min_uV >= rdev->constraints->min_uV &&
+ max_uV <= rdev->constraints->max_uV;
+
+ ret = regulator_count_voltages(regulator);
+ if (ret < 0)
+ return 0;
+ voltages = ret;
+
+ for (i = 0; i < voltages; i++) {
+ ret = regulator_list_voltage(regulator, i);
+
+ if (ret >= min_uV && ret <= max_uV)
+ return 1;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
+
+static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
+ int max_uV)
+{
+ const struct regulator_desc *desc = rdev->desc;
+
+ if (desc->ops->map_voltage)
+ return desc->ops->map_voltage(rdev, min_uV, max_uV);
+
+ if (desc->ops->list_voltage == regulator_list_voltage_linear)
+ return regulator_map_voltage_linear(rdev, min_uV, max_uV);
+
+ if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
+ return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
+
+ if (desc->ops->list_voltage ==
+ regulator_list_voltage_pickable_linear_range)
+ return regulator_map_voltage_pickable_linear_range(rdev,
+ min_uV, max_uV);
+
+ return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
+}
+
+static int _regulator_call_set_voltage(struct regulator_dev *rdev,
+ int min_uV, int max_uV,
+ unsigned *selector)
+{
+ struct pre_voltage_change_data data;
+ int ret;
+
+ data.old_uV = regulator_get_voltage_rdev(rdev);
+ data.min_uV = min_uV;
+ data.max_uV = max_uV;
+ ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
+ &data);
+ if (ret & NOTIFY_STOP_MASK)
+ return -EINVAL;
+
+ ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
+ if (ret >= 0)
+ return ret;
+
+ _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
+ (void *)data.old_uV);
+
+ return ret;
+}
+
+static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
+ int uV, unsigned selector)
+{
+ struct pre_voltage_change_data data;
+ int ret;
+
+ data.old_uV = regulator_get_voltage_rdev(rdev);
+ data.min_uV = uV;
+ data.max_uV = uV;
+ ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
+ &data);
+ if (ret & NOTIFY_STOP_MASK)
+ return -EINVAL;
+
+ ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
+ if (ret >= 0)
+ return ret;
+
+ _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
+ (void *)data.old_uV);
+
+ return ret;
+}
+
+static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
+ int uV, int new_selector)
+{
+ const struct regulator_ops *ops = rdev->desc->ops;
+ int diff, old_sel, curr_sel, ret;
+
+ /* Stepping is only needed if the regulator is enabled. */
+ if (!_regulator_is_enabled(rdev))
+ goto final_set;
+
+ if (!ops->get_voltage_sel)
+ return -EINVAL;
+
+ old_sel = ops->get_voltage_sel(rdev);
+ if (old_sel < 0)
+ return old_sel;
+
+ diff = new_selector - old_sel;
+ if (diff == 0)
+ return 0; /* No change needed. */
+
+ if (diff > 0) {
+ /* Stepping up. */
+ for (curr_sel = old_sel + rdev->desc->vsel_step;
+ curr_sel < new_selector;
+ curr_sel += rdev->desc->vsel_step) {
+ /*
+ * Call the callback directly instead of using
+ * _regulator_call_set_voltage_sel() as we don't
+ * want to notify anyone yet. Same in the branch
+ * below.
+ */
+ ret = ops->set_voltage_sel(rdev, curr_sel);
+ if (ret)
+ goto try_revert;
+ }
+ } else {
+ /* Stepping down. */
+ for (curr_sel = old_sel - rdev->desc->vsel_step;
+ curr_sel > new_selector;
+ curr_sel -= rdev->desc->vsel_step) {
+ ret = ops->set_voltage_sel(rdev, curr_sel);
+ if (ret)
+ goto try_revert;
+ }
+ }
+
+final_set:
+ /* The final selector will trigger the notifiers. */
+ return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
+
+try_revert:
+ /*
+ * At least try to return to the previous voltage if setting a new
+ * one failed.
+ */
+ (void)ops->set_voltage_sel(rdev, old_sel);
+ return ret;
+}
+
+static int _regulator_set_voltage_time(struct regulator_dev *rdev,
+ int old_uV, int new_uV)
+{
+ unsigned int ramp_delay = 0;
+
+ if (rdev->constraints->ramp_delay)
+ ramp_delay = rdev->constraints->ramp_delay;
+ else if (rdev->desc->ramp_delay)
+ ramp_delay = rdev->desc->ramp_delay;
+ else if (rdev->constraints->settling_time)
+ return rdev->constraints->settling_time;
+ else if (rdev->constraints->settling_time_up &&
+ (new_uV > old_uV))
+ return rdev->constraints->settling_time_up;
+ else if (rdev->constraints->settling_time_down &&
+ (new_uV < old_uV))
+ return rdev->constraints->settling_time_down;
+
+ if (ramp_delay == 0)
+ return 0;
+
+ return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
+}
+
+static int _regulator_do_set_voltage(struct regulator_dev *rdev,
+ int min_uV, int max_uV)
+{
+ int ret;
+ int delay = 0;
+ int best_val = 0;
+ unsigned int selector;
+ int old_selector = -1;
+ const struct regulator_ops *ops = rdev->desc->ops;
+ int old_uV = regulator_get_voltage_rdev(rdev);
+
+ trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
+
+ min_uV += rdev->constraints->uV_offset;
+ max_uV += rdev->constraints->uV_offset;
+
+ /*
+ * If we can't obtain the old selector there is not enough
+ * info to call set_voltage_time_sel().
+ */
+ if (_regulator_is_enabled(rdev) &&
+ ops->set_voltage_time_sel && ops->get_voltage_sel) {
+ old_selector = ops->get_voltage_sel(rdev);
+ if (old_selector < 0)
+ return old_selector;
+ }
+
+ if (ops->set_voltage) {
+ ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
+ &selector);
+
+ if (ret >= 0) {
+ if (ops->list_voltage)
+ best_val = ops->list_voltage(rdev,
+ selector);
+ else
+ best_val = regulator_get_voltage_rdev(rdev);
+ }
+
+ } else if (ops->set_voltage_sel) {
+ ret = regulator_map_voltage(rdev, min_uV, max_uV);
+ if (ret >= 0) {
+ best_val = ops->list_voltage(rdev, ret);
+ if (min_uV <= best_val && max_uV >= best_val) {
+ selector = ret;
+ if (old_selector == selector)
+ ret = 0;
+ else if (rdev->desc->vsel_step)
+ ret = _regulator_set_voltage_sel_step(
+ rdev, best_val, selector);
+ else
+ ret = _regulator_call_set_voltage_sel(
+ rdev, best_val, selector);
+ } else {
+ ret = -EINVAL;
+ }
+ }
+ } else {
+ ret = -EINVAL;
+ }
+
+ if (ret)
+ goto out;
+
+ if (ops->set_voltage_time_sel) {
+ /*
+ * Call set_voltage_time_sel if successfully obtained
+ * old_selector
+ */
+ if (old_selector >= 0 && old_selector != selector)
+ delay = ops->set_voltage_time_sel(rdev, old_selector,
+ selector);
+ } else {
+ if (old_uV != best_val) {
+ if (ops->set_voltage_time)
+ delay = ops->set_voltage_time(rdev, old_uV,
+ best_val);
+ else
+ delay = _regulator_set_voltage_time(rdev,
+ old_uV,
+ best_val);
+ }
+ }
+
+ if (delay < 0) {
+ rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
+ delay = 0;
+ }
+
+ /* Insert any necessary delays */
+ _regulator_delay_helper(delay);
+
+ if (best_val >= 0) {
+ unsigned long data = best_val;
+
+ _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
+ (void *)data);
+ }
+
+out:
+ trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
+
+ return ret;
+}
+
+static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
+ int min_uV, int max_uV, suspend_state_t state)
+{
+ struct regulator_state *rstate;
+ int uV, sel;
+
+ rstate = regulator_get_suspend_state(rdev, state);
+ if (rstate == NULL)
+ return -EINVAL;
+
+ if (min_uV < rstate->min_uV)
+ min_uV = rstate->min_uV;
+ if (max_uV > rstate->max_uV)
+ max_uV = rstate->max_uV;
+
+ sel = regulator_map_voltage(rdev, min_uV, max_uV);
+ if (sel < 0)
+ return sel;
+
+ uV = rdev->desc->ops->list_voltage(rdev, sel);
+ if (uV >= min_uV && uV <= max_uV)
+ rstate->uV = uV;
+
+ return 0;
+}
+
+static int regulator_set_voltage_unlocked(struct regulator *regulator,
+ int min_uV, int max_uV,
+ suspend_state_t state)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ struct regulator_voltage *voltage = &regulator->voltage[state];
+ int ret = 0;
+ int old_min_uV, old_max_uV;
+ int current_uV;
+
+ /* If we're setting the same range as last time the change
+ * should be a noop (some cpufreq implementations use the same
+ * voltage for multiple frequencies, for example).
+ */
+ if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
+ goto out;
+
+ /* If we're trying to set a range that overlaps the current voltage,
+ * return successfully even though the regulator does not support
+ * changing the voltage.
+ */
+ if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
+ current_uV = regulator_get_voltage_rdev(rdev);
+ if (min_uV <= current_uV && current_uV <= max_uV) {
+ voltage->min_uV = min_uV;
+ voltage->max_uV = max_uV;
+ goto out;
+ }
+ }
+
+ /* sanity check */
+ if (!rdev->desc->ops->set_voltage &&
+ !rdev->desc->ops->set_voltage_sel) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* constraints check */
+ ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
+ if (ret < 0)
+ goto out;
+
+ /* restore original values in case of error */
+ old_min_uV = voltage->min_uV;
+ old_max_uV = voltage->max_uV;
+ voltage->min_uV = min_uV;
+ voltage->max_uV = max_uV;
+
+ /* for not coupled regulators this will just set the voltage */
+ ret = regulator_balance_voltage(rdev, state);
+ if (ret < 0) {
+ voltage->min_uV = old_min_uV;
+ voltage->max_uV = old_max_uV;
+ }
+
+out:
+ return ret;
+}
+
+int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
+ int max_uV, suspend_state_t state)
+{
+ int best_supply_uV = 0;
+ int supply_change_uV = 0;
+ int ret;
+
+ if (rdev->supply &&
+ regulator_ops_is_valid(rdev->supply->rdev,
+ REGULATOR_CHANGE_VOLTAGE) &&
+ (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
+ rdev->desc->ops->get_voltage_sel))) {
+ int current_supply_uV;
+ int selector;
+
+ selector = regulator_map_voltage(rdev, min_uV, max_uV);
+ if (selector < 0) {
+ ret = selector;
+ goto out;
+ }
+
+ best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
+ if (best_supply_uV < 0) {
+ ret = best_supply_uV;
+ goto out;
+ }
+
+ best_supply_uV += rdev->desc->min_dropout_uV;
+
+ current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
+ if (current_supply_uV < 0) {
+ ret = current_supply_uV;
+ goto out;
+ }
+
+ supply_change_uV = best_supply_uV - current_supply_uV;
+ }
+
+ if (supply_change_uV > 0) {
+ ret = regulator_set_voltage_unlocked(rdev->supply,
+ best_supply_uV, INT_MAX, state);
+ if (ret) {
+ dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
+ ERR_PTR(ret));
+ goto out;
+ }
+ }
+
+ if (state == PM_SUSPEND_ON)
+ ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
+ else
+ ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
+ max_uV, state);
+ if (ret < 0)
+ goto out;
+
+ if (supply_change_uV < 0) {
+ ret = regulator_set_voltage_unlocked(rdev->supply,
+ best_supply_uV, INT_MAX, state);
+ if (ret)
+ dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
+ ERR_PTR(ret));
+ /* No need to fail here */
+ ret = 0;
+ }
+
+out:
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
+
+static int regulator_limit_voltage_step(struct regulator_dev *rdev,
+ int *current_uV, int *min_uV)
+{
+ struct regulation_constraints *constraints = rdev->constraints;
+
+ /* Limit voltage change only if necessary */
+ if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
+ return 1;
+
+ if (*current_uV < 0) {
+ *current_uV = regulator_get_voltage_rdev(rdev);
+
+ if (*current_uV < 0)
+ return *current_uV;
+ }
+
+ if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
+ return 1;
+
+ /* Clamp target voltage within the given step */
+ if (*current_uV < *min_uV)
+ *min_uV = min(*current_uV + constraints->max_uV_step,
+ *min_uV);
+ else
+ *min_uV = max(*current_uV - constraints->max_uV_step,
+ *min_uV);
+
+ return 0;
+}
+
+static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
+ int *current_uV,
+ int *min_uV, int *max_uV,
+ suspend_state_t state,
+ int n_coupled)
+{
+ struct coupling_desc *c_desc = &rdev->coupling_desc;
+ struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
+ struct regulation_constraints *constraints = rdev->constraints;
+ int desired_min_uV = 0, desired_max_uV = INT_MAX;
+ int max_current_uV = 0, min_current_uV = INT_MAX;
+ int highest_min_uV = 0, target_uV, possible_uV;
+ int i, ret, max_spread;
+ bool done;
+
+ *current_uV = -1;
+
+ /*
+ * If there are no coupled regulators, simply set the voltage
+ * demanded by consumers.
+ */
+ if (n_coupled == 1) {
+ /*
+ * If consumers don't provide any demands, set voltage
+ * to min_uV
+ */
+ desired_min_uV = constraints->min_uV;
+ desired_max_uV = constraints->max_uV;
+
+ ret = regulator_check_consumers(rdev,
+ &desired_min_uV,
+ &desired_max_uV, state);
+ if (ret < 0)
+ return ret;
+
+ possible_uV = desired_min_uV;
+ done = true;
+
+ goto finish;
+ }
+
+ /* Find highest min desired voltage */
+ for (i = 0; i < n_coupled; i++) {
+ int tmp_min = 0;
+ int tmp_max = INT_MAX;
+
+ lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
+
+ ret = regulator_check_consumers(c_rdevs[i],
+ &tmp_min,
+ &tmp_max, state);
+ if (ret < 0)
+ return ret;
+
+ ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
+ if (ret < 0)
+ return ret;
+
+ highest_min_uV = max(highest_min_uV, tmp_min);
+
+ if (i == 0) {
+ desired_min_uV = tmp_min;
+ desired_max_uV = tmp_max;
+ }
+ }
+
+ max_spread = constraints->max_spread[0];
+
+ /*
+ * Let target_uV be equal to the desired one if possible.
+ * If not, set it to minimum voltage, allowed by other coupled
+ * regulators.
+ */
+ target_uV = max(desired_min_uV, highest_min_uV - max_spread);
+
+ /*
+ * Find min and max voltages, which currently aren't violating
+ * max_spread.
+ */
+ for (i = 1; i < n_coupled; i++) {
+ int tmp_act;
+
+ if (!_regulator_is_enabled(c_rdevs[i]))
+ continue;
+
+ tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
+ if (tmp_act < 0)
+ return tmp_act;
+
+ min_current_uV = min(tmp_act, min_current_uV);
+ max_current_uV = max(tmp_act, max_current_uV);
+ }
+
+ /* There aren't any other regulators enabled */
+ if (max_current_uV == 0) {
+ possible_uV = target_uV;
+ } else {
+ /*
+ * Correct target voltage, so as it currently isn't
+ * violating max_spread
+ */
+ possible_uV = max(target_uV, max_current_uV - max_spread);
+ possible_uV = min(possible_uV, min_current_uV + max_spread);
+ }
+
+ if (possible_uV > desired_max_uV)
+ return -EINVAL;
+
+ done = (possible_uV == target_uV);
+ desired_min_uV = possible_uV;
+
+finish:
+ /* Apply max_uV_step constraint if necessary */
+ if (state == PM_SUSPEND_ON) {
+ ret = regulator_limit_voltage_step(rdev, current_uV,
+ &desired_min_uV);
+ if (ret < 0)
+ return ret;
+
+ if (ret == 0)
+ done = false;
+ }
+
+ /* Set current_uV if wasn't done earlier in the code and if necessary */
+ if (n_coupled > 1 && *current_uV == -1) {
+
+ if (_regulator_is_enabled(rdev)) {
+ ret = regulator_get_voltage_rdev(rdev);
+ if (ret < 0)
+ return ret;
+
+ *current_uV = ret;
+ } else {
+ *current_uV = desired_min_uV;
+ }
+ }
+
+ *min_uV = desired_min_uV;
+ *max_uV = desired_max_uV;
+
+ return done;
+}
+
+int regulator_do_balance_voltage(struct regulator_dev *rdev,
+ suspend_state_t state, bool skip_coupled)
+{
+ struct regulator_dev **c_rdevs;
+ struct regulator_dev *best_rdev;
+ struct coupling_desc *c_desc = &rdev->coupling_desc;
+ int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
+ unsigned int delta, best_delta;
+ unsigned long c_rdev_done = 0;
+ bool best_c_rdev_done;
+
+ c_rdevs = c_desc->coupled_rdevs;
+ n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
+
+ /*
+ * Find the best possible voltage change on each loop. Leave the loop
+ * if there isn't any possible change.
+ */
+ do {
+ best_c_rdev_done = false;
+ best_delta = 0;
+ best_min_uV = 0;
+ best_max_uV = 0;
+ best_c_rdev = 0;
+ best_rdev = NULL;
+
+ /*
+ * Find highest difference between optimal voltage
+ * and current voltage.
+ */
+ for (i = 0; i < n_coupled; i++) {
+ /*
+ * optimal_uV is the best voltage that can be set for
+ * i-th regulator at the moment without violating
+ * max_spread constraint in order to balance
+ * the coupled voltages.
+ */
+ int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
+
+ if (test_bit(i, &c_rdev_done))
+ continue;
+
+ ret = regulator_get_optimal_voltage(c_rdevs[i],
+ &current_uV,
+ &optimal_uV,
+ &optimal_max_uV,
+ state, n_coupled);
+ if (ret < 0)
+ goto out;
+
+ delta = abs(optimal_uV - current_uV);
+
+ if (delta && best_delta <= delta) {
+ best_c_rdev_done = ret;
+ best_delta = delta;
+ best_rdev = c_rdevs[i];
+ best_min_uV = optimal_uV;
+ best_max_uV = optimal_max_uV;
+ best_c_rdev = i;
+ }
+ }
+
+ /* Nothing to change, return successfully */
+ if (!best_rdev) {
+ ret = 0;
+ goto out;
+ }
+
+ ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
+ best_max_uV, state);
+
+ if (ret < 0)
+ goto out;
+
+ if (best_c_rdev_done)
+ set_bit(best_c_rdev, &c_rdev_done);
+
+ } while (n_coupled > 1);
+
+out:
+ return ret;
+}
+
+static int regulator_balance_voltage(struct regulator_dev *rdev,
+ suspend_state_t state)
+{
+ struct coupling_desc *c_desc = &rdev->coupling_desc;
+ struct regulator_coupler *coupler = c_desc->coupler;
+ bool skip_coupled = false;
+
+ /*
+ * If system is in a state other than PM_SUSPEND_ON, don't check
+ * other coupled regulators.
+ */
+ if (state != PM_SUSPEND_ON)
+ skip_coupled = true;
+
+ if (c_desc->n_resolved < c_desc->n_coupled) {
+ rdev_err(rdev, "Not all coupled regulators registered\n");
+ return -EPERM;
+ }
+
+ /* Invoke custom balancer for customized couplers */
+ if (coupler && coupler->balance_voltage)
+ return coupler->balance_voltage(coupler, rdev, state);
+
+ return regulator_do_balance_voltage(rdev, state, skip_coupled);
+}
+
+/**
+ * regulator_set_voltage - set regulator output voltage
+ * @regulator: regulator source
+ * @min_uV: Minimum required voltage in uV
+ * @max_uV: Maximum acceptable voltage in uV
+ *
+ * Sets a voltage regulator to the desired output voltage. This can be set
+ * during any regulator state. IOW, regulator can be disabled or enabled.
+ *
+ * If the regulator is enabled then the voltage will change to the new value
+ * immediately otherwise if the regulator is disabled the regulator will
+ * output at the new voltage when enabled.
+ *
+ * NOTE: If the regulator is shared between several devices then the lowest
+ * request voltage that meets the system constraints will be used.
+ * Regulator system constraints must be set for this regulator before
+ * calling this function otherwise this call will fail.
+ */
+int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
+{
+ struct ww_acquire_ctx ww_ctx;
+ int ret;
+
+ regulator_lock_dependent(regulator->rdev, &ww_ctx);
+
+ ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
+ PM_SUSPEND_ON);
+
+ regulator_unlock_dependent(regulator->rdev, &ww_ctx);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_set_voltage);
+
+static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
+ suspend_state_t state, bool en)
+{
+ struct regulator_state *rstate;
+
+ rstate = regulator_get_suspend_state(rdev, state);
+ if (rstate == NULL)
+ return -EINVAL;
+
+ if (!rstate->changeable)
+ return -EPERM;
+
+ rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
+
+ return 0;
+}
+
+int regulator_suspend_enable(struct regulator_dev *rdev,
+ suspend_state_t state)
+{
+ return regulator_suspend_toggle(rdev, state, true);
+}
+EXPORT_SYMBOL_GPL(regulator_suspend_enable);
+
+int regulator_suspend_disable(struct regulator_dev *rdev,
+ suspend_state_t state)
+{
+ struct regulator *regulator;
+ struct regulator_voltage *voltage;
+
+ /*
+ * if any consumer wants this regulator device keeping on in
+ * suspend states, don't set it as disabled.
+ */
+ list_for_each_entry(regulator, &rdev->consumer_list, list) {
+ voltage = &regulator->voltage[state];
+ if (voltage->min_uV || voltage->max_uV)
+ return 0;
+ }
+
+ return regulator_suspend_toggle(rdev, state, false);
+}
+EXPORT_SYMBOL_GPL(regulator_suspend_disable);
+
+static int _regulator_set_suspend_voltage(struct regulator *regulator,
+ int min_uV, int max_uV,
+ suspend_state_t state)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ struct regulator_state *rstate;
+
+ rstate = regulator_get_suspend_state(rdev, state);
+ if (rstate == NULL)
+ return -EINVAL;
+
+ if (rstate->min_uV == rstate->max_uV) {
+ rdev_err(rdev, "The suspend voltage can't be changed!\n");
+ return -EPERM;
+ }
+
+ return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
+}
+
+int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
+ int max_uV, suspend_state_t state)
+{
+ struct ww_acquire_ctx ww_ctx;
+ int ret;
+
+ /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
+ if (regulator_check_states(state) || state == PM_SUSPEND_ON)
+ return -EINVAL;
+
+ regulator_lock_dependent(regulator->rdev, &ww_ctx);
+
+ ret = _regulator_set_suspend_voltage(regulator, min_uV,
+ max_uV, state);
+
+ regulator_unlock_dependent(regulator->rdev, &ww_ctx);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
+
+/**
+ * regulator_set_voltage_time - get raise/fall time
+ * @regulator: regulator source
+ * @old_uV: starting voltage in microvolts
+ * @new_uV: target voltage in microvolts
+ *
+ * Provided with the starting and ending voltage, this function attempts to
+ * calculate the time in microseconds required to rise or fall to this new
+ * voltage.
+ */
+int regulator_set_voltage_time(struct regulator *regulator,
+ int old_uV, int new_uV)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ const struct regulator_ops *ops = rdev->desc->ops;
+ int old_sel = -1;
+ int new_sel = -1;
+ int voltage;
+ int i;
+
+ if (ops->set_voltage_time)
+ return ops->set_voltage_time(rdev, old_uV, new_uV);
+ else if (!ops->set_voltage_time_sel)
+ return _regulator_set_voltage_time(rdev, old_uV, new_uV);
+
+ /* Currently requires operations to do this */
+ if (!ops->list_voltage || !rdev->desc->n_voltages)
+ return -EINVAL;
+
+ for (i = 0; i < rdev->desc->n_voltages; i++) {
+ /* We only look for exact voltage matches here */
+ if (i < rdev->desc->linear_min_sel)
+ continue;
+
+ if (old_sel >= 0 && new_sel >= 0)
+ break;
+
+ voltage = regulator_list_voltage(regulator, i);
+ if (voltage < 0)
+ return -EINVAL;
+ if (voltage == 0)
+ continue;
+ if (voltage == old_uV)
+ old_sel = i;
+ if (voltage == new_uV)
+ new_sel = i;
+ }
+
+ if (old_sel < 0 || new_sel < 0)
+ return -EINVAL;
+
+ return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
+}
+EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
+
+/**
+ * regulator_set_voltage_time_sel - get raise/fall time
+ * @rdev: regulator source device
+ * @old_selector: selector for starting voltage
+ * @new_selector: selector for target voltage
+ *
+ * Provided with the starting and target voltage selectors, this function
+ * returns time in microseconds required to rise or fall to this new voltage
+ *
+ * Drivers providing ramp_delay in regulation_constraints can use this as their
+ * set_voltage_time_sel() operation.
+ */
+int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
+ unsigned int old_selector,
+ unsigned int new_selector)
+{
+ int old_volt, new_volt;
+
+ /* sanity check */
+ if (!rdev->desc->ops->list_voltage)
+ return -EINVAL;
+
+ old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
+ new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
+
+ if (rdev->desc->ops->set_voltage_time)
+ return rdev->desc->ops->set_voltage_time(rdev, old_volt,
+ new_volt);
+ else
+ return _regulator_set_voltage_time(rdev, old_volt, new_volt);
+}
+EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
+
+int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
+{
+ int ret;
+
+ regulator_lock(rdev);
+
+ if (!rdev->desc->ops->set_voltage &&
+ !rdev->desc->ops->set_voltage_sel) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* balance only, if regulator is coupled */
+ if (rdev->coupling_desc.n_coupled > 1)
+ ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
+ else
+ ret = -EOPNOTSUPP;
+
+out:
+ regulator_unlock(rdev);
+ return ret;
+}
+
+/**
+ * regulator_sync_voltage - re-apply last regulator output voltage
+ * @regulator: regulator source
+ *
+ * Re-apply the last configured voltage. This is intended to be used
+ * where some external control source the consumer is cooperating with
+ * has caused the configured voltage to change.
+ */
+int regulator_sync_voltage(struct regulator *regulator)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
+ int ret, min_uV, max_uV;
+
+ if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
+ return 0;
+
+ regulator_lock(rdev);
+
+ if (!rdev->desc->ops->set_voltage &&
+ !rdev->desc->ops->set_voltage_sel) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* This is only going to work if we've had a voltage configured. */
+ if (!voltage->min_uV && !voltage->max_uV) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ min_uV = voltage->min_uV;
+ max_uV = voltage->max_uV;
+
+ /* This should be a paranoia check... */
+ ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
+ if (ret < 0)
+ goto out;
+
+ ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
+ if (ret < 0)
+ goto out;
+
+ /* balance only, if regulator is coupled */
+ if (rdev->coupling_desc.n_coupled > 1)
+ ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
+ else
+ ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
+
+out:
+ regulator_unlock(rdev);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_sync_voltage);
+
+int regulator_get_voltage_rdev(struct regulator_dev *rdev)
+{
+ int sel, ret;
+ bool bypassed;
+
+ if (rdev->desc->ops->get_bypass) {
+ ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
+ if (ret < 0)
+ return ret;
+ if (bypassed) {
+ /* if bypassed the regulator must have a supply */
+ if (!rdev->supply) {
+ rdev_err(rdev,
+ "bypassed regulator has no supply!\n");
+ return -EPROBE_DEFER;
+ }
+
+ return regulator_get_voltage_rdev(rdev->supply->rdev);
+ }
+ }
+
+ if (rdev->desc->ops->get_voltage_sel) {
+ sel = rdev->desc->ops->get_voltage_sel(rdev);
+ if (sel < 0)
+ return sel;
+ ret = rdev->desc->ops->list_voltage(rdev, sel);
+ } else if (rdev->desc->ops->get_voltage) {
+ ret = rdev->desc->ops->get_voltage(rdev);
+ } else if (rdev->desc->ops->list_voltage) {
+ ret = rdev->desc->ops->list_voltage(rdev, 0);
+ } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
+ ret = rdev->desc->fixed_uV;
+ } else if (rdev->supply) {
+ ret = regulator_get_voltage_rdev(rdev->supply->rdev);
+ } else if (rdev->supply_name) {
+ return -EPROBE_DEFER;
+ } else {
+ return -EINVAL;
+ }
+
+ if (ret < 0)
+ return ret;
+ return ret - rdev->constraints->uV_offset;
+}
+EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
+
+/**
+ * regulator_get_voltage - get regulator output voltage
+ * @regulator: regulator source
+ *
+ * This returns the current regulator voltage in uV.
+ *
+ * NOTE: If the regulator is disabled it will return the voltage value. This
+ * function should not be used to determine regulator state.
+ */
+int regulator_get_voltage(struct regulator *regulator)
+{
+ struct ww_acquire_ctx ww_ctx;
+ int ret;
+
+ regulator_lock_dependent(regulator->rdev, &ww_ctx);
+ ret = regulator_get_voltage_rdev(regulator->rdev);
+ regulator_unlock_dependent(regulator->rdev, &ww_ctx);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_get_voltage);
+
+/**
+ * regulator_set_current_limit - set regulator output current limit
+ * @regulator: regulator source
+ * @min_uA: Minimum supported current in uA
+ * @max_uA: Maximum supported current in uA
+ *
+ * Sets current sink to the desired output current. This can be set during
+ * any regulator state. IOW, regulator can be disabled or enabled.
+ *
+ * If the regulator is enabled then the current will change to the new value
+ * immediately otherwise if the regulator is disabled the regulator will
+ * output at the new current when enabled.
+ *
+ * NOTE: Regulator system constraints must be set for this regulator before
+ * calling this function otherwise this call will fail.
+ */
+int regulator_set_current_limit(struct regulator *regulator,
+ int min_uA, int max_uA)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ int ret;
+
+ regulator_lock(rdev);
+
+ /* sanity check */
+ if (!rdev->desc->ops->set_current_limit) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* constraints check */
+ ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
+ if (ret < 0)
+ goto out;
+
+ ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
+out:
+ regulator_unlock(rdev);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_set_current_limit);
+
+static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
+{
+ /* sanity check */
+ if (!rdev->desc->ops->get_current_limit)
+ return -EINVAL;
+
+ return rdev->desc->ops->get_current_limit(rdev);
+}
+
+static int _regulator_get_current_limit(struct regulator_dev *rdev)
+{
+ int ret;
+
+ regulator_lock(rdev);
+ ret = _regulator_get_current_limit_unlocked(rdev);
+ regulator_unlock(rdev);
+
+ return ret;
+}
+
+/**
+ * regulator_get_current_limit - get regulator output current
+ * @regulator: regulator source
+ *
+ * This returns the current supplied by the specified current sink in uA.
+ *
+ * NOTE: If the regulator is disabled it will return the current value. This
+ * function should not be used to determine regulator state.
+ */
+int regulator_get_current_limit(struct regulator *regulator)
+{
+ return _regulator_get_current_limit(regulator->rdev);
+}
+EXPORT_SYMBOL_GPL(regulator_get_current_limit);
+
+/**
+ * regulator_set_mode - set regulator operating mode
+ * @regulator: regulator source
+ * @mode: operating mode - one of the REGULATOR_MODE constants
+ *
+ * Set regulator operating mode to increase regulator efficiency or improve
+ * regulation performance.
+ *
+ * NOTE: Regulator system constraints must be set for this regulator before
+ * calling this function otherwise this call will fail.
+ */
+int regulator_set_mode(struct regulator *regulator, unsigned int mode)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ int ret;
+ int regulator_curr_mode;
+
+ regulator_lock(rdev);
+
+ /* sanity check */
+ if (!rdev->desc->ops->set_mode) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* return if the same mode is requested */
+ if (rdev->desc->ops->get_mode) {
+ regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
+ if (regulator_curr_mode == mode) {
+ ret = 0;
+ goto out;
+ }
+ }
+
+ /* constraints check */
+ ret = regulator_mode_constrain(rdev, &mode);
+ if (ret < 0)
+ goto out;
+
+ ret = rdev->desc->ops->set_mode(rdev, mode);
+out:
+ regulator_unlock(rdev);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_set_mode);
+
+static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
+{
+ /* sanity check */
+ if (!rdev->desc->ops->get_mode)
+ return -EINVAL;
+
+ return rdev->desc->ops->get_mode(rdev);
+}
+
+static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
+{
+ int ret;
+
+ regulator_lock(rdev);
+ ret = _regulator_get_mode_unlocked(rdev);
+ regulator_unlock(rdev);
+
+ return ret;
+}
+
+/**
+ * regulator_get_mode - get regulator operating mode
+ * @regulator: regulator source
+ *
+ * Get the current regulator operating mode.
+ */
+unsigned int regulator_get_mode(struct regulator *regulator)
+{
+ return _regulator_get_mode(regulator->rdev);
+}
+EXPORT_SYMBOL_GPL(regulator_get_mode);
+
+static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
+{
+ int ret = 0;
+
+ if (rdev->use_cached_err) {
+ spin_lock(&rdev->err_lock);
+ ret = rdev->cached_err;
+ spin_unlock(&rdev->err_lock);
+ }
+ return ret;
+}
+
+static int _regulator_get_error_flags(struct regulator_dev *rdev,
+ unsigned int *flags)
+{
+ int cached_flags, ret = 0;
+
+ regulator_lock(rdev);
+
+ cached_flags = rdev_get_cached_err_flags(rdev);
+
+ if (rdev->desc->ops->get_error_flags)
+ ret = rdev->desc->ops->get_error_flags(rdev, flags);
+ else if (!rdev->use_cached_err)
+ ret = -EINVAL;
+
+ *flags |= cached_flags;
+
+ regulator_unlock(rdev);
+
+ return ret;
+}
+
+/**
+ * regulator_get_error_flags - get regulator error information
+ * @regulator: regulator source
+ * @flags: pointer to store error flags
+ *
+ * Get the current regulator error information.
+ */
+int regulator_get_error_flags(struct regulator *regulator,
+ unsigned int *flags)
+{
+ return _regulator_get_error_flags(regulator->rdev, flags);
+}
+EXPORT_SYMBOL_GPL(regulator_get_error_flags);
+
+/**
+ * regulator_set_load - set regulator load
+ * @regulator: regulator source
+ * @uA_load: load current
+ *
+ * Notifies the regulator core of a new device load. This is then used by
+ * DRMS (if enabled by constraints) to set the most efficient regulator
+ * operating mode for the new regulator loading.
+ *
+ * Consumer devices notify their supply regulator of the maximum power
+ * they will require (can be taken from device datasheet in the power
+ * consumption tables) when they change operational status and hence power
+ * state. Examples of operational state changes that can affect power
+ * consumption are :-
+ *
+ * o Device is opened / closed.
+ * o Device I/O is about to begin or has just finished.
+ * o Device is idling in between work.
+ *
+ * This information is also exported via sysfs to userspace.
+ *
+ * DRMS will sum the total requested load on the regulator and change
+ * to the most efficient operating mode if platform constraints allow.
+ *
+ * NOTE: when a regulator consumer requests to have a regulator
+ * disabled then any load that consumer requested no longer counts
+ * toward the total requested load. If the regulator is re-enabled
+ * then the previously requested load will start counting again.
+ *
+ * If a regulator is an always-on regulator then an individual consumer's
+ * load will still be removed if that consumer is fully disabled.
+ *
+ * On error a negative errno is returned.
+ */
+int regulator_set_load(struct regulator *regulator, int uA_load)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ int old_uA_load;
+ int ret = 0;
+
+ regulator_lock(rdev);
+ old_uA_load = regulator->uA_load;
+ regulator->uA_load = uA_load;
+ if (regulator->enable_count && old_uA_load != uA_load) {
+ ret = drms_uA_update(rdev);
+ if (ret < 0)
+ regulator->uA_load = old_uA_load;
+ }
+ regulator_unlock(rdev);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_set_load);
+
+/**
+ * regulator_allow_bypass - allow the regulator to go into bypass mode
+ *
+ * @regulator: Regulator to configure
+ * @enable: enable or disable bypass mode
+ *
+ * Allow the regulator to go into bypass mode if all other consumers
+ * for the regulator also enable bypass mode and the machine
+ * constraints allow this. Bypass mode means that the regulator is
+ * simply passing the input directly to the output with no regulation.
+ */
+int regulator_allow_bypass(struct regulator *regulator, bool enable)
+{
+ struct regulator_dev *rdev = regulator->rdev;
+ const char *name = rdev_get_name(rdev);
+ int ret = 0;
+
+ if (!rdev->desc->ops->set_bypass)
+ return 0;
+
+ if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
+ return 0;
+
+ regulator_lock(rdev);
+
+ if (enable && !regulator->bypass) {
+ rdev->bypass_count++;
+
+ if (rdev->bypass_count == rdev->open_count) {
+ trace_regulator_bypass_enable(name);
+
+ ret = rdev->desc->ops->set_bypass(rdev, enable);
+ if (ret != 0)
+ rdev->bypass_count--;
+ else
+ trace_regulator_bypass_enable_complete(name);
+ }
+
+ } else if (!enable && regulator->bypass) {
+ rdev->bypass_count--;
+
+ if (rdev->bypass_count != rdev->open_count) {
+ trace_regulator_bypass_disable(name);
+
+ ret = rdev->desc->ops->set_bypass(rdev, enable);
+ if (ret != 0)
+ rdev->bypass_count++;
+ else
+ trace_regulator_bypass_disable_complete(name);
+ }
+ }
+
+ if (ret == 0)
+ regulator->bypass = enable;
+
+ regulator_unlock(rdev);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_allow_bypass);
+
+/**
+ * regulator_register_notifier - register regulator event notifier
+ * @regulator: regulator source
+ * @nb: notifier block
+ *
+ * Register notifier block to receive regulator events.
+ */
+int regulator_register_notifier(struct regulator *regulator,
+ struct notifier_block *nb)
+{
+ return blocking_notifier_chain_register(&regulator->rdev->notifier,
+ nb);
+}
+EXPORT_SYMBOL_GPL(regulator_register_notifier);
+
+/**
+ * regulator_unregister_notifier - unregister regulator event notifier
+ * @regulator: regulator source
+ * @nb: notifier block
+ *
+ * Unregister regulator event notifier block.
+ */
+int regulator_unregister_notifier(struct regulator *regulator,
+ struct notifier_block *nb)
+{
+ return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
+ nb);
+}
+EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
+
+/* notify regulator consumers and downstream regulator consumers.
+ * Note mutex must be held by caller.
+ */
+static int _notifier_call_chain(struct regulator_dev *rdev,
+ unsigned long event, void *data)
+{
+ /* call rdev chain first */
+ return blocking_notifier_call_chain(&rdev->notifier, event, data);
+}
+
+int _regulator_bulk_get(struct device *dev, int num_consumers,
+ struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
+{
+ int i;
+ int ret;
+
+ for (i = 0; i < num_consumers; i++)
+ consumers[i].consumer = NULL;
+
+ for (i = 0; i < num_consumers; i++) {
+ consumers[i].consumer = _regulator_get(dev,
+ consumers[i].supply, get_type);
+ if (IS_ERR(consumers[i].consumer)) {
+ ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
+ "Failed to get supply '%s'",
+ consumers[i].supply);
+ consumers[i].consumer = NULL;
+ goto err;
+ }
+
+ if (consumers[i].init_load_uA > 0) {
+ ret = regulator_set_load(consumers[i].consumer,
+ consumers[i].init_load_uA);
+ if (ret) {
+ i++;
+ goto err;
+ }
+ }
+ }
+
+ return 0;
+
+err:
+ while (--i >= 0)
+ regulator_put(consumers[i].consumer);
+
+ return ret;
+}
+
+/**
+ * regulator_bulk_get - get multiple regulator consumers
+ *
+ * @dev: Device to supply
+ * @num_consumers: Number of consumers to register
+ * @consumers: Configuration of consumers; clients are stored here.
+ *
+ * @return 0 on success, an errno on failure.
+ *
+ * This helper function allows drivers to get several regulator
+ * consumers in one operation. If any of the regulators cannot be
+ * acquired then any regulators that were allocated will be freed
+ * before returning to the caller.
+ */
+int regulator_bulk_get(struct device *dev, int num_consumers,
+ struct regulator_bulk_data *consumers)
+{
+ return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
+}
+EXPORT_SYMBOL_GPL(regulator_bulk_get);
+
+static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
+{
+ struct regulator_bulk_data *bulk = data;
+
+ bulk->ret = regulator_enable(bulk->consumer);
+}
+
+/**
+ * regulator_bulk_enable - enable multiple regulator consumers
+ *
+ * @num_consumers: Number of consumers
+ * @consumers: Consumer data; clients are stored here.
+ * @return 0 on success, an errno on failure
+ *
+ * This convenience API allows consumers to enable multiple regulator
+ * clients in a single API call. If any consumers cannot be enabled
+ * then any others that were enabled will be disabled again prior to
+ * return.
+ */
+int regulator_bulk_enable(int num_consumers,
+ struct regulator_bulk_data *consumers)
+{
+ ASYNC_DOMAIN_EXCLUSIVE(async_domain);
+ int i;
+ int ret = 0;
+
+ for (i = 0; i < num_consumers; i++) {
+ async_schedule_domain(regulator_bulk_enable_async,
+ &consumers[i], &async_domain);
+ }
+
+ async_synchronize_full_domain(&async_domain);
+
+ /* If any consumer failed we need to unwind any that succeeded */
+ for (i = 0; i < num_consumers; i++) {
+ if (consumers[i].ret != 0) {
+ ret = consumers[i].ret;
+ goto err;
+ }
+ }
+
+ return 0;
+
+err:
+ for (i = 0; i < num_consumers; i++) {
+ if (consumers[i].ret < 0)
+ pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
+ ERR_PTR(consumers[i].ret));
+ else
+ regulator_disable(consumers[i].consumer);
+ }
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_bulk_enable);
+
+/**
+ * regulator_bulk_disable - disable multiple regulator consumers
+ *
+ * @num_consumers: Number of consumers
+ * @consumers: Consumer data; clients are stored here.
+ * @return 0 on success, an errno on failure
+ *
+ * This convenience API allows consumers to disable multiple regulator
+ * clients in a single API call. If any consumers cannot be disabled
+ * then any others that were disabled will be enabled again prior to
+ * return.
+ */
+int regulator_bulk_disable(int num_consumers,
+ struct regulator_bulk_data *consumers)
+{
+ int i;
+ int ret, r;
+
+ for (i = num_consumers - 1; i >= 0; --i) {
+ ret = regulator_disable(consumers[i].consumer);
+ if (ret != 0)
+ goto err;
+ }
+
+ return 0;
+
+err:
+ pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
+ for (++i; i < num_consumers; ++i) {
+ r = regulator_enable(consumers[i].consumer);
+ if (r != 0)
+ pr_err("Failed to re-enable %s: %pe\n",
+ consumers[i].supply, ERR_PTR(r));
+ }
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_bulk_disable);
+
+/**
+ * regulator_bulk_force_disable - force disable multiple regulator consumers
+ *
+ * @num_consumers: Number of consumers
+ * @consumers: Consumer data; clients are stored here.
+ * @return 0 on success, an errno on failure
+ *
+ * This convenience API allows consumers to forcibly disable multiple regulator
+ * clients in a single API call.
+ * NOTE: This should be used for situations when device damage will
+ * likely occur if the regulators are not disabled (e.g. over temp).
+ * Although regulator_force_disable function call for some consumers can
+ * return error numbers, the function is called for all consumers.
+ */
+int regulator_bulk_force_disable(int num_consumers,
+ struct regulator_bulk_data *consumers)
+{
+ int i;
+ int ret = 0;
+
+ for (i = 0; i < num_consumers; i++) {
+ consumers[i].ret =
+ regulator_force_disable(consumers[i].consumer);
+
+ /* Store first error for reporting */
+ if (consumers[i].ret && !ret)
+ ret = consumers[i].ret;
+ }
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
+
+/**
+ * regulator_bulk_free - free multiple regulator consumers
+ *
+ * @num_consumers: Number of consumers
+ * @consumers: Consumer data; clients are stored here.
+ *
+ * This convenience API allows consumers to free multiple regulator
+ * clients in a single API call.
+ */
+void regulator_bulk_free(int num_consumers,
+ struct regulator_bulk_data *consumers)
+{
+ int i;
+
+ for (i = 0; i < num_consumers; i++) {
+ regulator_put(consumers[i].consumer);
+ consumers[i].consumer = NULL;
+ }
+}
+EXPORT_SYMBOL_GPL(regulator_bulk_free);
+
+/**
+ * regulator_notifier_call_chain - call regulator event notifier
+ * @rdev: regulator source
+ * @event: notifier block
+ * @data: callback-specific data.
+ *
+ * Called by regulator drivers to notify clients a regulator event has
+ * occurred.
+ */
+int regulator_notifier_call_chain(struct regulator_dev *rdev,
+ unsigned long event, void *data)
+{
+ _notifier_call_chain(rdev, event, data);
+ return NOTIFY_DONE;
+
+}
+EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
+
+/**
+ * regulator_mode_to_status - convert a regulator mode into a status
+ *
+ * @mode: Mode to convert
+ *
+ * Convert a regulator mode into a status.
+ */
+int regulator_mode_to_status(unsigned int mode)
+{
+ switch (mode) {
+ case REGULATOR_MODE_FAST:
+ return REGULATOR_STATUS_FAST;
+ case REGULATOR_MODE_NORMAL:
+ return REGULATOR_STATUS_NORMAL;
+ case REGULATOR_MODE_IDLE:
+ return REGULATOR_STATUS_IDLE;
+ case REGULATOR_MODE_STANDBY:
+ return REGULATOR_STATUS_STANDBY;
+ default:
+ return REGULATOR_STATUS_UNDEFINED;
+ }
+}
+EXPORT_SYMBOL_GPL(regulator_mode_to_status);
+
+static struct attribute *regulator_dev_attrs[] = {
+ &dev_attr_name.attr,
+ &dev_attr_num_users.attr,
+ &dev_attr_type.attr,
+ &dev_attr_microvolts.attr,
+ &dev_attr_microamps.attr,
+ &dev_attr_opmode.attr,
+ &dev_attr_state.attr,
+ &dev_attr_status.attr,
+ &dev_attr_bypass.attr,
+ &dev_attr_requested_microamps.attr,
+ &dev_attr_min_microvolts.attr,
+ &dev_attr_max_microvolts.attr,
+ &dev_attr_min_microamps.attr,
+ &dev_attr_max_microamps.attr,
+ &dev_attr_under_voltage.attr,
+ &dev_attr_over_current.attr,
+ &dev_attr_regulation_out.attr,
+ &dev_attr_fail.attr,
+ &dev_attr_over_temp.attr,
+ &dev_attr_under_voltage_warn.attr,
+ &dev_attr_over_current_warn.attr,
+ &dev_attr_over_voltage_warn.attr,
+ &dev_attr_over_temp_warn.attr,
+ &dev_attr_suspend_standby_state.attr,
+ &dev_attr_suspend_mem_state.attr,
+ &dev_attr_suspend_disk_state.attr,
+ &dev_attr_suspend_standby_microvolts.attr,
+ &dev_attr_suspend_mem_microvolts.attr,
+ &dev_attr_suspend_disk_microvolts.attr,
+ &dev_attr_suspend_standby_mode.attr,
+ &dev_attr_suspend_mem_mode.attr,
+ &dev_attr_suspend_disk_mode.attr,
+ NULL
+};
+
+/*
+ * To avoid cluttering sysfs (and memory) with useless state, only
+ * create attributes that can be meaningfully displayed.
+ */
+static umode_t regulator_attr_is_visible(struct kobject *kobj,
+ struct attribute *attr, int idx)
+{
+ struct device *dev = kobj_to_dev(kobj);
+ struct regulator_dev *rdev = dev_to_rdev(dev);
+ const struct regulator_ops *ops = rdev->desc->ops;
+ umode_t mode = attr->mode;
+
+ /* these three are always present */
+ if (attr == &dev_attr_name.attr ||
+ attr == &dev_attr_num_users.attr ||
+ attr == &dev_attr_type.attr)
+ return mode;
+
+ /* some attributes need specific methods to be displayed */
+ if (attr == &dev_attr_microvolts.attr) {
+ if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
+ (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
+ (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
+ (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
+ return mode;
+ return 0;
+ }
+
+ if (attr == &dev_attr_microamps.attr)
+ return ops->get_current_limit ? mode : 0;
+
+ if (attr == &dev_attr_opmode.attr)
+ return ops->get_mode ? mode : 0;
+
+ if (attr == &dev_attr_state.attr)
+ return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
+
+ if (attr == &dev_attr_status.attr)
+ return ops->get_status ? mode : 0;
+
+ if (attr == &dev_attr_bypass.attr)
+ return ops->get_bypass ? mode : 0;
+
+ if (attr == &dev_attr_under_voltage.attr ||
+ attr == &dev_attr_over_current.attr ||
+ attr == &dev_attr_regulation_out.attr ||
+ attr == &dev_attr_fail.attr ||
+ attr == &dev_attr_over_temp.attr ||
+ attr == &dev_attr_under_voltage_warn.attr ||
+ attr == &dev_attr_over_current_warn.attr ||
+ attr == &dev_attr_over_voltage_warn.attr ||
+ attr == &dev_attr_over_temp_warn.attr)
+ return ops->get_error_flags ? mode : 0;
+
+ /* constraints need specific supporting methods */
+ if (attr == &dev_attr_min_microvolts.attr ||
+ attr == &dev_attr_max_microvolts.attr)
+ return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
+
+ if (attr == &dev_attr_min_microamps.attr ||
+ attr == &dev_attr_max_microamps.attr)
+ return ops->set_current_limit ? mode : 0;
+
+ if (attr == &dev_attr_suspend_standby_state.attr ||
+ attr == &dev_attr_suspend_mem_state.attr ||
+ attr == &dev_attr_suspend_disk_state.attr)
+ return mode;
+
+ if (attr == &dev_attr_suspend_standby_microvolts.attr ||
+ attr == &dev_attr_suspend_mem_microvolts.attr ||
+ attr == &dev_attr_suspend_disk_microvolts.attr)
+ return ops->set_suspend_voltage ? mode : 0;
+
+ if (attr == &dev_attr_suspend_standby_mode.attr ||
+ attr == &dev_attr_suspend_mem_mode.attr ||
+ attr == &dev_attr_suspend_disk_mode.attr)
+ return ops->set_suspend_mode ? mode : 0;
+
+ return mode;
+}
+
+static const struct attribute_group regulator_dev_group = {
+ .attrs = regulator_dev_attrs,
+ .is_visible = regulator_attr_is_visible,
+};
+
+static const struct attribute_group *regulator_dev_groups[] = {
+ &regulator_dev_group,
+ NULL
+};
+
+static void regulator_dev_release(struct device *dev)
+{
+ struct regulator_dev *rdev = dev_get_drvdata(dev);
+
+ debugfs_remove_recursive(rdev->debugfs);
+ kfree(rdev->constraints);
+ of_node_put(rdev->dev.of_node);
+ kfree(rdev);
+}
+
+static void rdev_init_debugfs(struct regulator_dev *rdev)
+{
+ struct device *parent = rdev->dev.parent;
+ const char *rname = rdev_get_name(rdev);
+ char name[NAME_MAX];
+
+ /* Avoid duplicate debugfs directory names */
+ if (parent && rname == rdev->desc->name) {
+ snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
+ rname);
+ rname = name;
+ }
+
+ rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
+ if (IS_ERR(rdev->debugfs))
+ rdev_dbg(rdev, "Failed to create debugfs directory\n");
+
+ debugfs_create_u32("use_count", 0444, rdev->debugfs,
+ &rdev->use_count);
+ debugfs_create_u32("open_count", 0444, rdev->debugfs,
+ &rdev->open_count);
+ debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
+ &rdev->bypass_count);
+}
+
+static int regulator_register_resolve_supply(struct device *dev, void *data)
+{
+ struct regulator_dev *rdev = dev_to_rdev(dev);
+
+ if (regulator_resolve_supply(rdev))
+ rdev_dbg(rdev, "unable to resolve supply\n");
+
+ return 0;
+}
+
+int regulator_coupler_register(struct regulator_coupler *coupler)
+{
+ mutex_lock(&regulator_list_mutex);
+ list_add_tail(&coupler->list, &regulator_coupler_list);
+ mutex_unlock(&regulator_list_mutex);
+
+ return 0;
+}
+
+static struct regulator_coupler *
+regulator_find_coupler(struct regulator_dev *rdev)
+{
+ struct regulator_coupler *coupler;
+ int err;
+
+ /*
+ * Note that regulators are appended to the list and the generic
+ * coupler is registered first, hence it will be attached at last
+ * if nobody cared.
+ */
+ list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
+ err = coupler->attach_regulator(coupler, rdev);
+ if (!err) {
+ if (!coupler->balance_voltage &&
+ rdev->coupling_desc.n_coupled > 2)
+ goto err_unsupported;
+
+ return coupler;
+ }
+
+ if (err < 0)
+ return ERR_PTR(err);
+
+ if (err == 1)
+ continue;
+
+ break;
+ }
+
+ return ERR_PTR(-EINVAL);
+
+err_unsupported:
+ if (coupler->detach_regulator)
+ coupler->detach_regulator(coupler, rdev);
+
+ rdev_err(rdev,
+ "Voltage balancing for multiple regulator couples is unimplemented\n");
+
+ return ERR_PTR(-EPERM);
+}
+
+static void regulator_resolve_coupling(struct regulator_dev *rdev)
+{
+ struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
+ struct coupling_desc *c_desc = &rdev->coupling_desc;
+ int n_coupled = c_desc->n_coupled;
+ struct regulator_dev *c_rdev;
+ int i;
+
+ for (i = 1; i < n_coupled; i++) {
+ /* already resolved */
+ if (c_desc->coupled_rdevs[i])
+ continue;
+
+ c_rdev = of_parse_coupled_regulator(rdev, i - 1);
+
+ if (!c_rdev)
+ continue;
+
+ if (c_rdev->coupling_desc.coupler != coupler) {
+ rdev_err(rdev, "coupler mismatch with %s\n",
+ rdev_get_name(c_rdev));
+ return;
+ }
+
+ c_desc->coupled_rdevs[i] = c_rdev;
+ c_desc->n_resolved++;
+
+ regulator_resolve_coupling(c_rdev);
+ }
+}
+
+static void regulator_remove_coupling(struct regulator_dev *rdev)
+{
+ struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
+ struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
+ struct regulator_dev *__c_rdev, *c_rdev;
+ unsigned int __n_coupled, n_coupled;
+ int i, k;
+ int err;
+
+ n_coupled = c_desc->n_coupled;
+
+ for (i = 1; i < n_coupled; i++) {
+ c_rdev = c_desc->coupled_rdevs[i];
+
+ if (!c_rdev)
+ continue;
+
+ regulator_lock(c_rdev);
+
+ __c_desc = &c_rdev->coupling_desc;
+ __n_coupled = __c_desc->n_coupled;
+
+ for (k = 1; k < __n_coupled; k++) {
+ __c_rdev = __c_desc->coupled_rdevs[k];
+
+ if (__c_rdev == rdev) {
+ __c_desc->coupled_rdevs[k] = NULL;
+ __c_desc->n_resolved--;
+ break;
+ }
+ }
+
+ regulator_unlock(c_rdev);
+
+ c_desc->coupled_rdevs[i] = NULL;
+ c_desc->n_resolved--;
+ }
+
+ if (coupler && coupler->detach_regulator) {
+ err = coupler->detach_regulator(coupler, rdev);
+ if (err)
+ rdev_err(rdev, "failed to detach from coupler: %pe\n",
+ ERR_PTR(err));
+ }
+
+ kfree(rdev->coupling_desc.coupled_rdevs);
+ rdev->coupling_desc.coupled_rdevs = NULL;
+}
+
+static int regulator_init_coupling(struct regulator_dev *rdev)
+{
+ struct regulator_dev **coupled;
+ int err, n_phandles;
+
+ if (!IS_ENABLED(CONFIG_OF))
+ n_phandles = 0;
+ else
+ n_phandles = of_get_n_coupled(rdev);
+
+ coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
+ if (!coupled)
+ return -ENOMEM;
+
+ rdev->coupling_desc.coupled_rdevs = coupled;
+
+ /*
+ * Every regulator should always have coupling descriptor filled with
+ * at least pointer to itself.
+ */
+ rdev->coupling_desc.coupled_rdevs[0] = rdev;
+ rdev->coupling_desc.n_coupled = n_phandles + 1;
+ rdev->coupling_desc.n_resolved++;
+
+ /* regulator isn't coupled */
+ if (n_phandles == 0)
+ return 0;
+
+ if (!of_check_coupling_data(rdev))
+ return -EPERM;
+
+ mutex_lock(&regulator_list_mutex);
+ rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
+ mutex_unlock(&regulator_list_mutex);
+
+ if (IS_ERR(rdev->coupling_desc.coupler)) {
+ err = PTR_ERR(rdev->coupling_desc.coupler);
+ rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
+ return err;
+ }
+
+ return 0;
+}
+
+static int generic_coupler_attach(struct regulator_coupler *coupler,
+ struct regulator_dev *rdev)
+{
+ if (rdev->coupling_desc.n_coupled > 2) {
+ rdev_err(rdev,
+ "Voltage balancing for multiple regulator couples is unimplemented\n");
+ return -EPERM;
+ }
+
+ if (!rdev->constraints->always_on) {
+ rdev_err(rdev,
+ "Coupling of a non always-on regulator is unimplemented\n");
+ return -ENOTSUPP;
+ }
+
+ return 0;
+}
+
+static struct regulator_coupler generic_regulator_coupler = {
+ .attach_regulator = generic_coupler_attach,
+};
+
+/**
+ * regulator_register - register regulator
+ * @dev: the device that drive the regulator
+ * @regulator_desc: regulator to register
+ * @cfg: runtime configuration for regulator
+ *
+ * Called by regulator drivers to register a regulator.
+ * Returns a valid pointer to struct regulator_dev on success
+ * or an ERR_PTR() on error.
+ */
+struct regulator_dev *
+regulator_register(struct device *dev,
+ const struct regulator_desc *regulator_desc,
+ const struct regulator_config *cfg)
+{
+ const struct regulator_init_data *init_data;
+ struct regulator_config *config = NULL;
+ static atomic_t regulator_no = ATOMIC_INIT(-1);
+ struct regulator_dev *rdev;
+ bool dangling_cfg_gpiod = false;
+ bool dangling_of_gpiod = false;
+ int ret, i;
+ bool resolved_early = false;
+
+ if (cfg == NULL)
+ return ERR_PTR(-EINVAL);
+ if (cfg->ena_gpiod)
+ dangling_cfg_gpiod = true;
+ if (regulator_desc == NULL) {
+ ret = -EINVAL;
+ goto rinse;
+ }
+
+ WARN_ON(!dev || !cfg->dev);
+
+ if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
+ ret = -EINVAL;
+ goto rinse;
+ }
+
+ if (regulator_desc->type != REGULATOR_VOLTAGE &&
+ regulator_desc->type != REGULATOR_CURRENT) {
+ ret = -EINVAL;
+ goto rinse;
+ }
+
+ /* Only one of each should be implemented */
+ WARN_ON(regulator_desc->ops->get_voltage &&
+ regulator_desc->ops->get_voltage_sel);
+ WARN_ON(regulator_desc->ops->set_voltage &&
+ regulator_desc->ops->set_voltage_sel);
+
+ /* If we're using selectors we must implement list_voltage. */
+ if (regulator_desc->ops->get_voltage_sel &&
+ !regulator_desc->ops->list_voltage) {
+ ret = -EINVAL;
+ goto rinse;
+ }
+ if (regulator_desc->ops->set_voltage_sel &&
+ !regulator_desc->ops->list_voltage) {
+ ret = -EINVAL;
+ goto rinse;
+ }
+
+ rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
+ if (rdev == NULL) {
+ ret = -ENOMEM;
+ goto rinse;
+ }
+ device_initialize(&rdev->dev);
+ dev_set_drvdata(&rdev->dev, rdev);
+ rdev->dev.class = &regulator_class;
+ spin_lock_init(&rdev->err_lock);
+
+ /*
+ * Duplicate the config so the driver could override it after
+ * parsing init data.
+ */
+ config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
+ if (config == NULL) {
+ ret = -ENOMEM;
+ goto clean;
+ }
+
+ init_data = regulator_of_get_init_data(dev, regulator_desc, config,
+ &rdev->dev.of_node);
+
+ /*
+ * Sometimes not all resources are probed already so we need to take
+ * that into account. This happens most the time if the ena_gpiod comes
+ * from a gpio extender or something else.
+ */
+ if (PTR_ERR(init_data) == -EPROBE_DEFER) {
+ ret = -EPROBE_DEFER;
+ goto clean;
+ }
+
+ /*
+ * We need to keep track of any GPIO descriptor coming from the
+ * device tree until we have handled it over to the core. If the
+ * config that was passed in to this function DOES NOT contain
+ * a descriptor, and the config after this call DOES contain
+ * a descriptor, we definitely got one from parsing the device
+ * tree.
+ */
+ if (!cfg->ena_gpiod && config->ena_gpiod)
+ dangling_of_gpiod = true;
+ if (!init_data) {
+ init_data = config->init_data;
+ rdev->dev.of_node = of_node_get(config->of_node);
+ }
+
+ ww_mutex_init(&rdev->mutex, &regulator_ww_class);
+ rdev->reg_data = config->driver_data;
+ rdev->owner = regulator_desc->owner;
+ rdev->desc = regulator_desc;
+ if (config->regmap)
+ rdev->regmap = config->regmap;
+ else if (dev_get_regmap(dev, NULL))
+ rdev->regmap = dev_get_regmap(dev, NULL);
+ else if (dev->parent)
+ rdev->regmap = dev_get_regmap(dev->parent, NULL);
+ INIT_LIST_HEAD(&rdev->consumer_list);
+ INIT_LIST_HEAD(&rdev->list);
+ BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
+ INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
+
+ if (init_data && init_data->supply_regulator)
+ rdev->supply_name = init_data->supply_regulator;
+ else if (regulator_desc->supply_name)
+ rdev->supply_name = regulator_desc->supply_name;
+
+ /* register with sysfs */
+ rdev->dev.parent = config->dev;
+ dev_set_name(&rdev->dev, "regulator.%lu",
+ (unsigned long) atomic_inc_return(&regulator_no));
+
+ /* set regulator constraints */
+ if (init_data)
+ rdev->constraints = kmemdup(&init_data->constraints,
+ sizeof(*rdev->constraints),
+ GFP_KERNEL);
+ else
+ rdev->constraints = kzalloc(sizeof(*rdev->constraints),
+ GFP_KERNEL);
+ if (!rdev->constraints) {
+ ret = -ENOMEM;
+ goto wash;
+ }
+
+ if ((rdev->supply_name && !rdev->supply) &&
+ (rdev->constraints->always_on ||
+ rdev->constraints->boot_on)) {
+ ret = regulator_resolve_supply(rdev);
+ if (ret)
+ rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
+ ERR_PTR(ret));
+
+ resolved_early = true;
+ }
+
+ /* perform any regulator specific init */
+ if (init_data && init_data->regulator_init) {
+ ret = init_data->regulator_init(rdev->reg_data);
+ if (ret < 0)
+ goto wash;
+ }
+
+ if (config->ena_gpiod) {
+ ret = regulator_ena_gpio_request(rdev, config);
+ if (ret != 0) {
+ rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
+ ERR_PTR(ret));
+ goto wash;
+ }
+ /* The regulator core took over the GPIO descriptor */
+ dangling_cfg_gpiod = false;
+ dangling_of_gpiod = false;
+ }
+
+ ret = set_machine_constraints(rdev);
+ if (ret == -EPROBE_DEFER && !resolved_early) {
+ /* Regulator might be in bypass mode and so needs its supply
+ * to set the constraints
+ */
+ /* FIXME: this currently triggers a chicken-and-egg problem
+ * when creating -SUPPLY symlink in sysfs to a regulator
+ * that is just being created
+ */
+ rdev_dbg(rdev, "will resolve supply early: %s\n",
+ rdev->supply_name);
+ ret = regulator_resolve_supply(rdev);
+ if (!ret)
+ ret = set_machine_constraints(rdev);
+ else
+ rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
+ ERR_PTR(ret));
+ }
+ if (ret < 0)
+ goto wash;
+
+ ret = regulator_init_coupling(rdev);
+ if (ret < 0)
+ goto wash;
+
+ /* add consumers devices */
+ if (init_data) {
+ for (i = 0; i < init_data->num_consumer_supplies; i++) {
+ ret = set_consumer_device_supply(rdev,
+ init_data->consumer_supplies[i].dev_name,
+ init_data->consumer_supplies[i].supply);
+ if (ret < 0) {
+ dev_err(dev, "Failed to set supply %s\n",
+ init_data->consumer_supplies[i].supply);
+ goto unset_supplies;
+ }
+ }
+ }
+
+ if (!rdev->desc->ops->get_voltage &&
+ !rdev->desc->ops->list_voltage &&
+ !rdev->desc->fixed_uV)
+ rdev->is_switch = true;
+
+ ret = device_add(&rdev->dev);
+ if (ret != 0)
+ goto unset_supplies;
+
+ rdev_init_debugfs(rdev);
+
+ /* try to resolve regulators coupling since a new one was registered */
+ mutex_lock(&regulator_list_mutex);
+ regulator_resolve_coupling(rdev);
+ mutex_unlock(&regulator_list_mutex);
+
+ /* try to resolve regulators supply since a new one was registered */
+ class_for_each_device(&regulator_class, NULL, NULL,
+ regulator_register_resolve_supply);
+ kfree(config);
+ return rdev;
+
+unset_supplies:
+ mutex_lock(&regulator_list_mutex);
+ unset_regulator_supplies(rdev);
+ regulator_remove_coupling(rdev);
+ mutex_unlock(&regulator_list_mutex);
+wash:
+ regulator_put(rdev->supply);
+ kfree(rdev->coupling_desc.coupled_rdevs);
+ mutex_lock(&regulator_list_mutex);
+ regulator_ena_gpio_free(rdev);
+ mutex_unlock(&regulator_list_mutex);
+clean:
+ if (dangling_of_gpiod)
+ gpiod_put(config->ena_gpiod);
+ kfree(config);
+ put_device(&rdev->dev);
+rinse:
+ if (dangling_cfg_gpiod)
+ gpiod_put(cfg->ena_gpiod);
+ return ERR_PTR(ret);
+}
+EXPORT_SYMBOL_GPL(regulator_register);
+
+/**
+ * regulator_unregister - unregister regulator
+ * @rdev: regulator to unregister
+ *
+ * Called by regulator drivers to unregister a regulator.
+ */
+void regulator_unregister(struct regulator_dev *rdev)
+{
+ if (rdev == NULL)
+ return;
+
+ if (rdev->supply) {
+ while (rdev->use_count--)
+ regulator_disable(rdev->supply);
+ regulator_put(rdev->supply);
+ }
+
+ flush_work(&rdev->disable_work.work);
+
+ mutex_lock(&regulator_list_mutex);
+
+ WARN_ON(rdev->open_count);
+ regulator_remove_coupling(rdev);
+ unset_regulator_supplies(rdev);
+ list_del(&rdev->list);
+ regulator_ena_gpio_free(rdev);
+ device_unregister(&rdev->dev);
+
+ mutex_unlock(&regulator_list_mutex);
+}
+EXPORT_SYMBOL_GPL(regulator_unregister);
+
+#ifdef CONFIG_SUSPEND
+/**
+ * regulator_suspend - prepare regulators for system wide suspend
+ * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
+ *
+ * Configure each regulator with it's suspend operating parameters for state.
+ */
+static int regulator_suspend(struct device *dev)
+{
+ struct regulator_dev *rdev = dev_to_rdev(dev);
+ suspend_state_t state = pm_suspend_target_state;
+ int ret;
+ const struct regulator_state *rstate;
+
+ rstate = regulator_get_suspend_state_check(rdev, state);
+ if (!rstate)
+ return 0;
+
+ regulator_lock(rdev);
+ ret = __suspend_set_state(rdev, rstate);
+ regulator_unlock(rdev);
+
+ return ret;
+}
+
+static int regulator_resume(struct device *dev)
+{
+ suspend_state_t state = pm_suspend_target_state;
+ struct regulator_dev *rdev = dev_to_rdev(dev);
+ struct regulator_state *rstate;
+ int ret = 0;
+
+ rstate = regulator_get_suspend_state(rdev, state);
+ if (rstate == NULL)
+ return 0;
+
+ /* Avoid grabbing the lock if we don't need to */
+ if (!rdev->desc->ops->resume)
+ return 0;
+
+ regulator_lock(rdev);
+
+ if (rstate->enabled == ENABLE_IN_SUSPEND ||
+ rstate->enabled == DISABLE_IN_SUSPEND)
+ ret = rdev->desc->ops->resume(rdev);
+
+ regulator_unlock(rdev);
+
+ return ret;
+}
+#else /* !CONFIG_SUSPEND */
+
+#define regulator_suspend NULL
+#define regulator_resume NULL
+
+#endif /* !CONFIG_SUSPEND */
+
+#ifdef CONFIG_PM
+static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
+ .suspend = regulator_suspend,
+ .resume = regulator_resume,
+};
+#endif
+
+struct class regulator_class = {
+ .name = "regulator",
+ .dev_release = regulator_dev_release,
+ .dev_groups = regulator_dev_groups,
+#ifdef CONFIG_PM
+ .pm = &regulator_pm_ops,
+#endif
+};
+/**
+ * regulator_has_full_constraints - the system has fully specified constraints
+ *
+ * Calling this function will cause the regulator API to disable all
+ * regulators which have a zero use count and don't have an always_on
+ * constraint in a late_initcall.
+ *
+ * The intention is that this will become the default behaviour in a
+ * future kernel release so users are encouraged to use this facility
+ * now.
+ */
+void regulator_has_full_constraints(void)
+{
+ has_full_constraints = 1;
+}
+EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
+
+/**
+ * rdev_get_drvdata - get rdev regulator driver data
+ * @rdev: regulator
+ *
+ * Get rdev regulator driver private data. This call can be used in the
+ * regulator driver context.
+ */
+void *rdev_get_drvdata(struct regulator_dev *rdev)
+{
+ return rdev->reg_data;
+}
+EXPORT_SYMBOL_GPL(rdev_get_drvdata);
+
+/**
+ * regulator_get_drvdata - get regulator driver data
+ * @regulator: regulator
+ *
+ * Get regulator driver private data. This call can be used in the consumer
+ * driver context when non API regulator specific functions need to be called.
+ */
+void *regulator_get_drvdata(struct regulator *regulator)
+{
+ return regulator->rdev->reg_data;
+}
+EXPORT_SYMBOL_GPL(regulator_get_drvdata);
+
+/**
+ * regulator_set_drvdata - set regulator driver data
+ * @regulator: regulator
+ * @data: data
+ */
+void regulator_set_drvdata(struct regulator *regulator, void *data)
+{
+ regulator->rdev->reg_data = data;
+}
+EXPORT_SYMBOL_GPL(regulator_set_drvdata);
+
+/**
+ * rdev_get_id - get regulator ID
+ * @rdev: regulator
+ */
+int rdev_get_id(struct regulator_dev *rdev)
+{
+ return rdev->desc->id;
+}
+EXPORT_SYMBOL_GPL(rdev_get_id);
+
+struct device *rdev_get_dev(struct regulator_dev *rdev)
+{
+ return &rdev->dev;
+}
+EXPORT_SYMBOL_GPL(rdev_get_dev);
+
+struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
+{
+ return rdev->regmap;
+}
+EXPORT_SYMBOL_GPL(rdev_get_regmap);
+
+void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
+{
+ return reg_init_data->driver_data;
+}
+EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
+
+#ifdef CONFIG_DEBUG_FS
+static int supply_map_show(struct seq_file *sf, void *data)
+{
+ struct regulator_map *map;
+
+ list_for_each_entry(map, &regulator_map_list, list) {
+ seq_printf(sf, "%s -> %s.%s\n",
+ rdev_get_name(map->regulator), map->dev_name,
+ map->supply);
+ }
+
+ return 0;
+}
+DEFINE_SHOW_ATTRIBUTE(supply_map);
+
+struct summary_data {
+ struct seq_file *s;
+ struct regulator_dev *parent;
+ int level;
+};
+
+static void regulator_summary_show_subtree(struct seq_file *s,
+ struct regulator_dev *rdev,
+ int level);
+
+static int regulator_summary_show_children(struct device *dev, void *data)
+{
+ struct regulator_dev *rdev = dev_to_rdev(dev);
+ struct summary_data *summary_data = data;
+
+ if (rdev->supply && rdev->supply->rdev == summary_data->parent)
+ regulator_summary_show_subtree(summary_data->s, rdev,
+ summary_data->level + 1);
+
+ return 0;
+}
+
+static void regulator_summary_show_subtree(struct seq_file *s,
+ struct regulator_dev *rdev,
+ int level)
+{
+ struct regulation_constraints *c;
+ struct regulator *consumer;
+ struct summary_data summary_data;
+ unsigned int opmode;
+
+ if (!rdev)
+ return;
+
+ opmode = _regulator_get_mode_unlocked(rdev);
+ seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
+ level * 3 + 1, "",
+ 30 - level * 3, rdev_get_name(rdev),
+ rdev->use_count, rdev->open_count, rdev->bypass_count,
+ regulator_opmode_to_str(opmode));
+
+ seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
+ seq_printf(s, "%5dmA ",
+ _regulator_get_current_limit_unlocked(rdev) / 1000);
+
+ c = rdev->constraints;
+ if (c) {
+ switch (rdev->desc->type) {
+ case REGULATOR_VOLTAGE:
+ seq_printf(s, "%5dmV %5dmV ",
+ c->min_uV / 1000, c->max_uV / 1000);
+ break;
+ case REGULATOR_CURRENT:
+ seq_printf(s, "%5dmA %5dmA ",
+ c->min_uA / 1000, c->max_uA / 1000);
+ break;
+ }
+ }
+
+ seq_puts(s, "\n");
+
+ list_for_each_entry(consumer, &rdev->consumer_list, list) {
+ if (consumer->dev && consumer->dev->class == &regulator_class)
+ continue;
+
+ seq_printf(s, "%*s%-*s ",
+ (level + 1) * 3 + 1, "",
+ 30 - (level + 1) * 3,
+ consumer->supply_name ? consumer->supply_name :
+ consumer->dev ? dev_name(consumer->dev) : "deviceless");
+
+ switch (rdev->desc->type) {
+ case REGULATOR_VOLTAGE:
+ seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
+ consumer->enable_count,
+ consumer->uA_load / 1000,
+ consumer->uA_load && !consumer->enable_count ?
+ '*' : ' ',
+ consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
+ consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
+ break;
+ case REGULATOR_CURRENT:
+ break;
+ }
+
+ seq_puts(s, "\n");
+ }
+
+ summary_data.s = s;
+ summary_data.level = level;
+ summary_data.parent = rdev;
+
+ class_for_each_device(&regulator_class, NULL, &summary_data,
+ regulator_summary_show_children);
+}
+
+struct summary_lock_data {
+ struct ww_acquire_ctx *ww_ctx;
+ struct regulator_dev **new_contended_rdev;
+ struct regulator_dev **old_contended_rdev;
+};
+
+static int regulator_summary_lock_one(struct device *dev, void *data)
+{
+ struct regulator_dev *rdev = dev_to_rdev(dev);
+ struct summary_lock_data *lock_data = data;
+ int ret = 0;
+
+ if (rdev != *lock_data->old_contended_rdev) {
+ ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
+
+ if (ret == -EDEADLK)
+ *lock_data->new_contended_rdev = rdev;
+ else
+ WARN_ON_ONCE(ret);
+ } else {
+ *lock_data->old_contended_rdev = NULL;
+ }
+
+ return ret;
+}
+
+static int regulator_summary_unlock_one(struct device *dev, void *data)
+{
+ struct regulator_dev *rdev = dev_to_rdev(dev);
+ struct summary_lock_data *lock_data = data;
+
+ if (lock_data) {
+ if (rdev == *lock_data->new_contended_rdev)
+ return -EDEADLK;
+ }
+
+ regulator_unlock(rdev);
+
+ return 0;
+}
+
+static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
+ struct regulator_dev **new_contended_rdev,
+ struct regulator_dev **old_contended_rdev)
+{
+ struct summary_lock_data lock_data;
+ int ret;
+
+ lock_data.ww_ctx = ww_ctx;
+ lock_data.new_contended_rdev = new_contended_rdev;
+ lock_data.old_contended_rdev = old_contended_rdev;
+
+ ret = class_for_each_device(&regulator_class, NULL, &lock_data,
+ regulator_summary_lock_one);
+ if (ret)
+ class_for_each_device(&regulator_class, NULL, &lock_data,
+ regulator_summary_unlock_one);
+
+ return ret;
+}
+
+static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
+{
+ struct regulator_dev *new_contended_rdev = NULL;
+ struct regulator_dev *old_contended_rdev = NULL;
+ int err;
+
+ mutex_lock(&regulator_list_mutex);
+
+ ww_acquire_init(ww_ctx, &regulator_ww_class);
+
+ do {
+ if (new_contended_rdev) {
+ ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
+ old_contended_rdev = new_contended_rdev;
+ old_contended_rdev->ref_cnt++;
+ old_contended_rdev->mutex_owner = current;
+ }
+
+ err = regulator_summary_lock_all(ww_ctx,
+ &new_contended_rdev,
+ &old_contended_rdev);
+
+ if (old_contended_rdev)
+ regulator_unlock(old_contended_rdev);
+
+ } while (err == -EDEADLK);
+
+ ww_acquire_done(ww_ctx);
+}
+
+static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
+{
+ class_for_each_device(&regulator_class, NULL, NULL,
+ regulator_summary_unlock_one);
+ ww_acquire_fini(ww_ctx);
+
+ mutex_unlock(&regulator_list_mutex);
+}
+
+static int regulator_summary_show_roots(struct device *dev, void *data)
+{
+ struct regulator_dev *rdev = dev_to_rdev(dev);
+ struct seq_file *s = data;
+
+ if (!rdev->supply)
+ regulator_summary_show_subtree(s, rdev, 0);
+
+ return 0;
+}
+
+static int regulator_summary_show(struct seq_file *s, void *data)
+{
+ struct ww_acquire_ctx ww_ctx;
+
+ seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
+ seq_puts(s, "---------------------------------------------------------------------------------------\n");
+
+ regulator_summary_lock(&ww_ctx);
+
+ class_for_each_device(&regulator_class, NULL, s,
+ regulator_summary_show_roots);
+
+ regulator_summary_unlock(&ww_ctx);
+
+ return 0;
+}
+DEFINE_SHOW_ATTRIBUTE(regulator_summary);
+#endif /* CONFIG_DEBUG_FS */
+
+static int __init regulator_init(void)
+{
+ int ret;
+
+ ret = class_register(&regulator_class);
+
+ debugfs_root = debugfs_create_dir("regulator", NULL);
+ if (IS_ERR(debugfs_root))
+ pr_debug("regulator: Failed to create debugfs directory\n");
+
+#ifdef CONFIG_DEBUG_FS
+ debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
+ &supply_map_fops);
+
+ debugfs_create_file("regulator_summary", 0444, debugfs_root,
+ NULL, &regulator_summary_fops);
+#endif
+ regulator_dummy_init();
+
+ regulator_coupler_register(&generic_regulator_coupler);
+
+ return ret;
+}
+
+/* init early to allow our consumers to complete system booting */
+core_initcall(regulator_init);
+
+static int regulator_late_cleanup(struct device *dev, void *data)
+{
+ struct regulator_dev *rdev = dev_to_rdev(dev);
+ struct regulation_constraints *c = rdev->constraints;
+ int ret;
+
+ if (c && c->always_on)
+ return 0;
+
+ if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
+ return 0;
+
+ regulator_lock(rdev);
+
+ if (rdev->use_count)
+ goto unlock;
+
+ /* If reading the status failed, assume that it's off. */
+ if (_regulator_is_enabled(rdev) <= 0)
+ goto unlock;
+
+ if (have_full_constraints()) {
+ /* We log since this may kill the system if it goes
+ * wrong.
+ */
+ rdev_info(rdev, "disabling\n");
+ ret = _regulator_do_disable(rdev);
+ if (ret != 0)
+ rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
+ } else {
+ /* The intention is that in future we will
+ * assume that full constraints are provided
+ * so warn even if we aren't going to do
+ * anything here.
+ */
+ rdev_warn(rdev, "incomplete constraints, leaving on\n");
+ }
+
+unlock:
+ regulator_unlock(rdev);
+
+ return 0;
+}
+
+static void regulator_init_complete_work_function(struct work_struct *work)
+{
+ /*
+ * Regulators may had failed to resolve their input supplies
+ * when were registered, either because the input supply was
+ * not registered yet or because its parent device was not
+ * bound yet. So attempt to resolve the input supplies for
+ * pending regulators before trying to disable unused ones.
+ */
+ class_for_each_device(&regulator_class, NULL, NULL,
+ regulator_register_resolve_supply);
+
+ /* If we have a full configuration then disable any regulators
+ * we have permission to change the status for and which are
+ * not in use or always_on. This is effectively the default
+ * for DT and ACPI as they have full constraints.
+ */
+ class_for_each_device(&regulator_class, NULL, NULL,
+ regulator_late_cleanup);
+}
+
+static DECLARE_DELAYED_WORK(regulator_init_complete_work,
+ regulator_init_complete_work_function);
+
+static int __init regulator_init_complete(void)
+{
+ /*
+ * Since DT doesn't provide an idiomatic mechanism for
+ * enabling full constraints and since it's much more natural
+ * with DT to provide them just assume that a DT enabled
+ * system has full constraints.
+ */
+ if (of_have_populated_dt())
+ has_full_constraints = true;
+
+ /*
+ * We punt completion for an arbitrary amount of time since
+ * systems like distros will load many drivers from userspace
+ * so consumers might not always be ready yet, this is
+ * particularly an issue with laptops where this might bounce
+ * the display off then on. Ideally we'd get a notification
+ * from userspace when this happens but we don't so just wait
+ * a bit and hope we waited long enough. It'd be better if
+ * we'd only do this on systems that need it, and a kernel
+ * command line option might be useful.
+ */
+ schedule_delayed_work(&regulator_init_complete_work,
+ msecs_to_jiffies(30000));
+
+ return 0;
+}
+late_initcall_sync(regulator_init_complete);