summaryrefslogtreecommitdiffstats
path: root/Documentation/core-api/circular-buffers.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/core-api/circular-buffers.rst')
-rw-r--r--Documentation/core-api/circular-buffers.rst237
1 files changed, 237 insertions, 0 deletions
diff --git a/Documentation/core-api/circular-buffers.rst b/Documentation/core-api/circular-buffers.rst
new file mode 100644
index 0000000000..50966f66e3
--- /dev/null
+++ b/Documentation/core-api/circular-buffers.rst
@@ -0,0 +1,237 @@
+================
+Circular Buffers
+================
+
+:Author: David Howells <dhowells@redhat.com>
+:Author: Paul E. McKenney <paulmck@linux.ibm.com>
+
+
+Linux provides a number of features that can be used to implement circular
+buffering. There are two sets of such features:
+
+ (1) Convenience functions for determining information about power-of-2 sized
+ buffers.
+
+ (2) Memory barriers for when the producer and the consumer of objects in the
+ buffer don't want to share a lock.
+
+To use these facilities, as discussed below, there needs to be just one
+producer and just one consumer. It is possible to handle multiple producers by
+serialising them, and to handle multiple consumers by serialising them.
+
+
+.. Contents:
+
+ (*) What is a circular buffer?
+
+ (*) Measuring power-of-2 buffers.
+
+ (*) Using memory barriers with circular buffers.
+ - The producer.
+ - The consumer.
+
+
+
+What is a circular buffer?
+==========================
+
+First of all, what is a circular buffer? A circular buffer is a buffer of
+fixed, finite size into which there are two indices:
+
+ (1) A 'head' index - the point at which the producer inserts items into the
+ buffer.
+
+ (2) A 'tail' index - the point at which the consumer finds the next item in
+ the buffer.
+
+Typically when the tail pointer is equal to the head pointer, the buffer is
+empty; and the buffer is full when the head pointer is one less than the tail
+pointer.
+
+The head index is incremented when items are added, and the tail index when
+items are removed. The tail index should never jump the head index, and both
+indices should be wrapped to 0 when they reach the end of the buffer, thus
+allowing an infinite amount of data to flow through the buffer.
+
+Typically, items will all be of the same unit size, but this isn't strictly
+required to use the techniques below. The indices can be increased by more
+than 1 if multiple items or variable-sized items are to be included in the
+buffer, provided that neither index overtakes the other. The implementer must
+be careful, however, as a region more than one unit in size may wrap the end of
+the buffer and be broken into two segments.
+
+Measuring power-of-2 buffers
+============================
+
+Calculation of the occupancy or the remaining capacity of an arbitrarily sized
+circular buffer would normally be a slow operation, requiring the use of a
+modulus (divide) instruction. However, if the buffer is of a power-of-2 size,
+then a much quicker bitwise-AND instruction can be used instead.
+
+Linux provides a set of macros for handling power-of-2 circular buffers. These
+can be made use of by::
+
+ #include <linux/circ_buf.h>
+
+The macros are:
+
+ (#) Measure the remaining capacity of a buffer::
+
+ CIRC_SPACE(head_index, tail_index, buffer_size);
+
+ This returns the amount of space left in the buffer[1] into which items
+ can be inserted.
+
+
+ (#) Measure the maximum consecutive immediate space in a buffer::
+
+ CIRC_SPACE_TO_END(head_index, tail_index, buffer_size);
+
+ This returns the amount of consecutive space left in the buffer[1] into
+ which items can be immediately inserted without having to wrap back to the
+ beginning of the buffer.
+
+
+ (#) Measure the occupancy of a buffer::
+
+ CIRC_CNT(head_index, tail_index, buffer_size);
+
+ This returns the number of items currently occupying a buffer[2].
+
+
+ (#) Measure the non-wrapping occupancy of a buffer::
+
+ CIRC_CNT_TO_END(head_index, tail_index, buffer_size);
+
+ This returns the number of consecutive items[2] that can be extracted from
+ the buffer without having to wrap back to the beginning of the buffer.
+
+
+Each of these macros will nominally return a value between 0 and buffer_size-1,
+however:
+
+ (1) CIRC_SPACE*() are intended to be used in the producer. To the producer
+ they will return a lower bound as the producer controls the head index,
+ but the consumer may still be depleting the buffer on another CPU and
+ moving the tail index.
+
+ To the consumer it will show an upper bound as the producer may be busy
+ depleting the space.
+
+ (2) CIRC_CNT*() are intended to be used in the consumer. To the consumer they
+ will return a lower bound as the consumer controls the tail index, but the
+ producer may still be filling the buffer on another CPU and moving the
+ head index.
+
+ To the producer it will show an upper bound as the consumer may be busy
+ emptying the buffer.
+
+ (3) To a third party, the order in which the writes to the indices by the
+ producer and consumer become visible cannot be guaranteed as they are
+ independent and may be made on different CPUs - so the result in such a
+ situation will merely be a guess, and may even be negative.
+
+Using memory barriers with circular buffers
+===========================================
+
+By using memory barriers in conjunction with circular buffers, you can avoid
+the need to:
+
+ (1) use a single lock to govern access to both ends of the buffer, thus
+ allowing the buffer to be filled and emptied at the same time; and
+
+ (2) use atomic counter operations.
+
+There are two sides to this: the producer that fills the buffer, and the
+consumer that empties it. Only one thing should be filling a buffer at any one
+time, and only one thing should be emptying a buffer at any one time, but the
+two sides can operate simultaneously.
+
+
+The producer
+------------
+
+The producer will look something like this::
+
+ spin_lock(&producer_lock);
+
+ unsigned long head = buffer->head;
+ /* The spin_unlock() and next spin_lock() provide needed ordering. */
+ unsigned long tail = READ_ONCE(buffer->tail);
+
+ if (CIRC_SPACE(head, tail, buffer->size) >= 1) {
+ /* insert one item into the buffer */
+ struct item *item = buffer[head];
+
+ produce_item(item);
+
+ smp_store_release(buffer->head,
+ (head + 1) & (buffer->size - 1));
+
+ /* wake_up() will make sure that the head is committed before
+ * waking anyone up */
+ wake_up(consumer);
+ }
+
+ spin_unlock(&producer_lock);
+
+This will instruct the CPU that the contents of the new item must be written
+before the head index makes it available to the consumer and then instructs the
+CPU that the revised head index must be written before the consumer is woken.
+
+Note that wake_up() does not guarantee any sort of barrier unless something
+is actually awakened. We therefore cannot rely on it for ordering. However,
+there is always one element of the array left empty. Therefore, the
+producer must produce two elements before it could possibly corrupt the
+element currently being read by the consumer. Therefore, the unlock-lock
+pair between consecutive invocations of the consumer provides the necessary
+ordering between the read of the index indicating that the consumer has
+vacated a given element and the write by the producer to that same element.
+
+
+The Consumer
+------------
+
+The consumer will look something like this::
+
+ spin_lock(&consumer_lock);
+
+ /* Read index before reading contents at that index. */
+ unsigned long head = smp_load_acquire(buffer->head);
+ unsigned long tail = buffer->tail;
+
+ if (CIRC_CNT(head, tail, buffer->size) >= 1) {
+
+ /* extract one item from the buffer */
+ struct item *item = buffer[tail];
+
+ consume_item(item);
+
+ /* Finish reading descriptor before incrementing tail. */
+ smp_store_release(buffer->tail,
+ (tail + 1) & (buffer->size - 1));
+ }
+
+ spin_unlock(&consumer_lock);
+
+This will instruct the CPU to make sure the index is up to date before reading
+the new item, and then it shall make sure the CPU has finished reading the item
+before it writes the new tail pointer, which will erase the item.
+
+Note the use of READ_ONCE() and smp_load_acquire() to read the
+opposition index. This prevents the compiler from discarding and
+reloading its cached value. This isn't strictly needed if you can
+be sure that the opposition index will _only_ be used the once.
+The smp_load_acquire() additionally forces the CPU to order against
+subsequent memory references. Similarly, smp_store_release() is used
+in both algorithms to write the thread's index. This documents the
+fact that we are writing to something that can be read concurrently,
+prevents the compiler from tearing the store, and enforces ordering
+against previous accesses.
+
+
+Further reading
+===============
+
+See also Documentation/memory-barriers.txt for a description of Linux's memory
+barrier facilities.