summaryrefslogtreecommitdiffstats
path: root/drivers/accel/habanalabs/common/mmu/mmu_v1.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/accel/habanalabs/common/mmu/mmu_v1.c')
-rw-r--r--drivers/accel/habanalabs/common/mmu/mmu_v1.c814
1 files changed, 814 insertions, 0 deletions
diff --git a/drivers/accel/habanalabs/common/mmu/mmu_v1.c b/drivers/accel/habanalabs/common/mmu/mmu_v1.c
new file mode 100644
index 000000000..d925dc4dd
--- /dev/null
+++ b/drivers/accel/habanalabs/common/mmu/mmu_v1.c
@@ -0,0 +1,814 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2019 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include "../habanalabs.h"
+#include "../../include/hw_ip/mmu/mmu_general.h"
+
+#include <linux/slab.h>
+
+#define MMU_V1_MAX_HOPS (MMU_HOP4 + 1)
+
+static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr);
+
+static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr)
+{
+ struct pgt_info *pgt_info = NULL;
+
+ hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node,
+ (unsigned long) hop_addr)
+ if (hop_addr == pgt_info->shadow_addr)
+ break;
+
+ return pgt_info;
+}
+
+static void _free_hop(struct hl_ctx *ctx, struct pgt_info *pgt_info)
+{
+ struct hl_device *hdev = ctx->hdev;
+
+ gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr,
+ hdev->asic_prop.mmu_hop_table_size);
+ hash_del(&pgt_info->node);
+ kfree((u64 *) (uintptr_t) pgt_info->shadow_addr);
+ kfree(pgt_info);
+}
+
+static void free_hop(struct hl_ctx *ctx, u64 hop_addr)
+{
+ struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
+
+ _free_hop(ctx, pgt_info);
+}
+
+static u64 alloc_hop(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct pgt_info *pgt_info;
+ u64 phys_addr, shadow_addr;
+
+ pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
+ if (!pgt_info)
+ return ULLONG_MAX;
+
+ phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool,
+ prop->mmu_hop_table_size);
+ if (!phys_addr) {
+ dev_err(hdev->dev, "failed to allocate page\n");
+ goto pool_add_err;
+ }
+
+ shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size,
+ GFP_KERNEL);
+ if (!shadow_addr)
+ goto shadow_err;
+
+ pgt_info->phys_addr = phys_addr;
+ pgt_info->shadow_addr = shadow_addr;
+ pgt_info->ctx = ctx;
+ pgt_info->num_of_ptes = 0;
+ hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr);
+
+ return shadow_addr;
+
+shadow_err:
+ gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, phys_addr,
+ prop->mmu_hop_table_size);
+pool_add_err:
+ kfree(pgt_info);
+
+ return ULLONG_MAX;
+}
+
+static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx)
+{
+ return ctx->hdev->asic_prop.mmu_pgt_addr +
+ (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
+}
+
+static inline u64 get_hop0_addr(struct hl_ctx *ctx)
+{
+ return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 +
+ (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
+}
+
+static void flush(struct hl_ctx *ctx)
+{
+ /* flush all writes from all cores to reach PCI */
+ mb();
+ ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx));
+}
+
+/* transform the value to physical address when writing to H/W */
+static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
+{
+ /*
+ * The value to write is actually the address of the next shadow hop +
+ * flags at the 12 LSBs.
+ * Hence in order to get the value to write to the physical PTE, we
+ * clear the 12 LSBs and translate the shadow hop to its associated
+ * physical hop, and add back the original 12 LSBs.
+ */
+ u64 phys_val = get_phys_addr(ctx, val & HOP_PHYS_ADDR_MASK) |
+ (val & FLAGS_MASK);
+
+ ctx->hdev->asic_funcs->write_pte(ctx->hdev,
+ get_phys_addr(ctx, shadow_pte_addr),
+ phys_val);
+
+ *(u64 *) (uintptr_t) shadow_pte_addr = val;
+}
+
+/* do not transform the value to physical address when writing to H/W */
+static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr,
+ u64 val)
+{
+ ctx->hdev->asic_funcs->write_pte(ctx->hdev,
+ get_phys_addr(ctx, shadow_pte_addr),
+ val);
+ *(u64 *) (uintptr_t) shadow_pte_addr = val;
+}
+
+/* clear the last and present bits */
+static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr)
+{
+ /* no need to transform the value to physical address */
+ write_final_pte(ctx, pte_addr, 0);
+}
+
+static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr)
+{
+ get_pgt_info(ctx, hop_addr)->num_of_ptes++;
+}
+
+/*
+ * put_pte - decrement the num of ptes and free the hop if possible
+ *
+ * @ctx: pointer to the context structure
+ * @hop_addr: addr of the hop
+ *
+ * This function returns the number of ptes left on this hop. If the number is
+ * 0, it means the pte was freed.
+ */
+static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr)
+{
+ struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
+ int num_of_ptes_left;
+
+ pgt_info->num_of_ptes--;
+
+ /*
+ * Need to save the number of ptes left because free_hop might free
+ * the pgt_info
+ */
+ num_of_ptes_left = pgt_info->num_of_ptes;
+ if (!num_of_ptes_left)
+ _free_hop(ctx, pgt_info);
+
+ return num_of_ptes_left;
+}
+
+static inline u64 get_hop_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
+ u64 *hop_addr_arr, u64 virt_addr, enum mmu_hop_num hop_idx)
+{
+ u64 mask, shift;
+
+ mask = mmu_prop->hop_masks[hop_idx];
+ shift = mmu_prop->hop_shifts[hop_idx];
+ return hop_addr_arr[hop_idx] +
+ ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
+}
+
+static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte,
+ bool *is_new_hop)
+{
+ u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
+
+ if (hop_addr == ULLONG_MAX) {
+ hop_addr = alloc_hop(ctx);
+ *is_new_hop = (hop_addr != ULLONG_MAX);
+ }
+
+ return hop_addr;
+}
+
+/* translates shadow address inside hop to a physical address */
+static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
+{
+ u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1);
+ u64 shadow_hop_addr = shadow_addr & ~page_mask;
+ u64 pte_offset = shadow_addr & page_mask;
+ u64 phys_hop_addr;
+
+ if (shadow_hop_addr != get_hop0_addr(ctx))
+ phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr;
+ else
+ phys_hop_addr = get_phys_hop0_addr(ctx);
+
+ return phys_hop_addr + pte_offset;
+}
+
+static int dram_default_mapping_init(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
+ hop2_pte_addr, hop3_pte_addr, pte_val;
+ int rc, i, j, hop3_allocated = 0;
+
+ if ((!prop->dram_supports_virtual_memory) ||
+ (!hdev->dram_default_page_mapping) ||
+ (ctx->asid == HL_KERNEL_ASID_ID))
+ return 0;
+
+ num_of_hop3 = prop->dram_size_for_default_page_mapping;
+ do_div(num_of_hop3, prop->dram_page_size);
+ do_div(num_of_hop3, HOP_PTE_ENTRIES_512);
+
+ /* add hop1 and hop2 */
+ total_hops = num_of_hop3 + 2;
+
+ ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL);
+ if (!ctx->dram_default_hops)
+ return -ENOMEM;
+
+ hop0_addr = get_hop0_addr(ctx);
+
+ hop1_addr = alloc_hop(ctx);
+ if (hop1_addr == ULLONG_MAX) {
+ dev_err(hdev->dev, "failed to alloc hop 1\n");
+ rc = -ENOMEM;
+ goto hop1_err;
+ }
+
+ ctx->dram_default_hops[total_hops - 1] = hop1_addr;
+
+ hop2_addr = alloc_hop(ctx);
+ if (hop2_addr == ULLONG_MAX) {
+ dev_err(hdev->dev, "failed to alloc hop 2\n");
+ rc = -ENOMEM;
+ goto hop2_err;
+ }
+
+ ctx->dram_default_hops[total_hops - 2] = hop2_addr;
+
+ for (i = 0 ; i < num_of_hop3 ; i++) {
+ ctx->dram_default_hops[i] = alloc_hop(ctx);
+ if (ctx->dram_default_hops[i] == ULLONG_MAX) {
+ dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i);
+ rc = -ENOMEM;
+ goto hop3_err;
+ }
+ hop3_allocated++;
+ }
+
+ /* need only pte 0 in hops 0 and 1 */
+ pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
+ write_pte(ctx, hop0_addr, pte_val);
+
+ pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
+ write_pte(ctx, hop1_addr, pte_val);
+ get_pte(ctx, hop1_addr);
+
+ hop2_pte_addr = hop2_addr;
+ for (i = 0 ; i < num_of_hop3 ; i++) {
+ pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) |
+ PAGE_PRESENT_MASK;
+ write_pte(ctx, hop2_pte_addr, pte_val);
+ get_pte(ctx, hop2_addr);
+ hop2_pte_addr += HL_PTE_SIZE;
+ }
+
+ pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) |
+ LAST_MASK | PAGE_PRESENT_MASK;
+
+ for (i = 0 ; i < num_of_hop3 ; i++) {
+ hop3_pte_addr = ctx->dram_default_hops[i];
+ for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) {
+ write_final_pte(ctx, hop3_pte_addr, pte_val);
+ get_pte(ctx, ctx->dram_default_hops[i]);
+ hop3_pte_addr += HL_PTE_SIZE;
+ }
+ }
+
+ flush(ctx);
+
+ return 0;
+
+hop3_err:
+ for (i = 0 ; i < hop3_allocated ; i++)
+ free_hop(ctx, ctx->dram_default_hops[i]);
+
+ free_hop(ctx, hop2_addr);
+hop2_err:
+ free_hop(ctx, hop1_addr);
+hop1_err:
+ kfree(ctx->dram_default_hops);
+
+ return rc;
+}
+
+static void dram_default_mapping_fini(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
+ hop2_pte_addr, hop3_pte_addr;
+ int i, j;
+
+ if ((!prop->dram_supports_virtual_memory) ||
+ (!hdev->dram_default_page_mapping) ||
+ (ctx->asid == HL_KERNEL_ASID_ID))
+ return;
+
+ num_of_hop3 = prop->dram_size_for_default_page_mapping;
+ do_div(num_of_hop3, prop->dram_page_size);
+ do_div(num_of_hop3, HOP_PTE_ENTRIES_512);
+
+ hop0_addr = get_hop0_addr(ctx);
+ /* add hop1 and hop2 */
+ total_hops = num_of_hop3 + 2;
+ hop1_addr = ctx->dram_default_hops[total_hops - 1];
+ hop2_addr = ctx->dram_default_hops[total_hops - 2];
+
+ for (i = 0 ; i < num_of_hop3 ; i++) {
+ hop3_pte_addr = ctx->dram_default_hops[i];
+ for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) {
+ clear_pte(ctx, hop3_pte_addr);
+ put_pte(ctx, ctx->dram_default_hops[i]);
+ hop3_pte_addr += HL_PTE_SIZE;
+ }
+ }
+
+ hop2_pte_addr = hop2_addr;
+ for (i = 0 ; i < num_of_hop3 ; i++) {
+ clear_pte(ctx, hop2_pte_addr);
+ put_pte(ctx, hop2_addr);
+ hop2_pte_addr += HL_PTE_SIZE;
+ }
+
+ clear_pte(ctx, hop1_addr);
+ put_pte(ctx, hop1_addr);
+ clear_pte(ctx, hop0_addr);
+
+ kfree(ctx->dram_default_hops);
+
+ flush(ctx);
+}
+
+/**
+ * hl_mmu_v1_init() - initialize the MMU module.
+ * @hdev: habanalabs device structure.
+ *
+ * This function does the following:
+ * - Create a pool of pages for pgt_infos.
+ * - Create a shadow table for pgt
+ *
+ * Return: 0 for success, non-zero for failure.
+ */
+static int hl_mmu_v1_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ int rc;
+
+ hdev->mmu_priv.dr.mmu_pgt_pool =
+ gen_pool_create(__ffs(prop->mmu_hop_table_size), -1);
+
+ if (!hdev->mmu_priv.dr.mmu_pgt_pool) {
+ dev_err(hdev->dev, "Failed to create page gen pool\n");
+ return -ENOMEM;
+ }
+
+ rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr +
+ prop->mmu_hop0_tables_total_size,
+ prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size,
+ -1);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
+ goto err_pool_add;
+ }
+
+ hdev->mmu_priv.dr.mmu_shadow_hop0 = kvcalloc(prop->max_asid, prop->mmu_hop_table_size,
+ GFP_KERNEL);
+ if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) {
+ rc = -ENOMEM;
+ goto err_pool_add;
+ }
+
+ /* MMU H/W init will be done in device hw_init() */
+
+ return 0;
+
+err_pool_add:
+ gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
+
+ return rc;
+}
+
+/**
+ * hl_mmu_v1_fini() - release the MMU module.
+ * @hdev: habanalabs device structure.
+ *
+ * This function does the following:
+ * - Disable MMU in H/W.
+ * - Free the pgt_infos pool.
+ *
+ * All contexts should be freed before calling this function.
+ */
+static void hl_mmu_v1_fini(struct hl_device *hdev)
+{
+ /* MMU H/W fini was already done in device hw_fini() */
+
+ if (!ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) {
+ kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0);
+ gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
+
+ /* Make sure that if we arrive here again without init was
+ * called we won't cause kernel panic. This can happen for
+ * example if we fail during hard reset code at certain points
+ */
+ hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL;
+ }
+}
+
+/**
+ * hl_mmu_v1_ctx_init() - initialize a context for using the MMU module.
+ * @ctx: pointer to the context structure to initialize.
+ *
+ * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
+ * page tables hops related to this context.
+ * Return: 0 on success, non-zero otherwise.
+ */
+static int hl_mmu_v1_ctx_init(struct hl_ctx *ctx)
+{
+ hash_init(ctx->mmu_shadow_hash);
+ return dram_default_mapping_init(ctx);
+}
+
+/*
+ * hl_mmu_ctx_fini - disable a ctx from using the mmu module
+ *
+ * @ctx: pointer to the context structure
+ *
+ * This function does the following:
+ * - Free any pgts which were not freed yet
+ * - Free the mutex
+ * - Free DRAM default page mapping hops
+ */
+static void hl_mmu_v1_ctx_fini(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct pgt_info *pgt_info;
+ struct hlist_node *tmp;
+ int i;
+
+ dram_default_mapping_fini(ctx);
+
+ if (!hash_empty(ctx->mmu_shadow_hash))
+ dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n",
+ ctx->asid);
+
+ hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) {
+ dev_err_ratelimited(hdev->dev,
+ "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n",
+ pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes);
+ _free_hop(ctx, pgt_info);
+ }
+}
+
+static int hl_mmu_v1_unmap(struct hl_ctx *ctx,
+ u64 virt_addr, bool is_dram_addr)
+{
+ u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0;
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ bool is_huge, clear_hop3 = true;
+ int hop_idx;
+
+ /* shifts and masks are the same in PMMU and HPMMU, use one of them */
+ mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
+
+ for (hop_idx = MMU_HOP0; hop_idx < MMU_HOP4; hop_idx++) {
+ if (hop_idx == MMU_HOP0) {
+ hop_addr[hop_idx] = get_hop0_addr(ctx);
+ } else {
+ hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte);
+ if (hop_addr[hop_idx] == ULLONG_MAX)
+ goto not_mapped;
+ }
+
+ hop_pte_addr[hop_idx] =
+ get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx);
+
+ curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx];
+ }
+
+ is_huge = curr_pte & mmu_prop->last_mask;
+
+ if (is_dram_addr && !is_huge) {
+ dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n");
+ return -EFAULT;
+ }
+
+ if (!is_huge) {
+ hop_idx = MMU_HOP4;
+ hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte);
+ if (hop_addr[hop_idx] == ULLONG_MAX)
+ goto not_mapped;
+
+ hop_pte_addr[hop_idx] =
+ get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx);
+ curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx];
+ clear_hop3 = false;
+ }
+
+ if (hdev->dram_default_page_mapping && is_dram_addr) {
+ u64 default_pte = (prop->mmu_dram_default_page_addr &
+ HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask |
+ PAGE_PRESENT_MASK;
+ if (curr_pte == default_pte) {
+ dev_err(hdev->dev,
+ "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n",
+ virt_addr);
+ goto not_mapped;
+ }
+
+ if (!(curr_pte & PAGE_PRESENT_MASK)) {
+ dev_err(hdev->dev,
+ "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n",
+ virt_addr);
+ goto not_mapped;
+ }
+
+ hop_idx = MMU_HOP3;
+ write_final_pte(ctx, hop_pte_addr[hop_idx], default_pte);
+ put_pte(ctx, hop_addr[hop_idx]);
+ } else {
+ if (!(curr_pte & PAGE_PRESENT_MASK))
+ goto not_mapped;
+
+ if (hop_addr[MMU_HOP4])
+ clear_pte(ctx, hop_pte_addr[MMU_HOP4]);
+ else
+ clear_pte(ctx, hop_pte_addr[MMU_HOP3]);
+
+ if (hop_addr[MMU_HOP4] && !put_pte(ctx, hop_addr[MMU_HOP4]))
+ clear_hop3 = true;
+
+ if (!clear_hop3)
+ goto mapped;
+
+ for (hop_idx = MMU_HOP3; hop_idx >= 0; hop_idx--) {
+ clear_pte(ctx, hop_pte_addr[hop_idx]);
+
+ if (hop_idx == MMU_HOP0)
+ break;
+
+ if (put_pte(ctx, hop_addr[hop_idx]))
+ goto mapped;
+ }
+ }
+
+mapped:
+ return 0;
+
+not_mapped:
+ dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
+ virt_addr);
+
+ return -EINVAL;
+}
+
+static int hl_mmu_v1_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
+ u32 page_size, bool is_dram_addr)
+{
+ u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0;
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ bool is_huge, hop_new[MMU_V1_MAX_HOPS] = {false};
+ int num_hops, hop_idx, prev_hop, rc = -ENOMEM;
+
+ /*
+ * This mapping function can map a page or a huge page. For huge page
+ * there are only 3 hops rather than 4. Currently the DRAM allocation
+ * uses huge pages only but user memory could have been allocated with
+ * one of the two page sizes. Since this is a common code for all the
+ * three cases, we need this hugs page check.
+ */
+ if (is_dram_addr) {
+ mmu_prop = &prop->dmmu;
+ is_huge = true;
+ } else if (page_size == prop->pmmu_huge.page_size) {
+ mmu_prop = &prop->pmmu_huge;
+ is_huge = true;
+ } else {
+ mmu_prop = &prop->pmmu;
+ is_huge = false;
+ }
+
+ num_hops = is_huge ? (MMU_V1_MAX_HOPS - 1) : MMU_V1_MAX_HOPS;
+
+ for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++) {
+ if (hop_idx == MMU_HOP0) {
+ hop_addr[hop_idx] = get_hop0_addr(ctx);
+ } else {
+ hop_addr[hop_idx] =
+ get_alloc_next_hop_addr(ctx, curr_pte, &hop_new[hop_idx]);
+ if (hop_addr[hop_idx] == ULLONG_MAX)
+ goto err;
+ }
+
+ hop_pte_addr[hop_idx] =
+ get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx);
+ curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx];
+ }
+
+ if (hdev->dram_default_page_mapping && is_dram_addr) {
+ u64 default_pte = (prop->mmu_dram_default_page_addr &
+ HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask |
+ PAGE_PRESENT_MASK;
+
+ if (curr_pte != default_pte) {
+ dev_err(hdev->dev,
+ "DRAM: mapping already exists for virt_addr 0x%llx\n",
+ virt_addr);
+ rc = -EINVAL;
+ goto err;
+ }
+
+ for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) {
+ if (hop_new[hop_idx]) {
+ dev_err(hdev->dev, "DRAM mapping should not allocate more hops\n");
+ rc = -EFAULT;
+ goto err;
+ }
+ }
+ } else if (curr_pte & PAGE_PRESENT_MASK) {
+ dev_err(hdev->dev,
+ "mapping already exists for virt_addr 0x%llx\n",
+ virt_addr);
+
+ for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++)
+ dev_dbg(hdev->dev, "hop%d pte: 0x%llx (0x%llx)\n", hop_idx,
+ *(u64 *) (uintptr_t) hop_pte_addr[hop_idx],
+ hop_pte_addr[hop_idx]);
+
+ rc = -EINVAL;
+ goto err;
+ }
+
+ curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask
+ | PAGE_PRESENT_MASK;
+
+ write_final_pte(ctx, hop_pte_addr[num_hops - 1], curr_pte);
+
+ for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) {
+ prev_hop = hop_idx - 1;
+
+ if (hop_new[hop_idx]) {
+ curr_pte = (hop_addr[hop_idx] & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
+ write_pte(ctx, hop_pte_addr[prev_hop], curr_pte);
+ if (hop_idx != MMU_HOP1)
+ get_pte(ctx, hop_addr[prev_hop]);
+ }
+ }
+
+ get_pte(ctx, hop_addr[num_hops - 1]);
+
+ return 0;
+
+err:
+ for (hop_idx = num_hops; hop_idx > MMU_HOP0; hop_idx--) {
+ if (hop_new[hop_idx])
+ free_hop(ctx, hop_addr[hop_idx]);
+ }
+
+ return rc;
+}
+
+/*
+ * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out
+ *
+ * @ctx: pointer to the context structure
+ *
+ */
+static void hl_mmu_v1_swap_out(struct hl_ctx *ctx)
+{
+
+}
+
+/*
+ * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in
+ *
+ * @ctx: pointer to the context structure
+ *
+ */
+static void hl_mmu_v1_swap_in(struct hl_ctx *ctx)
+{
+
+}
+
+static int hl_mmu_v1_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
+ struct hl_mmu_hop_info *hops)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr, is_huge;
+ int i, used_hops;
+
+ is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
+ prop->dmmu.start_addr,
+ prop->dmmu.end_addr);
+ is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size,
+ prop->pmmu.start_addr,
+ prop->pmmu.end_addr);
+ is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr,
+ prop->pmmu_huge.page_size,
+ prop->pmmu_huge.start_addr,
+ prop->pmmu_huge.end_addr);
+ if (is_dram_addr) {
+ mmu_prop = &prop->dmmu;
+ is_huge = true;
+ } else if (is_pmmu_addr) {
+ mmu_prop = &prop->pmmu;
+ is_huge = false;
+ } else if (is_pmmu_h_addr) {
+ mmu_prop = &prop->pmmu_huge;
+ is_huge = true;
+ } else {
+ return -EINVAL;
+ }
+
+ used_hops = mmu_prop->num_hops;
+
+ /* huge pages use lesser hops */
+ if (is_huge)
+ used_hops--;
+
+ hops->hop_info[0].hop_addr = get_phys_hop0_addr(ctx);
+ hops->hop_info[0].hop_pte_addr =
+ hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0,
+ hops->hop_info[0].hop_addr, virt_addr);
+ hops->hop_info[0].hop_pte_val =
+ hdev->asic_funcs->read_pte(hdev,
+ hops->hop_info[0].hop_pte_addr);
+
+ for (i = 1 ; i < used_hops ; i++) {
+ hops->hop_info[i].hop_addr =
+ hl_mmu_get_next_hop_addr(ctx,
+ hops->hop_info[i - 1].hop_pte_val);
+ if (hops->hop_info[i].hop_addr == ULLONG_MAX)
+ return -EFAULT;
+
+ hops->hop_info[i].hop_pte_addr =
+ hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
+ hops->hop_info[i].hop_addr,
+ virt_addr);
+ hops->hop_info[i].hop_pte_val =
+ hdev->asic_funcs->read_pte(hdev,
+ hops->hop_info[i].hop_pte_addr);
+
+ if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
+ return -EFAULT;
+
+ if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
+ break;
+ }
+
+ /* if passed over all hops then no last hop was found */
+ if (i == mmu_prop->num_hops)
+ return -EFAULT;
+
+ if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
+ return -EFAULT;
+
+ hops->used_hops = i + 1;
+
+ return 0;
+}
+
+/*
+ * hl_mmu_v1_prepare - prepare mmu for working with mmu v1
+ *
+ * @hdev: pointer to the device structure
+ */
+void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu)
+{
+ mmu->init = hl_mmu_v1_init;
+ mmu->fini = hl_mmu_v1_fini;
+ mmu->ctx_init = hl_mmu_v1_ctx_init;
+ mmu->ctx_fini = hl_mmu_v1_ctx_fini;
+ mmu->map = hl_mmu_v1_map;
+ mmu->unmap = hl_mmu_v1_unmap;
+ mmu->flush = flush;
+ mmu->swap_out = hl_mmu_v1_swap_out;
+ mmu->swap_in = hl_mmu_v1_swap_in;
+ mmu->get_tlb_info = hl_mmu_v1_get_tlb_info;
+}