summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/xe/xe_tile.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/xe/xe_tile.c')
-rw-r--r--drivers/gpu/drm/xe/xe_tile.c186
1 files changed, 186 insertions, 0 deletions
diff --git a/drivers/gpu/drm/xe/xe_tile.c b/drivers/gpu/drm/xe/xe_tile.c
new file mode 100644
index 000000000..0650b2fa7
--- /dev/null
+++ b/drivers/gpu/drm/xe/xe_tile.c
@@ -0,0 +1,186 @@
+// SPDX-License-Identifier: MIT
+/*
+ * Copyright © 2023 Intel Corporation
+ */
+
+#include <drm/drm_managed.h>
+
+#include "xe_device.h"
+#include "xe_ggtt.h"
+#include "xe_gt.h"
+#include "xe_migrate.h"
+#include "xe_sa.h"
+#include "xe_tile.h"
+#include "xe_tile_sysfs.h"
+#include "xe_ttm_vram_mgr.h"
+#include "xe_wa.h"
+
+/**
+ * DOC: Multi-tile Design
+ *
+ * Different vendors use the term "tile" a bit differently, but in the Intel
+ * world, a 'tile' is pretty close to what most people would think of as being
+ * a complete GPU. When multiple GPUs are placed behind a single PCI device,
+ * that's what is referred to as a "multi-tile device." In such cases, pretty
+ * much all hardware is replicated per-tile, although certain responsibilities
+ * like PCI communication, reporting of interrupts to the OS, etc. are handled
+ * solely by the "root tile." A multi-tile platform takes care of tying the
+ * tiles together in a way such that interrupt notifications from remote tiles
+ * are forwarded to the root tile, the per-tile vram is combined into a single
+ * address space, etc.
+ *
+ * In contrast, a "GT" (which officially stands for "Graphics Technology") is
+ * the subset of a GPU/tile that is responsible for implementing graphics
+ * and/or media operations. The GT is where a lot of the driver implementation
+ * happens since it's where the hardware engines, the execution units, and the
+ * GuC all reside.
+ *
+ * Historically most Intel devices were single-tile devices that contained a
+ * single GT. PVC is an example of an Intel platform built on a multi-tile
+ * design (i.e., multiple GPUs behind a single PCI device); each PVC tile only
+ * has a single GT. In contrast, platforms like MTL that have separate chips
+ * for render and media IP are still only a single logical GPU, but the
+ * graphics and media IP blocks are each exposed as a separate GT within that
+ * single GPU. This is important from a software perspective because multi-GT
+ * platforms like MTL only replicate a subset of the GPU hardware and behave
+ * differently than multi-tile platforms like PVC where nearly everything is
+ * replicated.
+ *
+ * Per-tile functionality (shared by all GTs within the tile):
+ * - Complete 4MB MMIO space (containing SGunit/SoC registers, GT
+ * registers, display registers, etc.)
+ * - Global GTT
+ * - VRAM (if discrete)
+ * - Interrupt flows
+ * - Migration context
+ * - kernel batchbuffer pool
+ * - Primary GT
+ * - Media GT (if media version >= 13)
+ *
+ * Per-GT functionality:
+ * - GuC
+ * - Hardware engines
+ * - Programmable hardware units (subslices, EUs)
+ * - GSI subset of registers (multiple copies of these registers reside
+ * within the complete MMIO space provided by the tile, but at different
+ * offsets --- 0 for render, 0x380000 for media)
+ * - Multicast register steering
+ * - TLBs to cache page table translations
+ * - Reset capability
+ * - Low-level power management (e.g., C6)
+ * - Clock frequency
+ * - MOCS and PAT programming
+ */
+
+/**
+ * xe_tile_alloc - Perform per-tile memory allocation
+ * @tile: Tile to perform allocations for
+ *
+ * Allocates various per-tile data structures using DRM-managed allocations.
+ * Does not touch the hardware.
+ *
+ * Returns -ENOMEM if allocations fail, otherwise 0.
+ */
+static int xe_tile_alloc(struct xe_tile *tile)
+{
+ struct drm_device *drm = &tile_to_xe(tile)->drm;
+
+ tile->mem.ggtt = drmm_kzalloc(drm, sizeof(*tile->mem.ggtt),
+ GFP_KERNEL);
+ if (!tile->mem.ggtt)
+ return -ENOMEM;
+ tile->mem.ggtt->tile = tile;
+
+ tile->mem.vram_mgr = drmm_kzalloc(drm, sizeof(*tile->mem.vram_mgr), GFP_KERNEL);
+ if (!tile->mem.vram_mgr)
+ return -ENOMEM;
+
+ return 0;
+}
+
+/**
+ * xe_tile_init_early - Initialize the tile and primary GT
+ * @tile: Tile to initialize
+ * @xe: Parent Xe device
+ * @id: Tile ID
+ *
+ * Initializes per-tile resources that don't require any interactions with the
+ * hardware or any knowledge about the Graphics/Media IP version.
+ *
+ * Returns: 0 on success, negative error code on error.
+ */
+int xe_tile_init_early(struct xe_tile *tile, struct xe_device *xe, u8 id)
+{
+ int err;
+
+ tile->xe = xe;
+ tile->id = id;
+
+ err = xe_tile_alloc(tile);
+ if (err)
+ return err;
+
+ tile->primary_gt = xe_gt_alloc(tile);
+ if (IS_ERR(tile->primary_gt))
+ return PTR_ERR(tile->primary_gt);
+
+ return 0;
+}
+
+static int tile_ttm_mgr_init(struct xe_tile *tile)
+{
+ struct xe_device *xe = tile_to_xe(tile);
+ int err;
+
+ if (tile->mem.vram.usable_size) {
+ err = xe_ttm_vram_mgr_init(tile, tile->mem.vram_mgr);
+ if (err)
+ return err;
+ xe->info.mem_region_mask |= BIT(tile->id) << 1;
+ }
+
+ return 0;
+}
+
+/**
+ * xe_tile_init_noalloc - Init tile up to the point where allocations can happen.
+ * @tile: The tile to initialize.
+ *
+ * This function prepares the tile to allow memory allocations to VRAM, but is
+ * not allowed to allocate memory itself. This state is useful for display
+ * readout, because the inherited display framebuffer will otherwise be
+ * overwritten as it is usually put at the start of VRAM.
+ *
+ * Note that since this is tile initialization, it should not perform any
+ * GT-specific operations, and thus does not need to hold GT forcewake.
+ *
+ * Returns: 0 on success, negative error code on error.
+ */
+int xe_tile_init_noalloc(struct xe_tile *tile)
+{
+ int err;
+
+ xe_device_mem_access_get(tile_to_xe(tile));
+
+ err = tile_ttm_mgr_init(tile);
+ if (err)
+ goto err_mem_access;
+
+ tile->mem.kernel_bb_pool = xe_sa_bo_manager_init(tile, SZ_1M, 16);
+ if (IS_ERR(tile->mem.kernel_bb_pool)) {
+ err = PTR_ERR(tile->mem.kernel_bb_pool);
+ goto err_mem_access;
+ }
+ xe_wa_apply_tile_workarounds(tile);
+
+ xe_tile_sysfs_init(tile);
+
+err_mem_access:
+ xe_device_mem_access_put(tile_to_xe(tile));
+ return err;
+}
+
+void xe_tile_migrate_wait(struct xe_tile *tile)
+{
+ xe_migrate_wait(tile->migrate);
+}