summaryrefslogtreecommitdiffstats
path: root/drivers/iio
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/iio')
-rw-r--r--drivers/iio/accel/Kconfig2
-rw-r--r--drivers/iio/adc/ad7266.c2
-rw-r--r--drivers/iio/adc/xilinx-ams.c8
-rw-r--r--drivers/iio/chemical/bme680.h2
-rw-r--r--drivers/iio/chemical/bme680_core.c62
-rw-r--r--drivers/iio/humidity/hdc3020.c325
6 files changed, 315 insertions, 86 deletions
diff --git a/drivers/iio/accel/Kconfig b/drivers/iio/accel/Kconfig
index c2da5066e9..80b57d3ee3 100644
--- a/drivers/iio/accel/Kconfig
+++ b/drivers/iio/accel/Kconfig
@@ -330,6 +330,8 @@ config DMARD10
config FXLS8962AF
tristate
depends on I2C || !I2C # cannot be built-in for modular I2C
+ select IIO_BUFFER
+ select IIO_KFIFO_BUF
config FXLS8962AF_I2C
tristate "NXP FXLS8962AF/FXLS8964AF Accelerometer I2C Driver"
diff --git a/drivers/iio/adc/ad7266.c b/drivers/iio/adc/ad7266.c
index 468c2656d2..98648c679a 100644
--- a/drivers/iio/adc/ad7266.c
+++ b/drivers/iio/adc/ad7266.c
@@ -157,6 +157,8 @@ static int ad7266_read_raw(struct iio_dev *indio_dev,
ret = ad7266_read_single(st, val, chan->address);
iio_device_release_direct_mode(indio_dev);
+ if (ret < 0)
+ return ret;
*val = (*val >> 2) & 0xfff;
if (chan->scan_type.sign == 's')
*val = sign_extend32(*val,
diff --git a/drivers/iio/adc/xilinx-ams.c b/drivers/iio/adc/xilinx-ams.c
index f0b71a1220..f52abf7592 100644
--- a/drivers/iio/adc/xilinx-ams.c
+++ b/drivers/iio/adc/xilinx-ams.c
@@ -414,8 +414,12 @@ static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
/* Run calibration of PS & PL as part of the sequence */
scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
- for (i = 0; i < indio_dev->num_channels; i++)
- scan_mask |= BIT_ULL(indio_dev->channels[i].scan_index);
+ for (i = 0; i < indio_dev->num_channels; i++) {
+ const struct iio_chan_spec *chan = &indio_dev->channels[i];
+
+ if (chan->scan_index < AMS_CTRL_SEQ_BASE)
+ scan_mask |= BIT_ULL(chan->scan_index);
+ }
if (ams->ps_base) {
/* put sysmon in a soft reset to change the sequence */
diff --git a/drivers/iio/chemical/bme680.h b/drivers/iio/chemical/bme680.h
index 4edc5d21cb..f959252a4f 100644
--- a/drivers/iio/chemical/bme680.h
+++ b/drivers/iio/chemical/bme680.h
@@ -54,7 +54,9 @@
#define BME680_NB_CONV_MASK GENMASK(3, 0)
#define BME680_REG_MEAS_STAT_0 0x1D
+#define BME680_NEW_DATA_BIT BIT(7)
#define BME680_GAS_MEAS_BIT BIT(6)
+#define BME680_MEAS_BIT BIT(5)
/* Calibration Parameters */
#define BME680_T2_LSB_REG 0x8A
diff --git a/drivers/iio/chemical/bme680_core.c b/drivers/iio/chemical/bme680_core.c
index ef5e0e46fd..500f56834b 100644
--- a/drivers/iio/chemical/bme680_core.c
+++ b/drivers/iio/chemical/bme680_core.c
@@ -10,6 +10,7 @@
*/
#include <linux/acpi.h>
#include <linux/bitfield.h>
+#include <linux/delay.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/log2.h>
@@ -38,7 +39,7 @@ struct bme680_calib {
s8 par_h3;
s8 par_h4;
s8 par_h5;
- s8 par_h6;
+ u8 par_h6;
s8 par_h7;
s8 par_gh1;
s16 par_gh2;
@@ -342,10 +343,10 @@ static s16 bme680_compensate_temp(struct bme680_data *data,
if (!calib->par_t2)
bme680_read_calib(data, calib);
- var1 = (adc_temp >> 3) - (calib->par_t1 << 1);
+ var1 = (adc_temp >> 3) - ((s32)calib->par_t1 << 1);
var2 = (var1 * calib->par_t2) >> 11;
var3 = ((var1 >> 1) * (var1 >> 1)) >> 12;
- var3 = (var3 * (calib->par_t3 << 4)) >> 14;
+ var3 = (var3 * ((s32)calib->par_t3 << 4)) >> 14;
data->t_fine = var2 + var3;
calc_temp = (data->t_fine * 5 + 128) >> 8;
@@ -368,9 +369,9 @@ static u32 bme680_compensate_press(struct bme680_data *data,
var1 = (data->t_fine >> 1) - 64000;
var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * calib->par_p6) >> 2;
var2 = var2 + (var1 * calib->par_p5 << 1);
- var2 = (var2 >> 2) + (calib->par_p4 << 16);
+ var2 = (var2 >> 2) + ((s32)calib->par_p4 << 16);
var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
- (calib->par_p3 << 5)) >> 3) +
+ ((s32)calib->par_p3 << 5)) >> 3) +
((calib->par_p2 * var1) >> 1);
var1 = var1 >> 18;
var1 = ((32768 + var1) * calib->par_p1) >> 15;
@@ -388,7 +389,7 @@ static u32 bme680_compensate_press(struct bme680_data *data,
var3 = ((press_comp >> 8) * (press_comp >> 8) *
(press_comp >> 8) * calib->par_p10) >> 17;
- press_comp += (var1 + var2 + var3 + (calib->par_p7 << 7)) >> 4;
+ press_comp += (var1 + var2 + var3 + ((s32)calib->par_p7 << 7)) >> 4;
return press_comp;
}
@@ -414,7 +415,7 @@ static u32 bme680_compensate_humid(struct bme680_data *data,
(((temp_scaled * ((temp_scaled * calib->par_h5) / 100))
>> 6) / 100) + (1 << 14))) >> 10;
var3 = var1 * var2;
- var4 = calib->par_h6 << 7;
+ var4 = (s32)calib->par_h6 << 7;
var4 = (var4 + ((temp_scaled * calib->par_h7) / 100)) >> 4;
var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
var6 = (var4 * var5) >> 1;
@@ -532,6 +533,43 @@ static u8 bme680_oversampling_to_reg(u8 val)
return ilog2(val) + 1;
}
+/*
+ * Taken from Bosch BME680 API:
+ * https://github.com/boschsensortec/BME68x_SensorAPI/blob/v4.4.8/bme68x.c#L490
+ */
+static int bme680_wait_for_eoc(struct bme680_data *data)
+{
+ struct device *dev = regmap_get_device(data->regmap);
+ unsigned int check;
+ int ret;
+ /*
+ * (Sum of oversampling ratios * time per oversampling) +
+ * TPH measurement + gas measurement + wait transition from forced mode
+ * + heater duration
+ */
+ int wait_eoc_us = ((data->oversampling_temp + data->oversampling_press +
+ data->oversampling_humid) * 1936) + (477 * 4) +
+ (477 * 5) + 1000 + (data->heater_dur * 1000);
+
+ usleep_range(wait_eoc_us, wait_eoc_us + 100);
+
+ ret = regmap_read(data->regmap, BME680_REG_MEAS_STAT_0, &check);
+ if (ret) {
+ dev_err(dev, "failed to read measurement status register.\n");
+ return ret;
+ }
+ if (check & BME680_MEAS_BIT) {
+ dev_err(dev, "Device measurement cycle incomplete.\n");
+ return -EBUSY;
+ }
+ if (!(check & BME680_NEW_DATA_BIT)) {
+ dev_err(dev, "No new data available from the device.\n");
+ return -ENODATA;
+ }
+
+ return 0;
+}
+
static int bme680_chip_config(struct bme680_data *data)
{
struct device *dev = regmap_get_device(data->regmap);
@@ -622,6 +660,10 @@ static int bme680_read_temp(struct bme680_data *data, int *val)
if (ret < 0)
return ret;
+ ret = bme680_wait_for_eoc(data);
+ if (ret)
+ return ret;
+
ret = regmap_bulk_read(data->regmap, BME680_REG_TEMP_MSB,
&tmp, 3);
if (ret < 0) {
@@ -678,7 +720,7 @@ static int bme680_read_press(struct bme680_data *data,
}
*val = bme680_compensate_press(data, adc_press);
- *val2 = 100;
+ *val2 = 1000;
return IIO_VAL_FRACTIONAL;
}
@@ -738,6 +780,10 @@ static int bme680_read_gas(struct bme680_data *data,
if (ret < 0)
return ret;
+ ret = bme680_wait_for_eoc(data);
+ if (ret)
+ return ret;
+
ret = regmap_read(data->regmap, BME680_REG_MEAS_STAT_0, &check);
if (check & BME680_GAS_MEAS_BIT) {
dev_err(dev, "gas measurement incomplete\n");
diff --git a/drivers/iio/humidity/hdc3020.c b/drivers/iio/humidity/hdc3020.c
index 1e5d0d4797..1e702fcc48 100644
--- a/drivers/iio/humidity/hdc3020.c
+++ b/drivers/iio/humidity/hdc3020.c
@@ -18,6 +18,7 @@
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
+#include <linux/math64.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/units.h>
@@ -63,8 +64,10 @@
#define HDC3020_CRC8_POLYNOMIAL 0x31
-#define HDC3020_MIN_TEMP -40
-#define HDC3020_MAX_TEMP 125
+#define HDC3020_MIN_TEMP_MICRO -39872968
+#define HDC3020_MAX_TEMP_MICRO 124875639
+#define HDC3020_MAX_TEMP_HYST_MICRO 164748607
+#define HDC3020_MAX_HUM_MICRO 99220264
struct hdc3020_data {
struct i2c_client *client;
@@ -363,6 +366,105 @@ static int hdc3020_write_raw(struct iio_dev *indio_dev,
return -EINVAL;
}
+static int hdc3020_thresh_get_temp(u16 thresh)
+{
+ int temp;
+
+ /*
+ * Get the temperature threshold from 9 LSBs, shift them to get
+ * the truncated temperature threshold representation and
+ * calculate the threshold according to the formula in the
+ * datasheet. Result is degree celsius scaled by 65535.
+ */
+ temp = FIELD_GET(HDC3020_THRESH_TEMP_MASK, thresh) <<
+ HDC3020_THRESH_TEMP_TRUNC_SHIFT;
+
+ return -2949075 + (175 * temp);
+}
+
+static int hdc3020_thresh_get_hum(u16 thresh)
+{
+ int hum;
+
+ /*
+ * Get the humidity threshold from 7 MSBs, shift them to get the
+ * truncated humidity threshold representation and calculate the
+ * threshold according to the formula in the datasheet. Result is
+ * percent scaled by 65535.
+ */
+ hum = FIELD_GET(HDC3020_THRESH_HUM_MASK, thresh) <<
+ HDC3020_THRESH_HUM_TRUNC_SHIFT;
+
+ return hum * 100;
+}
+
+static u16 hdc3020_thresh_set_temp(int s_temp, u16 curr_thresh)
+{
+ u64 temp;
+ u16 thresh;
+
+ /*
+ * Calculate temperature threshold, shift it down to get the
+ * truncated threshold representation in the 9LSBs while keeping
+ * the current humidity threshold in the 7 MSBs.
+ */
+ temp = (u64)(s_temp + 45000000) * 65535ULL;
+ temp = div_u64(temp, 1000000 * 175) >> HDC3020_THRESH_TEMP_TRUNC_SHIFT;
+ thresh = FIELD_PREP(HDC3020_THRESH_TEMP_MASK, temp);
+ thresh |= (FIELD_GET(HDC3020_THRESH_HUM_MASK, curr_thresh) <<
+ HDC3020_THRESH_HUM_TRUNC_SHIFT);
+
+ return thresh;
+}
+
+static u16 hdc3020_thresh_set_hum(int s_hum, u16 curr_thresh)
+{
+ u64 hum;
+ u16 thresh;
+
+ /*
+ * Calculate humidity threshold, shift it down and up to get the
+ * truncated threshold representation in the 7MSBs while keeping
+ * the current temperature threshold in the 9 LSBs.
+ */
+ hum = (u64)(s_hum) * 65535ULL;
+ hum = div_u64(hum, 1000000 * 100) >> HDC3020_THRESH_HUM_TRUNC_SHIFT;
+ thresh = FIELD_PREP(HDC3020_THRESH_HUM_MASK, hum);
+ thresh |= FIELD_GET(HDC3020_THRESH_TEMP_MASK, curr_thresh);
+
+ return thresh;
+}
+
+static
+int hdc3020_thresh_clr(s64 s_thresh, s64 s_hyst, enum iio_event_direction dir)
+{
+ s64 s_clr;
+
+ /*
+ * Include directions when calculation the clear value,
+ * since hysteresis is unsigned by definition and the
+ * clear value is an absolute value which is signed.
+ */
+ if (dir == IIO_EV_DIR_RISING)
+ s_clr = s_thresh - s_hyst;
+ else
+ s_clr = s_thresh + s_hyst;
+
+ /* Divide by 65535 to get units of micro */
+ return div_s64(s_clr, 65535);
+}
+
+static int _hdc3020_write_thresh(struct hdc3020_data *data, u16 reg, u16 val)
+{
+ u8 buf[5];
+
+ put_unaligned_be16(reg, buf);
+ put_unaligned_be16(val, buf + 2);
+ buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE);
+
+ return hdc3020_write_bytes(data, buf, 5);
+}
+
static int hdc3020_write_thresh(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
@@ -371,67 +473,126 @@ static int hdc3020_write_thresh(struct iio_dev *indio_dev,
int val, int val2)
{
struct hdc3020_data *data = iio_priv(indio_dev);
- u8 buf[5];
- u64 tmp;
- u16 reg;
- int ret;
-
- /* Supported temperature range is from –40 to 125 degree celsius */
- if (val < HDC3020_MIN_TEMP || val > HDC3020_MAX_TEMP)
- return -EINVAL;
-
- /* Select threshold register */
- if (info == IIO_EV_INFO_VALUE) {
- if (dir == IIO_EV_DIR_RISING)
- reg = HDC3020_S_T_RH_THRESH_HIGH;
- else
- reg = HDC3020_S_T_RH_THRESH_LOW;
+ u16 reg, reg_val, reg_thresh_rd, reg_clr_rd, reg_thresh_wr, reg_clr_wr;
+ s64 s_thresh, s_hyst, s_clr;
+ int s_val, thresh, clr, ret;
+
+ /* Select threshold registers */
+ if (dir == IIO_EV_DIR_RISING) {
+ reg_thresh_rd = HDC3020_R_T_RH_THRESH_HIGH;
+ reg_thresh_wr = HDC3020_S_T_RH_THRESH_HIGH;
+ reg_clr_rd = HDC3020_R_T_RH_THRESH_HIGH_CLR;
+ reg_clr_wr = HDC3020_S_T_RH_THRESH_HIGH_CLR;
} else {
- if (dir == IIO_EV_DIR_RISING)
- reg = HDC3020_S_T_RH_THRESH_HIGH_CLR;
- else
- reg = HDC3020_S_T_RH_THRESH_LOW_CLR;
+ reg_thresh_rd = HDC3020_R_T_RH_THRESH_LOW;
+ reg_thresh_wr = HDC3020_S_T_RH_THRESH_LOW;
+ reg_clr_rd = HDC3020_R_T_RH_THRESH_LOW_CLR;
+ reg_clr_wr = HDC3020_S_T_RH_THRESH_LOW_CLR;
}
guard(mutex)(&data->lock);
- ret = hdc3020_read_be16(data, reg);
+ ret = hdc3020_read_be16(data, reg_thresh_rd);
if (ret < 0)
return ret;
+ thresh = ret;
+ ret = hdc3020_read_be16(data, reg_clr_rd);
+ if (ret < 0)
+ return ret;
+
+ clr = ret;
+ /* Scale value to include decimal part into calculations */
+ s_val = (val < 0) ? (val * 1000000 - val2) : (val * 1000000 + val2);
switch (chan->type) {
case IIO_TEMP:
- /*
- * Calculate temperature threshold, shift it down to get the
- * truncated threshold representation in the 9LSBs while keeping
- * the current humidity threshold in the 7 MSBs.
- */
- tmp = ((u64)(((val + 45) * MICRO) + val2)) * 65535ULL;
- tmp = div_u64(tmp, MICRO * 175);
- val = tmp >> HDC3020_THRESH_TEMP_TRUNC_SHIFT;
- val = FIELD_PREP(HDC3020_THRESH_TEMP_MASK, val);
- val |= (FIELD_GET(HDC3020_THRESH_HUM_MASK, ret) <<
- HDC3020_THRESH_HUM_TRUNC_SHIFT);
+ switch (info) {
+ case IIO_EV_INFO_VALUE:
+ s_val = max(s_val, HDC3020_MIN_TEMP_MICRO);
+ s_val = min(s_val, HDC3020_MAX_TEMP_MICRO);
+ reg = reg_thresh_wr;
+ reg_val = hdc3020_thresh_set_temp(s_val, thresh);
+ ret = _hdc3020_write_thresh(data, reg, reg_val);
+ if (ret < 0)
+ return ret;
+
+ /* Calculate old hysteresis */
+ s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000;
+ s_clr = (s64)hdc3020_thresh_get_temp(clr) * 1000000;
+ s_hyst = div_s64(abs(s_thresh - s_clr), 65535);
+ /* Set new threshold */
+ thresh = reg_val;
+ /* Set old hysteresis */
+ s_val = s_hyst;
+ fallthrough;
+ case IIO_EV_INFO_HYSTERESIS:
+ /*
+ * Function hdc3020_thresh_get_temp returns temperature
+ * in degree celsius scaled by 65535. Scale by 1000000
+ * to be able to subtract scaled hysteresis value.
+ */
+ s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000;
+ /*
+ * Units of s_val are in micro degree celsius, scale by
+ * 65535 to get same units as s_thresh.
+ */
+ s_val = min(abs(s_val), HDC3020_MAX_TEMP_HYST_MICRO);
+ s_hyst = (s64)s_val * 65535;
+ s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir);
+ s_clr = max(s_clr, HDC3020_MIN_TEMP_MICRO);
+ s_clr = min(s_clr, HDC3020_MAX_TEMP_MICRO);
+ reg = reg_clr_wr;
+ reg_val = hdc3020_thresh_set_temp(s_clr, clr);
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
break;
case IIO_HUMIDITYRELATIVE:
- /*
- * Calculate humidity threshold, shift it down and up to get the
- * truncated threshold representation in the 7MSBs while keeping
- * the current temperature threshold in the 9 LSBs.
- */
- tmp = ((u64)((val * MICRO) + val2)) * 65535ULL;
- tmp = div_u64(tmp, MICRO * 100);
- val = tmp >> HDC3020_THRESH_HUM_TRUNC_SHIFT;
- val = FIELD_PREP(HDC3020_THRESH_HUM_MASK, val);
- val |= FIELD_GET(HDC3020_THRESH_TEMP_MASK, ret);
+ s_val = (s_val < 0) ? 0 : min(s_val, HDC3020_MAX_HUM_MICRO);
+ switch (info) {
+ case IIO_EV_INFO_VALUE:
+ reg = reg_thresh_wr;
+ reg_val = hdc3020_thresh_set_hum(s_val, thresh);
+ ret = _hdc3020_write_thresh(data, reg, reg_val);
+ if (ret < 0)
+ return ret;
+
+ /* Calculate old hysteresis */
+ s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000;
+ s_clr = (s64)hdc3020_thresh_get_hum(clr) * 1000000;
+ s_hyst = div_s64(abs(s_thresh - s_clr), 65535);
+ /* Set new threshold */
+ thresh = reg_val;
+ /* Try to set old hysteresis */
+ s_val = min(abs(s_hyst), HDC3020_MAX_HUM_MICRO);
+ fallthrough;
+ case IIO_EV_INFO_HYSTERESIS:
+ /*
+ * Function hdc3020_thresh_get_hum returns relative
+ * humidity in percent scaled by 65535. Scale by 1000000
+ * to be able to subtract scaled hysteresis value.
+ */
+ s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000;
+ /*
+ * Units of s_val are in micro percent, scale by 65535
+ * to get same units as s_thresh.
+ */
+ s_hyst = (s64)s_val * 65535;
+ s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir);
+ s_clr = max(s_clr, 0);
+ s_clr = min(s_clr, HDC3020_MAX_HUM_MICRO);
+ reg = reg_clr_wr;
+ reg_val = hdc3020_thresh_set_hum(s_clr, clr);
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
break;
default:
return -EOPNOTSUPP;
}
- put_unaligned_be16(reg, buf);
- put_unaligned_be16(val, buf + 2);
- buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE);
- return hdc3020_write_bytes(data, buf, 5);
+ return _hdc3020_write_thresh(data, reg, reg_val);
}
static int hdc3020_read_thresh(struct iio_dev *indio_dev,
@@ -442,48 +603,60 @@ static int hdc3020_read_thresh(struct iio_dev *indio_dev,
int *val, int *val2)
{
struct hdc3020_data *data = iio_priv(indio_dev);
- u16 reg;
- int ret;
+ u16 reg_thresh, reg_clr;
+ int thresh, clr, ret;
- /* Select threshold register */
- if (info == IIO_EV_INFO_VALUE) {
- if (dir == IIO_EV_DIR_RISING)
- reg = HDC3020_R_T_RH_THRESH_HIGH;
- else
- reg = HDC3020_R_T_RH_THRESH_LOW;
+ /* Select threshold registers */
+ if (dir == IIO_EV_DIR_RISING) {
+ reg_thresh = HDC3020_R_T_RH_THRESH_HIGH;
+ reg_clr = HDC3020_R_T_RH_THRESH_HIGH_CLR;
} else {
- if (dir == IIO_EV_DIR_RISING)
- reg = HDC3020_R_T_RH_THRESH_HIGH_CLR;
- else
- reg = HDC3020_R_T_RH_THRESH_LOW_CLR;
+ reg_thresh = HDC3020_R_T_RH_THRESH_LOW;
+ reg_clr = HDC3020_R_T_RH_THRESH_LOW_CLR;
}
guard(mutex)(&data->lock);
- ret = hdc3020_read_be16(data, reg);
+ ret = hdc3020_read_be16(data, reg_thresh);
if (ret < 0)
return ret;
switch (chan->type) {
case IIO_TEMP:
- /*
- * Get the temperature threshold from 9 LSBs, shift them to get
- * the truncated temperature threshold representation and
- * calculate the threshold according to the formula in the
- * datasheet.
- */
- *val = FIELD_GET(HDC3020_THRESH_TEMP_MASK, ret);
- *val = *val << HDC3020_THRESH_TEMP_TRUNC_SHIFT;
- *val = -2949075 + (175 * (*val));
+ thresh = hdc3020_thresh_get_temp(ret);
+ switch (info) {
+ case IIO_EV_INFO_VALUE:
+ *val = thresh;
+ break;
+ case IIO_EV_INFO_HYSTERESIS:
+ ret = hdc3020_read_be16(data, reg_clr);
+ if (ret < 0)
+ return ret;
+
+ clr = hdc3020_thresh_get_temp(ret);
+ *val = abs(thresh - clr);
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
*val2 = 65535;
return IIO_VAL_FRACTIONAL;
case IIO_HUMIDITYRELATIVE:
- /*
- * Get the humidity threshold from 7 MSBs, shift them to get the
- * truncated humidity threshold representation and calculate the
- * threshold according to the formula in the datasheet.
- */
- *val = FIELD_GET(HDC3020_THRESH_HUM_MASK, ret);
- *val = (*val << HDC3020_THRESH_HUM_TRUNC_SHIFT) * 100;
+ thresh = hdc3020_thresh_get_hum(ret);
+ switch (info) {
+ case IIO_EV_INFO_VALUE:
+ *val = thresh;
+ break;
+ case IIO_EV_INFO_HYSTERESIS:
+ ret = hdc3020_read_be16(data, reg_clr);
+ if (ret < 0)
+ return ret;
+
+ clr = hdc3020_thresh_get_hum(ret);
+ *val = abs(thresh - clr);
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
*val2 = 65535;
return IIO_VAL_FRACTIONAL;
default: