summaryrefslogtreecommitdiffstats
path: root/rust/kernel/init
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /rust/kernel/init
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'rust/kernel/init')
-rw-r--r--rust/kernel/init/__internal.rs230
-rw-r--r--rust/kernel/init/macros.rs1383
2 files changed, 1613 insertions, 0 deletions
diff --git a/rust/kernel/init/__internal.rs b/rust/kernel/init/__internal.rs
new file mode 100644
index 000000000..db3372619
--- /dev/null
+++ b/rust/kernel/init/__internal.rs
@@ -0,0 +1,230 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
+//! This module contains API-internal items for pin-init.
+//!
+//! These items must not be used outside of
+//! - `kernel/init.rs`
+//! - `macros/pin_data.rs`
+//! - `macros/pinned_drop.rs`
+
+use super::*;
+
+/// See the [nomicon] for what subtyping is. See also [this table].
+///
+/// [nomicon]: https://doc.rust-lang.org/nomicon/subtyping.html
+/// [this table]: https://doc.rust-lang.org/nomicon/phantom-data.html#table-of-phantomdata-patterns
+pub(super) type Invariant<T> = PhantomData<fn(*mut T) -> *mut T>;
+
+/// This is the module-internal type implementing `PinInit` and `Init`. It is unsafe to create this
+/// type, since the closure needs to fulfill the same safety requirement as the
+/// `__pinned_init`/`__init` functions.
+pub(crate) struct InitClosure<F, T: ?Sized, E>(pub(crate) F, pub(crate) Invariant<(E, T)>);
+
+// SAFETY: While constructing the `InitClosure`, the user promised that it upholds the
+// `__init` invariants.
+unsafe impl<T: ?Sized, F, E> Init<T, E> for InitClosure<F, T, E>
+where
+ F: FnOnce(*mut T) -> Result<(), E>,
+{
+ #[inline]
+ unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
+ (self.0)(slot)
+ }
+}
+
+// SAFETY: While constructing the `InitClosure`, the user promised that it upholds the
+// `__pinned_init` invariants.
+unsafe impl<T: ?Sized, F, E> PinInit<T, E> for InitClosure<F, T, E>
+where
+ F: FnOnce(*mut T) -> Result<(), E>,
+{
+ #[inline]
+ unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
+ (self.0)(slot)
+ }
+}
+
+/// This trait is only implemented via the `#[pin_data]` proc-macro. It is used to facilitate
+/// the pin projections within the initializers.
+///
+/// # Safety
+///
+/// Only the `init` module is allowed to use this trait.
+pub unsafe trait HasPinData {
+ type PinData: PinData;
+
+ unsafe fn __pin_data() -> Self::PinData;
+}
+
+/// Marker trait for pinning data of structs.
+///
+/// # Safety
+///
+/// Only the `init` module is allowed to use this trait.
+pub unsafe trait PinData: Copy {
+ type Datee: ?Sized + HasPinData;
+
+ /// Type inference helper function.
+ fn make_closure<F, O, E>(self, f: F) -> F
+ where
+ F: FnOnce(*mut Self::Datee) -> Result<O, E>,
+ {
+ f
+ }
+}
+
+/// This trait is automatically implemented for every type. It aims to provide the same type
+/// inference help as `HasPinData`.
+///
+/// # Safety
+///
+/// Only the `init` module is allowed to use this trait.
+pub unsafe trait HasInitData {
+ type InitData: InitData;
+
+ unsafe fn __init_data() -> Self::InitData;
+}
+
+/// Same function as `PinData`, but for arbitrary data.
+///
+/// # Safety
+///
+/// Only the `init` module is allowed to use this trait.
+pub unsafe trait InitData: Copy {
+ type Datee: ?Sized + HasInitData;
+
+ /// Type inference helper function.
+ fn make_closure<F, O, E>(self, f: F) -> F
+ where
+ F: FnOnce(*mut Self::Datee) -> Result<O, E>,
+ {
+ f
+ }
+}
+
+pub struct AllData<T: ?Sized>(PhantomData<fn(Box<T>) -> Box<T>>);
+
+impl<T: ?Sized> Clone for AllData<T> {
+ fn clone(&self) -> Self {
+ *self
+ }
+}
+
+impl<T: ?Sized> Copy for AllData<T> {}
+
+unsafe impl<T: ?Sized> InitData for AllData<T> {
+ type Datee = T;
+}
+
+unsafe impl<T: ?Sized> HasInitData for T {
+ type InitData = AllData<T>;
+
+ unsafe fn __init_data() -> Self::InitData {
+ AllData(PhantomData)
+ }
+}
+
+/// Stack initializer helper type. Use [`stack_pin_init`] instead of this primitive.
+///
+/// # Invariants
+///
+/// If `self.is_init` is true, then `self.value` is initialized.
+///
+/// [`stack_pin_init`]: kernel::stack_pin_init
+pub struct StackInit<T> {
+ value: MaybeUninit<T>,
+ is_init: bool,
+}
+
+impl<T> Drop for StackInit<T> {
+ #[inline]
+ fn drop(&mut self) {
+ if self.is_init {
+ // SAFETY: As we are being dropped, we only call this once. And since `self.is_init` is
+ // true, `self.value` is initialized.
+ unsafe { self.value.assume_init_drop() };
+ }
+ }
+}
+
+impl<T> StackInit<T> {
+ /// Creates a new [`StackInit<T>`] that is uninitialized. Use [`stack_pin_init`] instead of this
+ /// primitive.
+ ///
+ /// [`stack_pin_init`]: kernel::stack_pin_init
+ #[inline]
+ pub fn uninit() -> Self {
+ Self {
+ value: MaybeUninit::uninit(),
+ is_init: false,
+ }
+ }
+
+ /// Initializes the contents and returns the result.
+ #[inline]
+ pub fn init<E>(self: Pin<&mut Self>, init: impl PinInit<T, E>) -> Result<Pin<&mut T>, E> {
+ // SAFETY: We never move out of `this`.
+ let this = unsafe { Pin::into_inner_unchecked(self) };
+ // The value is currently initialized, so it needs to be dropped before we can reuse
+ // the memory (this is a safety guarantee of `Pin`).
+ if this.is_init {
+ this.is_init = false;
+ // SAFETY: `this.is_init` was true and therefore `this.value` is initialized.
+ unsafe { this.value.assume_init_drop() };
+ }
+ // SAFETY: The memory slot is valid and this type ensures that it will stay pinned.
+ unsafe { init.__pinned_init(this.value.as_mut_ptr())? };
+ // INVARIANT: `this.value` is initialized above.
+ this.is_init = true;
+ // SAFETY: The slot is now pinned, since we will never give access to `&mut T`.
+ Ok(unsafe { Pin::new_unchecked(this.value.assume_init_mut()) })
+ }
+}
+
+/// When a value of this type is dropped, it drops a `T`.
+///
+/// Can be forgotten to prevent the drop.
+pub struct DropGuard<T: ?Sized> {
+ ptr: *mut T,
+}
+
+impl<T: ?Sized> DropGuard<T> {
+ /// Creates a new [`DropGuard<T>`]. It will [`ptr::drop_in_place`] `ptr` when it gets dropped.
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must be a valid pointer.
+ ///
+ /// It is the callers responsibility that `self` will only get dropped if the pointee of `ptr`:
+ /// - has not been dropped,
+ /// - is not accessible by any other means,
+ /// - will not be dropped by any other means.
+ #[inline]
+ pub unsafe fn new(ptr: *mut T) -> Self {
+ Self { ptr }
+ }
+}
+
+impl<T: ?Sized> Drop for DropGuard<T> {
+ #[inline]
+ fn drop(&mut self) {
+ // SAFETY: A `DropGuard` can only be constructed using the unsafe `new` function
+ // ensuring that this operation is safe.
+ unsafe { ptr::drop_in_place(self.ptr) }
+ }
+}
+
+/// Token used by `PinnedDrop` to prevent calling the function without creating this unsafely
+/// created struct. This is needed, because the `drop` function is safe, but should not be called
+/// manually.
+pub struct OnlyCallFromDrop(());
+
+impl OnlyCallFromDrop {
+ /// # Safety
+ ///
+ /// This function should only be called from the [`Drop::drop`] function and only be used to
+ /// delegate the destruction to the pinned destructor [`PinnedDrop::drop`] of the same type.
+ pub unsafe fn new() -> Self {
+ Self(())
+ }
+}
diff --git a/rust/kernel/init/macros.rs b/rust/kernel/init/macros.rs
new file mode 100644
index 000000000..cb6e61b6c
--- /dev/null
+++ b/rust/kernel/init/macros.rs
@@ -0,0 +1,1383 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
+//! This module provides the macros that actually implement the proc-macros `pin_data` and
+//! `pinned_drop`. It also contains `__init_internal` the implementation of the `{try_}{pin_}init!`
+//! macros.
+//!
+//! These macros should never be called directly, since they expect their input to be
+//! in a certain format which is internal. If used incorrectly, these macros can lead to UB even in
+//! safe code! Use the public facing macros instead.
+//!
+//! This architecture has been chosen because the kernel does not yet have access to `syn` which
+//! would make matters a lot easier for implementing these as proc-macros.
+//!
+//! # Macro expansion example
+//!
+//! This section is intended for readers trying to understand the macros in this module and the
+//! `pin_init!` macros from `init.rs`.
+//!
+//! We will look at the following example:
+//!
+//! ```rust,ignore
+//! # use kernel::init::*;
+//! # use core::pin::Pin;
+//! #[pin_data]
+//! #[repr(C)]
+//! struct Bar<T> {
+//! #[pin]
+//! t: T,
+//! pub x: usize,
+//! }
+//!
+//! impl<T> Bar<T> {
+//! fn new(t: T) -> impl PinInit<Self> {
+//! pin_init!(Self { t, x: 0 })
+//! }
+//! }
+//!
+//! #[pin_data(PinnedDrop)]
+//! struct Foo {
+//! a: usize,
+//! #[pin]
+//! b: Bar<u32>,
+//! }
+//!
+//! #[pinned_drop]
+//! impl PinnedDrop for Foo {
+//! fn drop(self: Pin<&mut Self>) {
+//! pr_info!("{self:p} is getting dropped.");
+//! }
+//! }
+//!
+//! let a = 42;
+//! let initializer = pin_init!(Foo {
+//! a,
+//! b <- Bar::new(36),
+//! });
+//! ```
+//!
+//! This example includes the most common and important features of the pin-init API.
+//!
+//! Below you can find individual section about the different macro invocations. Here are some
+//! general things we need to take into account when designing macros:
+//! - use global paths, similarly to file paths, these start with the separator: `::core::panic!()`
+//! this ensures that the correct item is used, since users could define their own `mod core {}`
+//! and then their own `panic!` inside to execute arbitrary code inside of our macro.
+//! - macro `unsafe` hygiene: we need to ensure that we do not expand arbitrary, user-supplied
+//! expressions inside of an `unsafe` block in the macro, because this would allow users to do
+//! `unsafe` operations without an associated `unsafe` block.
+//!
+//! ## `#[pin_data]` on `Bar`
+//!
+//! This macro is used to specify which fields are structurally pinned and which fields are not. It
+//! is placed on the struct definition and allows `#[pin]` to be placed on the fields.
+//!
+//! Here is the definition of `Bar` from our example:
+//!
+//! ```rust,ignore
+//! # use kernel::init::*;
+//! #[pin_data]
+//! #[repr(C)]
+//! struct Bar<T> {
+//! #[pin]
+//! t: T,
+//! pub x: usize,
+//! }
+//! ```
+//!
+//! This expands to the following code:
+//!
+//! ```rust,ignore
+//! // Firstly the normal definition of the struct, attributes are preserved:
+//! #[repr(C)]
+//! struct Bar<T> {
+//! t: T,
+//! pub x: usize,
+//! }
+//! // Then an anonymous constant is defined, this is because we do not want any code to access the
+//! // types that we define inside:
+//! const _: () = {
+//! // We define the pin-data carrying struct, it is a ZST and needs to have the same generics,
+//! // since we need to implement access functions for each field and thus need to know its
+//! // type.
+//! struct __ThePinData<T> {
+//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>,
+//! }
+//! // We implement `Copy` for the pin-data struct, since all functions it defines will take
+//! // `self` by value.
+//! impl<T> ::core::clone::Clone for __ThePinData<T> {
+//! fn clone(&self) -> Self {
+//! *self
+//! }
+//! }
+//! impl<T> ::core::marker::Copy for __ThePinData<T> {}
+//! // For every field of `Bar`, the pin-data struct will define a function with the same name
+//! // and accessor (`pub` or `pub(crate)` etc.). This function will take a pointer to the
+//! // field (`slot`) and a `PinInit` or `Init` depending on the projection kind of the field
+//! // (if pinning is structural for the field, then `PinInit` otherwise `Init`).
+//! #[allow(dead_code)]
+//! impl<T> __ThePinData<T> {
+//! unsafe fn t<E>(
+//! self,
+//! slot: *mut T,
+//! // Since `t` is `#[pin]`, this is `PinInit`.
+//! init: impl ::kernel::init::PinInit<T, E>,
+//! ) -> ::core::result::Result<(), E> {
+//! unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) }
+//! }
+//! pub unsafe fn x<E>(
+//! self,
+//! slot: *mut usize,
+//! // Since `x` is not `#[pin]`, this is `Init`.
+//! init: impl ::kernel::init::Init<usize, E>,
+//! ) -> ::core::result::Result<(), E> {
+//! unsafe { ::kernel::init::Init::__init(init, slot) }
+//! }
+//! }
+//! // Implement the internal `HasPinData` trait that associates `Bar` with the pin-data struct
+//! // that we constructed above.
+//! unsafe impl<T> ::kernel::init::__internal::HasPinData for Bar<T> {
+//! type PinData = __ThePinData<T>;
+//! unsafe fn __pin_data() -> Self::PinData {
+//! __ThePinData {
+//! __phantom: ::core::marker::PhantomData,
+//! }
+//! }
+//! }
+//! // Implement the internal `PinData` trait that marks the pin-data struct as a pin-data
+//! // struct. This is important to ensure that no user can implement a rouge `__pin_data`
+//! // function without using `unsafe`.
+//! unsafe impl<T> ::kernel::init::__internal::PinData for __ThePinData<T> {
+//! type Datee = Bar<T>;
+//! }
+//! // Now we only want to implement `Unpin` for `Bar` when every structurally pinned field is
+//! // `Unpin`. In other words, whether `Bar` is `Unpin` only depends on structurally pinned
+//! // fields (those marked with `#[pin]`). These fields will be listed in this struct, in our
+//! // case no such fields exist, hence this is almost empty. The two phantomdata fields exist
+//! // for two reasons:
+//! // - `__phantom`: every generic must be used, since we cannot really know which generics
+//! // are used, we declere all and then use everything here once.
+//! // - `__phantom_pin`: uses the `'__pin` lifetime and ensures that this struct is invariant
+//! // over it. The lifetime is needed to work around the limitation that trait bounds must
+//! // not be trivial, e.g. the user has a `#[pin] PhantomPinned` field -- this is
+//! // unconditionally `!Unpin` and results in an error. The lifetime tricks the compiler
+//! // into accepting these bounds regardless.
+//! #[allow(dead_code)]
+//! struct __Unpin<'__pin, T> {
+//! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
+//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>,
+//! // Our only `#[pin]` field is `t`.
+//! t: T,
+//! }
+//! #[doc(hidden)]
+//! impl<'__pin, T> ::core::marker::Unpin for Bar<T>
+//! where
+//! __Unpin<'__pin, T>: ::core::marker::Unpin,
+//! {}
+//! // Now we need to ensure that `Bar` does not implement `Drop`, since that would give users
+//! // access to `&mut self` inside of `drop` even if the struct was pinned. This could lead to
+//! // UB with only safe code, so we disallow this by giving a trait implementation error using
+//! // a direct impl and a blanket implementation.
+//! trait MustNotImplDrop {}
+//! // Normally `Drop` bounds do not have the correct semantics, but for this purpose they do
+//! // (normally people want to know if a type has any kind of drop glue at all, here we want
+//! // to know if it has any kind of custom drop glue, which is exactly what this bound does).
+//! #[allow(drop_bounds)]
+//! impl<T: ::core::ops::Drop> MustNotImplDrop for T {}
+//! impl<T> MustNotImplDrop for Bar<T> {}
+//! // Here comes a convenience check, if one implemented `PinnedDrop`, but forgot to add it to
+//! // `#[pin_data]`, then this will error with the same mechanic as above, this is not needed
+//! // for safety, but a good sanity check, since no normal code calls `PinnedDrop::drop`.
+//! #[allow(non_camel_case_types)]
+//! trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {}
+//! impl<
+//! T: ::kernel::init::PinnedDrop,
+//! > UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {}
+//! impl<T> UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for Bar<T> {}
+//! };
+//! ```
+//!
+//! ## `pin_init!` in `impl Bar`
+//!
+//! This macro creates an pin-initializer for the given struct. It requires that the struct is
+//! annotated by `#[pin_data]`.
+//!
+//! Here is the impl on `Bar` defining the new function:
+//!
+//! ```rust,ignore
+//! impl<T> Bar<T> {
+//! fn new(t: T) -> impl PinInit<Self> {
+//! pin_init!(Self { t, x: 0 })
+//! }
+//! }
+//! ```
+//!
+//! This expands to the following code:
+//!
+//! ```rust,ignore
+//! impl<T> Bar<T> {
+//! fn new(t: T) -> impl PinInit<Self> {
+//! {
+//! // We do not want to allow arbitrary returns, so we declare this type as the `Ok`
+//! // return type and shadow it later when we insert the arbitrary user code. That way
+//! // there will be no possibility of returning without `unsafe`.
+//! struct __InitOk;
+//! // Get the data about fields from the supplied type.
+//! // - the function is unsafe, hence the unsafe block
+//! // - we `use` the `HasPinData` trait in the block, it is only available in that
+//! // scope.
+//! let data = unsafe {
+//! use ::kernel::init::__internal::HasPinData;
+//! Self::__pin_data()
+//! };
+//! // Ensure that `data` really is of type `PinData` and help with type inference:
+//! let init = ::kernel::init::__internal::PinData::make_closure::<
+//! _,
+//! __InitOk,
+//! ::core::convert::Infallible,
+//! >(data, move |slot| {
+//! {
+//! // Shadow the structure so it cannot be used to return early. If a user
+//! // tries to write `return Ok(__InitOk)`, then they get a type error,
+//! // since that will refer to this struct instead of the one defined
+//! // above.
+//! struct __InitOk;
+//! // This is the expansion of `t,`, which is syntactic sugar for `t: t,`.
+//! {
+//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).t), t) };
+//! }
+//! // Since initialization could fail later (not in this case, since the
+//! // error type is `Infallible`) we will need to drop this field if there
+//! // is an error later. This `DropGuard` will drop the field when it gets
+//! // dropped and has not yet been forgotten.
+//! let t = unsafe {
+//! ::pinned_init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).t))
+//! };
+//! // Expansion of `x: 0,`:
+//! // Since this can be an arbitrary expression we cannot place it inside
+//! // of the `unsafe` block, so we bind it here.
+//! {
+//! let x = 0;
+//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).x), x) };
+//! }
+//! // We again create a `DropGuard`.
+//! let x = unsafe {
+//! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).x))
+//! };
+//! // Since initialization has successfully completed, we can now forget
+//! // the guards. This is not `mem::forget`, since we only have
+//! // `&DropGuard`.
+//! ::core::mem::forget(x);
+//! ::core::mem::forget(t);
+//! // Here we use the type checker to ensure that every field has been
+//! // initialized exactly once, since this is `if false` it will never get
+//! // executed, but still type-checked.
+//! // Additionally we abuse `slot` to automatically infer the correct type
+//! // for the struct. This is also another check that every field is
+//! // accessible from this scope.
+//! #[allow(unreachable_code, clippy::diverging_sub_expression)]
+//! let _ = || {
+//! unsafe {
+//! ::core::ptr::write(
+//! slot,
+//! Self {
+//! // We only care about typecheck finding every field
+//! // here, the expression does not matter, just conjure
+//! // one using `panic!()`:
+//! t: ::core::panic!(),
+//! x: ::core::panic!(),
+//! },
+//! );
+//! };
+//! };
+//! }
+//! // We leave the scope above and gain access to the previously shadowed
+//! // `__InitOk` that we need to return.
+//! Ok(__InitOk)
+//! });
+//! // Change the return type from `__InitOk` to `()`.
+//! let init = move |
+//! slot,
+//! | -> ::core::result::Result<(), ::core::convert::Infallible> {
+//! init(slot).map(|__InitOk| ())
+//! };
+//! // Construct the initializer.
+//! let init = unsafe {
+//! ::kernel::init::pin_init_from_closure::<
+//! _,
+//! ::core::convert::Infallible,
+//! >(init)
+//! };
+//! init
+//! }
+//! }
+//! }
+//! ```
+//!
+//! ## `#[pin_data]` on `Foo`
+//!
+//! Since we already took a look at `#[pin_data]` on `Bar`, this section will only explain the
+//! differences/new things in the expansion of the `Foo` definition:
+//!
+//! ```rust,ignore
+//! #[pin_data(PinnedDrop)]
+//! struct Foo {
+//! a: usize,
+//! #[pin]
+//! b: Bar<u32>,
+//! }
+//! ```
+//!
+//! This expands to the following code:
+//!
+//! ```rust,ignore
+//! struct Foo {
+//! a: usize,
+//! b: Bar<u32>,
+//! }
+//! const _: () = {
+//! struct __ThePinData {
+//! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>,
+//! }
+//! impl ::core::clone::Clone for __ThePinData {
+//! fn clone(&self) -> Self {
+//! *self
+//! }
+//! }
+//! impl ::core::marker::Copy for __ThePinData {}
+//! #[allow(dead_code)]
+//! impl __ThePinData {
+//! unsafe fn b<E>(
+//! self,
+//! slot: *mut Bar<u32>,
+//! init: impl ::kernel::init::PinInit<Bar<u32>, E>,
+//! ) -> ::core::result::Result<(), E> {
+//! unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) }
+//! }
+//! unsafe fn a<E>(
+//! self,
+//! slot: *mut usize,
+//! init: impl ::kernel::init::Init<usize, E>,
+//! ) -> ::core::result::Result<(), E> {
+//! unsafe { ::kernel::init::Init::__init(init, slot) }
+//! }
+//! }
+//! unsafe impl ::kernel::init::__internal::HasPinData for Foo {
+//! type PinData = __ThePinData;
+//! unsafe fn __pin_data() -> Self::PinData {
+//! __ThePinData {
+//! __phantom: ::core::marker::PhantomData,
+//! }
+//! }
+//! }
+//! unsafe impl ::kernel::init::__internal::PinData for __ThePinData {
+//! type Datee = Foo;
+//! }
+//! #[allow(dead_code)]
+//! struct __Unpin<'__pin> {
+//! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
+//! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>,
+//! b: Bar<u32>,
+//! }
+//! #[doc(hidden)]
+//! impl<'__pin> ::core::marker::Unpin for Foo
+//! where
+//! __Unpin<'__pin>: ::core::marker::Unpin,
+//! {}
+//! // Since we specified `PinnedDrop` as the argument to `#[pin_data]`, we expect `Foo` to
+//! // implement `PinnedDrop`. Thus we do not need to prevent `Drop` implementations like
+//! // before, instead we implement `Drop` here and delegate to `PinnedDrop`.
+//! impl ::core::ops::Drop for Foo {
+//! fn drop(&mut self) {
+//! // Since we are getting dropped, no one else has a reference to `self` and thus we
+//! // can assume that we never move.
+//! let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) };
+//! // Create the unsafe token that proves that we are inside of a destructor, this
+//! // type is only allowed to be created in a destructor.
+//! let token = unsafe { ::kernel::init::__internal::OnlyCallFromDrop::new() };
+//! ::kernel::init::PinnedDrop::drop(pinned, token);
+//! }
+//! }
+//! };
+//! ```
+//!
+//! ## `#[pinned_drop]` on `impl PinnedDrop for Foo`
+//!
+//! This macro is used to implement the `PinnedDrop` trait, since that trait is `unsafe` and has an
+//! extra parameter that should not be used at all. The macro hides that parameter.
+//!
+//! Here is the `PinnedDrop` impl for `Foo`:
+//!
+//! ```rust,ignore
+//! #[pinned_drop]
+//! impl PinnedDrop for Foo {
+//! fn drop(self: Pin<&mut Self>) {
+//! pr_info!("{self:p} is getting dropped.");
+//! }
+//! }
+//! ```
+//!
+//! This expands to the following code:
+//!
+//! ```rust,ignore
+//! // `unsafe`, full path and the token parameter are added, everything else stays the same.
+//! unsafe impl ::kernel::init::PinnedDrop for Foo {
+//! fn drop(self: Pin<&mut Self>, _: ::kernel::init::__internal::OnlyCallFromDrop) {
+//! pr_info!("{self:p} is getting dropped.");
+//! }
+//! }
+//! ```
+//!
+//! ## `pin_init!` on `Foo`
+//!
+//! Since we already took a look at `pin_init!` on `Bar`, this section will only show the expansion
+//! of `pin_init!` on `Foo`:
+//!
+//! ```rust,ignore
+//! let a = 42;
+//! let initializer = pin_init!(Foo {
+//! a,
+//! b <- Bar::new(36),
+//! });
+//! ```
+//!
+//! This expands to the following code:
+//!
+//! ```rust,ignore
+//! let a = 42;
+//! let initializer = {
+//! struct __InitOk;
+//! let data = unsafe {
+//! use ::kernel::init::__internal::HasPinData;
+//! Foo::__pin_data()
+//! };
+//! let init = ::kernel::init::__internal::PinData::make_closure::<
+//! _,
+//! __InitOk,
+//! ::core::convert::Infallible,
+//! >(data, move |slot| {
+//! {
+//! struct __InitOk;
+//! {
+//! unsafe { ::core::ptr::write(::core::addr_of_mut!((*slot).a), a) };
+//! }
+//! let a = unsafe {
+//! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).a))
+//! };
+//! let init = Bar::new(36);
+//! unsafe { data.b(::core::addr_of_mut!((*slot).b), b)? };
+//! let b = unsafe {
+//! ::kernel::init::__internal::DropGuard::new(::core::addr_of_mut!((*slot).b))
+//! };
+//! ::core::mem::forget(b);
+//! ::core::mem::forget(a);
+//! #[allow(unreachable_code, clippy::diverging_sub_expression)]
+//! let _ = || {
+//! unsafe {
+//! ::core::ptr::write(
+//! slot,
+//! Foo {
+//! a: ::core::panic!(),
+//! b: ::core::panic!(),
+//! },
+//! );
+//! };
+//! };
+//! }
+//! Ok(__InitOk)
+//! });
+//! let init = move |
+//! slot,
+//! | -> ::core::result::Result<(), ::core::convert::Infallible> {
+//! init(slot).map(|__InitOk| ())
+//! };
+//! let init = unsafe {
+//! ::kernel::init::pin_init_from_closure::<_, ::core::convert::Infallible>(init)
+//! };
+//! init
+//! };
+//! ```
+
+/// Creates a `unsafe impl<...> PinnedDrop for $type` block.
+///
+/// See [`PinnedDrop`] for more information.
+#[doc(hidden)]
+#[macro_export]
+macro_rules! __pinned_drop {
+ (
+ @impl_sig($($impl_sig:tt)*),
+ @impl_body(
+ $(#[$($attr:tt)*])*
+ fn drop($($sig:tt)*) {
+ $($inner:tt)*
+ }
+ ),
+ ) => {
+ unsafe $($impl_sig)* {
+ // Inherit all attributes and the type/ident tokens for the signature.
+ $(#[$($attr)*])*
+ fn drop($($sig)*, _: $crate::init::__internal::OnlyCallFromDrop) {
+ $($inner)*
+ }
+ }
+ }
+}
+
+/// This macro first parses the struct definition such that it separates pinned and not pinned
+/// fields. Afterwards it declares the struct and implement the `PinData` trait safely.
+#[doc(hidden)]
+#[macro_export]
+macro_rules! __pin_data {
+ // Proc-macro entry point, this is supplied by the proc-macro pre-parsing.
+ (parse_input:
+ @args($($pinned_drop:ident)?),
+ @sig(
+ $(#[$($struct_attr:tt)*])*
+ $vis:vis struct $name:ident
+ $(where $($whr:tt)*)?
+ ),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @body({ $($fields:tt)* }),
+ ) => {
+ // We now use token munching to iterate through all of the fields. While doing this we
+ // identify fields marked with `#[pin]`, these fields are the 'pinned fields'. The user
+ // wants these to be structurally pinned. The rest of the fields are the
+ // 'not pinned fields'. Additionally we collect all fields, since we need them in the right
+ // order to declare the struct.
+ //
+ // In this call we also put some explaining comments for the parameters.
+ $crate::__pin_data!(find_pinned_fields:
+ // Attributes on the struct itself, these will just be propagated to be put onto the
+ // struct definition.
+ @struct_attrs($(#[$($struct_attr)*])*),
+ // The visibility of the struct.
+ @vis($vis),
+ // The name of the struct.
+ @name($name),
+ // The 'impl generics', the generics that will need to be specified on the struct inside
+ // of an `impl<$ty_generics>` block.
+ @impl_generics($($impl_generics)*),
+ // The 'ty generics', the generics that will need to be specified on the impl blocks.
+ @ty_generics($($ty_generics)*),
+ // The where clause of any impl block and the declaration.
+ @where($($($whr)*)?),
+ // The remaining fields tokens that need to be processed.
+ // We add a `,` at the end to ensure correct parsing.
+ @fields_munch($($fields)* ,),
+ // The pinned fields.
+ @pinned(),
+ // The not pinned fields.
+ @not_pinned(),
+ // All fields.
+ @fields(),
+ // The accumulator containing all attributes already parsed.
+ @accum(),
+ // Contains `yes` or `` to indicate if `#[pin]` was found on the current field.
+ @is_pinned(),
+ // The proc-macro argument, this should be `PinnedDrop` or ``.
+ @pinned_drop($($pinned_drop)?),
+ );
+ };
+ (find_pinned_fields:
+ @struct_attrs($($struct_attrs:tt)*),
+ @vis($vis:vis),
+ @name($name:ident),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @where($($whr:tt)*),
+ // We found a PhantomPinned field, this should generally be pinned!
+ @fields_munch($field:ident : $($($(::)?core::)?marker::)?PhantomPinned, $($rest:tt)*),
+ @pinned($($pinned:tt)*),
+ @not_pinned($($not_pinned:tt)*),
+ @fields($($fields:tt)*),
+ @accum($($accum:tt)*),
+ // This field is not pinned.
+ @is_pinned(),
+ @pinned_drop($($pinned_drop:ident)?),
+ ) => {
+ ::core::compile_error!(concat!(
+ "The field `",
+ stringify!($field),
+ "` of type `PhantomPinned` only has an effect, if it has the `#[pin]` attribute.",
+ ));
+ $crate::__pin_data!(find_pinned_fields:
+ @struct_attrs($($struct_attrs)*),
+ @vis($vis),
+ @name($name),
+ @impl_generics($($impl_generics)*),
+ @ty_generics($($ty_generics)*),
+ @where($($whr)*),
+ @fields_munch($($rest)*),
+ @pinned($($pinned)* $($accum)* $field: ::core::marker::PhantomPinned,),
+ @not_pinned($($not_pinned)*),
+ @fields($($fields)* $($accum)* $field: ::core::marker::PhantomPinned,),
+ @accum(),
+ @is_pinned(),
+ @pinned_drop($($pinned_drop)?),
+ );
+ };
+ (find_pinned_fields:
+ @struct_attrs($($struct_attrs:tt)*),
+ @vis($vis:vis),
+ @name($name:ident),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @where($($whr:tt)*),
+ // We reached the field declaration.
+ @fields_munch($field:ident : $type:ty, $($rest:tt)*),
+ @pinned($($pinned:tt)*),
+ @not_pinned($($not_pinned:tt)*),
+ @fields($($fields:tt)*),
+ @accum($($accum:tt)*),
+ // This field is pinned.
+ @is_pinned(yes),
+ @pinned_drop($($pinned_drop:ident)?),
+ ) => {
+ $crate::__pin_data!(find_pinned_fields:
+ @struct_attrs($($struct_attrs)*),
+ @vis($vis),
+ @name($name),
+ @impl_generics($($impl_generics)*),
+ @ty_generics($($ty_generics)*),
+ @where($($whr)*),
+ @fields_munch($($rest)*),
+ @pinned($($pinned)* $($accum)* $field: $type,),
+ @not_pinned($($not_pinned)*),
+ @fields($($fields)* $($accum)* $field: $type,),
+ @accum(),
+ @is_pinned(),
+ @pinned_drop($($pinned_drop)?),
+ );
+ };
+ (find_pinned_fields:
+ @struct_attrs($($struct_attrs:tt)*),
+ @vis($vis:vis),
+ @name($name:ident),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @where($($whr:tt)*),
+ // We reached the field declaration.
+ @fields_munch($field:ident : $type:ty, $($rest:tt)*),
+ @pinned($($pinned:tt)*),
+ @not_pinned($($not_pinned:tt)*),
+ @fields($($fields:tt)*),
+ @accum($($accum:tt)*),
+ // This field is not pinned.
+ @is_pinned(),
+ @pinned_drop($($pinned_drop:ident)?),
+ ) => {
+ $crate::__pin_data!(find_pinned_fields:
+ @struct_attrs($($struct_attrs)*),
+ @vis($vis),
+ @name($name),
+ @impl_generics($($impl_generics)*),
+ @ty_generics($($ty_generics)*),
+ @where($($whr)*),
+ @fields_munch($($rest)*),
+ @pinned($($pinned)*),
+ @not_pinned($($not_pinned)* $($accum)* $field: $type,),
+ @fields($($fields)* $($accum)* $field: $type,),
+ @accum(),
+ @is_pinned(),
+ @pinned_drop($($pinned_drop)?),
+ );
+ };
+ (find_pinned_fields:
+ @struct_attrs($($struct_attrs:tt)*),
+ @vis($vis:vis),
+ @name($name:ident),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @where($($whr:tt)*),
+ // We found the `#[pin]` attr.
+ @fields_munch(#[pin] $($rest:tt)*),
+ @pinned($($pinned:tt)*),
+ @not_pinned($($not_pinned:tt)*),
+ @fields($($fields:tt)*),
+ @accum($($accum:tt)*),
+ @is_pinned($($is_pinned:ident)?),
+ @pinned_drop($($pinned_drop:ident)?),
+ ) => {
+ $crate::__pin_data!(find_pinned_fields:
+ @struct_attrs($($struct_attrs)*),
+ @vis($vis),
+ @name($name),
+ @impl_generics($($impl_generics)*),
+ @ty_generics($($ty_generics)*),
+ @where($($whr)*),
+ @fields_munch($($rest)*),
+ // We do not include `#[pin]` in the list of attributes, since it is not actually an
+ // attribute that is defined somewhere.
+ @pinned($($pinned)*),
+ @not_pinned($($not_pinned)*),
+ @fields($($fields)*),
+ @accum($($accum)*),
+ // Set this to `yes`.
+ @is_pinned(yes),
+ @pinned_drop($($pinned_drop)?),
+ );
+ };
+ (find_pinned_fields:
+ @struct_attrs($($struct_attrs:tt)*),
+ @vis($vis:vis),
+ @name($name:ident),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @where($($whr:tt)*),
+ // We reached the field declaration with visibility, for simplicity we only munch the
+ // visibility and put it into `$accum`.
+ @fields_munch($fvis:vis $field:ident $($rest:tt)*),
+ @pinned($($pinned:tt)*),
+ @not_pinned($($not_pinned:tt)*),
+ @fields($($fields:tt)*),
+ @accum($($accum:tt)*),
+ @is_pinned($($is_pinned:ident)?),
+ @pinned_drop($($pinned_drop:ident)?),
+ ) => {
+ $crate::__pin_data!(find_pinned_fields:
+ @struct_attrs($($struct_attrs)*),
+ @vis($vis),
+ @name($name),
+ @impl_generics($($impl_generics)*),
+ @ty_generics($($ty_generics)*),
+ @where($($whr)*),
+ @fields_munch($field $($rest)*),
+ @pinned($($pinned)*),
+ @not_pinned($($not_pinned)*),
+ @fields($($fields)*),
+ @accum($($accum)* $fvis),
+ @is_pinned($($is_pinned)?),
+ @pinned_drop($($pinned_drop)?),
+ );
+ };
+ (find_pinned_fields:
+ @struct_attrs($($struct_attrs:tt)*),
+ @vis($vis:vis),
+ @name($name:ident),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @where($($whr:tt)*),
+ // Some other attribute, just put it into `$accum`.
+ @fields_munch(#[$($attr:tt)*] $($rest:tt)*),
+ @pinned($($pinned:tt)*),
+ @not_pinned($($not_pinned:tt)*),
+ @fields($($fields:tt)*),
+ @accum($($accum:tt)*),
+ @is_pinned($($is_pinned:ident)?),
+ @pinned_drop($($pinned_drop:ident)?),
+ ) => {
+ $crate::__pin_data!(find_pinned_fields:
+ @struct_attrs($($struct_attrs)*),
+ @vis($vis),
+ @name($name),
+ @impl_generics($($impl_generics)*),
+ @ty_generics($($ty_generics)*),
+ @where($($whr)*),
+ @fields_munch($($rest)*),
+ @pinned($($pinned)*),
+ @not_pinned($($not_pinned)*),
+ @fields($($fields)*),
+ @accum($($accum)* #[$($attr)*]),
+ @is_pinned($($is_pinned)?),
+ @pinned_drop($($pinned_drop)?),
+ );
+ };
+ (find_pinned_fields:
+ @struct_attrs($($struct_attrs:tt)*),
+ @vis($vis:vis),
+ @name($name:ident),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @where($($whr:tt)*),
+ // We reached the end of the fields, plus an optional additional comma, since we added one
+ // before and the user is also allowed to put a trailing comma.
+ @fields_munch($(,)?),
+ @pinned($($pinned:tt)*),
+ @not_pinned($($not_pinned:tt)*),
+ @fields($($fields:tt)*),
+ @accum(),
+ @is_pinned(),
+ @pinned_drop($($pinned_drop:ident)?),
+ ) => {
+ // Declare the struct with all fields in the correct order.
+ $($struct_attrs)*
+ $vis struct $name <$($impl_generics)*>
+ where $($whr)*
+ {
+ $($fields)*
+ }
+
+ // We put the rest into this const item, because it then will not be accessible to anything
+ // outside.
+ const _: () = {
+ // We declare this struct which will host all of the projection function for our type.
+ // it will be invariant over all generic parameters which are inherited from the
+ // struct.
+ $vis struct __ThePinData<$($impl_generics)*>
+ where $($whr)*
+ {
+ __phantom: ::core::marker::PhantomData<
+ fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*>
+ >,
+ }
+
+ impl<$($impl_generics)*> ::core::clone::Clone for __ThePinData<$($ty_generics)*>
+ where $($whr)*
+ {
+ fn clone(&self) -> Self { *self }
+ }
+
+ impl<$($impl_generics)*> ::core::marker::Copy for __ThePinData<$($ty_generics)*>
+ where $($whr)*
+ {}
+
+ // Make all projection functions.
+ $crate::__pin_data!(make_pin_data:
+ @pin_data(__ThePinData),
+ @impl_generics($($impl_generics)*),
+ @ty_generics($($ty_generics)*),
+ @where($($whr)*),
+ @pinned($($pinned)*),
+ @not_pinned($($not_pinned)*),
+ );
+
+ // SAFETY: We have added the correct projection functions above to `__ThePinData` and
+ // we also use the least restrictive generics possible.
+ unsafe impl<$($impl_generics)*>
+ $crate::init::__internal::HasPinData for $name<$($ty_generics)*>
+ where $($whr)*
+ {
+ type PinData = __ThePinData<$($ty_generics)*>;
+
+ unsafe fn __pin_data() -> Self::PinData {
+ __ThePinData { __phantom: ::core::marker::PhantomData }
+ }
+ }
+
+ unsafe impl<$($impl_generics)*>
+ $crate::init::__internal::PinData for __ThePinData<$($ty_generics)*>
+ where $($whr)*
+ {
+ type Datee = $name<$($ty_generics)*>;
+ }
+
+ // This struct will be used for the unpin analysis. Since only structurally pinned
+ // fields are relevant whether the struct should implement `Unpin`.
+ #[allow(dead_code)]
+ struct __Unpin <'__pin, $($impl_generics)*>
+ where $($whr)*
+ {
+ __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>,
+ __phantom: ::core::marker::PhantomData<
+ fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*>
+ >,
+ // Only the pinned fields.
+ $($pinned)*
+ }
+
+ #[doc(hidden)]
+ impl<'__pin, $($impl_generics)*> ::core::marker::Unpin for $name<$($ty_generics)*>
+ where
+ __Unpin<'__pin, $($ty_generics)*>: ::core::marker::Unpin,
+ $($whr)*
+ {}
+
+ // We need to disallow normal `Drop` implementation, the exact behavior depends on
+ // whether `PinnedDrop` was specified as the parameter.
+ $crate::__pin_data!(drop_prevention:
+ @name($name),
+ @impl_generics($($impl_generics)*),
+ @ty_generics($($ty_generics)*),
+ @where($($whr)*),
+ @pinned_drop($($pinned_drop)?),
+ );
+ };
+ };
+ // When no `PinnedDrop` was specified, then we have to prevent implementing drop.
+ (drop_prevention:
+ @name($name:ident),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @where($($whr:tt)*),
+ @pinned_drop(),
+ ) => {
+ // We prevent this by creating a trait that will be implemented for all types implementing
+ // `Drop`. Additionally we will implement this trait for the struct leading to a conflict,
+ // if it also implements `Drop`
+ trait MustNotImplDrop {}
+ #[allow(drop_bounds)]
+ impl<T: ::core::ops::Drop> MustNotImplDrop for T {}
+ impl<$($impl_generics)*> MustNotImplDrop for $name<$($ty_generics)*>
+ where $($whr)* {}
+ // We also take care to prevent users from writing a useless `PinnedDrop` implementation.
+ // They might implement `PinnedDrop` correctly for the struct, but forget to give
+ // `PinnedDrop` as the parameter to `#[pin_data]`.
+ #[allow(non_camel_case_types)]
+ trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {}
+ impl<T: $crate::init::PinnedDrop>
+ UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {}
+ impl<$($impl_generics)*>
+ UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for $name<$($ty_generics)*>
+ where $($whr)* {}
+ };
+ // When `PinnedDrop` was specified we just implement `Drop` and delegate.
+ (drop_prevention:
+ @name($name:ident),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @where($($whr:tt)*),
+ @pinned_drop(PinnedDrop),
+ ) => {
+ impl<$($impl_generics)*> ::core::ops::Drop for $name<$($ty_generics)*>
+ where $($whr)*
+ {
+ fn drop(&mut self) {
+ // SAFETY: Since this is a destructor, `self` will not move after this function
+ // terminates, since it is inaccessible.
+ let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) };
+ // SAFETY: Since this is a drop function, we can create this token to call the
+ // pinned destructor of this type.
+ let token = unsafe { $crate::init::__internal::OnlyCallFromDrop::new() };
+ $crate::init::PinnedDrop::drop(pinned, token);
+ }
+ }
+ };
+ // If some other parameter was specified, we emit a readable error.
+ (drop_prevention:
+ @name($name:ident),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @where($($whr:tt)*),
+ @pinned_drop($($rest:tt)*),
+ ) => {
+ compile_error!(
+ "Wrong parameters to `#[pin_data]`, expected nothing or `PinnedDrop`, got '{}'.",
+ stringify!($($rest)*),
+ );
+ };
+ (make_pin_data:
+ @pin_data($pin_data:ident),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @where($($whr:tt)*),
+ @pinned($($(#[$($p_attr:tt)*])* $pvis:vis $p_field:ident : $p_type:ty),* $(,)?),
+ @not_pinned($($(#[$($attr:tt)*])* $fvis:vis $field:ident : $type:ty),* $(,)?),
+ ) => {
+ // For every field, we create a projection function according to its projection type. If a
+ // field is structurally pinned, then it must be initialized via `PinInit`, if it is not
+ // structurally pinned, then it can be initialized via `Init`.
+ //
+ // The functions are `unsafe` to prevent accidentally calling them.
+ #[allow(dead_code)]
+ impl<$($impl_generics)*> $pin_data<$($ty_generics)*>
+ where $($whr)*
+ {
+ $(
+ $(#[$($p_attr)*])*
+ $pvis unsafe fn $p_field<E>(
+ self,
+ slot: *mut $p_type,
+ init: impl $crate::init::PinInit<$p_type, E>,
+ ) -> ::core::result::Result<(), E> {
+ unsafe { $crate::init::PinInit::__pinned_init(init, slot) }
+ }
+ )*
+ $(
+ $(#[$($attr)*])*
+ $fvis unsafe fn $field<E>(
+ self,
+ slot: *mut $type,
+ init: impl $crate::init::Init<$type, E>,
+ ) -> ::core::result::Result<(), E> {
+ unsafe { $crate::init::Init::__init(init, slot) }
+ }
+ )*
+ }
+ };
+}
+
+/// The internal init macro. Do not call manually!
+///
+/// This is called by the `{try_}{pin_}init!` macros with various inputs.
+///
+/// This macro has multiple internal call configurations, these are always the very first ident:
+/// - nothing: this is the base case and called by the `{try_}{pin_}init!` macros.
+/// - `with_update_parsed`: when the `..Zeroable::zeroed()` syntax has been handled.
+/// - `init_slot`: recursively creates the code that initializes all fields in `slot`.
+/// - `make_initializer`: recursively create the struct initializer that guarantees that every
+/// field has been initialized exactly once.
+#[doc(hidden)]
+#[macro_export]
+macro_rules! __init_internal {
+ (
+ @this($($this:ident)?),
+ @typ($t:path),
+ @fields($($fields:tt)*),
+ @error($err:ty),
+ // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
+ // case.
+ @data($data:ident, $($use_data:ident)?),
+ // `HasPinData` or `HasInitData`.
+ @has_data($has_data:ident, $get_data:ident),
+ // `pin_init_from_closure` or `init_from_closure`.
+ @construct_closure($construct_closure:ident),
+ @munch_fields(),
+ ) => {
+ $crate::__init_internal!(with_update_parsed:
+ @this($($this)?),
+ @typ($t),
+ @fields($($fields)*),
+ @error($err),
+ @data($data, $($use_data)?),
+ @has_data($has_data, $get_data),
+ @construct_closure($construct_closure),
+ @zeroed(), // Nothing means default behavior.
+ )
+ };
+ (
+ @this($($this:ident)?),
+ @typ($t:path),
+ @fields($($fields:tt)*),
+ @error($err:ty),
+ // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
+ // case.
+ @data($data:ident, $($use_data:ident)?),
+ // `HasPinData` or `HasInitData`.
+ @has_data($has_data:ident, $get_data:ident),
+ // `pin_init_from_closure` or `init_from_closure`.
+ @construct_closure($construct_closure:ident),
+ @munch_fields(..Zeroable::zeroed()),
+ ) => {
+ $crate::__init_internal!(with_update_parsed:
+ @this($($this)?),
+ @typ($t),
+ @fields($($fields)*),
+ @error($err),
+ @data($data, $($use_data)?),
+ @has_data($has_data, $get_data),
+ @construct_closure($construct_closure),
+ @zeroed(()), // `()` means zero all fields not mentioned.
+ )
+ };
+ (
+ @this($($this:ident)?),
+ @typ($t:path),
+ @fields($($fields:tt)*),
+ @error($err:ty),
+ // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
+ // case.
+ @data($data:ident, $($use_data:ident)?),
+ // `HasPinData` or `HasInitData`.
+ @has_data($has_data:ident, $get_data:ident),
+ // `pin_init_from_closure` or `init_from_closure`.
+ @construct_closure($construct_closure:ident),
+ @munch_fields($ignore:tt $($rest:tt)*),
+ ) => {
+ $crate::__init_internal!(
+ @this($($this)?),
+ @typ($t),
+ @fields($($fields)*),
+ @error($err),
+ @data($data, $($use_data)?),
+ @has_data($has_data, $get_data),
+ @construct_closure($construct_closure),
+ @munch_fields($($rest)*),
+ )
+ };
+ (with_update_parsed:
+ @this($($this:ident)?),
+ @typ($t:path),
+ @fields($($fields:tt)*),
+ @error($err:ty),
+ // Either `PinData` or `InitData`, `$use_data` should only be present in the `PinData`
+ // case.
+ @data($data:ident, $($use_data:ident)?),
+ // `HasPinData` or `HasInitData`.
+ @has_data($has_data:ident, $get_data:ident),
+ // `pin_init_from_closure` or `init_from_closure`.
+ @construct_closure($construct_closure:ident),
+ @zeroed($($init_zeroed:expr)?),
+ ) => {{
+ // We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
+ // type and shadow it later when we insert the arbitrary user code. That way there will be
+ // no possibility of returning without `unsafe`.
+ struct __InitOk;
+ // Get the data about fields from the supplied type.
+ let data = unsafe {
+ use $crate::init::__internal::$has_data;
+ // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
+ // information that is associated to already parsed fragments, so a path fragment
+ // cannot be used in this position. Doing the retokenization results in valid rust
+ // code.
+ ::kernel::macros::paste!($t::$get_data())
+ };
+ // Ensure that `data` really is of type `$data` and help with type inference:
+ let init = $crate::init::__internal::$data::make_closure::<_, __InitOk, $err>(
+ data,
+ move |slot| {
+ {
+ // Shadow the structure so it cannot be used to return early.
+ struct __InitOk;
+ // If `$init_zeroed` is present we should zero the slot now and not emit an
+ // error when fields are missing (since they will be zeroed). We also have to
+ // check that the type actually implements `Zeroable`.
+ $({
+ fn assert_zeroable<T: $crate::init::Zeroable>(_: *mut T) {}
+ // Ensure that the struct is indeed `Zeroable`.
+ assert_zeroable(slot);
+ // SAFETY: The type implements `Zeroable` by the check above.
+ unsafe { ::core::ptr::write_bytes(slot, 0, 1) };
+ $init_zeroed // This will be `()` if set.
+ })?
+ // Create the `this` so it can be referenced by the user inside of the
+ // expressions creating the individual fields.
+ $(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
+ // Initialize every field.
+ $crate::__init_internal!(init_slot($($use_data)?):
+ @data(data),
+ @slot(slot),
+ @guards(),
+ @munch_fields($($fields)*,),
+ );
+ // We use unreachable code to ensure that all fields have been mentioned exactly
+ // once, this struct initializer will still be type-checked and complain with a
+ // very natural error message if a field is forgotten/mentioned more than once.
+ #[allow(unreachable_code, clippy::diverging_sub_expression)]
+ let _ = || {
+ $crate::__init_internal!(make_initializer:
+ @slot(slot),
+ @type_name($t),
+ @munch_fields($($fields)*,),
+ @acc(),
+ );
+ };
+ }
+ Ok(__InitOk)
+ }
+ );
+ let init = move |slot| -> ::core::result::Result<(), $err> {
+ init(slot).map(|__InitOk| ())
+ };
+ let init = unsafe { $crate::init::$construct_closure::<_, $err>(init) };
+ init
+ }};
+ (init_slot($($use_data:ident)?):
+ @data($data:ident),
+ @slot($slot:ident),
+ @guards($($guards:ident,)*),
+ @munch_fields($(..Zeroable::zeroed())? $(,)?),
+ ) => {
+ // Endpoint of munching, no fields are left. If execution reaches this point, all fields
+ // have been initialized. Therefore we can now dismiss the guards by forgetting them.
+ $(::core::mem::forget($guards);)*
+ };
+ (init_slot($use_data:ident): // `use_data` is present, so we use the `data` to init fields.
+ @data($data:ident),
+ @slot($slot:ident),
+ @guards($($guards:ident,)*),
+ // In-place initialization syntax.
+ @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
+ ) => {
+ let init = $val;
+ // Call the initializer.
+ //
+ // SAFETY: `slot` is valid, because we are inside of an initializer closure, we
+ // return when an error/panic occurs.
+ // We also use the `data` to require the correct trait (`Init` or `PinInit`) for `$field`.
+ unsafe { $data.$field(::core::ptr::addr_of_mut!((*$slot).$field), init)? };
+ // Create the drop guard:
+ //
+ // We rely on macro hygiene to make it impossible for users to access this local variable.
+ // We use `paste!` to create new hygiene for `$field`.
+ ::kernel::macros::paste! {
+ // SAFETY: We forget the guard later when initialization has succeeded.
+ let [<$field>] = unsafe {
+ $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
+ };
+
+ $crate::__init_internal!(init_slot($use_data):
+ @data($data),
+ @slot($slot),
+ @guards([<$field>], $($guards,)*),
+ @munch_fields($($rest)*),
+ );
+ }
+ };
+ (init_slot(): // No `use_data`, so we use `Init::__init` directly.
+ @data($data:ident),
+ @slot($slot:ident),
+ @guards($($guards:ident,)*),
+ // In-place initialization syntax.
+ @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
+ ) => {
+ let init = $val;
+ // Call the initializer.
+ //
+ // SAFETY: `slot` is valid, because we are inside of an initializer closure, we
+ // return when an error/panic occurs.
+ unsafe { $crate::init::Init::__init(init, ::core::ptr::addr_of_mut!((*$slot).$field))? };
+ // Create the drop guard:
+ //
+ // We rely on macro hygiene to make it impossible for users to access this local variable.
+ // We use `paste!` to create new hygiene for `$field`.
+ ::kernel::macros::paste! {
+ // SAFETY: We forget the guard later when initialization has succeeded.
+ let [<$field>] = unsafe {
+ $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
+ };
+
+ $crate::__init_internal!(init_slot():
+ @data($data),
+ @slot($slot),
+ @guards([<$field>], $($guards,)*),
+ @munch_fields($($rest)*),
+ );
+ }
+ };
+ (init_slot($($use_data:ident)?):
+ @data($data:ident),
+ @slot($slot:ident),
+ @guards($($guards:ident,)*),
+ // Init by-value.
+ @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
+ ) => {
+ {
+ $(let $field = $val;)?
+ // Initialize the field.
+ //
+ // SAFETY: The memory at `slot` is uninitialized.
+ unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) };
+ }
+ // Create the drop guard:
+ //
+ // We rely on macro hygiene to make it impossible for users to access this local variable.
+ // We use `paste!` to create new hygiene for `$field`.
+ ::kernel::macros::paste! {
+ // SAFETY: We forget the guard later when initialization has succeeded.
+ let [<$field>] = unsafe {
+ $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
+ };
+
+ $crate::__init_internal!(init_slot($($use_data)?):
+ @data($data),
+ @slot($slot),
+ @guards([<$field>], $($guards,)*),
+ @munch_fields($($rest)*),
+ );
+ }
+ };
+ (make_initializer:
+ @slot($slot:ident),
+ @type_name($t:path),
+ @munch_fields(..Zeroable::zeroed() $(,)?),
+ @acc($($acc:tt)*),
+ ) => {
+ // Endpoint, nothing more to munch, create the initializer. Since the users specified
+ // `..Zeroable::zeroed()`, the slot will already have been zeroed and all field that have
+ // not been overwritten are thus zero and initialized. We still check that all fields are
+ // actually accessible by using the struct update syntax ourselves.
+ // We are inside of a closure that is never executed and thus we can abuse `slot` to
+ // get the correct type inference here:
+ #[allow(unused_assignments)]
+ unsafe {
+ let mut zeroed = ::core::mem::zeroed();
+ // We have to use type inference here to make zeroed have the correct type. This does
+ // not get executed, so it has no effect.
+ ::core::ptr::write($slot, zeroed);
+ zeroed = ::core::mem::zeroed();
+ // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
+ // information that is associated to already parsed fragments, so a path fragment
+ // cannot be used in this position. Doing the retokenization results in valid rust
+ // code.
+ ::kernel::macros::paste!(
+ ::core::ptr::write($slot, $t {
+ $($acc)*
+ ..zeroed
+ });
+ );
+ }
+ };
+ (make_initializer:
+ @slot($slot:ident),
+ @type_name($t:path),
+ @munch_fields($(,)?),
+ @acc($($acc:tt)*),
+ ) => {
+ // Endpoint, nothing more to munch, create the initializer.
+ // Since we are in the closure that is never called, this will never get executed.
+ // We abuse `slot` to get the correct type inference here:
+ unsafe {
+ // Here we abuse `paste!` to retokenize `$t`. Declarative macros have some internal
+ // information that is associated to already parsed fragments, so a path fragment
+ // cannot be used in this position. Doing the retokenization results in valid rust
+ // code.
+ ::kernel::macros::paste!(
+ ::core::ptr::write($slot, $t {
+ $($acc)*
+ });
+ );
+ }
+ };
+ (make_initializer:
+ @slot($slot:ident),
+ @type_name($t:path),
+ @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
+ @acc($($acc:tt)*),
+ ) => {
+ $crate::__init_internal!(make_initializer:
+ @slot($slot),
+ @type_name($t),
+ @munch_fields($($rest)*),
+ @acc($($acc)* $field: ::core::panic!(),),
+ );
+ };
+ (make_initializer:
+ @slot($slot:ident),
+ @type_name($t:path),
+ @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
+ @acc($($acc:tt)*),
+ ) => {
+ $crate::__init_internal!(make_initializer:
+ @slot($slot),
+ @type_name($t),
+ @munch_fields($($rest)*),
+ @acc($($acc)* $field: ::core::panic!(),),
+ );
+ };
+}
+
+#[doc(hidden)]
+#[macro_export]
+macro_rules! __derive_zeroable {
+ (parse_input:
+ @sig(
+ $(#[$($struct_attr:tt)*])*
+ $vis:vis struct $name:ident
+ $(where $($whr:tt)*)?
+ ),
+ @impl_generics($($impl_generics:tt)*),
+ @ty_generics($($ty_generics:tt)*),
+ @body({
+ $(
+ $(#[$($field_attr:tt)*])*
+ $field:ident : $field_ty:ty
+ ),* $(,)?
+ }),
+ ) => {
+ // SAFETY: Every field type implements `Zeroable` and padding bytes may be zero.
+ #[automatically_derived]
+ unsafe impl<$($impl_generics)*> $crate::init::Zeroable for $name<$($ty_generics)*>
+ where
+ $($($whr)*)?
+ {}
+ const _: () = {
+ fn assert_zeroable<T: ?::core::marker::Sized + $crate::init::Zeroable>() {}
+ fn ensure_zeroable<$($impl_generics)*>()
+ where $($($whr)*)?
+ {
+ $(assert_zeroable::<$field_ty>();)*
+ }
+ };
+ };
+}