diff options
Diffstat (limited to 'drivers/gpu/drm/xe/xe_hmm.c')
-rw-r--r-- | drivers/gpu/drm/xe/xe_hmm.c | 253 |
1 files changed, 253 insertions, 0 deletions
diff --git a/drivers/gpu/drm/xe/xe_hmm.c b/drivers/gpu/drm/xe/xe_hmm.c new file mode 100644 index 0000000000..2c32dc46f7 --- /dev/null +++ b/drivers/gpu/drm/xe/xe_hmm.c @@ -0,0 +1,253 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2024 Intel Corporation + */ + +#include <linux/scatterlist.h> +#include <linux/mmu_notifier.h> +#include <linux/dma-mapping.h> +#include <linux/memremap.h> +#include <linux/swap.h> +#include <linux/hmm.h> +#include <linux/mm.h> +#include "xe_hmm.h" +#include "xe_vm.h" +#include "xe_bo.h" + +static u64 xe_npages_in_range(unsigned long start, unsigned long end) +{ + return (end - start) >> PAGE_SHIFT; +} + +/* + * xe_mark_range_accessed() - mark a range is accessed, so core mm + * have such information for memory eviction or write back to + * hard disk + * + * @range: the range to mark + * @write: if write to this range, we mark pages in this range + * as dirty + */ +static void xe_mark_range_accessed(struct hmm_range *range, bool write) +{ + struct page *page; + u64 i, npages; + + npages = xe_npages_in_range(range->start, range->end); + for (i = 0; i < npages; i++) { + page = hmm_pfn_to_page(range->hmm_pfns[i]); + if (write) + set_page_dirty_lock(page); + + mark_page_accessed(page); + } +} + +/* + * xe_build_sg() - build a scatter gather table for all the physical pages/pfn + * in a hmm_range. dma-map pages if necessary. dma-address is save in sg table + * and will be used to program GPU page table later. + * + * @xe: the xe device who will access the dma-address in sg table + * @range: the hmm range that we build the sg table from. range->hmm_pfns[] + * has the pfn numbers of pages that back up this hmm address range. + * @st: pointer to the sg table. + * @write: whether we write to this range. This decides dma map direction + * for system pages. If write we map it bi-diretional; otherwise + * DMA_TO_DEVICE + * + * All the contiguous pfns will be collapsed into one entry in + * the scatter gather table. This is for the purpose of efficiently + * programming GPU page table. + * + * The dma_address in the sg table will later be used by GPU to + * access memory. So if the memory is system memory, we need to + * do a dma-mapping so it can be accessed by GPU/DMA. + * + * FIXME: This function currently only support pages in system + * memory. If the memory is GPU local memory (of the GPU who + * is going to access memory), we need gpu dpa (device physical + * address), and there is no need of dma-mapping. This is TBD. + * + * FIXME: dma-mapping for peer gpu device to access remote gpu's + * memory. Add this when you support p2p + * + * This function allocates the storage of the sg table. It is + * caller's responsibility to free it calling sg_free_table. + * + * Returns 0 if successful; -ENOMEM if fails to allocate memory + */ +static int xe_build_sg(struct xe_device *xe, struct hmm_range *range, + struct sg_table *st, bool write) +{ + struct device *dev = xe->drm.dev; + struct page **pages; + u64 i, npages; + int ret; + + npages = xe_npages_in_range(range->start, range->end); + pages = kvmalloc_array(npages, sizeof(*pages), GFP_KERNEL); + if (!pages) + return -ENOMEM; + + for (i = 0; i < npages; i++) { + pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]); + xe_assert(xe, !is_device_private_page(pages[i])); + } + + ret = sg_alloc_table_from_pages_segment(st, pages, npages, 0, npages << PAGE_SHIFT, + xe_sg_segment_size(dev), GFP_KERNEL); + if (ret) + goto free_pages; + + ret = dma_map_sgtable(dev, st, write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, + DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_KERNEL_MAPPING); + if (ret) { + sg_free_table(st); + st = NULL; + } + +free_pages: + kvfree(pages); + return ret; +} + +/* + * xe_hmm_userptr_free_sg() - Free the scatter gather table of userptr + * + * @uvma: the userptr vma which hold the scatter gather table + * + * With function xe_userptr_populate_range, we allocate storage of + * the userptr sg table. This is a helper function to free this + * sg table, and dma unmap the address in the table. + */ +void xe_hmm_userptr_free_sg(struct xe_userptr_vma *uvma) +{ + struct xe_userptr *userptr = &uvma->userptr; + struct xe_vma *vma = &uvma->vma; + bool write = !xe_vma_read_only(vma); + struct xe_vm *vm = xe_vma_vm(vma); + struct xe_device *xe = vm->xe; + struct device *dev = xe->drm.dev; + + xe_assert(xe, userptr->sg); + dma_unmap_sgtable(dev, userptr->sg, + write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, 0); + + sg_free_table(userptr->sg); + userptr->sg = NULL; +} + +/** + * xe_hmm_userptr_populate_range() - Populate physical pages of a virtual + * address range + * + * @uvma: userptr vma which has information of the range to populate. + * @is_mm_mmap_locked: True if mmap_read_lock is already acquired by caller. + * + * This function populate the physical pages of a virtual + * address range. The populated physical pages is saved in + * userptr's sg table. It is similar to get_user_pages but call + * hmm_range_fault. + * + * This function also read mmu notifier sequence # ( + * mmu_interval_read_begin), for the purpose of later + * comparison (through mmu_interval_read_retry). + * + * This must be called with mmap read or write lock held. + * + * This function allocates the storage of the userptr sg table. + * It is caller's responsibility to free it calling sg_free_table. + * + * returns: 0 for succuss; negative error no on failure + */ +int xe_hmm_userptr_populate_range(struct xe_userptr_vma *uvma, + bool is_mm_mmap_locked) +{ + unsigned long timeout = + jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); + unsigned long *pfns, flags = HMM_PFN_REQ_FAULT; + struct xe_userptr *userptr; + struct xe_vma *vma = &uvma->vma; + u64 userptr_start = xe_vma_userptr(vma); + u64 userptr_end = userptr_start + xe_vma_size(vma); + struct xe_vm *vm = xe_vma_vm(vma); + struct hmm_range hmm_range; + bool write = !xe_vma_read_only(vma); + unsigned long notifier_seq; + u64 npages; + int ret; + + userptr = &uvma->userptr; + + if (is_mm_mmap_locked) + mmap_assert_locked(userptr->notifier.mm); + + if (vma->gpuva.flags & XE_VMA_DESTROYED) + return 0; + + notifier_seq = mmu_interval_read_begin(&userptr->notifier); + if (notifier_seq == userptr->notifier_seq) + return 0; + + if (userptr->sg) + xe_hmm_userptr_free_sg(uvma); + + npages = xe_npages_in_range(userptr_start, userptr_end); + pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL); + if (unlikely(!pfns)) + return -ENOMEM; + + if (write) + flags |= HMM_PFN_REQ_WRITE; + + if (!mmget_not_zero(userptr->notifier.mm)) { + ret = -EFAULT; + goto free_pfns; + } + + hmm_range.default_flags = flags; + hmm_range.hmm_pfns = pfns; + hmm_range.notifier = &userptr->notifier; + hmm_range.start = userptr_start; + hmm_range.end = userptr_end; + hmm_range.dev_private_owner = vm->xe; + + while (true) { + hmm_range.notifier_seq = mmu_interval_read_begin(&userptr->notifier); + + if (!is_mm_mmap_locked) + mmap_read_lock(userptr->notifier.mm); + + ret = hmm_range_fault(&hmm_range); + + if (!is_mm_mmap_locked) + mmap_read_unlock(userptr->notifier.mm); + + if (ret == -EBUSY) { + if (time_after(jiffies, timeout)) + break; + + continue; + } + break; + } + + mmput(userptr->notifier.mm); + + if (ret) + goto free_pfns; + + ret = xe_build_sg(vm->xe, &hmm_range, &userptr->sgt, write); + if (ret) + goto free_pfns; + + xe_mark_range_accessed(&hmm_range, write); + userptr->sg = &userptr->sgt; + userptr->notifier_seq = hmm_range.notifier_seq; + +free_pfns: + kvfree(pfns); + return ret; +} + |