summaryrefslogtreecommitdiffstats
path: root/fs/xfs/scrub/common.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /fs/xfs/scrub/common.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/xfs/scrub/common.c')
-rw-r--r--fs/xfs/scrub/common.c1384
1 files changed, 1384 insertions, 0 deletions
diff --git a/fs/xfs/scrub/common.c b/fs/xfs/scrub/common.c
new file mode 100644
index 0000000000..de24532fe0
--- /dev/null
+++ b/fs/xfs/scrub/common.c
@@ -0,0 +1,1384 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (C) 2017-2023 Oracle. All Rights Reserved.
+ * Author: Darrick J. Wong <djwong@kernel.org>
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_mount.h"
+#include "xfs_btree.h"
+#include "xfs_log_format.h"
+#include "xfs_trans.h"
+#include "xfs_inode.h"
+#include "xfs_icache.h"
+#include "xfs_alloc.h"
+#include "xfs_alloc_btree.h"
+#include "xfs_ialloc.h"
+#include "xfs_ialloc_btree.h"
+#include "xfs_refcount_btree.h"
+#include "xfs_rmap.h"
+#include "xfs_rmap_btree.h"
+#include "xfs_log.h"
+#include "xfs_trans_priv.h"
+#include "xfs_da_format.h"
+#include "xfs_da_btree.h"
+#include "xfs_attr.h"
+#include "xfs_reflink.h"
+#include "xfs_ag.h"
+#include "scrub/scrub.h"
+#include "scrub/common.h"
+#include "scrub/trace.h"
+#include "scrub/repair.h"
+#include "scrub/health.h"
+
+/* Common code for the metadata scrubbers. */
+
+/*
+ * Handling operational errors.
+ *
+ * The *_process_error() family of functions are used to process error return
+ * codes from functions called as part of a scrub operation.
+ *
+ * If there's no error, we return true to tell the caller that it's ok
+ * to move on to the next check in its list.
+ *
+ * For non-verifier errors (e.g. ENOMEM) we return false to tell the
+ * caller that something bad happened, and we preserve *error so that
+ * the caller can return the *error up the stack to userspace.
+ *
+ * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
+ * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words,
+ * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
+ * not via return codes. We return false to tell the caller that
+ * something bad happened. Since the error has been cleared, the caller
+ * will (presumably) return that zero and scrubbing will move on to
+ * whatever's next.
+ *
+ * ftrace can be used to record the precise metadata location and the
+ * approximate code location of the failed operation.
+ */
+
+/* Check for operational errors. */
+static bool
+__xchk_process_error(
+ struct xfs_scrub *sc,
+ xfs_agnumber_t agno,
+ xfs_agblock_t bno,
+ int *error,
+ __u32 errflag,
+ void *ret_ip)
+{
+ switch (*error) {
+ case 0:
+ return true;
+ case -EDEADLOCK:
+ case -ECHRNG:
+ /* Used to restart an op with deadlock avoidance. */
+ trace_xchk_deadlock_retry(
+ sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
+ sc->sm, *error);
+ break;
+ case -EFSBADCRC:
+ case -EFSCORRUPTED:
+ /* Note the badness but don't abort. */
+ sc->sm->sm_flags |= errflag;
+ *error = 0;
+ fallthrough;
+ default:
+ trace_xchk_op_error(sc, agno, bno, *error,
+ ret_ip);
+ break;
+ }
+ return false;
+}
+
+bool
+xchk_process_error(
+ struct xfs_scrub *sc,
+ xfs_agnumber_t agno,
+ xfs_agblock_t bno,
+ int *error)
+{
+ return __xchk_process_error(sc, agno, bno, error,
+ XFS_SCRUB_OFLAG_CORRUPT, __return_address);
+}
+
+bool
+xchk_xref_process_error(
+ struct xfs_scrub *sc,
+ xfs_agnumber_t agno,
+ xfs_agblock_t bno,
+ int *error)
+{
+ return __xchk_process_error(sc, agno, bno, error,
+ XFS_SCRUB_OFLAG_XFAIL, __return_address);
+}
+
+/* Check for operational errors for a file offset. */
+static bool
+__xchk_fblock_process_error(
+ struct xfs_scrub *sc,
+ int whichfork,
+ xfs_fileoff_t offset,
+ int *error,
+ __u32 errflag,
+ void *ret_ip)
+{
+ switch (*error) {
+ case 0:
+ return true;
+ case -EDEADLOCK:
+ case -ECHRNG:
+ /* Used to restart an op with deadlock avoidance. */
+ trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
+ break;
+ case -EFSBADCRC:
+ case -EFSCORRUPTED:
+ /* Note the badness but don't abort. */
+ sc->sm->sm_flags |= errflag;
+ *error = 0;
+ fallthrough;
+ default:
+ trace_xchk_file_op_error(sc, whichfork, offset, *error,
+ ret_ip);
+ break;
+ }
+ return false;
+}
+
+bool
+xchk_fblock_process_error(
+ struct xfs_scrub *sc,
+ int whichfork,
+ xfs_fileoff_t offset,
+ int *error)
+{
+ return __xchk_fblock_process_error(sc, whichfork, offset, error,
+ XFS_SCRUB_OFLAG_CORRUPT, __return_address);
+}
+
+bool
+xchk_fblock_xref_process_error(
+ struct xfs_scrub *sc,
+ int whichfork,
+ xfs_fileoff_t offset,
+ int *error)
+{
+ return __xchk_fblock_process_error(sc, whichfork, offset, error,
+ XFS_SCRUB_OFLAG_XFAIL, __return_address);
+}
+
+/*
+ * Handling scrub corruption/optimization/warning checks.
+ *
+ * The *_set_{corrupt,preen,warning}() family of functions are used to
+ * record the presence of metadata that is incorrect (corrupt), could be
+ * optimized somehow (preen), or should be flagged for administrative
+ * review but is not incorrect (warn).
+ *
+ * ftrace can be used to record the precise metadata location and
+ * approximate code location of the failed check.
+ */
+
+/* Record a block which could be optimized. */
+void
+xchk_block_set_preen(
+ struct xfs_scrub *sc,
+ struct xfs_buf *bp)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
+ trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
+}
+
+/*
+ * Record an inode which could be optimized. The trace data will
+ * include the block given by bp if bp is given; otherwise it will use
+ * the block location of the inode record itself.
+ */
+void
+xchk_ino_set_preen(
+ struct xfs_scrub *sc,
+ xfs_ino_t ino)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
+ trace_xchk_ino_preen(sc, ino, __return_address);
+}
+
+/* Record something being wrong with the filesystem primary superblock. */
+void
+xchk_set_corrupt(
+ struct xfs_scrub *sc)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
+ trace_xchk_fs_error(sc, 0, __return_address);
+}
+
+/* Record a corrupt block. */
+void
+xchk_block_set_corrupt(
+ struct xfs_scrub *sc,
+ struct xfs_buf *bp)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
+ trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
+}
+
+/* Record a corruption while cross-referencing. */
+void
+xchk_block_xref_set_corrupt(
+ struct xfs_scrub *sc,
+ struct xfs_buf *bp)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
+ trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
+}
+
+/*
+ * Record a corrupt inode. The trace data will include the block given
+ * by bp if bp is given; otherwise it will use the block location of the
+ * inode record itself.
+ */
+void
+xchk_ino_set_corrupt(
+ struct xfs_scrub *sc,
+ xfs_ino_t ino)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
+ trace_xchk_ino_error(sc, ino, __return_address);
+}
+
+/* Record a corruption while cross-referencing with an inode. */
+void
+xchk_ino_xref_set_corrupt(
+ struct xfs_scrub *sc,
+ xfs_ino_t ino)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
+ trace_xchk_ino_error(sc, ino, __return_address);
+}
+
+/* Record corruption in a block indexed by a file fork. */
+void
+xchk_fblock_set_corrupt(
+ struct xfs_scrub *sc,
+ int whichfork,
+ xfs_fileoff_t offset)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
+ trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
+}
+
+/* Record a corruption while cross-referencing a fork block. */
+void
+xchk_fblock_xref_set_corrupt(
+ struct xfs_scrub *sc,
+ int whichfork,
+ xfs_fileoff_t offset)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
+ trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
+}
+
+/*
+ * Warn about inodes that need administrative review but is not
+ * incorrect.
+ */
+void
+xchk_ino_set_warning(
+ struct xfs_scrub *sc,
+ xfs_ino_t ino)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
+ trace_xchk_ino_warning(sc, ino, __return_address);
+}
+
+/* Warn about a block indexed by a file fork that needs review. */
+void
+xchk_fblock_set_warning(
+ struct xfs_scrub *sc,
+ int whichfork,
+ xfs_fileoff_t offset)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
+ trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
+}
+
+/* Signal an incomplete scrub. */
+void
+xchk_set_incomplete(
+ struct xfs_scrub *sc)
+{
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
+ trace_xchk_incomplete(sc, __return_address);
+}
+
+/*
+ * rmap scrubbing -- compute the number of blocks with a given owner,
+ * at least according to the reverse mapping data.
+ */
+
+struct xchk_rmap_ownedby_info {
+ const struct xfs_owner_info *oinfo;
+ xfs_filblks_t *blocks;
+};
+
+STATIC int
+xchk_count_rmap_ownedby_irec(
+ struct xfs_btree_cur *cur,
+ const struct xfs_rmap_irec *rec,
+ void *priv)
+{
+ struct xchk_rmap_ownedby_info *sroi = priv;
+ bool irec_attr;
+ bool oinfo_attr;
+
+ irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
+ oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
+
+ if (rec->rm_owner != sroi->oinfo->oi_owner)
+ return 0;
+
+ if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
+ (*sroi->blocks) += rec->rm_blockcount;
+
+ return 0;
+}
+
+/*
+ * Calculate the number of blocks the rmap thinks are owned by something.
+ * The caller should pass us an rmapbt cursor.
+ */
+int
+xchk_count_rmap_ownedby_ag(
+ struct xfs_scrub *sc,
+ struct xfs_btree_cur *cur,
+ const struct xfs_owner_info *oinfo,
+ xfs_filblks_t *blocks)
+{
+ struct xchk_rmap_ownedby_info sroi = {
+ .oinfo = oinfo,
+ .blocks = blocks,
+ };
+
+ *blocks = 0;
+ return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
+ &sroi);
+}
+
+/*
+ * AG scrubbing
+ *
+ * These helpers facilitate locking an allocation group's header
+ * buffers, setting up cursors for all btrees that are present, and
+ * cleaning everything up once we're through.
+ */
+
+/* Decide if we want to return an AG header read failure. */
+static inline bool
+want_ag_read_header_failure(
+ struct xfs_scrub *sc,
+ unsigned int type)
+{
+ /* Return all AG header read failures when scanning btrees. */
+ if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
+ sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
+ sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
+ return true;
+ /*
+ * If we're scanning a given type of AG header, we only want to
+ * see read failures from that specific header. We'd like the
+ * other headers to cross-check them, but this isn't required.
+ */
+ if (sc->sm->sm_type == type)
+ return true;
+ return false;
+}
+
+/*
+ * Grab the AG header buffers for the attached perag structure.
+ *
+ * The headers should be released by xchk_ag_free, but as a fail safe we attach
+ * all the buffers we grab to the scrub transaction so they'll all be freed
+ * when we cancel it.
+ */
+static inline int
+xchk_perag_read_headers(
+ struct xfs_scrub *sc,
+ struct xchk_ag *sa)
+{
+ int error;
+
+ error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp);
+ if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
+ return error;
+
+ error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
+ if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
+ return error;
+
+ return 0;
+}
+
+/*
+ * Grab the AG headers for the attached perag structure and wait for pending
+ * intents to drain.
+ */
+static int
+xchk_perag_drain_and_lock(
+ struct xfs_scrub *sc)
+{
+ struct xchk_ag *sa = &sc->sa;
+ int error = 0;
+
+ ASSERT(sa->pag != NULL);
+ ASSERT(sa->agi_bp == NULL);
+ ASSERT(sa->agf_bp == NULL);
+
+ do {
+ if (xchk_should_terminate(sc, &error))
+ return error;
+
+ error = xchk_perag_read_headers(sc, sa);
+ if (error)
+ return error;
+
+ /*
+ * If we've grabbed an inode for scrubbing then we assume that
+ * holding its ILOCK will suffice to coordinate with any intent
+ * chains involving this inode.
+ */
+ if (sc->ip)
+ return 0;
+
+ /*
+ * Decide if this AG is quiet enough for all metadata to be
+ * consistent with each other. XFS allows the AG header buffer
+ * locks to cycle across transaction rolls while processing
+ * chains of deferred ops, which means that there could be
+ * other threads in the middle of processing a chain of
+ * deferred ops. For regular operations we are careful about
+ * ordering operations to prevent collisions between threads
+ * (which is why we don't need a per-AG lock), but scrub and
+ * repair have to serialize against chained operations.
+ *
+ * We just locked all the AG headers buffers; now take a look
+ * to see if there are any intents in progress. If there are,
+ * drop the AG headers and wait for the intents to drain.
+ * Since we hold all the AG header locks for the duration of
+ * the scrub, this is the only time we have to sample the
+ * intents counter; any threads increasing it after this point
+ * can't possibly be in the middle of a chain of AG metadata
+ * updates.
+ *
+ * Obviously, this should be slanted against scrub and in favor
+ * of runtime threads.
+ */
+ if (!xfs_perag_intent_busy(sa->pag))
+ return 0;
+
+ if (sa->agf_bp) {
+ xfs_trans_brelse(sc->tp, sa->agf_bp);
+ sa->agf_bp = NULL;
+ }
+
+ if (sa->agi_bp) {
+ xfs_trans_brelse(sc->tp, sa->agi_bp);
+ sa->agi_bp = NULL;
+ }
+
+ if (!(sc->flags & XCHK_FSGATES_DRAIN))
+ return -ECHRNG;
+ error = xfs_perag_intent_drain(sa->pag);
+ if (error == -ERESTARTSYS)
+ error = -EINTR;
+ } while (!error);
+
+ return error;
+}
+
+/*
+ * Grab the per-AG structure, grab all AG header buffers, and wait until there
+ * aren't any pending intents. Returns -ENOENT if we can't grab the perag
+ * structure.
+ */
+int
+xchk_ag_read_headers(
+ struct xfs_scrub *sc,
+ xfs_agnumber_t agno,
+ struct xchk_ag *sa)
+{
+ struct xfs_mount *mp = sc->mp;
+
+ ASSERT(!sa->pag);
+ sa->pag = xfs_perag_get(mp, agno);
+ if (!sa->pag)
+ return -ENOENT;
+
+ return xchk_perag_drain_and_lock(sc);
+}
+
+/* Release all the AG btree cursors. */
+void
+xchk_ag_btcur_free(
+ struct xchk_ag *sa)
+{
+ if (sa->refc_cur)
+ xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
+ if (sa->rmap_cur)
+ xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
+ if (sa->fino_cur)
+ xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
+ if (sa->ino_cur)
+ xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
+ if (sa->cnt_cur)
+ xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
+ if (sa->bno_cur)
+ xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
+
+ sa->refc_cur = NULL;
+ sa->rmap_cur = NULL;
+ sa->fino_cur = NULL;
+ sa->ino_cur = NULL;
+ sa->bno_cur = NULL;
+ sa->cnt_cur = NULL;
+}
+
+/* Initialize all the btree cursors for an AG. */
+void
+xchk_ag_btcur_init(
+ struct xfs_scrub *sc,
+ struct xchk_ag *sa)
+{
+ struct xfs_mount *mp = sc->mp;
+
+ if (sa->agf_bp &&
+ xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_BNO)) {
+ /* Set up a bnobt cursor for cross-referencing. */
+ sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
+ sa->pag, XFS_BTNUM_BNO);
+ }
+
+ if (sa->agf_bp &&
+ xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_CNT)) {
+ /* Set up a cntbt cursor for cross-referencing. */
+ sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
+ sa->pag, XFS_BTNUM_CNT);
+ }
+
+ /* Set up a inobt cursor for cross-referencing. */
+ if (sa->agi_bp &&
+ xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_INO)) {
+ sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, sa->agi_bp,
+ XFS_BTNUM_INO);
+ }
+
+ /* Set up a finobt cursor for cross-referencing. */
+ if (sa->agi_bp && xfs_has_finobt(mp) &&
+ xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_FINO)) {
+ sa->fino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, sa->agi_bp,
+ XFS_BTNUM_FINO);
+ }
+
+ /* Set up a rmapbt cursor for cross-referencing. */
+ if (sa->agf_bp && xfs_has_rmapbt(mp) &&
+ xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_RMAP)) {
+ sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
+ sa->pag);
+ }
+
+ /* Set up a refcountbt cursor for cross-referencing. */
+ if (sa->agf_bp && xfs_has_reflink(mp) &&
+ xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_REFC)) {
+ sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
+ sa->agf_bp, sa->pag);
+ }
+}
+
+/* Release the AG header context and btree cursors. */
+void
+xchk_ag_free(
+ struct xfs_scrub *sc,
+ struct xchk_ag *sa)
+{
+ xchk_ag_btcur_free(sa);
+ if (sa->agf_bp) {
+ xfs_trans_brelse(sc->tp, sa->agf_bp);
+ sa->agf_bp = NULL;
+ }
+ if (sa->agi_bp) {
+ xfs_trans_brelse(sc->tp, sa->agi_bp);
+ sa->agi_bp = NULL;
+ }
+ if (sa->pag) {
+ xfs_perag_put(sa->pag);
+ sa->pag = NULL;
+ }
+}
+
+/*
+ * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
+ * order. Locking order requires us to get the AGI before the AGF. We use the
+ * transaction to avoid deadlocking on crosslinked metadata buffers; either the
+ * caller passes one in (bmap scrub) or we have to create a transaction
+ * ourselves. Returns ENOENT if the perag struct cannot be grabbed.
+ */
+int
+xchk_ag_init(
+ struct xfs_scrub *sc,
+ xfs_agnumber_t agno,
+ struct xchk_ag *sa)
+{
+ int error;
+
+ error = xchk_ag_read_headers(sc, agno, sa);
+ if (error)
+ return error;
+
+ xchk_ag_btcur_init(sc, sa);
+ return 0;
+}
+
+/* Per-scrubber setup functions */
+
+void
+xchk_trans_cancel(
+ struct xfs_scrub *sc)
+{
+ xfs_trans_cancel(sc->tp);
+ sc->tp = NULL;
+}
+
+/*
+ * Grab an empty transaction so that we can re-grab locked buffers if
+ * one of our btrees turns out to be cyclic.
+ *
+ * If we're going to repair something, we need to ask for the largest possible
+ * log reservation so that we can handle the worst case scenario for metadata
+ * updates while rebuilding a metadata item. We also need to reserve as many
+ * blocks in the head transaction as we think we're going to need to rebuild
+ * the metadata object.
+ */
+int
+xchk_trans_alloc(
+ struct xfs_scrub *sc,
+ uint resblks)
+{
+ if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
+ return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
+ resblks, 0, 0, &sc->tp);
+
+ return xfs_trans_alloc_empty(sc->mp, &sc->tp);
+}
+
+/* Set us up with a transaction and an empty context. */
+int
+xchk_setup_fs(
+ struct xfs_scrub *sc)
+{
+ uint resblks;
+
+ resblks = xrep_calc_ag_resblks(sc);
+ return xchk_trans_alloc(sc, resblks);
+}
+
+/* Set us up with AG headers and btree cursors. */
+int
+xchk_setup_ag_btree(
+ struct xfs_scrub *sc,
+ bool force_log)
+{
+ struct xfs_mount *mp = sc->mp;
+ int error;
+
+ /*
+ * If the caller asks us to checkpont the log, do so. This
+ * expensive operation should be performed infrequently and only
+ * as a last resort. Any caller that sets force_log should
+ * document why they need to do so.
+ */
+ if (force_log) {
+ error = xchk_checkpoint_log(mp);
+ if (error)
+ return error;
+ }
+
+ error = xchk_setup_fs(sc);
+ if (error)
+ return error;
+
+ return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
+}
+
+/* Push everything out of the log onto disk. */
+int
+xchk_checkpoint_log(
+ struct xfs_mount *mp)
+{
+ int error;
+
+ error = xfs_log_force(mp, XFS_LOG_SYNC);
+ if (error)
+ return error;
+ xfs_ail_push_all_sync(mp->m_ail);
+ return 0;
+}
+
+/* Verify that an inode is allocated ondisk, then return its cached inode. */
+int
+xchk_iget(
+ struct xfs_scrub *sc,
+ xfs_ino_t inum,
+ struct xfs_inode **ipp)
+{
+ return xfs_iget(sc->mp, sc->tp, inum, XFS_IGET_UNTRUSTED, 0, ipp);
+}
+
+/*
+ * Try to grab an inode in a manner that avoids races with physical inode
+ * allocation. If we can't, return the locked AGI buffer so that the caller
+ * can single-step the loading process to see where things went wrong.
+ * Callers must have a valid scrub transaction.
+ *
+ * If the iget succeeds, return 0, a NULL AGI, and the inode.
+ *
+ * If the iget fails, return the error, the locked AGI, and a NULL inode. This
+ * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
+ * no longer allocated; or any other corruption or runtime error.
+ *
+ * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
+ *
+ * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
+ */
+int
+xchk_iget_agi(
+ struct xfs_scrub *sc,
+ xfs_ino_t inum,
+ struct xfs_buf **agi_bpp,
+ struct xfs_inode **ipp)
+{
+ struct xfs_mount *mp = sc->mp;
+ struct xfs_trans *tp = sc->tp;
+ struct xfs_perag *pag;
+ int error;
+
+ ASSERT(sc->tp != NULL);
+
+again:
+ *agi_bpp = NULL;
+ *ipp = NULL;
+ error = 0;
+
+ if (xchk_should_terminate(sc, &error))
+ return error;
+
+ /*
+ * Attach the AGI buffer to the scrub transaction to avoid deadlocks
+ * in the iget cache miss path.
+ */
+ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
+ error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
+ xfs_perag_put(pag);
+ if (error)
+ return error;
+
+ error = xfs_iget(mp, tp, inum,
+ XFS_IGET_NORETRY | XFS_IGET_UNTRUSTED, 0, ipp);
+ if (error == -EAGAIN) {
+ /*
+ * The inode may be in core but temporarily unavailable and may
+ * require the AGI buffer before it can be returned. Drop the
+ * AGI buffer and retry the lookup.
+ *
+ * Incore lookup will fail with EAGAIN on a cache hit if the
+ * inode is queued to the inactivation list. The inactivation
+ * worker may remove the inode from the unlinked list and hence
+ * needs the AGI.
+ *
+ * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
+ * to allow inodegc to make progress and move the inode to
+ * IRECLAIMABLE state where xfs_iget will be able to return it
+ * again if it can lock the inode.
+ */
+ xfs_trans_brelse(tp, *agi_bpp);
+ delay(1);
+ goto again;
+ }
+ if (error)
+ return error;
+
+ /* We got the inode, so we can release the AGI. */
+ ASSERT(*ipp != NULL);
+ xfs_trans_brelse(tp, *agi_bpp);
+ *agi_bpp = NULL;
+ return 0;
+}
+
+/* Install an inode that we opened by handle for scrubbing. */
+int
+xchk_install_handle_inode(
+ struct xfs_scrub *sc,
+ struct xfs_inode *ip)
+{
+ if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
+ xchk_irele(sc, ip);
+ return -ENOENT;
+ }
+
+ sc->ip = ip;
+ return 0;
+}
+
+/*
+ * Install an already-referenced inode for scrubbing. Get our own reference to
+ * the inode to make disposal simpler. The inode must not be in I_FREEING or
+ * I_WILL_FREE state!
+ */
+int
+xchk_install_live_inode(
+ struct xfs_scrub *sc,
+ struct xfs_inode *ip)
+{
+ if (!igrab(VFS_I(ip))) {
+ xchk_ino_set_corrupt(sc, ip->i_ino);
+ return -EFSCORRUPTED;
+ }
+
+ sc->ip = ip;
+ return 0;
+}
+
+/*
+ * In preparation to scrub metadata structures that hang off of an inode,
+ * grab either the inode referenced in the scrub control structure or the
+ * inode passed in. If the inumber does not reference an allocated inode
+ * record, the function returns ENOENT to end the scrub early. The inode
+ * is not locked.
+ */
+int
+xchk_iget_for_scrubbing(
+ struct xfs_scrub *sc)
+{
+ struct xfs_imap imap;
+ struct xfs_mount *mp = sc->mp;
+ struct xfs_perag *pag;
+ struct xfs_buf *agi_bp;
+ struct xfs_inode *ip_in = XFS_I(file_inode(sc->file));
+ struct xfs_inode *ip = NULL;
+ xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
+ int error;
+
+ ASSERT(sc->tp == NULL);
+
+ /* We want to scan the inode we already had opened. */
+ if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
+ return xchk_install_live_inode(sc, ip_in);
+
+ /* Reject internal metadata files and obviously bad inode numbers. */
+ if (xfs_internal_inum(mp, sc->sm->sm_ino))
+ return -ENOENT;
+ if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
+ return -ENOENT;
+
+ /* Try a regular untrusted iget. */
+ error = xchk_iget(sc, sc->sm->sm_ino, &ip);
+ if (!error)
+ return xchk_install_handle_inode(sc, ip);
+ if (error == -ENOENT)
+ return error;
+ if (error != -EINVAL)
+ goto out_error;
+
+ /*
+ * EINVAL with IGET_UNTRUSTED probably means one of several things:
+ * userspace gave us an inode number that doesn't correspond to fs
+ * space; the inode btree lacks a record for this inode; or there is a
+ * record, and it says this inode is free.
+ *
+ * We want to look up this inode in the inobt to distinguish two
+ * scenarios: (1) the inobt says the inode is free, in which case
+ * there's nothing to do; and (2) the inobt says the inode is
+ * allocated, but loading it failed due to corruption.
+ *
+ * Allocate a transaction and grab the AGI to prevent inobt activity
+ * in this AG. Retry the iget in case someone allocated a new inode
+ * after the first iget failed.
+ */
+ error = xchk_trans_alloc(sc, 0);
+ if (error)
+ goto out_error;
+
+ error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
+ if (error == 0) {
+ /* Actually got the inode, so install it. */
+ xchk_trans_cancel(sc);
+ return xchk_install_handle_inode(sc, ip);
+ }
+ if (error == -ENOENT)
+ goto out_gone;
+ if (error != -EINVAL)
+ goto out_cancel;
+
+ /* Ensure that we have protected against inode allocation/freeing. */
+ if (agi_bp == NULL) {
+ ASSERT(agi_bp != NULL);
+ error = -ECANCELED;
+ goto out_cancel;
+ }
+
+ /*
+ * Untrusted iget failed a second time. Let's try an inobt lookup.
+ * If the inobt thinks this the inode neither can exist inside the
+ * filesystem nor is allocated, return ENOENT to signal that the check
+ * can be skipped.
+ *
+ * If the lookup returns corruption, we'll mark this inode corrupt and
+ * exit to userspace. There's little chance of fixing anything until
+ * the inobt is straightened out, but there's nothing we can do here.
+ *
+ * If the lookup encounters any other error, exit to userspace.
+ *
+ * If the lookup succeeds, something else must be very wrong in the fs
+ * such that setting up the incore inode failed in some strange way.
+ * Treat those as corruptions.
+ */
+ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
+ if (!pag) {
+ error = -EFSCORRUPTED;
+ goto out_cancel;
+ }
+
+ error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
+ XFS_IGET_UNTRUSTED);
+ xfs_perag_put(pag);
+ if (error == -EINVAL || error == -ENOENT)
+ goto out_gone;
+ if (!error)
+ error = -EFSCORRUPTED;
+
+out_cancel:
+ xchk_trans_cancel(sc);
+out_error:
+ trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
+ error, __return_address);
+ return error;
+out_gone:
+ /* The file is gone, so there's nothing to check. */
+ xchk_trans_cancel(sc);
+ return -ENOENT;
+}
+
+/* Release an inode, possibly dropping it in the process. */
+void
+xchk_irele(
+ struct xfs_scrub *sc,
+ struct xfs_inode *ip)
+{
+ if (current->journal_info != NULL) {
+ ASSERT(current->journal_info == sc->tp);
+
+ /*
+ * If we are in a transaction, we /cannot/ drop the inode
+ * ourselves, because the VFS will trigger writeback, which
+ * can require a transaction. Clear DONTCACHE to force the
+ * inode to the LRU, where someone else can take care of
+ * dropping it.
+ *
+ * Note that when we grabbed our reference to the inode, it
+ * could have had an active ref and DONTCACHE set if a sysadmin
+ * is trying to coerce a change in file access mode. icache
+ * hits do not clear DONTCACHE, so we must do it here.
+ */
+ spin_lock(&VFS_I(ip)->i_lock);
+ VFS_I(ip)->i_state &= ~I_DONTCACHE;
+ spin_unlock(&VFS_I(ip)->i_lock);
+ } else if (atomic_read(&VFS_I(ip)->i_count) == 1) {
+ /*
+ * If this is the last reference to the inode and the caller
+ * permits it, set DONTCACHE to avoid thrashing.
+ */
+ d_mark_dontcache(VFS_I(ip));
+ }
+
+ xfs_irele(ip);
+}
+
+/*
+ * Set us up to scrub metadata mapped by a file's fork. Callers must not use
+ * this to operate on user-accessible regular file data because the MMAPLOCK is
+ * not taken.
+ */
+int
+xchk_setup_inode_contents(
+ struct xfs_scrub *sc,
+ unsigned int resblks)
+{
+ int error;
+
+ error = xchk_iget_for_scrubbing(sc);
+ if (error)
+ return error;
+
+ /* Lock the inode so the VFS cannot touch this file. */
+ xchk_ilock(sc, XFS_IOLOCK_EXCL);
+
+ error = xchk_trans_alloc(sc, resblks);
+ if (error)
+ goto out;
+ xchk_ilock(sc, XFS_ILOCK_EXCL);
+out:
+ /* scrub teardown will unlock and release the inode for us */
+ return error;
+}
+
+void
+xchk_ilock(
+ struct xfs_scrub *sc,
+ unsigned int ilock_flags)
+{
+ xfs_ilock(sc->ip, ilock_flags);
+ sc->ilock_flags |= ilock_flags;
+}
+
+bool
+xchk_ilock_nowait(
+ struct xfs_scrub *sc,
+ unsigned int ilock_flags)
+{
+ if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
+ sc->ilock_flags |= ilock_flags;
+ return true;
+ }
+
+ return false;
+}
+
+void
+xchk_iunlock(
+ struct xfs_scrub *sc,
+ unsigned int ilock_flags)
+{
+ sc->ilock_flags &= ~ilock_flags;
+ xfs_iunlock(sc->ip, ilock_flags);
+}
+
+/*
+ * Predicate that decides if we need to evaluate the cross-reference check.
+ * If there was an error accessing the cross-reference btree, just delete
+ * the cursor and skip the check.
+ */
+bool
+xchk_should_check_xref(
+ struct xfs_scrub *sc,
+ int *error,
+ struct xfs_btree_cur **curpp)
+{
+ /* No point in xref if we already know we're corrupt. */
+ if (xchk_skip_xref(sc->sm))
+ return false;
+
+ if (*error == 0)
+ return true;
+
+ if (curpp) {
+ /* If we've already given up on xref, just bail out. */
+ if (!*curpp)
+ return false;
+
+ /* xref error, delete cursor and bail out. */
+ xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
+ *curpp = NULL;
+ }
+
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
+ trace_xchk_xref_error(sc, *error, __return_address);
+
+ /*
+ * Errors encountered during cross-referencing with another
+ * data structure should not cause this scrubber to abort.
+ */
+ *error = 0;
+ return false;
+}
+
+/* Run the structure verifiers on in-memory buffers to detect bad memory. */
+void
+xchk_buffer_recheck(
+ struct xfs_scrub *sc,
+ struct xfs_buf *bp)
+{
+ xfs_failaddr_t fa;
+
+ if (bp->b_ops == NULL) {
+ xchk_block_set_corrupt(sc, bp);
+ return;
+ }
+ if (bp->b_ops->verify_struct == NULL) {
+ xchk_set_incomplete(sc);
+ return;
+ }
+ fa = bp->b_ops->verify_struct(bp);
+ if (!fa)
+ return;
+ sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
+ trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
+}
+
+static inline int
+xchk_metadata_inode_subtype(
+ struct xfs_scrub *sc,
+ unsigned int scrub_type)
+{
+ __u32 smtype = sc->sm->sm_type;
+ int error;
+
+ sc->sm->sm_type = scrub_type;
+
+ switch (scrub_type) {
+ case XFS_SCRUB_TYPE_INODE:
+ error = xchk_inode(sc);
+ break;
+ case XFS_SCRUB_TYPE_BMBTD:
+ error = xchk_bmap_data(sc);
+ break;
+ default:
+ ASSERT(0);
+ error = -EFSCORRUPTED;
+ break;
+ }
+
+ sc->sm->sm_type = smtype;
+ return error;
+}
+
+/*
+ * Scrub the attr/data forks of a metadata inode. The metadata inode must be
+ * pointed to by sc->ip and the ILOCK must be held.
+ */
+int
+xchk_metadata_inode_forks(
+ struct xfs_scrub *sc)
+{
+ bool shared;
+ int error;
+
+ if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
+ return 0;
+
+ /* Check the inode record. */
+ error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
+ if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
+ return error;
+
+ /* Metadata inodes don't live on the rt device. */
+ if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
+ xchk_ino_set_corrupt(sc, sc->ip->i_ino);
+ return 0;
+ }
+
+ /* They should never participate in reflink. */
+ if (xfs_is_reflink_inode(sc->ip)) {
+ xchk_ino_set_corrupt(sc, sc->ip->i_ino);
+ return 0;
+ }
+
+ /* They also should never have extended attributes. */
+ if (xfs_inode_hasattr(sc->ip)) {
+ xchk_ino_set_corrupt(sc, sc->ip->i_ino);
+ return 0;
+ }
+
+ /* Invoke the data fork scrubber. */
+ error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
+ if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
+ return error;
+
+ /* Look for incorrect shared blocks. */
+ if (xfs_has_reflink(sc->mp)) {
+ error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
+ &shared);
+ if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
+ &error))
+ return error;
+ if (shared)
+ xchk_ino_set_corrupt(sc, sc->ip->i_ino);
+ }
+
+ return 0;
+}
+
+/*
+ * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
+ * operation. Callers must not hold any locks that intersect with the CPU
+ * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
+ * to change kernel code.
+ */
+void
+xchk_fsgates_enable(
+ struct xfs_scrub *sc,
+ unsigned int scrub_fsgates)
+{
+ ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
+ ASSERT(!(sc->flags & scrub_fsgates));
+
+ trace_xchk_fsgates_enable(sc, scrub_fsgates);
+
+ if (scrub_fsgates & XCHK_FSGATES_DRAIN)
+ xfs_drain_wait_enable();
+
+ sc->flags |= scrub_fsgates;
+}
+
+/*
+ * Decide if this is this a cached inode that's also allocated. The caller
+ * must hold a reference to an AG and the AGI buffer lock to prevent inodes
+ * from being allocated or freed.
+ *
+ * Look up an inode by number in the given file system. If the inode number
+ * is invalid, return -EINVAL. If the inode is not in cache, return -ENODATA.
+ * If the inode is being reclaimed, return -ENODATA because we know the inode
+ * cache cannot be updating the ondisk metadata.
+ *
+ * Otherwise, the incore inode is the one we want, and it is either live,
+ * somewhere in the inactivation machinery, or reclaimable. The inode is
+ * allocated if i_mode is nonzero. In all three cases, the cached inode will
+ * be more up to date than the ondisk inode buffer, so we must use the incore
+ * i_mode.
+ */
+int
+xchk_inode_is_allocated(
+ struct xfs_scrub *sc,
+ xfs_agino_t agino,
+ bool *inuse)
+{
+ struct xfs_mount *mp = sc->mp;
+ struct xfs_perag *pag = sc->sa.pag;
+ xfs_ino_t ino;
+ struct xfs_inode *ip;
+ int error;
+
+ /* caller must hold perag reference */
+ if (pag == NULL) {
+ ASSERT(pag != NULL);
+ return -EINVAL;
+ }
+
+ /* caller must have AGI buffer */
+ if (sc->sa.agi_bp == NULL) {
+ ASSERT(sc->sa.agi_bp != NULL);
+ return -EINVAL;
+ }
+
+ /* reject inode numbers outside existing AGs */
+ ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino);
+ if (!xfs_verify_ino(mp, ino))
+ return -EINVAL;
+
+ error = -ENODATA;
+ rcu_read_lock();
+ ip = radix_tree_lookup(&pag->pag_ici_root, agino);
+ if (!ip) {
+ /* cache miss */
+ goto out_rcu;
+ }
+
+ /*
+ * If the inode number doesn't match, the incore inode got reused
+ * during an RCU grace period and the radix tree hasn't been updated.
+ * This isn't the inode we want.
+ */
+ spin_lock(&ip->i_flags_lock);
+ if (ip->i_ino != ino)
+ goto out_skip;
+
+ trace_xchk_inode_is_allocated(ip);
+
+ /*
+ * We have an incore inode that matches the inode we want, and the
+ * caller holds the perag structure and the AGI buffer. Let's check
+ * our assumptions below:
+ */
+
+#ifdef DEBUG
+ /*
+ * (1) If the incore inode is live (i.e. referenced from the dcache),
+ * it will not be INEW, nor will it be in the inactivation or reclaim
+ * machinery. The ondisk inode had better be allocated. This is the
+ * most trivial case.
+ */
+ if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
+ XFS_INACTIVATING))) {
+ /* live inode */
+ ASSERT(VFS_I(ip)->i_mode != 0);
+ }
+
+ /*
+ * If the incore inode is INEW, there are several possibilities:
+ *
+ * (2) For a file that is being created, note that we allocate the
+ * ondisk inode before allocating, initializing, and adding the incore
+ * inode to the radix tree.
+ *
+ * (3) If the incore inode is being recycled, the inode has to be
+ * allocated because we don't allow freed inodes to be recycled.
+ * Recycling doesn't touch i_mode.
+ */
+ if (ip->i_flags & XFS_INEW) {
+ /* created on disk already or recycling */
+ ASSERT(VFS_I(ip)->i_mode != 0);
+ }
+
+ /*
+ * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
+ * inactivation has not started (!INACTIVATING), it is still allocated.
+ */
+ if ((ip->i_flags & XFS_NEED_INACTIVE) &&
+ !(ip->i_flags & XFS_INACTIVATING)) {
+ /* definitely before difree */
+ ASSERT(VFS_I(ip)->i_mode != 0);
+ }
+#endif
+
+ /*
+ * If the incore inode is undergoing inactivation (INACTIVATING), there
+ * are two possibilities:
+ *
+ * (5) It is before the point where it would get freed ondisk, in which
+ * case i_mode is still nonzero.
+ *
+ * (6) It has already been freed, in which case i_mode is zero.
+ *
+ * We don't take the ILOCK here, but difree and dialloc update the AGI,
+ * and we've taken the AGI buffer lock, which prevents that from
+ * happening.
+ */
+
+ /*
+ * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
+ * reclaim (IRECLAIMABLE) could be allocated or free. i_mode still
+ * reflects the ondisk state.
+ */
+
+ /*
+ * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
+ * the flush code uses i_mode to format the ondisk inode.
+ */
+
+ /*
+ * (9) If the inode is in IRECLAIM and was reachable via the radix
+ * tree, it still has the same i_mode as it did before it entered
+ * reclaim. The inode object is still alive because we hold the RCU
+ * read lock.
+ */
+
+ *inuse = VFS_I(ip)->i_mode != 0;
+ error = 0;
+
+out_skip:
+ spin_unlock(&ip->i_flags_lock);
+out_rcu:
+ rcu_read_unlock();
+ return error;
+}