summaryrefslogtreecommitdiffstats
path: root/Documentation/networking/scaling.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/networking/scaling.rst')
-rw-r--r--Documentation/networking/scaling.rst15
1 files changed, 15 insertions, 0 deletions
diff --git a/Documentation/networking/scaling.rst b/Documentation/networking/scaling.rst
index 03ae19a689..4eb50bcb9d 100644
--- a/Documentation/networking/scaling.rst
+++ b/Documentation/networking/scaling.rst
@@ -44,6 +44,21 @@ by masking out the low order seven bits of the computed hash for the
packet (usually a Toeplitz hash), taking this number as a key into the
indirection table and reading the corresponding value.
+Some NICs support symmetric RSS hashing where, if the IP (source address,
+destination address) and TCP/UDP (source port, destination port) tuples
+are swapped, the computed hash is the same. This is beneficial in some
+applications that monitor TCP/IP flows (IDS, firewalls, ...etc) and need
+both directions of the flow to land on the same Rx queue (and CPU). The
+"Symmetric-XOR" is a type of RSS algorithms that achieves this hash
+symmetry by XORing the input source and destination fields of the IP
+and/or L4 protocols. This, however, results in reduced input entropy and
+could potentially be exploited. Specifically, the algorithm XORs the input
+as follows::
+
+ # (SRC_IP ^ DST_IP, SRC_IP ^ DST_IP, SRC_PORT ^ DST_PORT, SRC_PORT ^ DST_PORT)
+
+The result is then fed to the underlying RSS algorithm.
+
Some advanced NICs allow steering packets to queues based on
programmable filters. For example, webserver bound TCP port 80 packets
can be directed to their own receive queue. Such “n-tuple” filters can