diff options
Diffstat (limited to 'arch/x86/kvm/mmu/mmu.c')
-rw-r--r-- | arch/x86/kvm/mmu/mmu.c | 335 |
1 files changed, 186 insertions, 149 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c index db007a4dff..8d74bdef68 100644 --- a/arch/x86/kvm/mmu/mmu.c +++ b/arch/x86/kvm/mmu/mmu.c @@ -336,16 +336,19 @@ static int is_cpuid_PSE36(void) #ifdef CONFIG_X86_64 static void __set_spte(u64 *sptep, u64 spte) { + KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); WRITE_ONCE(*sptep, spte); } static void __update_clear_spte_fast(u64 *sptep, u64 spte) { + KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); WRITE_ONCE(*sptep, spte); } static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) { + KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); return xchg(sptep, spte); } @@ -432,8 +435,8 @@ static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) * The idea using the light way get the spte on x86_32 guest is from * gup_get_pte (mm/gup.c). * - * An spte tlb flush may be pending, because kvm_set_pte_rmap - * coalesces them and we are running out of the MMU lock. Therefore + * An spte tlb flush may be pending, because they are coalesced and + * we are running out of the MMU lock. Therefore * we need to protect against in-progress updates of the spte. * * Reading the spte while an update is in progress may get the old value @@ -567,9 +570,9 @@ static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) if (!is_shadow_present_pte(old_spte) || !spte_has_volatile_bits(old_spte)) - __update_clear_spte_fast(sptep, 0ull); + __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); else - old_spte = __update_clear_spte_slow(sptep, 0ull); + old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); if (!is_shadow_present_pte(old_spte)) return old_spte; @@ -603,7 +606,7 @@ static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) */ static void mmu_spte_clear_no_track(u64 *sptep) { - __update_clear_spte_fast(sptep, 0ull); + __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); } static u64 mmu_spte_get_lockless(u64 *sptep) @@ -831,6 +834,15 @@ static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) gfn_t gfn; kvm->arch.indirect_shadow_pages++; + /* + * Ensure indirect_shadow_pages is elevated prior to re-reading guest + * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight + * emulated writes are visible before re-reading guest PTEs, or that + * an emulated write will see the elevated count and acquire mmu_lock + * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). + */ + smp_mb(); + gfn = sp->gfn; slots = kvm_memslots_for_spte_role(kvm, sp->role); slot = __gfn_to_memslot(slots, gfn); @@ -1448,49 +1460,11 @@ static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, } static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, - struct kvm_memory_slot *slot, gfn_t gfn, int level, - pte_t unused) + struct kvm_memory_slot *slot, gfn_t gfn, int level) { return __kvm_zap_rmap(kvm, rmap_head, slot); } -static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, - struct kvm_memory_slot *slot, gfn_t gfn, int level, - pte_t pte) -{ - u64 *sptep; - struct rmap_iterator iter; - bool need_flush = false; - u64 new_spte; - kvm_pfn_t new_pfn; - - WARN_ON_ONCE(pte_huge(pte)); - new_pfn = pte_pfn(pte); - -restart: - for_each_rmap_spte(rmap_head, &iter, sptep) { - need_flush = true; - - if (pte_write(pte)) { - kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); - goto restart; - } else { - new_spte = kvm_mmu_changed_pte_notifier_make_spte( - *sptep, new_pfn); - - mmu_spte_clear_track_bits(kvm, sptep); - mmu_spte_set(sptep, new_spte); - } - } - - if (need_flush && kvm_available_flush_remote_tlbs_range()) { - kvm_flush_remote_tlbs_gfn(kvm, gfn, level); - return false; - } - - return need_flush; -} - struct slot_rmap_walk_iterator { /* input fields. */ const struct kvm_memory_slot *slot; @@ -1562,7 +1536,7 @@ static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, struct kvm_memory_slot *slot, gfn_t gfn, - int level, pte_t pte); + int level); static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, @@ -1574,7 +1548,7 @@ static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, range->start, range->end - 1, &iterator) ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, - iterator.level, range->arg.pte); + iterator.level); return ret; } @@ -1596,22 +1570,8 @@ bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) return flush; } -bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) -{ - bool flush = false; - - if (kvm_memslots_have_rmaps(kvm)) - flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); - - if (tdp_mmu_enabled) - flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); - - return flush; -} - static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, - struct kvm_memory_slot *slot, gfn_t gfn, int level, - pte_t unused) + struct kvm_memory_slot *slot, gfn_t gfn, int level) { u64 *sptep; struct rmap_iterator iter; @@ -1624,8 +1584,7 @@ static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, } static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, - struct kvm_memory_slot *slot, gfn_t gfn, - int level, pte_t unused) + struct kvm_memory_slot *slot, gfn_t gfn, int level) { u64 *sptep; struct rmap_iterator iter; @@ -1950,7 +1909,8 @@ static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) { - if (!sp->spt[i]) + /* sp->spt[i] has initial value of shadow page table allocation */ + if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) return 0; return vcpu->arch.mmu->sync_spte(vcpu, sp, i); @@ -2514,7 +2474,7 @@ static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, return kvm_mmu_prepare_zap_page(kvm, child, invalid_list); } - } else if (is_mmio_spte(pte)) { + } else if (is_mmio_spte(kvm, pte)) { mmu_spte_clear_no_track(spte); } return 0; @@ -3314,9 +3274,19 @@ static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, { gva_t gva = fault->is_tdp ? 0 : fault->addr; + if (fault->is_private) { + kvm_mmu_prepare_memory_fault_exit(vcpu, fault); + return -EFAULT; + } + vcpu_cache_mmio_info(vcpu, gva, fault->gfn, access & shadow_mmio_access_mask); + fault->slot = NULL; + fault->pfn = KVM_PFN_NOSLOT; + fault->map_writable = false; + fault->hva = KVM_HVA_ERR_BAD; + /* * If MMIO caching is disabled, emulate immediately without * touching the shadow page tables as attempting to install an @@ -4134,23 +4104,31 @@ static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level return leaf; } -/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ -static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) +static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, + int *root_level) { - u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; - struct rsvd_bits_validate *rsvd_check; - int root, leaf, level; - bool reserved = false; + int leaf; walk_shadow_page_lockless_begin(vcpu); if (is_tdp_mmu_active(vcpu)) - leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); + leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); else - leaf = get_walk(vcpu, addr, sptes, &root); + leaf = get_walk(vcpu, addr, sptes, root_level); walk_shadow_page_lockless_end(vcpu); + return leaf; +} +/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ +static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) +{ + u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; + struct rsvd_bits_validate *rsvd_check; + int root, leaf, level; + bool reserved = false; + + leaf = get_sptes_lockless(vcpu, addr, sptes, &root); if (unlikely(leaf < 0)) { *sptep = 0ull; return reserved; @@ -4196,7 +4174,7 @@ static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) if (WARN_ON_ONCE(reserved)) return -EINVAL; - if (is_mmio_spte(spte)) { + if (is_mmio_spte(vcpu->kvm, spte)) { gfn_t gfn = get_mmio_spte_gfn(spte); unsigned int access = get_mmio_spte_access(spte); @@ -4259,24 +4237,28 @@ static u32 alloc_apf_token(struct kvm_vcpu *vcpu) return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; } -static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, - gfn_t gfn) +static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, + struct kvm_page_fault *fault) { struct kvm_arch_async_pf arch; arch.token = alloc_apf_token(vcpu); - arch.gfn = gfn; + arch.gfn = fault->gfn; + arch.error_code = fault->error_code; arch.direct_map = vcpu->arch.mmu->root_role.direct; arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); - return kvm_setup_async_pf(vcpu, cr2_or_gpa, - kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); + return kvm_setup_async_pf(vcpu, fault->addr, + kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); } void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { int r; + if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) + return; + if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || work->wakeup_all) return; @@ -4289,7 +4271,7 @@ void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) return; - kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL); + kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, true, NULL); } static inline u8 kvm_max_level_for_order(int order) @@ -4309,14 +4291,6 @@ static inline u8 kvm_max_level_for_order(int order) return PG_LEVEL_4K; } -static void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, - struct kvm_page_fault *fault) -{ - kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT, - PAGE_SIZE, fault->write, fault->exec, - fault->is_private); -} - static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) { @@ -4343,48 +4317,15 @@ static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) { - struct kvm_memory_slot *slot = fault->slot; bool async; - /* - * Retry the page fault if the gfn hit a memslot that is being deleted - * or moved. This ensures any existing SPTEs for the old memslot will - * be zapped before KVM inserts a new MMIO SPTE for the gfn. - */ - if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) - return RET_PF_RETRY; - - if (!kvm_is_visible_memslot(slot)) { - /* Don't expose private memslots to L2. */ - if (is_guest_mode(vcpu)) { - fault->slot = NULL; - fault->pfn = KVM_PFN_NOSLOT; - fault->map_writable = false; - return RET_PF_CONTINUE; - } - /* - * If the APIC access page exists but is disabled, go directly - * to emulation without caching the MMIO access or creating a - * MMIO SPTE. That way the cache doesn't need to be purged - * when the AVIC is re-enabled. - */ - if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && - !kvm_apicv_activated(vcpu->kvm)) - return RET_PF_EMULATE; - } - - if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { - kvm_mmu_prepare_memory_fault_exit(vcpu, fault); - return -EFAULT; - } - if (fault->is_private) return kvm_faultin_pfn_private(vcpu, fault); async = false; - fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async, - fault->write, &fault->map_writable, - &fault->hva); + fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, false, + &async, fault->write, + &fault->map_writable, &fault->hva); if (!async) return RET_PF_CONTINUE; /* *pfn has correct page already */ @@ -4394,7 +4335,7 @@ static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); kvm_make_request(KVM_REQ_APF_HALT, vcpu); return RET_PF_RETRY; - } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { + } else if (kvm_arch_setup_async_pf(vcpu, fault)) { return RET_PF_RETRY; } } @@ -4404,21 +4345,73 @@ static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault * to wait for IO. Note, gup always bails if it is unable to quickly * get a page and a fatal signal, i.e. SIGKILL, is pending. */ - fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL, - fault->write, &fault->map_writable, - &fault->hva); + fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, true, + NULL, fault->write, + &fault->map_writable, &fault->hva); return RET_PF_CONTINUE; } static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, unsigned int access) { + struct kvm_memory_slot *slot = fault->slot; int ret; + /* + * Note that the mmu_invalidate_seq also serves to detect a concurrent + * change in attributes. is_page_fault_stale() will detect an + * invalidation relate to fault->fn and resume the guest without + * installing a mapping in the page tables. + */ fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; smp_rmb(); /* + * Now that we have a snapshot of mmu_invalidate_seq we can check for a + * private vs. shared mismatch. + */ + if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { + kvm_mmu_prepare_memory_fault_exit(vcpu, fault); + return -EFAULT; + } + + if (unlikely(!slot)) + return kvm_handle_noslot_fault(vcpu, fault, access); + + /* + * Retry the page fault if the gfn hit a memslot that is being deleted + * or moved. This ensures any existing SPTEs for the old memslot will + * be zapped before KVM inserts a new MMIO SPTE for the gfn. + */ + if (slot->flags & KVM_MEMSLOT_INVALID) + return RET_PF_RETRY; + + if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { + /* + * Don't map L1's APIC access page into L2, KVM doesn't support + * using APICv/AVIC to accelerate L2 accesses to L1's APIC, + * i.e. the access needs to be emulated. Emulating access to + * L1's APIC is also correct if L1 is accelerating L2's own + * virtual APIC, but for some reason L1 also maps _L1's_ APIC + * into L2. Note, vcpu_is_mmio_gpa() always treats access to + * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM + * uses different roots for L1 vs. L2, i.e. there is no danger + * of breaking APICv/AVIC for L1. + */ + if (is_guest_mode(vcpu)) + return kvm_handle_noslot_fault(vcpu, fault, access); + + /* + * If the APIC access page exists but is disabled, go directly + * to emulation without caching the MMIO access or creating a + * MMIO SPTE. That way the cache doesn't need to be purged + * when the AVIC is re-enabled. + */ + if (!kvm_apicv_activated(vcpu->kvm)) + return RET_PF_EMULATE; + } + + /* * Check for a relevant mmu_notifier invalidation event before getting * the pfn from the primary MMU, and before acquiring mmu_lock. * @@ -4439,8 +4432,7 @@ static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held * to detect retry guarantees the worst case latency for the vCPU. */ - if (fault->slot && - mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) + if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) return RET_PF_RETRY; ret = __kvm_faultin_pfn(vcpu, fault); @@ -4450,7 +4442,7 @@ static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, if (unlikely(is_error_pfn(fault->pfn))) return kvm_handle_error_pfn(vcpu, fault); - if (unlikely(!fault->slot)) + if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) return kvm_handle_noslot_fault(vcpu, fault, access); /* @@ -4561,6 +4553,16 @@ int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, if (WARN_ON_ONCE(fault_address >> 32)) return -EFAULT; #endif + /* + * Legacy #PF exception only have a 32-bit error code. Simply drop the + * upper bits as KVM doesn't use them for #PF (because they are never + * set), and to ensure there are no collisions with KVM-defined bits. + */ + if (WARN_ON_ONCE(error_code >> 32)) + error_code = lower_32_bits(error_code); + + /* Ensure the above sanity check also covers KVM-defined flags. */ + BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); vcpu->arch.l1tf_flush_l1d = true; if (!flags) { @@ -4812,7 +4814,7 @@ EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, unsigned int access) { - if (unlikely(is_mmio_spte(*sptep))) { + if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { if (gfn != get_mmio_spte_gfn(*sptep)) { mmu_spte_clear_no_track(sptep); return true; @@ -5322,6 +5324,11 @@ static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) return max_tdp_level; } +u8 kvm_mmu_get_max_tdp_level(void) +{ + return tdp_root_level ? tdp_root_level : max_tdp_level; +} + static union kvm_mmu_page_role kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, union kvm_cpu_role cpu_role) @@ -5802,10 +5809,15 @@ void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, bool flush = false; /* - * If we don't have indirect shadow pages, it means no page is - * write-protected, so we can exit simply. + * When emulating guest writes, ensure the written value is visible to + * any task that is handling page faults before checking whether or not + * KVM is shadowing a guest PTE. This ensures either KVM will create + * the correct SPTE in the page fault handler, or this task will see + * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in + * account_shadowed(). */ - if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) + smp_mb(); + if (!vcpu->kvm->arch.indirect_shadow_pages) return; write_lock(&vcpu->kvm->mmu_lock); @@ -5846,30 +5858,35 @@ int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 err int r, emulation_type = EMULTYPE_PF; bool direct = vcpu->arch.mmu->root_role.direct; - /* - * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP - * checks when emulating instructions that triggers implicit access. - * WARN if hardware generates a fault with an error code that collides - * with the KVM-defined value. Clear the flag and continue on, i.e. - * don't terminate the VM, as KVM can't possibly be relying on a flag - * that KVM doesn't know about. - */ - if (WARN_ON_ONCE(error_code & PFERR_IMPLICIT_ACCESS)) - error_code &= ~PFERR_IMPLICIT_ACCESS; - if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) return RET_PF_RETRY; + /* + * Except for reserved faults (emulated MMIO is shared-only), set the + * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's + * current attributes, which are the source of truth for such VMs. Note, + * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't + * currently supported nested virtualization (among many other things) + * for software-protected VMs. + */ + if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && + !(error_code & PFERR_RSVD_MASK) && + vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && + kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) + error_code |= PFERR_PRIVATE_ACCESS; + r = RET_PF_INVALID; if (unlikely(error_code & PFERR_RSVD_MASK)) { + if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) + return -EFAULT; + r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); if (r == RET_PF_EMULATE) goto emulate; } if (r == RET_PF_INVALID) { - r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, - lower_32_bits(error_code), false, + r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, &emulation_type); if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) return -EIO; @@ -5912,6 +5929,22 @@ emulate: } EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); +void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) +{ + u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; + int root_level, leaf, level; + + leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); + if (unlikely(leaf < 0)) + return; + + pr_err("%s %llx", msg, gpa); + for (level = root_level; level >= leaf; level--) + pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); + pr_cont("\n"); +} +EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); + static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, u64 addr, hpa_t root_hpa) { @@ -6173,7 +6206,10 @@ int kvm_mmu_create(struct kvm_vcpu *vcpu) vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; - vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; + vcpu->arch.mmu_shadow_page_cache.init_value = + SHADOW_NONPRESENT_VALUE; + if (!vcpu->arch.mmu_shadow_page_cache.init_value) + vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; vcpu->arch.mmu = &vcpu->arch.root_mmu; vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; @@ -6316,6 +6352,7 @@ static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) void kvm_mmu_init_vm(struct kvm *kvm) { + kvm->arch.shadow_mmio_value = shadow_mmio_value; INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); |