summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/include/asm/book3s/64/mmu-hash.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/include/asm/book3s/64/mmu-hash.h')
-rw-r--r--arch/powerpc/include/asm/book3s/64/mmu-hash.h885
1 files changed, 885 insertions, 0 deletions
diff --git a/arch/powerpc/include/asm/book3s/64/mmu-hash.h b/arch/powerpc/include/asm/book3s/64/mmu-hash.h
new file mode 100644
index 000000000..1c4eebbc6
--- /dev/null
+++ b/arch/powerpc/include/asm/book3s/64/mmu-hash.h
@@ -0,0 +1,885 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
+#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
+/*
+ * PowerPC64 memory management structures
+ *
+ * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
+ * PPC64 rework.
+ */
+
+#include <asm/page.h>
+#include <asm/bug.h>
+#include <asm/asm-const.h>
+
+/*
+ * This is necessary to get the definition of PGTABLE_RANGE which we
+ * need for various slices related matters. Note that this isn't the
+ * complete pgtable.h but only a portion of it.
+ */
+#include <asm/book3s/64/pgtable.h>
+#include <asm/book3s/64/slice.h>
+#include <asm/task_size_64.h>
+#include <asm/cpu_has_feature.h>
+
+/*
+ * SLB
+ */
+
+#define SLB_NUM_BOLTED 2
+#define SLB_CACHE_ENTRIES 8
+#define SLB_MIN_SIZE 32
+
+/* Bits in the SLB ESID word */
+#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
+
+/* Bits in the SLB VSID word */
+#define SLB_VSID_SHIFT 12
+#define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT
+#define SLB_VSID_SHIFT_1T 24
+#define SLB_VSID_SSIZE_SHIFT 62
+#define SLB_VSID_B ASM_CONST(0xc000000000000000)
+#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
+#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
+#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
+#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
+#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
+#define SLB_VSID_L ASM_CONST(0x0000000000000100)
+#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
+#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
+#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
+#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
+#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
+#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
+#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
+
+#define SLB_VSID_KERNEL (SLB_VSID_KP)
+#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
+
+#define SLBIE_C (0x08000000)
+#define SLBIE_SSIZE_SHIFT 25
+
+/*
+ * Hash table
+ */
+
+#define HPTES_PER_GROUP 8
+
+#define HPTE_V_SSIZE_SHIFT 62
+#define HPTE_V_AVPN_SHIFT 7
+#define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
+#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
+#define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
+#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
+#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
+#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
+#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
+#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
+#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
+#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
+
+/*
+ * ISA 3.0 has a different HPTE format.
+ */
+#define HPTE_R_3_0_SSIZE_SHIFT 58
+#define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
+#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
+#define HPTE_R_TS ASM_CONST(0x4000000000000000)
+#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
+#define HPTE_R_KEY_BIT4 ASM_CONST(0x2000000000000000)
+#define HPTE_R_KEY_BIT3 ASM_CONST(0x1000000000000000)
+#define HPTE_R_RPN_SHIFT 12
+#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
+#define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
+#define HPTE_R_PP ASM_CONST(0x0000000000000003)
+#define HPTE_R_PPP ASM_CONST(0x8000000000000003)
+#define HPTE_R_N ASM_CONST(0x0000000000000004)
+#define HPTE_R_G ASM_CONST(0x0000000000000008)
+#define HPTE_R_M ASM_CONST(0x0000000000000010)
+#define HPTE_R_I ASM_CONST(0x0000000000000020)
+#define HPTE_R_W ASM_CONST(0x0000000000000040)
+#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
+#define HPTE_R_C ASM_CONST(0x0000000000000080)
+#define HPTE_R_R ASM_CONST(0x0000000000000100)
+#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
+#define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800)
+#define HPTE_R_KEY_BIT1 ASM_CONST(0x0000000000000400)
+#define HPTE_R_KEY_BIT0 ASM_CONST(0x0000000000000200)
+#define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI)
+
+#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
+#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
+
+/* Values for PP (assumes Ks=0, Kp=1) */
+#define PP_RWXX 0 /* Supervisor read/write, User none */
+#define PP_RWRX 1 /* Supervisor read/write, User read */
+#define PP_RWRW 2 /* Supervisor read/write, User read/write */
+#define PP_RXRX 3 /* Supervisor read, User read */
+#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
+
+/* Fields for tlbiel instruction in architecture 2.06 */
+#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
+#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
+#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
+#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
+#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
+#define TLBIEL_INVAL_SET_SHIFT 12
+
+#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
+#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
+#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
+#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
+
+#ifndef __ASSEMBLY__
+
+struct mmu_hash_ops {
+ void (*hpte_invalidate)(unsigned long slot,
+ unsigned long vpn,
+ int bpsize, int apsize,
+ int ssize, int local);
+ long (*hpte_updatepp)(unsigned long slot,
+ unsigned long newpp,
+ unsigned long vpn,
+ int bpsize, int apsize,
+ int ssize, unsigned long flags);
+ void (*hpte_updateboltedpp)(unsigned long newpp,
+ unsigned long ea,
+ int psize, int ssize);
+ long (*hpte_insert)(unsigned long hpte_group,
+ unsigned long vpn,
+ unsigned long prpn,
+ unsigned long rflags,
+ unsigned long vflags,
+ int psize, int apsize,
+ int ssize);
+ long (*hpte_remove)(unsigned long hpte_group);
+ int (*hpte_removebolted)(unsigned long ea,
+ int psize, int ssize);
+ void (*flush_hash_range)(unsigned long number, int local);
+ void (*hugepage_invalidate)(unsigned long vsid,
+ unsigned long addr,
+ unsigned char *hpte_slot_array,
+ int psize, int ssize, int local);
+ int (*resize_hpt)(unsigned long shift);
+ /*
+ * Special for kexec.
+ * To be called in real mode with interrupts disabled. No locks are
+ * taken as such, concurrent access on pre POWER5 hardware could result
+ * in a deadlock.
+ * The linear mapping is destroyed as well.
+ */
+ void (*hpte_clear_all)(void);
+};
+extern struct mmu_hash_ops mmu_hash_ops;
+
+struct hash_pte {
+ __be64 v;
+ __be64 r;
+};
+
+extern struct hash_pte *htab_address;
+extern unsigned long htab_size_bytes;
+extern unsigned long htab_hash_mask;
+
+
+static inline int shift_to_mmu_psize(unsigned int shift)
+{
+ int psize;
+
+ for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
+ if (mmu_psize_defs[psize].shift == shift)
+ return psize;
+ return -1;
+}
+
+static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
+{
+ if (mmu_psize_defs[mmu_psize].shift)
+ return mmu_psize_defs[mmu_psize].shift;
+ BUG();
+}
+
+static inline unsigned int ap_to_shift(unsigned long ap)
+{
+ int psize;
+
+ for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
+ if (mmu_psize_defs[psize].ap == ap)
+ return mmu_psize_defs[psize].shift;
+ }
+
+ return -1;
+}
+
+static inline unsigned long get_sllp_encoding(int psize)
+{
+ unsigned long sllp;
+
+ sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
+ ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
+ return sllp;
+}
+
+#endif /* __ASSEMBLY__ */
+
+/*
+ * Segment sizes.
+ * These are the values used by hardware in the B field of
+ * SLB entries and the first dword of MMU hashtable entries.
+ * The B field is 2 bits; the values 2 and 3 are unused and reserved.
+ */
+#define MMU_SEGSIZE_256M 0
+#define MMU_SEGSIZE_1T 1
+
+/*
+ * encode page number shift.
+ * in order to fit the 78 bit va in a 64 bit variable we shift the va by
+ * 12 bits. This enable us to address upto 76 bit va.
+ * For hpt hash from a va we can ignore the page size bits of va and for
+ * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
+ * we work in all cases including 4k page size.
+ */
+#define VPN_SHIFT 12
+
+/*
+ * HPTE Large Page (LP) details
+ */
+#define LP_SHIFT 12
+#define LP_BITS 8
+#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
+
+#ifndef __ASSEMBLY__
+
+static inline int slb_vsid_shift(int ssize)
+{
+ if (ssize == MMU_SEGSIZE_256M)
+ return SLB_VSID_SHIFT;
+ return SLB_VSID_SHIFT_1T;
+}
+
+static inline int segment_shift(int ssize)
+{
+ if (ssize == MMU_SEGSIZE_256M)
+ return SID_SHIFT;
+ return SID_SHIFT_1T;
+}
+
+/*
+ * This array is indexed by the LP field of the HPTE second dword.
+ * Since this field may contain some RPN bits, some entries are
+ * replicated so that we get the same value irrespective of RPN.
+ * The top 4 bits are the page size index (MMU_PAGE_*) for the
+ * actual page size, the bottom 4 bits are the base page size.
+ */
+extern u8 hpte_page_sizes[1 << LP_BITS];
+
+static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
+ bool is_base_size)
+{
+ unsigned int i, lp;
+
+ if (!(h & HPTE_V_LARGE))
+ return 1ul << 12;
+
+ /* Look at the 8 bit LP value */
+ lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
+ i = hpte_page_sizes[lp];
+ if (!i)
+ return 0;
+ if (!is_base_size)
+ i >>= 4;
+ return 1ul << mmu_psize_defs[i & 0xf].shift;
+}
+
+static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
+{
+ return __hpte_page_size(h, l, 0);
+}
+
+static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
+{
+ return __hpte_page_size(h, l, 1);
+}
+
+/*
+ * The current system page and segment sizes
+ */
+extern int mmu_kernel_ssize;
+extern int mmu_highuser_ssize;
+extern u16 mmu_slb_size;
+extern unsigned long tce_alloc_start, tce_alloc_end;
+
+/*
+ * If the processor supports 64k normal pages but not 64k cache
+ * inhibited pages, we have to be prepared to switch processes
+ * to use 4k pages when they create cache-inhibited mappings.
+ * If this is the case, mmu_ci_restrictions will be set to 1.
+ */
+extern int mmu_ci_restrictions;
+
+/*
+ * This computes the AVPN and B fields of the first dword of a HPTE,
+ * for use when we want to match an existing PTE. The bottom 7 bits
+ * of the returned value are zero.
+ */
+static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
+ int ssize)
+{
+ unsigned long v;
+ /*
+ * The AVA field omits the low-order 23 bits of the 78 bits VA.
+ * These bits are not needed in the PTE, because the
+ * low-order b of these bits are part of the byte offset
+ * into the virtual page and, if b < 23, the high-order
+ * 23-b of these bits are always used in selecting the
+ * PTEGs to be searched
+ */
+ v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
+ v <<= HPTE_V_AVPN_SHIFT;
+ v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
+ return v;
+}
+
+/*
+ * ISA v3.0 defines a new HPTE format, which differs from the old
+ * format in having smaller AVPN and ARPN fields, and the B field
+ * in the second dword instead of the first.
+ */
+static inline unsigned long hpte_old_to_new_v(unsigned long v)
+{
+ /* trim AVPN, drop B */
+ return v & HPTE_V_COMMON_BITS;
+}
+
+static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
+{
+ /* move B field from 1st to 2nd dword, trim ARPN */
+ return (r & ~HPTE_R_3_0_SSIZE_MASK) |
+ (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
+}
+
+static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
+{
+ /* insert B field */
+ return (v & HPTE_V_COMMON_BITS) |
+ ((r & HPTE_R_3_0_SSIZE_MASK) <<
+ (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
+}
+
+static inline unsigned long hpte_new_to_old_r(unsigned long r)
+{
+ /* clear out B field */
+ return r & ~HPTE_R_3_0_SSIZE_MASK;
+}
+
+static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)
+{
+ unsigned long hpte_v;
+
+ hpte_v = be64_to_cpu(hptep->v);
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
+ return hpte_v;
+}
+
+/*
+ * This function sets the AVPN and L fields of the HPTE appropriately
+ * using the base page size and actual page size.
+ */
+static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
+ int actual_psize, int ssize)
+{
+ unsigned long v;
+ v = hpte_encode_avpn(vpn, base_psize, ssize);
+ if (actual_psize != MMU_PAGE_4K)
+ v |= HPTE_V_LARGE;
+ return v;
+}
+
+/*
+ * This function sets the ARPN, and LP fields of the HPTE appropriately
+ * for the page size. We assume the pa is already "clean" that is properly
+ * aligned for the requested page size
+ */
+static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
+ int actual_psize)
+{
+ /* A 4K page needs no special encoding */
+ if (actual_psize == MMU_PAGE_4K)
+ return pa & HPTE_R_RPN;
+ else {
+ unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
+ unsigned int shift = mmu_psize_defs[actual_psize].shift;
+ return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
+ }
+}
+
+/*
+ * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
+ */
+static inline unsigned long hpt_vpn(unsigned long ea,
+ unsigned long vsid, int ssize)
+{
+ unsigned long mask;
+ int s_shift = segment_shift(ssize);
+
+ mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
+ return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
+}
+
+/*
+ * This hashes a virtual address
+ */
+static inline unsigned long hpt_hash(unsigned long vpn,
+ unsigned int shift, int ssize)
+{
+ unsigned long mask;
+ unsigned long hash, vsid;
+
+ /* VPN_SHIFT can be atmost 12 */
+ if (ssize == MMU_SEGSIZE_256M) {
+ mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
+ hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
+ ((vpn & mask) >> (shift - VPN_SHIFT));
+ } else {
+ mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
+ vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
+ hash = vsid ^ (vsid << 25) ^
+ ((vpn & mask) >> (shift - VPN_SHIFT)) ;
+ }
+ return hash & 0x7fffffffffUL;
+}
+
+#define HPTE_LOCAL_UPDATE 0x1
+#define HPTE_NOHPTE_UPDATE 0x2
+#define HPTE_USE_KERNEL_KEY 0x4
+
+long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa,
+ unsigned long rlags, unsigned long vflags, int psize, int ssize);
+extern int __hash_page_4K(unsigned long ea, unsigned long access,
+ unsigned long vsid, pte_t *ptep, unsigned long trap,
+ unsigned long flags, int ssize, int subpage_prot);
+extern int __hash_page_64K(unsigned long ea, unsigned long access,
+ unsigned long vsid, pte_t *ptep, unsigned long trap,
+ unsigned long flags, int ssize);
+struct mm_struct;
+unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
+extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
+ unsigned long access, unsigned long trap,
+ unsigned long flags);
+extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
+ unsigned long dsisr);
+void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc);
+int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr, unsigned long msr);
+int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
+ pte_t *ptep, unsigned long trap, unsigned long flags,
+ int ssize, unsigned int shift, unsigned int mmu_psize);
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+extern int __hash_page_thp(unsigned long ea, unsigned long access,
+ unsigned long vsid, pmd_t *pmdp, unsigned long trap,
+ unsigned long flags, int ssize, unsigned int psize);
+#else
+static inline int __hash_page_thp(unsigned long ea, unsigned long access,
+ unsigned long vsid, pmd_t *pmdp,
+ unsigned long trap, unsigned long flags,
+ int ssize, unsigned int psize)
+{
+ BUG();
+ return -1;
+}
+#endif
+extern void hash_failure_debug(unsigned long ea, unsigned long access,
+ unsigned long vsid, unsigned long trap,
+ int ssize, int psize, int lpsize,
+ unsigned long pte);
+extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
+ unsigned long pstart, unsigned long prot,
+ int psize, int ssize);
+int htab_remove_mapping(unsigned long vstart, unsigned long vend,
+ int psize, int ssize);
+extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
+extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
+
+extern void hash__setup_new_exec(void);
+
+#ifdef CONFIG_PPC_PSERIES
+void hpte_init_pseries(void);
+#else
+static inline void hpte_init_pseries(void) { }
+#endif
+
+extern void hpte_init_native(void);
+
+struct slb_entry {
+ u64 esid;
+ u64 vsid;
+};
+
+extern void slb_initialize(void);
+void slb_flush_and_restore_bolted(void);
+void slb_flush_all_realmode(void);
+void __slb_restore_bolted_realmode(void);
+void slb_restore_bolted_realmode(void);
+void slb_save_contents(struct slb_entry *slb_ptr);
+void slb_dump_contents(struct slb_entry *slb_ptr);
+
+extern void slb_vmalloc_update(void);
+void preload_new_slb_context(unsigned long start, unsigned long sp);
+
+#ifdef CONFIG_PPC_64S_HASH_MMU
+void slb_set_size(u16 size);
+#else
+static inline void slb_set_size(u16 size) { }
+#endif
+
+#endif /* __ASSEMBLY__ */
+
+/*
+ * VSID allocation (256MB segment)
+ *
+ * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
+ * from mmu context id and effective segment id of the address.
+ *
+ * For user processes max context id is limited to MAX_USER_CONTEXT.
+ * more details in get_user_context
+ *
+ * For kernel space get_kernel_context
+ *
+ * The proto-VSIDs are then scrambled into real VSIDs with the
+ * multiplicative hash:
+ *
+ * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
+ *
+ * VSID_MULTIPLIER is prime, so in particular it is
+ * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
+ * Because the modulus is 2^n-1 we can compute it efficiently without
+ * a divide or extra multiply (see below). The scramble function gives
+ * robust scattering in the hash table (at least based on some initial
+ * results).
+ *
+ * We use VSID 0 to indicate an invalid VSID. The means we can't use context id
+ * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
+ * will produce a VSID of 0.
+ *
+ * We also need to avoid the last segment of the last context, because that
+ * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
+ * because of the modulo operation in vsid scramble.
+ */
+
+/*
+ * Max Va bits we support as of now is 68 bits. We want 19 bit
+ * context ID.
+ * Restrictions:
+ * GPU has restrictions of not able to access beyond 128TB
+ * (47 bit effective address). We also cannot do more than 20bit PID.
+ * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
+ * to 16 bits (ie, we can only have 2^16 pids at the same time).
+ */
+#define VA_BITS 68
+#define CONTEXT_BITS 19
+#define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
+#define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
+
+#define ESID_BITS_MASK ((1 << ESID_BITS) - 1)
+#define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)
+
+/*
+ * Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need
+ * to use more than one context for linear mapping the kernel.
+ * For vmalloc and memmap, we use just one context with 512TB. With 64 byte
+ * struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)).
+ */
+#if (H_MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT)
+#define MAX_KERNEL_CTX_CNT (1UL << (H_MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT))
+#else
+#define MAX_KERNEL_CTX_CNT 1
+#endif
+
+#define MAX_VMALLOC_CTX_CNT 1
+#define MAX_IO_CTX_CNT 1
+#define MAX_VMEMMAP_CTX_CNT 1
+
+/*
+ * 256MB segment
+ * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
+ * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
+ * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
+ * context maps 2^49 bytes (512TB).
+ *
+ * We also need to avoid the last segment of the last context, because that
+ * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
+ * because of the modulo operation in vsid scramble.
+ *
+ */
+#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2)
+
+// The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel
+#define MIN_USER_CONTEXT (MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \
+ MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2)
+
+/*
+ * For platforms that support on 65bit VA we limit the context bits
+ */
+#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
+
+/*
+ * This should be computed such that protovosid * vsid_mulitplier
+ * doesn't overflow 64 bits. The vsid_mutliplier should also be
+ * co-prime to vsid_modulus. We also need to make sure that number
+ * of bits in multiplied result (dividend) is less than twice the number of
+ * protovsid bits for our modulus optmization to work.
+ *
+ * The below table shows the current values used.
+ * |-------+------------+----------------------+------------+-------------------|
+ * | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
+ * |-------+------------+----------------------+------------+-------------------|
+ * | 1T | 24 | 25 | 49 | 50 |
+ * |-------+------------+----------------------+------------+-------------------|
+ * | 256MB | 24 | 37 | 61 | 74 |
+ * |-------+------------+----------------------+------------+-------------------|
+ *
+ * |-------+------------+----------------------+------------+--------------------|
+ * | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
+ * |-------+------------+----------------------+------------+--------------------|
+ * | 1T | 24 | 28 | 52 | 56 |
+ * |-------+------------+----------------------+------------+--------------------|
+ * | 256MB | 24 | 40 | 64 | 80 |
+ * |-------+------------+----------------------+------------+--------------------|
+ *
+ */
+#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
+#define VSID_BITS_256M (VA_BITS - SID_SHIFT)
+#define VSID_BITS_65_256M (65 - SID_SHIFT)
+/*
+ * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
+ */
+#define VSID_MULINV_256M ASM_CONST(665548017062)
+
+#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
+#define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T)
+#define VSID_BITS_65_1T (65 - SID_SHIFT_1T)
+#define VSID_MULINV_1T ASM_CONST(209034062)
+
+/* 1TB VSID reserved for VRMA */
+#define VRMA_VSID 0x1ffffffUL
+#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
+
+/* 4 bits per slice and we have one slice per 1TB */
+#define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
+#define LOW_SLICE_ARRAY_SZ (BITS_PER_LONG / BITS_PER_BYTE)
+#define TASK_SLICE_ARRAY_SZ(x) ((x)->hash_context->slb_addr_limit >> 41)
+#ifndef __ASSEMBLY__
+
+#ifdef CONFIG_PPC_SUBPAGE_PROT
+/*
+ * For the sub-page protection option, we extend the PGD with one of
+ * these. Basically we have a 3-level tree, with the top level being
+ * the protptrs array. To optimize speed and memory consumption when
+ * only addresses < 4GB are being protected, pointers to the first
+ * four pages of sub-page protection words are stored in the low_prot
+ * array.
+ * Each page of sub-page protection words protects 1GB (4 bytes
+ * protects 64k). For the 3-level tree, each page of pointers then
+ * protects 8TB.
+ */
+struct subpage_prot_table {
+ unsigned long maxaddr; /* only addresses < this are protected */
+ unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
+ unsigned int *low_prot[4];
+};
+
+#define SBP_L1_BITS (PAGE_SHIFT - 2)
+#define SBP_L2_BITS (PAGE_SHIFT - 3)
+#define SBP_L1_COUNT (1 << SBP_L1_BITS)
+#define SBP_L2_COUNT (1 << SBP_L2_BITS)
+#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
+#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
+
+extern void subpage_prot_free(struct mm_struct *mm);
+#else
+static inline void subpage_prot_free(struct mm_struct *mm) {}
+#endif /* CONFIG_PPC_SUBPAGE_PROT */
+
+/*
+ * One bit per slice. We have lower slices which cover 256MB segments
+ * upto 4G range. That gets us 16 low slices. For the rest we track slices
+ * in 1TB size.
+ */
+struct slice_mask {
+ u64 low_slices;
+ DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);
+};
+
+struct hash_mm_context {
+ u16 user_psize; /* page size index */
+
+ /* SLB page size encodings*/
+ unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ];
+ unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
+ unsigned long slb_addr_limit;
+#ifdef CONFIG_PPC_64K_PAGES
+ struct slice_mask mask_64k;
+#endif
+ struct slice_mask mask_4k;
+#ifdef CONFIG_HUGETLB_PAGE
+ struct slice_mask mask_16m;
+ struct slice_mask mask_16g;
+#endif
+
+#ifdef CONFIG_PPC_SUBPAGE_PROT
+ struct subpage_prot_table *spt;
+#endif /* CONFIG_PPC_SUBPAGE_PROT */
+};
+
+#if 0
+/*
+ * The code below is equivalent to this function for arguments
+ * < 2^VSID_BITS, which is all this should ever be called
+ * with. However gcc is not clever enough to compute the
+ * modulus (2^n-1) without a second multiply.
+ */
+#define vsid_scramble(protovsid, size) \
+ ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
+
+/* simplified form avoiding mod operation */
+#define vsid_scramble(protovsid, size) \
+ ({ \
+ unsigned long x; \
+ x = (protovsid) * VSID_MULTIPLIER_##size; \
+ x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
+ (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
+ })
+
+#else /* 1 */
+static inline unsigned long vsid_scramble(unsigned long protovsid,
+ unsigned long vsid_multiplier, int vsid_bits)
+{
+ unsigned long vsid;
+ unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
+ /*
+ * We have same multipler for both 256 and 1T segements now
+ */
+ vsid = protovsid * vsid_multiplier;
+ vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
+ return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
+}
+
+#endif /* 1 */
+
+/* Returns the segment size indicator for a user address */
+static inline int user_segment_size(unsigned long addr)
+{
+ /* Use 1T segments if possible for addresses >= 1T */
+ if (addr >= (1UL << SID_SHIFT_1T))
+ return mmu_highuser_ssize;
+ return MMU_SEGSIZE_256M;
+}
+
+static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
+ int ssize)
+{
+ unsigned long va_bits = VA_BITS;
+ unsigned long vsid_bits;
+ unsigned long protovsid;
+
+ /*
+ * Bad address. We return VSID 0 for that
+ */
+ if ((ea & EA_MASK) >= H_PGTABLE_RANGE)
+ return 0;
+
+ if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
+ va_bits = 65;
+
+ if (ssize == MMU_SEGSIZE_256M) {
+ vsid_bits = va_bits - SID_SHIFT;
+ protovsid = (context << ESID_BITS) |
+ ((ea >> SID_SHIFT) & ESID_BITS_MASK);
+ return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
+ }
+ /* 1T segment */
+ vsid_bits = va_bits - SID_SHIFT_1T;
+ protovsid = (context << ESID_BITS_1T) |
+ ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
+ return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
+}
+
+/*
+ * For kernel space, we use context ids as
+ * below. Range is 512TB per context.
+ *
+ * 0x00001 - [ 0xc000000000000000 - 0xc001ffffffffffff]
+ * 0x00002 - [ 0xc002000000000000 - 0xc003ffffffffffff]
+ * 0x00003 - [ 0xc004000000000000 - 0xc005ffffffffffff]
+ * 0x00004 - [ 0xc006000000000000 - 0xc007ffffffffffff]
+ *
+ * vmap, IO, vmemap
+ *
+ * 0x00005 - [ 0xc008000000000000 - 0xc009ffffffffffff]
+ * 0x00006 - [ 0xc00a000000000000 - 0xc00bffffffffffff]
+ * 0x00007 - [ 0xc00c000000000000 - 0xc00dffffffffffff]
+ *
+ */
+static inline unsigned long get_kernel_context(unsigned long ea)
+{
+ unsigned long region_id = get_region_id(ea);
+ unsigned long ctx;
+ /*
+ * Depending on Kernel config, kernel region can have one context
+ * or more.
+ */
+ if (region_id == LINEAR_MAP_REGION_ID) {
+ /*
+ * We already verified ea to be not beyond the addr limit.
+ */
+ ctx = 1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT);
+ } else
+ ctx = region_id + MAX_KERNEL_CTX_CNT - 1;
+ return ctx;
+}
+
+/*
+ * This is only valid for addresses >= PAGE_OFFSET
+ */
+static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
+{
+ unsigned long context;
+
+ if (!is_kernel_addr(ea))
+ return 0;
+
+ context = get_kernel_context(ea);
+ return get_vsid(context, ea, ssize);
+}
+
+unsigned htab_shift_for_mem_size(unsigned long mem_size);
+
+enum slb_index {
+ LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
+ KSTACK_INDEX = 1, /* Kernel stack map */
+};
+
+#define slb_esid_mask(ssize) \
+ (((ssize) == MMU_SEGSIZE_256M) ? ESID_MASK : ESID_MASK_1T)
+
+static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
+ enum slb_index index)
+{
+ return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
+}
+
+static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
+ unsigned long flags)
+{
+ return (vsid << slb_vsid_shift(ssize)) | flags |
+ ((unsigned long)ssize << SLB_VSID_SSIZE_SHIFT);
+}
+
+static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
+ unsigned long flags)
+{
+ return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
+}
+
+#endif /* __ASSEMBLY__ */
+#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */