summaryrefslogtreecommitdiffstats
path: root/drivers/accel/habanalabs/common/mmu/mmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/accel/habanalabs/common/mmu/mmu.c')
-rw-r--r--drivers/accel/habanalabs/common/mmu/mmu.c1210
1 files changed, 1210 insertions, 0 deletions
diff --git a/drivers/accel/habanalabs/common/mmu/mmu.c b/drivers/accel/habanalabs/common/mmu/mmu.c
new file mode 100644
index 000000000..b2145716c
--- /dev/null
+++ b/drivers/accel/habanalabs/common/mmu/mmu.c
@@ -0,0 +1,1210 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2022 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include <linux/slab.h>
+
+#include "../habanalabs.h"
+
+#include <trace/events/habanalabs.h>
+
+/**
+ * hl_mmu_get_funcs() - get MMU functions structure
+ * @hdev: habanalabs device structure.
+ * @pgt_residency: page table residency.
+ * @is_dram_addr: true if we need HMMU functions
+ *
+ * @return appropriate MMU functions structure
+ */
+static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
+ bool is_dram_addr)
+{
+ return &hdev->mmu_func[pgt_residency];
+}
+
+bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
+ prop->dmmu.start_addr,
+ prop->dmmu.end_addr);
+}
+
+/**
+ * hl_mmu_init() - initialize the MMU module.
+ * @hdev: habanalabs device structure.
+ *
+ * Return: 0 for success, non-zero for failure.
+ */
+int hl_mmu_init(struct hl_device *hdev)
+{
+ int rc = -EOPNOTSUPP;
+
+ if (hdev->mmu_disable)
+ return 0;
+
+ mutex_init(&hdev->mmu_lock);
+
+ if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
+ rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
+ if (rc)
+ return rc;
+ }
+
+ if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
+ rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
+ if (rc)
+ goto fini_dr_mmu;
+ }
+
+ return 0;
+
+fini_dr_mmu:
+ if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
+ hdev->mmu_func[MMU_DR_PGT].fini(hdev);
+
+ return rc;
+}
+
+/**
+ * hl_mmu_fini() - release the MMU module.
+ * @hdev: habanalabs device structure.
+ *
+ * This function does the following:
+ * - Disable MMU in H/W.
+ * - Free the pgt_infos pool.
+ *
+ * All contexts should be freed before calling this function.
+ */
+void hl_mmu_fini(struct hl_device *hdev)
+{
+ if (hdev->mmu_disable)
+ return;
+
+ if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
+ hdev->mmu_func[MMU_DR_PGT].fini(hdev);
+
+ if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
+ hdev->mmu_func[MMU_HR_PGT].fini(hdev);
+
+ mutex_destroy(&hdev->mmu_lock);
+}
+
+/**
+ * hl_mmu_ctx_init() - initialize a context for using the MMU module.
+ * @ctx: pointer to the context structure to initialize.
+ *
+ * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
+ * page tables hops related to this context.
+ * Return: 0 on success, non-zero otherwise.
+ */
+int hl_mmu_ctx_init(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ int rc = -EOPNOTSUPP;
+
+ if (hdev->mmu_disable)
+ return 0;
+
+ if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
+ rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
+ if (rc)
+ return rc;
+ }
+
+ if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
+ rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
+ if (rc)
+ goto fini_dr_ctx;
+ }
+
+ return 0;
+
+fini_dr_ctx:
+ if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
+ hdev->mmu_func[MMU_DR_PGT].fini(hdev);
+
+ return rc;
+}
+
+/*
+ * hl_mmu_ctx_fini - disable a ctx from using the mmu module
+ *
+ * @ctx: pointer to the context structure
+ *
+ * This function does the following:
+ * - Free any pgts which were not freed yet
+ * - Free the mutex
+ * - Free DRAM default page mapping hops
+ */
+void hl_mmu_ctx_fini(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+
+ if (hdev->mmu_disable)
+ return;
+
+ if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
+ hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
+
+ if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
+ hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
+}
+
+/*
+ * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
+ *
+ * @hdev: pointer to device data.
+ * @mmu_prop: MMU properties.
+ * @page_size: page size
+ * @real_page_size: set here the actual page size to use for the operation
+ * @is_dram_addr: true if DRAM address, otherwise false.
+ *
+ * @return 0 on success, otherwise non 0 error code
+ *
+ * note that this is general implementation that can fit most MMU arch. but as this is used as an
+ * MMU function:
+ * 1. it shall not be called directly- only from mmu_func structure instance
+ * 2. each MMU may modify the implementation internally
+ */
+int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
+ u32 page_size, u32 *real_page_size, bool is_dram_addr)
+{
+ /*
+ * The H/W handles mapping of specific page sizes. Hence if the page
+ * size is bigger, we break it to sub-pages and map them separately.
+ */
+ if ((page_size % mmu_prop->page_size) == 0) {
+ *real_page_size = mmu_prop->page_size;
+ return 0;
+ }
+
+ dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
+ page_size, mmu_prop->page_size >> 10);
+
+ return -EFAULT;
+}
+
+static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
+ bool is_dram_addr)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ if (is_dram_addr)
+ return &prop->dmmu;
+ else if ((page_size % prop->pmmu_huge.page_size) == 0)
+ return &prop->pmmu_huge;
+
+ return &prop->pmmu;
+}
+
+/*
+ * hl_mmu_unmap_page - unmaps a virtual addr
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to map from
+ * @page_size: size of the page to unmap
+ * @flush_pte: whether to do a PCI flush
+ *
+ * This function does the following:
+ * - Check that the virt addr is mapped
+ * - Unmap the virt addr and frees pgts if possible
+ * - Returns 0 on success, -EINVAL if the given addr is not mapped
+ *
+ * Because this function changes the page tables in the device and because it
+ * changes the MMU hash, it must be protected by a lock.
+ * However, because it maps only a single page, the lock should be implemented
+ * in a higher level in order to protect the entire mapping of the memory area
+ *
+ * For optimization reasons PCI flush may be requested once after unmapping of
+ * large area.
+ */
+int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_mmu_properties *mmu_prop;
+ struct hl_mmu_funcs *mmu_funcs;
+ int i, pgt_residency, rc = 0;
+ u32 real_page_size, npages;
+ u64 real_virt_addr;
+ bool is_dram_addr;
+
+ if (hdev->mmu_disable)
+ return 0;
+
+ is_dram_addr = hl_is_dram_va(hdev, virt_addr);
+ mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
+
+ pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
+ mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
+
+ rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
+ is_dram_addr);
+ if (rc)
+ return rc;
+
+ npages = page_size / real_page_size;
+ real_virt_addr = virt_addr;
+
+ for (i = 0 ; i < npages ; i++) {
+ rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
+ if (rc)
+ break;
+
+ real_virt_addr += real_page_size;
+ }
+
+ if (flush_pte)
+ mmu_funcs->flush(ctx);
+
+ if (trace_habanalabs_mmu_unmap_enabled() && !rc)
+ trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte);
+
+ return rc;
+}
+
+/*
+ * hl_mmu_map_page - maps a virtual addr to physical addr
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to map from
+ * @phys_addr: phys addr to map to
+ * @page_size: physical page size
+ * @flush_pte: whether to do a PCI flush
+ *
+ * This function does the following:
+ * - Check that the virt addr is not mapped
+ * - Allocate pgts as necessary in order to map the virt addr to the phys
+ * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
+ *
+ * Because this function changes the page tables in the device and because it
+ * changes the MMU hash, it must be protected by a lock.
+ * However, because it maps only a single page, the lock should be implemented
+ * in a higher level in order to protect the entire mapping of the memory area
+ *
+ * For optimization reasons PCI flush may be requested once after mapping of
+ * large area.
+ */
+int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
+ bool flush_pte)
+{
+ int i, rc, pgt_residency, mapped_cnt = 0;
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_mmu_properties *mmu_prop;
+ u64 real_virt_addr, real_phys_addr;
+ struct hl_mmu_funcs *mmu_funcs;
+ u32 real_page_size, npages;
+ bool is_dram_addr;
+
+
+ if (hdev->mmu_disable)
+ return 0;
+
+ is_dram_addr = hl_is_dram_va(hdev, virt_addr);
+ mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
+
+ pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
+ mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
+
+ rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
+ is_dram_addr);
+ if (rc)
+ return rc;
+
+ /*
+ * Verify that the phys and virt addresses are aligned with the
+ * MMU page size (in dram this means checking the address and MMU
+ * after scrambling)
+ */
+ if ((is_dram_addr &&
+ ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
+ (mmu_prop->page_size - 1)) ||
+ (hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
+ (mmu_prop->page_size - 1)))) ||
+ (!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
+ (virt_addr & (real_page_size - 1)))))
+ dev_crit(hdev->dev,
+ "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
+ phys_addr, virt_addr, real_page_size);
+
+ npages = page_size / real_page_size;
+ real_virt_addr = virt_addr;
+ real_phys_addr = phys_addr;
+
+ for (i = 0 ; i < npages ; i++) {
+ rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
+ is_dram_addr);
+ if (rc)
+ goto err;
+
+ real_virt_addr += real_page_size;
+ real_phys_addr += real_page_size;
+ mapped_cnt++;
+ }
+
+ if (flush_pte)
+ mmu_funcs->flush(ctx);
+
+ trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte);
+
+ return 0;
+
+err:
+ real_virt_addr = virt_addr;
+ for (i = 0 ; i < mapped_cnt ; i++) {
+ if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
+ dev_warn_ratelimited(hdev->dev,
+ "failed to unmap va: 0x%llx\n", real_virt_addr);
+
+ real_virt_addr += real_page_size;
+ }
+
+ mmu_funcs->flush(ctx);
+
+ return rc;
+}
+
+/*
+ * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
+ * for mapping contiguous physical memory
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to map from
+ * @phys_addr: phys addr to map to
+ * @size: size to map
+ *
+ */
+int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
+ u64 phys_addr, u32 size)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 curr_va, curr_pa;
+ u32 page_size;
+ bool flush_pte;
+ int rc = 0, off;
+
+ if (hl_mem_area_inside_range(virt_addr, size,
+ prop->dmmu.start_addr, prop->dmmu.end_addr))
+ page_size = prop->dmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu.start_addr, prop->pmmu.end_addr))
+ page_size = prop->pmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
+ page_size = prop->pmmu_huge.page_size;
+ else
+ return -EINVAL;
+
+ for (off = 0 ; off < size ; off += page_size) {
+ curr_va = virt_addr + off;
+ curr_pa = phys_addr + off;
+ flush_pte = (off + page_size) >= size;
+ rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
+ flush_pte);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Map failed for va 0x%llx to pa 0x%llx\n",
+ curr_va, curr_pa);
+ /* last mapping failed so don't try to unmap it - reduce off by page_size */
+ off -= page_size;
+ goto unmap;
+ }
+ }
+
+ return rc;
+
+unmap:
+ for (; off >= 0 ; off -= page_size) {
+ curr_va = virt_addr + off;
+ flush_pte = (off - (s32) page_size) < 0;
+ if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
+ dev_warn_ratelimited(hdev->dev,
+ "failed to unmap va 0x%llx\n", curr_va);
+ }
+
+ return rc;
+}
+
+/*
+ * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
+ * for unmapping contiguous physical memory
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to unmap
+ * @size: size to unmap
+ *
+ */
+int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 curr_va;
+ u32 page_size;
+ bool flush_pte;
+ int rc = 0, off;
+
+ if (hl_mem_area_inside_range(virt_addr, size,
+ prop->dmmu.start_addr, prop->dmmu.end_addr))
+ page_size = prop->dmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu.start_addr, prop->pmmu.end_addr))
+ page_size = prop->pmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
+ page_size = prop->pmmu_huge.page_size;
+ else
+ return -EINVAL;
+
+ for (off = 0 ; off < size ; off += page_size) {
+ curr_va = virt_addr + off;
+ flush_pte = (off + page_size) >= size;
+ rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
+ if (rc)
+ dev_warn_ratelimited(hdev->dev,
+ "Unmap failed for va 0x%llx\n", curr_va);
+ }
+
+ return rc;
+}
+
+static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
+ struct hl_mmu_hop_info *hops,
+ u64 *phys_addr)
+{
+ struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
+ u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
+ struct hl_mmu_properties *mmu_prop;
+
+ /* last hop holds the phys address and flags */
+ if (hops->unscrambled_paddr)
+ tmp_phys_addr = hops->unscrambled_paddr;
+ else
+ tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
+
+ if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
+ mmu_prop = &prop->pmmu_huge;
+ else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
+ mmu_prop = &prop->pmmu;
+ else /* HL_VA_RANGE_TYPE_DRAM */
+ mmu_prop = &prop->dmmu;
+
+ if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
+ !is_power_of_2(prop->dram_page_size)) {
+ u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
+ page_id, page_start;
+ u32 page_off;
+
+ /*
+ * Bit arithmetic cannot be used for non power of two page
+ * sizes. In addition, since bit arithmetic is not used,
+ * we cannot ignore dram base. All that shall be considered.
+ */
+
+ dram_page_size = prop->dram_page_size;
+ dram_base = prop->dram_base_address;
+ abs_phys_addr = tmp_phys_addr - dram_base;
+ abs_virt_addr = virt_addr - dram_base;
+ page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
+ page_start = page_id * dram_page_size;
+ div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
+
+ *phys_addr = page_start + page_off + dram_base;
+ } else {
+ /*
+ * find the correct hop shift field in hl_mmu_properties
+ * structure in order to determine the right masks
+ * for the page offset.
+ */
+ hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
+ offset_mask = (1ull << hop_shift) - 1;
+ addr_mask = ~(offset_mask);
+ *phys_addr = (tmp_phys_addr & addr_mask) |
+ (virt_addr & offset_mask);
+ }
+}
+
+int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
+{
+ struct hl_mmu_hop_info hops;
+ int rc;
+
+ memset(&hops, 0, sizeof(hops));
+
+ rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
+ if (rc)
+ return rc;
+
+ hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr);
+
+ return 0;
+}
+
+int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
+ struct hl_mmu_hop_info *hops)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop;
+ struct hl_mmu_properties *mmu_prop;
+ struct hl_mmu_funcs *mmu_funcs;
+ int pgt_residency, rc;
+ bool is_dram_addr;
+
+ if (hdev->mmu_disable)
+ return -EOPNOTSUPP;
+
+ prop = &hdev->asic_prop;
+ hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
+
+ is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
+ prop->dmmu.start_addr,
+ prop->dmmu.end_addr);
+
+ /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
+ mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
+ pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
+ mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
+
+ mutex_lock(&hdev->mmu_lock);
+ rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
+ mutex_unlock(&hdev->mmu_lock);
+
+ if (rc)
+ return rc;
+
+ /* add page offset to physical address */
+ if (hops->unscrambled_paddr)
+ hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
+
+ return 0;
+}
+
+int hl_mmu_if_set_funcs(struct hl_device *hdev)
+{
+ if (hdev->mmu_disable)
+ return 0;
+
+ switch (hdev->asic_type) {
+ case ASIC_GOYA:
+ case ASIC_GAUDI:
+ case ASIC_GAUDI_SEC:
+ hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
+ break;
+ case ASIC_GAUDI2:
+ case ASIC_GAUDI2B:
+ /* MMUs in Gaudi2 are always host resident */
+ hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
+ break;
+ default:
+ dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
+ hdev->asic_type);
+ return -EOPNOTSUPP;
+ }
+
+ return 0;
+}
+
+/**
+ * hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
+ * @hdev: pointer to device data.
+ * @addr: The address to scramble.
+ *
+ * Return: The scrambled address.
+ */
+u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
+{
+ return addr;
+}
+
+/**
+ * hl_mmu_descramble_addr() - The generic mmu address descrambling
+ * routine.
+ * @hdev: pointer to device data.
+ * @addr: The address to descramble.
+ *
+ * Return: The un-scrambled address.
+ */
+u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
+{
+ return addr;
+}
+
+int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
+{
+ int rc;
+
+ rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
+ if (rc)
+ dev_err_ratelimited(hdev->dev,
+ "%s cache invalidation failed, rc=%d\n",
+ flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc);
+
+ return rc;
+}
+
+int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
+ u32 flags, u32 asid, u64 va, u64 size)
+{
+ int rc;
+
+ rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
+ asid, va, size);
+ if (rc)
+ dev_err_ratelimited(hdev->dev,
+ "%s cache range invalidation failed: va=%#llx, size=%llu, rc=%d",
+ flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", va, size, rc);
+
+ return rc;
+}
+
+static void hl_mmu_prefetch_work_function(struct work_struct *work)
+{
+ struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work);
+ struct hl_ctx *ctx = pfw->ctx;
+ struct hl_device *hdev = ctx->hdev;
+
+ if (!hl_device_operational(hdev, NULL))
+ goto put_ctx;
+
+ mutex_lock(&hdev->mmu_lock);
+
+ hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
+
+ mutex_unlock(&hdev->mmu_lock);
+
+put_ctx:
+ /*
+ * context was taken in the common mmu prefetch function- see comment there about
+ * context handling.
+ */
+ hl_ctx_put(ctx);
+ kfree(pfw);
+}
+
+int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
+{
+ struct hl_prefetch_work *handle_prefetch_work;
+
+ handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL);
+ if (!handle_prefetch_work)
+ return -ENOMEM;
+
+ INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function);
+ handle_prefetch_work->ctx = ctx;
+ handle_prefetch_work->va = va;
+ handle_prefetch_work->size = size;
+ handle_prefetch_work->flags = flags;
+ handle_prefetch_work->asid = asid;
+
+ /*
+ * as actual prefetch is done in a WQ we must get the context (and put it
+ * at the end of the work function)
+ */
+ hl_ctx_get(ctx);
+ queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work);
+
+ return 0;
+}
+
+u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
+{
+ return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
+}
+
+/**
+ * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
+ * @ctx: pointer to the context structure to initialize.
+ * @mmu_prop: MMU properties.
+ * @hop_idx: HOP index.
+ * @hop_addr: HOP address.
+ * @virt_addr: virtual address for the translation.
+ *
+ * @return the matching PTE value on success, otherwise U64_MAX.
+ */
+u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
+ u8 hop_idx, u64 hop_addr, u64 virt_addr)
+{
+ u64 mask, shift;
+
+ if (hop_idx >= mmu_prop->num_hops) {
+ dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
+ return U64_MAX;
+ }
+
+ shift = mmu_prop->hop_shifts[hop_idx];
+ mask = mmu_prop->hop_masks[hop_idx];
+
+ return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
+}
+
+static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
+ struct gen_pool_chunk *chunk,
+ void *data)
+{
+ struct hl_device *hdev = data;
+
+ hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
+ (void *)chunk->start_addr, chunk->phys_addr);
+}
+
+void hl_mmu_hr_flush(struct hl_ctx *ctx)
+{
+ /* a flush operation requires memory barrier */
+ mb();
+}
+
+/**
+ * hl_mmu_hr_pool_destroy() - destroy genpool
+ * @hdev: habanalabs device structure.
+ * @hr_priv: MMU HR private data.
+ * @hop_table_size: HOP table size.
+ *
+ * This function does the following:
+ * - free entries allocated for shadow HOP0
+ * - free pool chunks
+ * - free pool
+ */
+static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
+ u32 hop_table_size)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
+ struct pgt_info *hop0_pgt;
+ int asid;
+
+ if (ZERO_OR_NULL_PTR(*pool))
+ return;
+
+ /* Free the Fixed allocation of HOPs0 */
+ if (hr_priv->mmu_asid_hop0) {
+ for (asid = 0 ; asid < prop->max_asid ; asid++) {
+ hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
+ if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
+ continue;
+
+ gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
+ }
+ }
+
+ gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
+ gen_pool_destroy(*pool);
+
+ /* Make sure that if we arrive here again without init was called we
+ * won't cause kernel panic. This can happen for example if we fail
+ * during hard reset code at certain points
+ */
+ *pool = NULL;
+}
+
+/**
+ * hl_mmu_hr_init() - initialize the MMU module.
+ * @hdev: habanalabs device structure.
+ * @hr_priv: MMU HR private data.
+ * @hop_table_size: HOP table size.
+ * @pgt_size: memory size allocated for the page table
+ *
+ * @return 0 on success otherwise non-zero error code
+ *
+ * This function does the following:
+ * - Create a pool of pages for pgt_infos.
+ * - Create a shadow table for pgt
+ */
+int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
+ u64 pgt_size)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ size_t pool_chunk_size = SZ_4M;
+ struct pgt_info *hop0_pgt;
+ dma_addr_t dma_addr;
+ u64 virt_addr;
+ int i, rc;
+
+ /*
+ * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
+ * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
+ * This way we can call "DMA alloc align" according to dma_alloc granularity and supply
+ * allocations with higher-order alignment restrictions
+ */
+ hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
+ if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
+ dev_err(hdev->dev, "Failed to create hr page pool\n");
+ return -ENOMEM;
+ }
+
+ hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
+ if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
+ dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
+ rc = -ENOMEM;
+ goto destroy_mmu_pgt_pool;
+ }
+
+ for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
+ virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
+ &dma_addr,
+ GFP_KERNEL | __GFP_ZERO);
+ if (ZERO_OR_NULL_PTR(virt_addr)) {
+ dev_err(hdev->dev,
+ "Failed to allocate memory for host-resident page pool\n");
+ rc = -ENOMEM;
+ goto destroy_mmu_pgt_pool;
+ }
+
+ rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
+ pool_chunk_size, -1);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
+ goto destroy_mmu_pgt_pool;
+ }
+ }
+
+ for (i = 0 ; i < prop->max_asid ; i++) {
+ hop0_pgt = &hr_priv->mmu_asid_hop0[i];
+ hop0_pgt->virt_addr = (uintptr_t)
+ gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
+ hop_table_size,
+ (dma_addr_t *) &hop0_pgt->phys_addr,
+ hop_table_size);
+ if (!hop0_pgt->virt_addr) {
+ dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
+ rc = -ENOMEM;
+ goto destroy_mmu_pgt_pool;
+ }
+ }
+
+ /* MMU H/W init will be done in device hw_init() */
+
+ return 0;
+
+destroy_mmu_pgt_pool:
+ hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
+ if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
+ kvfree(hr_priv->mmu_asid_hop0);
+
+ return rc;
+}
+
+/**
+ * hl_mmu_hr_fini() - release the MMU module.
+ * @hdev: habanalabs device structure.
+ * @hr_priv: MMU host resident private info.
+ * @hop_table_size: HOP table size
+ *
+ * This function does the following:
+ * - Disable MMU in H/W.
+ * - Free the pgt_infos pool.
+ *
+ * All contexts should be freed before calling this function.
+ */
+void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
+{
+ /* MMU H/W fini was already done in device hw_fini() */
+
+ hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
+
+ if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
+ kvfree(hr_priv->mmu_asid_hop0);
+
+ /* Make sure that if we arrive here again without init was
+ * called we won't cause kernel panic. This can happen for
+ * example if we fail during hard reset code at certain points
+ */
+ hr_priv->mmu_asid_hop0 = NULL;
+ }
+}
+
+/**
+ * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
+ * @pgt_info: page table info structure.
+ * @hr_priv: MMU HR private data.
+ * @hop_table_size: HOP table size.
+ */
+void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
+ u32 hop_table_size)
+{
+ gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
+ hash_del(&pgt_info->node);
+ kfree(pgt_info);
+}
+
+/**
+ * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
+ * @ctx: pointer to the context structure
+ * @pgt: pgt_info for the HOP hosting the PTE
+ * @phys_pte_addr: phys address of the PTE
+ * @hop_table_size: HOP table size
+ *
+ * @return PTE virtual address
+ *
+ * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
+ * by adding the PTE offset.
+ */
+u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
+ u64 phys_pte_addr, u32 hop_table_size)
+{
+ u64 page_mask = (hop_table_size - 1);
+ u64 pte_offset = phys_pte_addr & page_mask;
+
+ return pgt->virt_addr + pte_offset;
+}
+
+/**
+ * hl_mmu_hr_write_pte() - write HR PTE
+ * @ctx: pointer to the context structure
+ * @pgt_info: HOP's page table info structure
+ * @phys_pte_addr: phys PTE address
+ * @val: raw PTE data
+ * @hop_table_size: HOP table size
+ */
+void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
+ u64 val, u32 hop_table_size)
+{
+ /*
+ * The value to write is the phys address of the next hop +
+ * flags at the 12 LSBs.
+ */
+ u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
+
+ *((u64 *) (uintptr_t) virt_addr) = val;
+}
+
+/**
+ * hl_mmu_hr_clear_pte() - clear HR PTE
+ * @ctx: pointer to the context structure
+ * @pgt_info: HOP's page table info structure
+ * @phys_pte_addr: phys PTE address
+ * @hop_table_size: HOP table size
+ */
+void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
+ u32 hop_table_size)
+{
+ /* no need to transform the value to physical address */
+ hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
+}
+
+/**
+ * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
+ * @ctx: pointer to the context structure
+ * @pgt_info: HOP's page table info structure
+ * @hr_priv: HR MMU private info
+ * @hop_table_size: HOP table size
+ *
+ * @return number of PTEs still in the HOP
+ */
+int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
+ struct hl_mmu_hr_priv *hr_priv,
+ u32 hop_table_size)
+{
+ int num_of_ptes_left;
+
+ pgt_info->num_of_ptes--;
+
+ /*
+ * Need to save the number of ptes left because free_hop might free
+ * the pgt_info
+ */
+ num_of_ptes_left = pgt_info->num_of_ptes;
+ if (!num_of_ptes_left)
+ hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
+
+ return num_of_ptes_left;
+}
+
+/**
+ * hl_mmu_hr_get_pte() - increase PGT PTE count
+ * @ctx: pointer to the context structure
+ * @hr_func: host resident functions
+ * @phys_hop_addr: HOP phys address
+ */
+void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
+{
+ hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
+}
+
+/**
+ * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
+ * @ctx: pointer to the context structure.
+ * @hr_func: host resident functions.
+ * @curr_pte: current PTE value.
+ *
+ * @return pgt_info structure on success, otherwise NULL.
+ */
+struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
+ struct hl_hr_mmu_funcs *hr_func,
+ u64 curr_pte)
+{
+ u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
+
+ if (next_hop_phys_addr == ULLONG_MAX)
+ return NULL;
+
+ return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
+}
+
+/**
+ * hl_mmu_hr_alloc_hop() - allocate HOP
+ * @ctx: pointer to the context structure.
+ * @hr_priv: host resident private info structure.
+ * @hr_func: host resident functions.
+ * @mmu_prop: MMU properties.
+ *
+ * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
+ */
+struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
+ struct hl_hr_mmu_funcs *hr_func,
+ struct hl_mmu_properties *mmu_prop)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct pgt_info *pgt_info;
+ dma_addr_t phys_addr;
+ void *virt_addr;
+ int i, retry = 1;
+
+ pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
+ if (!pgt_info)
+ return NULL;
+
+ for (i = 0; i <= retry; i++) {
+ virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
+ mmu_prop->hop_table_size,
+ &phys_addr,
+ mmu_prop->hop_table_size);
+ if (virt_addr)
+ break;
+
+ /* No memory in pool - get some and try again */
+ virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
+ GFP_KERNEL | __GFP_ZERO);
+ if (ZERO_OR_NULL_PTR(virt_addr))
+ break;
+
+ if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
+ phys_addr, SZ_2M, -1)) {
+ hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
+ virt_addr = NULL;
+ break;
+ }
+ }
+
+ if (ZERO_OR_NULL_PTR(virt_addr)) {
+ dev_err(hdev->dev, "failed to allocate page\n");
+ goto pool_alloc_err;
+ }
+
+ pgt_info->phys_addr = phys_addr;
+ pgt_info->shadow_addr = (unsigned long) NULL;
+ pgt_info->virt_addr = (unsigned long)virt_addr;
+ pgt_info->ctx = ctx;
+ pgt_info->num_of_ptes = 0;
+ hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
+
+ return pgt_info;
+
+pool_alloc_err:
+ kfree(pgt_info);
+
+ return NULL;
+}
+
+/**
+ * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
+ * @ctx: pointer to the context structure.
+ * @hr_priv: host resident private info structure.
+ * @hr_func: host resident functions.
+ * @mmu_prop: MMU properties.
+ * @curr_pte: current PTE value.
+ * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
+ *
+ * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
+ */
+struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
+ struct hl_mmu_hr_priv *hr_priv,
+ struct hl_hr_mmu_funcs *hr_func,
+ struct hl_mmu_properties *mmu_prop,
+ u64 curr_pte, bool *is_new_hop)
+{
+ u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
+
+ if (hop_addr != ULLONG_MAX)
+ return hr_func->get_pgt_info(ctx, hop_addr);
+
+ *is_new_hop = true;
+ return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
+}
+
+/**
+ * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
+ * @ctx: pointer to the context structure.
+ * @virt_addr: the virt address for which to get info.
+ * @hops: HOPs info structure.
+ * @hr_func: host resident functions.
+ *
+ * @return 0 on success, otherwise non 0 error code..
+ */
+int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
+ struct hl_hr_mmu_funcs *hr_func)
+{
+ /* using 6 HOPs as this is the maximum number of HOPs */
+ struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_mmu_properties *mmu_prop;
+ int rc, i, used_hops;
+ bool is_huge;
+
+ rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
+ if (rc)
+ return rc;
+
+ used_hops = mmu_prop->num_hops;
+
+ /* huge pages use one less hop */
+ if (is_huge)
+ used_hops--;
+
+ hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
+
+ for (i = 0 ; i < used_hops ; i++) {
+ if (i == 0)
+ hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
+ else
+ hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
+ hops->hop_info[i - 1].hop_pte_val);
+
+ if (!hops_pgt_info[i])
+ return -EFAULT;
+
+ hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
+ hops->hop_info[i].hop_pte_addr =
+ hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
+ hops->hop_info[i].hop_addr,
+ hops->scrambled_vaddr);
+ hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
+ hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
+ hops->hop_info[i].hop_pte_addr,
+ mmu_prop->hop_table_size);
+
+ if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
+ return -EFAULT;
+
+ if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
+ break;
+ }
+
+ /* if passed over all hops then no last hop was found */
+ if (i == mmu_prop->num_hops)
+ return -EFAULT;
+
+ if (hops->scrambled_vaddr != virt_addr)
+ hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
+ (hdev, hops->hop_info[i].hop_pte_val);
+ else
+ hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
+
+ hops->used_hops = i + 1;
+
+ return 0;
+}
+