summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/mmu/mmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/mmu/mmu.c')
-rw-r--r--arch/x86/kvm/mmu/mmu.c335
1 files changed, 186 insertions, 149 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index db007a4dff..8d74bdef68 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -336,16 +336,19 @@ static int is_cpuid_PSE36(void)
#ifdef CONFIG_X86_64
static void __set_spte(u64 *sptep, u64 spte)
{
+ KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
WRITE_ONCE(*sptep, spte);
}
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
+ KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
WRITE_ONCE(*sptep, spte);
}
static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
+ KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
return xchg(sptep, spte);
}
@@ -432,8 +435,8 @@ static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
* The idea using the light way get the spte on x86_32 guest is from
* gup_get_pte (mm/gup.c).
*
- * An spte tlb flush may be pending, because kvm_set_pte_rmap
- * coalesces them and we are running out of the MMU lock. Therefore
+ * An spte tlb flush may be pending, because they are coalesced and
+ * we are running out of the MMU lock. Therefore
* we need to protect against in-progress updates of the spte.
*
* Reading the spte while an update is in progress may get the old value
@@ -567,9 +570,9 @@ static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
if (!is_shadow_present_pte(old_spte) ||
!spte_has_volatile_bits(old_spte))
- __update_clear_spte_fast(sptep, 0ull);
+ __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
else
- old_spte = __update_clear_spte_slow(sptep, 0ull);
+ old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE);
if (!is_shadow_present_pte(old_spte))
return old_spte;
@@ -603,7 +606,7 @@ static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
*/
static void mmu_spte_clear_no_track(u64 *sptep)
{
- __update_clear_spte_fast(sptep, 0ull);
+ __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
}
static u64 mmu_spte_get_lockless(u64 *sptep)
@@ -831,6 +834,15 @@ static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
gfn_t gfn;
kvm->arch.indirect_shadow_pages++;
+ /*
+ * Ensure indirect_shadow_pages is elevated prior to re-reading guest
+ * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight
+ * emulated writes are visible before re-reading guest PTEs, or that
+ * an emulated write will see the elevated count and acquire mmu_lock
+ * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write().
+ */
+ smp_mb();
+
gfn = sp->gfn;
slots = kvm_memslots_for_spte_role(kvm, sp->role);
slot = __gfn_to_memslot(slots, gfn);
@@ -1448,49 +1460,11 @@ static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
}
static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- pte_t unused)
+ struct kvm_memory_slot *slot, gfn_t gfn, int level)
{
return __kvm_zap_rmap(kvm, rmap_head, slot);
}
-static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- pte_t pte)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- bool need_flush = false;
- u64 new_spte;
- kvm_pfn_t new_pfn;
-
- WARN_ON_ONCE(pte_huge(pte));
- new_pfn = pte_pfn(pte);
-
-restart:
- for_each_rmap_spte(rmap_head, &iter, sptep) {
- need_flush = true;
-
- if (pte_write(pte)) {
- kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
- goto restart;
- } else {
- new_spte = kvm_mmu_changed_pte_notifier_make_spte(
- *sptep, new_pfn);
-
- mmu_spte_clear_track_bits(kvm, sptep);
- mmu_spte_set(sptep, new_spte);
- }
- }
-
- if (need_flush && kvm_available_flush_remote_tlbs_range()) {
- kvm_flush_remote_tlbs_gfn(kvm, gfn, level);
- return false;
- }
-
- return need_flush;
-}
-
struct slot_rmap_walk_iterator {
/* input fields. */
const struct kvm_memory_slot *slot;
@@ -1562,7 +1536,7 @@ static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
struct kvm_memory_slot *slot, gfn_t gfn,
- int level, pte_t pte);
+ int level);
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
struct kvm_gfn_range *range,
@@ -1574,7 +1548,7 @@ static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
range->start, range->end - 1, &iterator)
ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
- iterator.level, range->arg.pte);
+ iterator.level);
return ret;
}
@@ -1596,22 +1570,8 @@ bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
return flush;
}
-bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
-{
- bool flush = false;
-
- if (kvm_memslots_have_rmaps(kvm))
- flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap);
-
- if (tdp_mmu_enabled)
- flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
-
- return flush;
-}
-
static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- pte_t unused)
+ struct kvm_memory_slot *slot, gfn_t gfn, int level)
{
u64 *sptep;
struct rmap_iterator iter;
@@ -1624,8 +1584,7 @@ static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
}
static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn,
- int level, pte_t unused)
+ struct kvm_memory_slot *slot, gfn_t gfn, int level)
{
u64 *sptep;
struct rmap_iterator iter;
@@ -1950,7 +1909,8 @@ static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
{
- if (!sp->spt[i])
+ /* sp->spt[i] has initial value of shadow page table allocation */
+ if (sp->spt[i] == SHADOW_NONPRESENT_VALUE)
return 0;
return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
@@ -2514,7 +2474,7 @@ static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
return kvm_mmu_prepare_zap_page(kvm, child,
invalid_list);
}
- } else if (is_mmio_spte(pte)) {
+ } else if (is_mmio_spte(kvm, pte)) {
mmu_spte_clear_no_track(spte);
}
return 0;
@@ -3314,9 +3274,19 @@ static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
{
gva_t gva = fault->is_tdp ? 0 : fault->addr;
+ if (fault->is_private) {
+ kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
+ return -EFAULT;
+ }
+
vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
access & shadow_mmio_access_mask);
+ fault->slot = NULL;
+ fault->pfn = KVM_PFN_NOSLOT;
+ fault->map_writable = false;
+ fault->hva = KVM_HVA_ERR_BAD;
+
/*
* If MMIO caching is disabled, emulate immediately without
* touching the shadow page tables as attempting to install an
@@ -4134,23 +4104,31 @@ static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level
return leaf;
}
-/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
-static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
+static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
+ int *root_level)
{
- u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
- struct rsvd_bits_validate *rsvd_check;
- int root, leaf, level;
- bool reserved = false;
+ int leaf;
walk_shadow_page_lockless_begin(vcpu);
if (is_tdp_mmu_active(vcpu))
- leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
+ leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level);
else
- leaf = get_walk(vcpu, addr, sptes, &root);
+ leaf = get_walk(vcpu, addr, sptes, root_level);
walk_shadow_page_lockless_end(vcpu);
+ return leaf;
+}
+/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
+static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
+{
+ u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
+ struct rsvd_bits_validate *rsvd_check;
+ int root, leaf, level;
+ bool reserved = false;
+
+ leaf = get_sptes_lockless(vcpu, addr, sptes, &root);
if (unlikely(leaf < 0)) {
*sptep = 0ull;
return reserved;
@@ -4196,7 +4174,7 @@ static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
if (WARN_ON_ONCE(reserved))
return -EINVAL;
- if (is_mmio_spte(spte)) {
+ if (is_mmio_spte(vcpu->kvm, spte)) {
gfn_t gfn = get_mmio_spte_gfn(spte);
unsigned int access = get_mmio_spte_access(spte);
@@ -4259,24 +4237,28 @@ static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
}
-static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
- gfn_t gfn)
+static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu,
+ struct kvm_page_fault *fault)
{
struct kvm_arch_async_pf arch;
arch.token = alloc_apf_token(vcpu);
- arch.gfn = gfn;
+ arch.gfn = fault->gfn;
+ arch.error_code = fault->error_code;
arch.direct_map = vcpu->arch.mmu->root_role.direct;
arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
- return kvm_setup_async_pf(vcpu, cr2_or_gpa,
- kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
+ return kvm_setup_async_pf(vcpu, fault->addr,
+ kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch);
}
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
{
int r;
+ if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS))
+ return;
+
if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
work->wakeup_all)
return;
@@ -4289,7 +4271,7 @@ void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
return;
- kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL);
+ kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, true, NULL);
}
static inline u8 kvm_max_level_for_order(int order)
@@ -4309,14 +4291,6 @@ static inline u8 kvm_max_level_for_order(int order)
return PG_LEVEL_4K;
}
-static void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
- struct kvm_page_fault *fault)
-{
- kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
- PAGE_SIZE, fault->write, fault->exec,
- fault->is_private);
-}
-
static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu,
struct kvm_page_fault *fault)
{
@@ -4343,48 +4317,15 @@ static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu,
static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
{
- struct kvm_memory_slot *slot = fault->slot;
bool async;
- /*
- * Retry the page fault if the gfn hit a memslot that is being deleted
- * or moved. This ensures any existing SPTEs for the old memslot will
- * be zapped before KVM inserts a new MMIO SPTE for the gfn.
- */
- if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
- return RET_PF_RETRY;
-
- if (!kvm_is_visible_memslot(slot)) {
- /* Don't expose private memslots to L2. */
- if (is_guest_mode(vcpu)) {
- fault->slot = NULL;
- fault->pfn = KVM_PFN_NOSLOT;
- fault->map_writable = false;
- return RET_PF_CONTINUE;
- }
- /*
- * If the APIC access page exists but is disabled, go directly
- * to emulation without caching the MMIO access or creating a
- * MMIO SPTE. That way the cache doesn't need to be purged
- * when the AVIC is re-enabled.
- */
- if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
- !kvm_apicv_activated(vcpu->kvm))
- return RET_PF_EMULATE;
- }
-
- if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) {
- kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
- return -EFAULT;
- }
-
if (fault->is_private)
return kvm_faultin_pfn_private(vcpu, fault);
async = false;
- fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async,
- fault->write, &fault->map_writable,
- &fault->hva);
+ fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, false,
+ &async, fault->write,
+ &fault->map_writable, &fault->hva);
if (!async)
return RET_PF_CONTINUE; /* *pfn has correct page already */
@@ -4394,7 +4335,7 @@ static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault
trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
return RET_PF_RETRY;
- } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
+ } else if (kvm_arch_setup_async_pf(vcpu, fault)) {
return RET_PF_RETRY;
}
}
@@ -4404,21 +4345,73 @@ static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault
* to wait for IO. Note, gup always bails if it is unable to quickly
* get a page and a fatal signal, i.e. SIGKILL, is pending.
*/
- fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL,
- fault->write, &fault->map_writable,
- &fault->hva);
+ fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, true,
+ NULL, fault->write,
+ &fault->map_writable, &fault->hva);
return RET_PF_CONTINUE;
}
static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
unsigned int access)
{
+ struct kvm_memory_slot *slot = fault->slot;
int ret;
+ /*
+ * Note that the mmu_invalidate_seq also serves to detect a concurrent
+ * change in attributes. is_page_fault_stale() will detect an
+ * invalidation relate to fault->fn and resume the guest without
+ * installing a mapping in the page tables.
+ */
fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
smp_rmb();
/*
+ * Now that we have a snapshot of mmu_invalidate_seq we can check for a
+ * private vs. shared mismatch.
+ */
+ if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) {
+ kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
+ return -EFAULT;
+ }
+
+ if (unlikely(!slot))
+ return kvm_handle_noslot_fault(vcpu, fault, access);
+
+ /*
+ * Retry the page fault if the gfn hit a memslot that is being deleted
+ * or moved. This ensures any existing SPTEs for the old memslot will
+ * be zapped before KVM inserts a new MMIO SPTE for the gfn.
+ */
+ if (slot->flags & KVM_MEMSLOT_INVALID)
+ return RET_PF_RETRY;
+
+ if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) {
+ /*
+ * Don't map L1's APIC access page into L2, KVM doesn't support
+ * using APICv/AVIC to accelerate L2 accesses to L1's APIC,
+ * i.e. the access needs to be emulated. Emulating access to
+ * L1's APIC is also correct if L1 is accelerating L2's own
+ * virtual APIC, but for some reason L1 also maps _L1's_ APIC
+ * into L2. Note, vcpu_is_mmio_gpa() always treats access to
+ * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM
+ * uses different roots for L1 vs. L2, i.e. there is no danger
+ * of breaking APICv/AVIC for L1.
+ */
+ if (is_guest_mode(vcpu))
+ return kvm_handle_noslot_fault(vcpu, fault, access);
+
+ /*
+ * If the APIC access page exists but is disabled, go directly
+ * to emulation without caching the MMIO access or creating a
+ * MMIO SPTE. That way the cache doesn't need to be purged
+ * when the AVIC is re-enabled.
+ */
+ if (!kvm_apicv_activated(vcpu->kvm))
+ return RET_PF_EMULATE;
+ }
+
+ /*
* Check for a relevant mmu_notifier invalidation event before getting
* the pfn from the primary MMU, and before acquiring mmu_lock.
*
@@ -4439,8 +4432,7 @@ static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
* *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
* to detect retry guarantees the worst case latency for the vCPU.
*/
- if (fault->slot &&
- mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn))
+ if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn))
return RET_PF_RETRY;
ret = __kvm_faultin_pfn(vcpu, fault);
@@ -4450,7 +4442,7 @@ static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
if (unlikely(is_error_pfn(fault->pfn)))
return kvm_handle_error_pfn(vcpu, fault);
- if (unlikely(!fault->slot))
+ if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn)))
return kvm_handle_noslot_fault(vcpu, fault, access);
/*
@@ -4561,6 +4553,16 @@ int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
if (WARN_ON_ONCE(fault_address >> 32))
return -EFAULT;
#endif
+ /*
+ * Legacy #PF exception only have a 32-bit error code. Simply drop the
+ * upper bits as KVM doesn't use them for #PF (because they are never
+ * set), and to ensure there are no collisions with KVM-defined bits.
+ */
+ if (WARN_ON_ONCE(error_code >> 32))
+ error_code = lower_32_bits(error_code);
+
+ /* Ensure the above sanity check also covers KVM-defined flags. */
+ BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK));
vcpu->arch.l1tf_flush_l1d = true;
if (!flags) {
@@ -4812,7 +4814,7 @@ EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
unsigned int access)
{
- if (unlikely(is_mmio_spte(*sptep))) {
+ if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) {
if (gfn != get_mmio_spte_gfn(*sptep)) {
mmu_spte_clear_no_track(sptep);
return true;
@@ -5322,6 +5324,11 @@ static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
return max_tdp_level;
}
+u8 kvm_mmu_get_max_tdp_level(void)
+{
+ return tdp_root_level ? tdp_root_level : max_tdp_level;
+}
+
static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
union kvm_cpu_role cpu_role)
@@ -5802,10 +5809,15 @@ void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
bool flush = false;
/*
- * If we don't have indirect shadow pages, it means no page is
- * write-protected, so we can exit simply.
+ * When emulating guest writes, ensure the written value is visible to
+ * any task that is handling page faults before checking whether or not
+ * KVM is shadowing a guest PTE. This ensures either KVM will create
+ * the correct SPTE in the page fault handler, or this task will see
+ * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in
+ * account_shadowed().
*/
- if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
+ smp_mb();
+ if (!vcpu->kvm->arch.indirect_shadow_pages)
return;
write_lock(&vcpu->kvm->mmu_lock);
@@ -5846,30 +5858,35 @@ int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 err
int r, emulation_type = EMULTYPE_PF;
bool direct = vcpu->arch.mmu->root_role.direct;
- /*
- * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP
- * checks when emulating instructions that triggers implicit access.
- * WARN if hardware generates a fault with an error code that collides
- * with the KVM-defined value. Clear the flag and continue on, i.e.
- * don't terminate the VM, as KVM can't possibly be relying on a flag
- * that KVM doesn't know about.
- */
- if (WARN_ON_ONCE(error_code & PFERR_IMPLICIT_ACCESS))
- error_code &= ~PFERR_IMPLICIT_ACCESS;
-
if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
return RET_PF_RETRY;
+ /*
+ * Except for reserved faults (emulated MMIO is shared-only), set the
+ * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's
+ * current attributes, which are the source of truth for such VMs. Note,
+ * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't
+ * currently supported nested virtualization (among many other things)
+ * for software-protected VMs.
+ */
+ if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) &&
+ !(error_code & PFERR_RSVD_MASK) &&
+ vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM &&
+ kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)))
+ error_code |= PFERR_PRIVATE_ACCESS;
+
r = RET_PF_INVALID;
if (unlikely(error_code & PFERR_RSVD_MASK)) {
+ if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS))
+ return -EFAULT;
+
r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
if (r == RET_PF_EMULATE)
goto emulate;
}
if (r == RET_PF_INVALID) {
- r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
- lower_32_bits(error_code), false,
+ r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false,
&emulation_type);
if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
return -EIO;
@@ -5912,6 +5929,22 @@ emulate:
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
+void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg)
+{
+ u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
+ int root_level, leaf, level;
+
+ leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level);
+ if (unlikely(leaf < 0))
+ return;
+
+ pr_err("%s %llx", msg, gpa);
+ for (level = root_level; level >= leaf; level--)
+ pr_cont(", spte[%d] = 0x%llx", level, sptes[level]);
+ pr_cont("\n");
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes);
+
static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
u64 addr, hpa_t root_hpa)
{
@@ -6173,7 +6206,10 @@ int kvm_mmu_create(struct kvm_vcpu *vcpu)
vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
- vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
+ vcpu->arch.mmu_shadow_page_cache.init_value =
+ SHADOW_NONPRESENT_VALUE;
+ if (!vcpu->arch.mmu_shadow_page_cache.init_value)
+ vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
vcpu->arch.mmu = &vcpu->arch.root_mmu;
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
@@ -6316,6 +6352,7 @@ static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
void kvm_mmu_init_vm(struct kvm *kvm)
{
+ kvm->arch.shadow_mmio_value = shadow_mmio_value;
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);