summaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/ralink/rt2x00
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/wireless/ralink/rt2x00')
-rw-r--r--drivers/net/wireless/ralink/rt2x00/Kconfig270
-rw-r--r--drivers/net/wireless/ralink/rt2x00/Makefile26
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2400pci.c1843
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2400pci.h950
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2500pci.c2140
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2500pci.h1224
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2500usb.c1980
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2500usb.h844
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2800.h3179
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2800lib.c12188
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2800lib.h273
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2800mmio.c856
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2800mmio.h155
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2800pci.c461
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2800pci.h31
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2800soc.c258
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2800usb.c1272
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2800usb.h99
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00.h1508
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00config.c280
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00crypto.c245
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00debug.c723
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00debug.h58
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00dev.c1633
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00dump.h116
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00firmware.c118
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00leds.c233
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00leds.h33
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00lib.h434
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00link.c428
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00mac.c827
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00mmio.c201
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00mmio.h103
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00pci.c197
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00pci.h27
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00queue.c1290
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00queue.h677
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00reg.h266
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00soc.c153
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00soc.h29
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00usb.c912
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt2x00usb.h409
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt61pci.c3018
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt61pci.h1489
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt73usb.c2539
-rw-r--r--drivers/net/wireless/ralink/rt2x00/rt73usb.h1068
46 files changed, 47063 insertions, 0 deletions
diff --git a/drivers/net/wireless/ralink/rt2x00/Kconfig b/drivers/net/wireless/ralink/rt2x00/Kconfig
new file mode 100644
index 0000000000..d1fd66d44a
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/Kconfig
@@ -0,0 +1,270 @@
+# SPDX-License-Identifier: GPL-2.0-only
+menuconfig RT2X00
+ tristate "Ralink driver support"
+ depends on MAC80211 && HAS_DMA
+ help
+ This will enable the support for the Ralink drivers,
+ developed in the rt2x00 project <http://rt2x00.serialmonkey.com>.
+
+ These drivers make use of the mac80211 stack.
+
+ When building one of the individual drivers, the rt2x00 library
+ will also be created. That library (when the driver is built as
+ a module) will be called rt2x00lib.
+
+ Additionally PCI and USB libraries will also be build depending
+ on the types of drivers being selected, these libraries will be
+ called rt2x00pci and rt2x00usb.
+
+if RT2X00
+
+config RT2400PCI
+ tristate "Ralink rt2400 (PCI/PCMCIA) support"
+ depends on PCI
+ select RT2X00_LIB_MMIO
+ select RT2X00_LIB_PCI
+ select EEPROM_93CX6
+ help
+ This adds support for rt2400 wireless chipset family.
+ Supported chips: RT2460.
+
+ When compiled as a module, this driver will be called rt2400pci.
+
+config RT2500PCI
+ tristate "Ralink rt2500 (PCI/PCMCIA) support"
+ depends on PCI
+ select RT2X00_LIB_MMIO
+ select RT2X00_LIB_PCI
+ select EEPROM_93CX6
+ help
+ This adds support for rt2500 wireless chipset family.
+ Supported chips: RT2560.
+
+ When compiled as a module, this driver will be called rt2500pci.
+
+config RT61PCI
+ tristate "Ralink rt2501/rt61 (PCI/PCMCIA) support"
+ depends on PCI
+ select RT2X00_LIB_PCI
+ select RT2X00_LIB_MMIO
+ select RT2X00_LIB_FIRMWARE
+ select RT2X00_LIB_CRYPTO
+ select CRC_ITU_T
+ select EEPROM_93CX6
+ help
+ This adds support for rt2501 wireless chipset family.
+ Supported chips: RT2561, RT2561S & RT2661.
+
+ When compiled as a module, this driver will be called rt61pci.
+
+config RT2800PCI
+ tristate "Ralink rt27xx/rt28xx/rt30xx (PCI/PCIe/PCMCIA) support"
+ depends on PCI
+ select RT2800_LIB
+ select RT2800_LIB_MMIO
+ select RT2X00_LIB_MMIO
+ select RT2X00_LIB_PCI
+ select RT2X00_LIB_FIRMWARE
+ select RT2X00_LIB_CRYPTO
+ select CRC_CCITT
+ select EEPROM_93CX6
+ help
+ This adds support for rt27xx/rt28xx/rt30xx wireless chipset family.
+ Supported chips: RT2760, RT2790, RT2860, RT2880, RT2890, RT3052,
+ RT3090, RT3091 & RT3092
+
+ When compiled as a module, this driver will be called "rt2800pci.ko".
+
+if RT2800PCI
+
+config RT2800PCI_RT33XX
+ bool "rt2800pci - Include support for rt33xx devices"
+ default y
+ help
+ This adds support for rt33xx wireless chipset family to the
+ rt2800pci driver.
+ Supported chips: RT3390
+
+config RT2800PCI_RT35XX
+ bool "rt2800pci - Include support for rt35xx devices (EXPERIMENTAL)"
+ default y
+ help
+ This adds support for rt35xx wireless chipset family to the
+ rt2800pci driver.
+ Supported chips: RT3060, RT3062, RT3562, RT3592
+
+
+config RT2800PCI_RT53XX
+ bool "rt2800pci - Include support for rt53xx devices (EXPERIMENTAL)"
+ default y
+ help
+ This adds support for rt53xx wireless chipset family to the
+ rt2800pci driver.
+ Supported chips: RT5390
+
+config RT2800PCI_RT3290
+ bool "rt2800pci - Include support for rt3290 devices (EXPERIMENTAL)"
+ default y
+ help
+ This adds support for rt3290 wireless chipset family to the
+ rt2800pci driver.
+ Supported chips: RT3290
+endif
+
+config RT2500USB
+ tristate "Ralink rt2500 (USB) support"
+ depends on USB
+ select RT2X00_LIB_USB
+ select RT2X00_LIB_CRYPTO
+ help
+ This adds support for rt2500 wireless chipset family.
+ Supported chips: RT2571 & RT2572.
+
+ When compiled as a module, this driver will be called rt2500usb.
+
+config RT73USB
+ tristate "Ralink rt2501/rt73 (USB) support"
+ depends on USB
+ select RT2X00_LIB_USB
+ select RT2X00_LIB_FIRMWARE
+ select RT2X00_LIB_CRYPTO
+ select CRC_ITU_T
+ help
+ This adds support for rt2501 wireless chipset family.
+ Supported chips: RT2571W, RT2573 & RT2671.
+
+ When compiled as a module, this driver will be called rt73usb.
+
+config RT2800USB
+ tristate "Ralink rt27xx/rt28xx/rt30xx (USB) support"
+ depends on USB
+ select RT2800_LIB
+ select RT2X00_LIB_USB
+ select RT2X00_LIB_FIRMWARE
+ select RT2X00_LIB_CRYPTO
+ select CRC_CCITT
+ help
+ This adds support for rt27xx/rt28xx/rt30xx wireless chipset family.
+ Supported chips: RT2770, RT2870 & RT3070, RT3071 & RT3072
+
+ When compiled as a module, this driver will be called "rt2800usb.ko".
+
+if RT2800USB
+
+config RT2800USB_RT33XX
+ bool "rt2800usb - Include support for rt33xx devices"
+ default y
+ help
+ This adds support for rt33xx wireless chipset family to the
+ rt2800usb driver.
+ Supported chips: RT3370
+
+config RT2800USB_RT35XX
+ bool "rt2800usb - Include support for rt35xx devices (EXPERIMENTAL)"
+ default y
+ help
+ This adds support for rt35xx wireless chipset family to the
+ rt2800usb driver.
+ Supported chips: RT3572
+
+config RT2800USB_RT3573
+ bool "rt2800usb - Include support for rt3573 devices (EXPERIMENTAL)"
+ help
+ This enables support for RT3573 chipset based USB wireless devices
+ in the rt2800usb driver.
+
+config RT2800USB_RT53XX
+ bool "rt2800usb - Include support for rt53xx devices (EXPERIMENTAL)"
+ help
+ This adds support for rt53xx wireless chipset family to the
+ rt2800usb driver.
+ Supported chips: RT5370
+
+config RT2800USB_RT55XX
+ bool "rt2800usb - Include support for rt55xx devices (EXPERIMENTAL)"
+ help
+ This adds support for rt55xx wireless chipset family to the
+ rt2800usb driver.
+ Supported chips: RT5572
+
+config RT2800USB_UNKNOWN
+ bool "rt2800usb - Include support for unknown (USB) devices"
+ default n
+ help
+ This adds support for rt2800usb devices that are known to
+ have a rt28xx family compatible chipset, but for which the exact
+ chipset is unknown.
+
+ Support status for these devices is unknown, and enabling these
+ devices may or may not work.
+
+endif
+
+config RT2800SOC
+ tristate "Ralink WiSoC support"
+ depends on SOC_RT288X || SOC_RT305X || SOC_MT7620
+ select RT2X00_LIB_SOC
+ select RT2X00_LIB_MMIO
+ select RT2X00_LIB_CRYPTO
+ select RT2X00_LIB_FIRMWARE
+ select RT2800_LIB
+ select RT2800_LIB_MMIO
+ help
+ This adds support for Ralink WiSoC devices.
+ Supported chips: RT2880, RT3050, RT3052, RT3350, RT3352.
+
+ When compiled as a module, this driver will be called rt2800soc.
+
+
+config RT2800_LIB
+ tristate
+
+config RT2800_LIB_MMIO
+ tristate
+ select RT2X00_LIB_MMIO
+ select RT2800_LIB
+
+config RT2X00_LIB_MMIO
+ tristate
+
+config RT2X00_LIB_PCI
+ tristate
+ select RT2X00_LIB
+
+config RT2X00_LIB_SOC
+ tristate
+ select RT2X00_LIB
+
+config RT2X00_LIB_USB
+ tristate
+ select RT2X00_LIB
+
+config RT2X00_LIB
+ tristate
+
+config RT2X00_LIB_FIRMWARE
+ bool
+ select FW_LOADER
+
+config RT2X00_LIB_CRYPTO
+ bool
+
+config RT2X00_LIB_LEDS
+ bool
+ default y if (RT2X00_LIB=y && LEDS_CLASS=y) || (RT2X00_LIB=m && LEDS_CLASS!=n)
+
+config RT2X00_LIB_DEBUGFS
+ bool "Ralink debugfs support"
+ depends on RT2X00_LIB && MAC80211_DEBUGFS
+ help
+ Enable creation of debugfs files for the rt2x00 drivers.
+ These debugfs files support both reading and writing of the
+ most important register types of the rt2x00 hardware.
+
+config RT2X00_DEBUG
+ bool "Ralink debug output"
+ depends on RT2X00_LIB
+ help
+ Enable debugging output for all rt2x00 modules
+
+endif
diff --git a/drivers/net/wireless/ralink/rt2x00/Makefile b/drivers/net/wireless/ralink/rt2x00/Makefile
new file mode 100644
index 0000000000..de030ebcdf
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/Makefile
@@ -0,0 +1,26 @@
+# SPDX-License-Identifier: GPL-2.0
+rt2x00lib-y += rt2x00dev.o
+rt2x00lib-y += rt2x00mac.o
+rt2x00lib-y += rt2x00config.o
+rt2x00lib-y += rt2x00queue.o
+rt2x00lib-y += rt2x00link.o
+rt2x00lib-$(CONFIG_RT2X00_LIB_DEBUGFS) += rt2x00debug.o
+rt2x00lib-$(CONFIG_RT2X00_LIB_CRYPTO) += rt2x00crypto.o
+rt2x00lib-$(CONFIG_RT2X00_LIB_FIRMWARE) += rt2x00firmware.o
+rt2x00lib-$(CONFIG_RT2X00_LIB_LEDS) += rt2x00leds.o
+
+obj-$(CONFIG_RT2X00_LIB) += rt2x00lib.o
+obj-$(CONFIG_RT2X00_LIB_MMIO) += rt2x00mmio.o
+obj-$(CONFIG_RT2X00_LIB_PCI) += rt2x00pci.o
+obj-$(CONFIG_RT2X00_LIB_SOC) += rt2x00soc.o
+obj-$(CONFIG_RT2X00_LIB_USB) += rt2x00usb.o
+obj-$(CONFIG_RT2800_LIB) += rt2800lib.o
+obj-$(CONFIG_RT2800_LIB_MMIO) += rt2800mmio.o
+obj-$(CONFIG_RT2400PCI) += rt2400pci.o
+obj-$(CONFIG_RT2500PCI) += rt2500pci.o
+obj-$(CONFIG_RT61PCI) += rt61pci.o
+obj-$(CONFIG_RT2800PCI) += rt2800pci.o
+obj-$(CONFIG_RT2500USB) += rt2500usb.o
+obj-$(CONFIG_RT73USB) += rt73usb.o
+obj-$(CONFIG_RT2800USB) += rt2800usb.o
+obj-$(CONFIG_RT2800SOC) += rt2800soc.o
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2400pci.c b/drivers/net/wireless/ralink/rt2x00/rt2400pci.c
new file mode 100644
index 0000000000..13dd672b82
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2400pci.c
@@ -0,0 +1,1843 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2400pci
+ Abstract: rt2400pci device specific routines.
+ Supported chipsets: RT2460.
+ */
+
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/eeprom_93cx6.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2x00pci.h"
+#include "rt2400pci.h"
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2x00mmio_register_read and rt2x00mmio_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attempt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+ rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+ rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
+
+static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u8 value)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
+ rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
+ rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+ rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
+
+ rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static u8 rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word)
+{
+ u32 reg;
+ u8 value;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the read request into the register.
+ * After the data has been written, we wait until hardware
+ * returns the correct value, if at any time the register
+ * doesn't become available in time, reg will be 0xffffffff
+ * which means we return 0xff to the caller.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
+ rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+ rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
+
+ rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
+
+ WAIT_FOR_BBP(rt2x00dev, &reg);
+ }
+
+ value = rt2x00_get_field32(reg, BBPCSR_VALUE);
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+
+ return value;
+}
+
+static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u32 value)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the RF becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, RFCSR_VALUE, value);
+ rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
+ rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
+ rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
+
+ rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
+ rt2x00_rf_write(rt2x00dev, word, value);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
+{
+ struct rt2x00_dev *rt2x00dev = eeprom->data;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
+
+ eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
+ eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
+ eeprom->reg_data_clock =
+ !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
+ eeprom->reg_chip_select =
+ !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
+}
+
+static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
+{
+ struct rt2x00_dev *rt2x00dev = eeprom->data;
+ u32 reg = 0;
+
+ rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
+ rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
+ rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
+ !!eeprom->reg_data_clock);
+ rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
+ !!eeprom->reg_chip_select);
+
+ rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static const struct rt2x00debug rt2400pci_rt2x00debug = {
+ .owner = THIS_MODULE,
+ .csr = {
+ .read = rt2x00mmio_register_read,
+ .write = rt2x00mmio_register_write,
+ .flags = RT2X00DEBUGFS_OFFSET,
+ .word_base = CSR_REG_BASE,
+ .word_size = sizeof(u32),
+ .word_count = CSR_REG_SIZE / sizeof(u32),
+ },
+ .eeprom = {
+ .read = rt2x00_eeprom_read,
+ .write = rt2x00_eeprom_write,
+ .word_base = EEPROM_BASE,
+ .word_size = sizeof(u16),
+ .word_count = EEPROM_SIZE / sizeof(u16),
+ },
+ .bbp = {
+ .read = rt2400pci_bbp_read,
+ .write = rt2400pci_bbp_write,
+ .word_base = BBP_BASE,
+ .word_size = sizeof(u8),
+ .word_count = BBP_SIZE / sizeof(u8),
+ },
+ .rf = {
+ .read = rt2x00_rf_read,
+ .write = rt2400pci_rf_write,
+ .word_base = RF_BASE,
+ .word_size = sizeof(u32),
+ .word_count = RF_SIZE / sizeof(u32),
+ },
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
+ return rt2x00_get_field32(reg, GPIOCSR_VAL0);
+}
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
+ enum led_brightness brightness)
+{
+ struct rt2x00_led *led =
+ container_of(led_cdev, struct rt2x00_led, led_dev);
+ unsigned int enabled = brightness != LED_OFF;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
+
+ if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
+ rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
+ else if (led->type == LED_TYPE_ACTIVITY)
+ rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
+
+ rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
+}
+
+static int rt2400pci_blink_set(struct led_classdev *led_cdev,
+ unsigned long *delay_on,
+ unsigned long *delay_off)
+{
+ struct rt2x00_led *led =
+ container_of(led_cdev, struct rt2x00_led, led_dev);
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
+ rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
+ rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
+ rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
+
+ return 0;
+}
+
+static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_led *led,
+ enum led_type type)
+{
+ led->rt2x00dev = rt2x00dev;
+ led->type = type;
+ led->led_dev.brightness_set = rt2400pci_brightness_set;
+ led->led_dev.blink_set = rt2400pci_blink_set;
+ led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
+ const unsigned int filter_flags)
+{
+ u32 reg;
+
+ /*
+ * Start configuration steps.
+ * Note that the version error will always be dropped
+ * since there is no filter for it at this time.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
+ rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
+ !(filter_flags & FIF_FCSFAIL));
+ rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
+ !(filter_flags & FIF_PLCPFAIL));
+ rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
+ !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
+ rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
+ !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
+ !rt2x00dev->intf_ap_count);
+ rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+}
+
+static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_intf *intf,
+ struct rt2x00intf_conf *conf,
+ const unsigned int flags)
+{
+ unsigned int bcn_preload;
+ u32 reg;
+
+ if (flags & CONFIG_UPDATE_TYPE) {
+ /*
+ * Enable beacon config
+ */
+ bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
+ reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
+ rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
+ rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
+
+ /*
+ * Enable synchronisation.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
+ rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+ }
+
+ if (flags & CONFIG_UPDATE_MAC)
+ rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
+ conf->mac, sizeof(conf->mac));
+
+ if (flags & CONFIG_UPDATE_BSSID)
+ rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
+ conf->bssid,
+ sizeof(conf->bssid));
+}
+
+static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_erp *erp,
+ u32 changed)
+{
+ int preamble_mask;
+ u32 reg;
+
+ /*
+ * When short preamble is enabled, we should set bit 0x08
+ */
+ if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+ preamble_mask = erp->short_preamble << 3;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
+ rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
+ rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
+ rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
+ rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
+ rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
+ rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+ GET_DURATION(ACK_SIZE, 10));
+ rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
+ rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
+ rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+ GET_DURATION(ACK_SIZE, 20));
+ rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
+ rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
+ rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+ GET_DURATION(ACK_SIZE, 55));
+ rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
+ rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
+ rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+ GET_DURATION(ACK_SIZE, 110));
+ rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
+ }
+
+ if (changed & BSS_CHANGED_BASIC_RATES)
+ rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
+
+ if (changed & BSS_CHANGED_ERP_SLOT) {
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
+ rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
+ rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
+ rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
+ rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
+ rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
+ rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
+ rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
+ rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
+ }
+
+ if (changed & BSS_CHANGED_BEACON_INT) {
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
+ rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
+ erp->beacon_int * 16);
+ rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
+ erp->beacon_int * 16);
+ rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
+ }
+}
+
+static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant)
+{
+ u8 r1;
+ u8 r4;
+
+ /*
+ * We should never come here because rt2x00lib is supposed
+ * to catch this and send us the correct antenna explicitely.
+ */
+ BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
+ ant->tx == ANTENNA_SW_DIVERSITY);
+
+ r4 = rt2400pci_bbp_read(rt2x00dev, 4);
+ r1 = rt2400pci_bbp_read(rt2x00dev, 1);
+
+ /*
+ * Configure the TX antenna.
+ */
+ switch (ant->tx) {
+ case ANTENNA_HW_DIVERSITY:
+ rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
+ break;
+ case ANTENNA_A:
+ rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
+ break;
+ case ANTENNA_B:
+ default:
+ rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
+ break;
+ }
+
+ /*
+ * Configure the RX antenna.
+ */
+ switch (ant->rx) {
+ case ANTENNA_HW_DIVERSITY:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
+ break;
+ case ANTENNA_A:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
+ break;
+ case ANTENNA_B:
+ default:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
+ break;
+ }
+
+ rt2400pci_bbp_write(rt2x00dev, 4, r4);
+ rt2400pci_bbp_write(rt2x00dev, 1, r1);
+}
+
+static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
+ struct rf_channel *rf)
+{
+ /*
+ * Switch on tuning bits.
+ */
+ rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
+ rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
+
+ rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
+ rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
+ rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
+
+ /*
+ * RF2420 chipset don't need any additional actions.
+ */
+ if (rt2x00_rf(rt2x00dev, RF2420))
+ return;
+
+ /*
+ * For the RT2421 chipsets we need to write an invalid
+ * reference clock rate to activate auto_tune.
+ * After that we set the value back to the correct channel.
+ */
+ rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
+ rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
+ rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
+
+ msleep(1);
+
+ rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
+ rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
+ rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
+
+ msleep(1);
+
+ /*
+ * Switch off tuning bits.
+ */
+ rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
+ rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
+
+ rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
+ rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
+
+ /*
+ * Clear false CRC during channel switch.
+ */
+ rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
+}
+
+static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
+{
+ rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
+}
+
+static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
+ rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
+ libconf->conf->long_frame_max_tx_count);
+ rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
+ libconf->conf->short_frame_max_tx_count);
+ rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+}
+
+static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ enum dev_state state =
+ (libconf->conf->flags & IEEE80211_CONF_PS) ?
+ STATE_SLEEP : STATE_AWAKE;
+ u32 reg;
+
+ if (state == STATE_SLEEP) {
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
+ rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
+ (rt2x00dev->beacon_int - 20) * 16);
+ rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
+ libconf->conf->listen_interval - 1);
+
+ /* We must first disable autowake before it can be enabled */
+ rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+
+ rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
+ rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+ } else {
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
+ rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+ }
+
+ rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+}
+
+static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf,
+ const unsigned int flags)
+{
+ if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
+ rt2400pci_config_channel(rt2x00dev, &libconf->rf);
+ if (flags & IEEE80211_CONF_CHANGE_POWER)
+ rt2400pci_config_txpower(rt2x00dev,
+ libconf->conf->power_level);
+ if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+ rt2400pci_config_retry_limit(rt2x00dev, libconf);
+ if (flags & IEEE80211_CONF_CHANGE_PS)
+ rt2400pci_config_ps(rt2x00dev, libconf);
+}
+
+static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
+ const int cw_min, const int cw_max)
+{
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
+ rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
+ rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
+ rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+}
+
+/*
+ * Link tuning
+ */
+static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual)
+{
+ u32 reg;
+ u8 bbp;
+
+ /*
+ * Update FCS error count from register.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
+ qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
+
+ /*
+ * Update False CCA count from register.
+ */
+ bbp = rt2400pci_bbp_read(rt2x00dev, 39);
+ qual->false_cca = bbp;
+}
+
+static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual, u8 vgc_level)
+{
+ if (qual->vgc_level_reg != vgc_level) {
+ rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
+ qual->vgc_level = vgc_level;
+ qual->vgc_level_reg = vgc_level;
+ }
+}
+
+static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual)
+{
+ rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
+}
+
+static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual, const u32 count)
+{
+ /*
+ * The link tuner should not run longer then 60 seconds,
+ * and should run once every 2 seconds.
+ */
+ if (count > 60 || !(count & 1))
+ return;
+
+ /*
+ * Base r13 link tuning on the false cca count.
+ */
+ if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
+ rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
+ else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
+ rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt2400pci_start_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_RX:
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
+ rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
+ rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
+ rt2x00_set_field32(&reg, CSR14_TBCN, 1);
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+static void rt2400pci_kick_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_AC_VO:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
+ rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+ break;
+ case QID_AC_VI:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
+ rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+ break;
+ case QID_ATIM:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
+ rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+static void rt2400pci_stop_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_ATIM:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
+ rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+ break;
+ case QID_RX:
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
+ rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
+ rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
+ rt2x00_set_field32(&reg, CSR14_TBCN, 0);
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+ /*
+ * Wait for possibly running tbtt tasklets.
+ */
+ tasklet_kill(&rt2x00dev->tbtt_tasklet);
+ break;
+ default:
+ break;
+ }
+}
+
+/*
+ * Initialization functions.
+ */
+static bool rt2400pci_get_entry_state(struct queue_entry *entry)
+{
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ u32 word;
+
+ if (entry->queue->qid == QID_RX) {
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+
+ return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
+ } else {
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+
+ return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+ rt2x00_get_field32(word, TXD_W0_VALID));
+ }
+}
+
+static void rt2400pci_clear_entry(struct queue_entry *entry)
+{
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ u32 word;
+
+ if (entry->queue->qid == QID_RX) {
+ word = rt2x00_desc_read(entry_priv->desc, 2);
+ rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
+ rt2x00_desc_write(entry_priv->desc, 2, word);
+
+ word = rt2x00_desc_read(entry_priv->desc, 1);
+ rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
+ rt2x00_desc_write(entry_priv->desc, 1, word);
+
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+ rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
+ rt2x00_desc_write(entry_priv->desc, 0, word);
+ } else {
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+ rt2x00_set_field32(&word, TXD_W0_VALID, 0);
+ rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
+ rt2x00_desc_write(entry_priv->desc, 0, word);
+ }
+}
+
+static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
+{
+ struct queue_entry_priv_mmio *entry_priv;
+ u32 reg;
+
+ /*
+ * Initialize registers.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
+ rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
+ rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
+ rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
+ rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
+
+ entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
+ rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
+
+ entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
+ rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
+
+ entry_priv = rt2x00dev->atim->entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
+ rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
+
+ entry_priv = rt2x00dev->bcn->entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
+ rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
+ rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
+ rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
+
+ entry_priv = rt2x00dev->rx->entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
+ rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
+
+ return 0;
+}
+
+static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
+ rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
+ rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
+ rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
+ rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
+ rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
+ rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
+ rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
+ rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
+ (rt2x00dev->rx->data_size / 128));
+ rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
+ rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
+ rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
+ rt2x00_set_field32(&reg, CSR14_TBCN, 0);
+ rt2x00_set_field32(&reg, CSR14_TCFP, 0);
+ rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+ rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
+ rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+ rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARCSR0);
+ rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
+ rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
+ rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
+ rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
+ rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
+
+ rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
+
+ if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+ return -EBUSY;
+
+ rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
+ rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
+ rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
+ rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
+ rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
+ rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
+ rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
+ rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
+ rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
+ rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
+ rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
+
+ /*
+ * We must clear the FCS and FIFO error count.
+ * These registers are cleared on read,
+ * so we may pass a useless variable to store the value.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
+ reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
+
+ return 0;
+}
+
+static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u8 value;
+
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ value = rt2400pci_bbp_read(rt2x00dev, 0);
+ if ((value != 0xff) && (value != 0x00))
+ return 0;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+ return -EACCES;
+}
+
+static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u16 eeprom;
+ u8 reg_id;
+ u8 value;
+
+ if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
+ return -EACCES;
+
+ rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
+ rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
+ rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
+ rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
+ rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
+ rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
+ rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
+ rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
+ rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
+ rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
+ rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
+ rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
+ rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
+ rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
+
+ for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
+
+ if (eeprom != 0xffff && eeprom != 0x0000) {
+ reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+ value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+ rt2400pci_bbp_write(rt2x00dev, reg_id, value);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int mask = (state == STATE_RADIO_IRQ_OFF);
+ u32 reg;
+ unsigned long flags;
+
+ /*
+ * When interrupts are being enabled, the interrupt registers
+ * should clear the register to assure a clean state.
+ */
+ if (state == STATE_RADIO_IRQ_ON) {
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
+ rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
+ }
+
+ /*
+ * Only toggle the interrupts bits we are going to use.
+ * Non-checked interrupt bits are disabled by default.
+ */
+ spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
+ rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
+ rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
+ rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+ spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
+
+ if (state == STATE_RADIO_IRQ_OFF) {
+ /*
+ * Ensure that all tasklets are finished before
+ * disabling the interrupts.
+ */
+ tasklet_kill(&rt2x00dev->txstatus_tasklet);
+ tasklet_kill(&rt2x00dev->rxdone_tasklet);
+ tasklet_kill(&rt2x00dev->tbtt_tasklet);
+ }
+}
+
+static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ /*
+ * Initialize all registers.
+ */
+ if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
+ rt2400pci_init_registers(rt2x00dev) ||
+ rt2400pci_init_bbp(rt2x00dev)))
+ return -EIO;
+
+ return 0;
+}
+
+static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ /*
+ * Disable power
+ */
+ rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
+}
+
+static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ u32 reg, reg2;
+ unsigned int i;
+ bool put_to_sleep;
+ u8 bbp_state;
+ u8 rf_state;
+
+ put_to_sleep = (state != STATE_AWAKE);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
+ rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
+ rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
+ rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
+ rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
+ rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
+
+ /*
+ * Device is not guaranteed to be in the requested state yet.
+ * We must wait until the register indicates that the
+ * device has entered the correct state.
+ */
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
+ bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
+ rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
+ if (bbp_state == state && rf_state == state)
+ return 0;
+ rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
+ msleep(10);
+ }
+
+ return -EBUSY;
+}
+
+static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int retval = 0;
+
+ switch (state) {
+ case STATE_RADIO_ON:
+ retval = rt2400pci_enable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_OFF:
+ rt2400pci_disable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_IRQ_ON:
+ case STATE_RADIO_IRQ_OFF:
+ rt2400pci_toggle_irq(rt2x00dev, state);
+ break;
+ case STATE_DEEP_SLEEP:
+ case STATE_SLEEP:
+ case STATE_STANDBY:
+ case STATE_AWAKE:
+ retval = rt2400pci_set_state(rt2x00dev, state);
+ break;
+ default:
+ retval = -ENOTSUPP;
+ break;
+ }
+
+ if (unlikely(retval))
+ rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+ state, retval);
+
+ return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt2400pci_write_tx_desc(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ __le32 *txd = entry_priv->desc;
+ u32 word;
+
+ /*
+ * Start writing the descriptor words.
+ */
+ word = rt2x00_desc_read(txd, 1);
+ rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
+ rt2x00_desc_write(txd, 1, word);
+
+ word = rt2x00_desc_read(txd, 2);
+ rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
+ rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
+ rt2x00_desc_write(txd, 2, word);
+
+ word = rt2x00_desc_read(txd, 3);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
+ rt2x00_desc_write(txd, 3, word);
+
+ word = rt2x00_desc_read(txd, 4);
+ rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
+ txdesc->u.plcp.length_low);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
+ rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
+ txdesc->u.plcp.length_high);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
+ rt2x00_desc_write(txd, 4, word);
+
+ /*
+ * Writing TXD word 0 must the last to prevent a race condition with
+ * the device, whereby the device may take hold of the TXD before we
+ * finished updating it.
+ */
+ word = rt2x00_desc_read(txd, 0);
+ rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
+ rt2x00_set_field32(&word, TXD_W0_VALID, 1);
+ rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+ test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_ACK,
+ test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+ test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_RTS,
+ test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
+ rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
+ test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
+ rt2x00_desc_write(txd, 0, word);
+
+ /*
+ * Register descriptor details in skb frame descriptor.
+ */
+ skbdesc->desc = txd;
+ skbdesc->desc_len = TXD_DESC_SIZE;
+}
+
+/*
+ * TX data initialization
+ */
+static void rt2400pci_write_beacon(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ u32 reg;
+
+ /*
+ * Disable beaconing while we are reloading the beacon data,
+ * otherwise we might be sending out invalid data.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+ if (rt2x00queue_map_txskb(entry)) {
+ rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
+ goto out;
+ }
+ /*
+ * Enable beaconing again.
+ */
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+ /*
+ * Write the TX descriptor for the beacon.
+ */
+ rt2400pci_write_tx_desc(entry, txdesc);
+
+ /*
+ * Dump beacon to userspace through debugfs.
+ */
+ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
+out:
+ /*
+ * Enable beaconing again.
+ */
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+}
+
+/*
+ * RX control handlers
+ */
+static void rt2400pci_fill_rxdone(struct queue_entry *entry,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ u32 word0;
+ u32 word2;
+ u32 word3;
+ u32 word4;
+ u64 tsf;
+ u32 rx_low;
+ u32 rx_high;
+
+ word0 = rt2x00_desc_read(entry_priv->desc, 0);
+ word2 = rt2x00_desc_read(entry_priv->desc, 2);
+ word3 = rt2x00_desc_read(entry_priv->desc, 3);
+ word4 = rt2x00_desc_read(entry_priv->desc, 4);
+
+ if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
+ rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+ if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
+ rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
+
+ /*
+ * We only get the lower 32bits from the timestamp,
+ * to get the full 64bits we must complement it with
+ * the timestamp from get_tsf().
+ * Note that when a wraparound of the lower 32bits
+ * has occurred between the frame arrival and the get_tsf()
+ * call, we must decrease the higher 32bits with 1 to get
+ * to correct value.
+ */
+ tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
+ rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
+ rx_high = upper_32_bits(tsf);
+
+ if ((u32)tsf <= rx_low)
+ rx_high--;
+
+ /*
+ * Obtain the status about this packet.
+ * The signal is the PLCP value, and needs to be stripped
+ * of the preamble bit (0x08).
+ */
+ rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
+ rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
+ rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
+ entry->queue->rt2x00dev->rssi_offset;
+ rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+
+ rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
+ if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
+ rxdesc->dev_flags |= RXDONE_MY_BSS;
+}
+
+/*
+ * Interrupt functions.
+ */
+static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
+ const enum data_queue_qid queue_idx)
+{
+ struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+ struct queue_entry_priv_mmio *entry_priv;
+ struct queue_entry *entry;
+ struct txdone_entry_desc txdesc;
+ u32 word;
+
+ while (!rt2x00queue_empty(queue)) {
+ entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+ entry_priv = entry->priv_data;
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+
+ if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+ !rt2x00_get_field32(word, TXD_W0_VALID))
+ break;
+
+ /*
+ * Obtain the status about this packet.
+ */
+ txdesc.flags = 0;
+ switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
+ case 0: /* Success */
+ case 1: /* Success with retry */
+ __set_bit(TXDONE_SUCCESS, &txdesc.flags);
+ break;
+ case 2: /* Failure, excessive retries */
+ __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
+ fallthrough; /* this is a failed frame! */
+ default: /* Failure */
+ __set_bit(TXDONE_FAILURE, &txdesc.flags);
+ }
+ txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
+
+ rt2x00lib_txdone(entry, &txdesc);
+ }
+}
+
+static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_field32 irq_field)
+{
+ u32 reg;
+
+ /*
+ * Enable a single interrupt. The interrupt mask register
+ * access needs locking.
+ */
+ spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
+ rt2x00_set_field32(&reg, irq_field, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+ spin_unlock_irq(&rt2x00dev->irqmask_lock);
+}
+
+static void rt2400pci_txstatus_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
+ txstatus_tasklet);
+ u32 reg;
+
+ /*
+ * Handle all tx queues.
+ */
+ rt2400pci_txdone(rt2x00dev, QID_ATIM);
+ rt2400pci_txdone(rt2x00dev, QID_AC_VO);
+ rt2400pci_txdone(rt2x00dev, QID_AC_VI);
+
+ /*
+ * Enable all TXDONE interrupts again.
+ */
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
+ spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+ spin_unlock_irq(&rt2x00dev->irqmask_lock);
+ }
+}
+
+static void rt2400pci_tbtt_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
+ rt2x00lib_beacondone(rt2x00dev);
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
+}
+
+static void rt2400pci_rxdone_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
+ rxdone_tasklet);
+ if (rt2x00mmio_rxdone(rt2x00dev))
+ tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+ else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
+}
+
+static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
+{
+ struct rt2x00_dev *rt2x00dev = dev_instance;
+ u32 reg, mask;
+
+ /*
+ * Get the interrupt sources & saved to local variable.
+ * Write register value back to clear pending interrupts.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
+ rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
+
+ if (!reg)
+ return IRQ_NONE;
+
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return IRQ_HANDLED;
+
+ mask = reg;
+
+ /*
+ * Schedule tasklets for interrupt handling.
+ */
+ if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
+ tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
+
+ if (rt2x00_get_field32(reg, CSR7_RXDONE))
+ tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+
+ if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
+ rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
+ rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
+ tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+ /*
+ * Mask out all txdone interrupts.
+ */
+ rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
+ rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
+ rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
+ }
+
+ /*
+ * Disable all interrupts for which a tasklet was scheduled right now,
+ * the tasklet will reenable the appropriate interrupts.
+ */
+ spin_lock(&rt2x00dev->irqmask_lock);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
+ reg |= mask;
+ rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+ spin_unlock(&rt2x00dev->irqmask_lock);
+
+
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ struct eeprom_93cx6 eeprom;
+ u32 reg;
+ u16 word;
+ u8 *mac;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
+
+ eeprom.data = rt2x00dev;
+ eeprom.register_read = rt2400pci_eepromregister_read;
+ eeprom.register_write = rt2400pci_eepromregister_write;
+ eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
+ PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
+ eeprom.reg_data_in = 0;
+ eeprom.reg_data_out = 0;
+ eeprom.reg_data_clock = 0;
+ eeprom.reg_chip_select = 0;
+
+ eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
+ EEPROM_SIZE / sizeof(u16));
+
+ /*
+ * Start validation of the data that has been read.
+ */
+ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+ rt2x00lib_set_mac_address(rt2x00dev, mac);
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
+ if (word == 0xffff) {
+ rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+ u16 value;
+ u16 eeprom;
+
+ /*
+ * Read EEPROM word for configuration.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
+
+ /*
+ * Identify RF chipset.
+ */
+ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
+ rt2x00_set_chip(rt2x00dev, RT2460, value,
+ rt2x00_get_field32(reg, CSR0_REVISION));
+
+ if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
+ rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
+ return -ENODEV;
+ }
+
+ /*
+ * Identify default antenna configuration.
+ */
+ rt2x00dev->default_ant.tx =
+ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
+ rt2x00dev->default_ant.rx =
+ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
+
+ /*
+ * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
+ * I am not 100% sure about this, but the legacy drivers do not
+ * indicate antenna swapping in software is required when
+ * diversity is enabled.
+ */
+ if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
+ rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
+ if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
+ rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
+
+ /*
+ * Store led mode, for correct led behaviour.
+ */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
+
+ rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+ if (value == LED_MODE_TXRX_ACTIVITY ||
+ value == LED_MODE_DEFAULT ||
+ value == LED_MODE_ASUS)
+ rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
+ LED_TYPE_ACTIVITY);
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+ /*
+ * Detect if this device has an hardware controlled radio.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
+ __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+
+ /*
+ * Check if the BBP tuning should be enabled.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
+ __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
+
+ return 0;
+}
+
+/*
+ * RF value list for RF2420 & RF2421
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_b[] = {
+ { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
+ { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
+ { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
+ { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
+ { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
+ { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
+ { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
+ { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
+ { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
+ { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
+ { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
+ { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
+ { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
+ { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
+};
+
+static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+ struct hw_mode_spec *spec = &rt2x00dev->spec;
+ struct channel_info *info;
+ u8 *tx_power;
+ unsigned int i;
+
+ /*
+ * Initialize all hw fields.
+ */
+ ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+ ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+ ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
+ ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+
+ SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+ SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+ rt2x00_eeprom_addr(rt2x00dev,
+ EEPROM_MAC_ADDR_0));
+
+ /*
+ * Initialize hw_mode information.
+ */
+ spec->supported_bands = SUPPORT_BAND_2GHZ;
+ spec->supported_rates = SUPPORT_RATE_CCK;
+
+ spec->num_channels = ARRAY_SIZE(rf_vals_b);
+ spec->channels = rf_vals_b;
+
+ /*
+ * Create channel information array
+ */
+ info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ spec->channels_info = info;
+
+ tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
+ for (i = 0; i < 14; i++) {
+ info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
+ info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
+ }
+
+ return 0;
+}
+
+static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+ u32 reg;
+
+ /*
+ * Allocate eeprom data.
+ */
+ retval = rt2400pci_validate_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ retval = rt2400pci_init_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Enable rfkill polling by setting GPIO direction of the
+ * rfkill switch GPIO pin correctly.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
+ rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
+ rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
+
+ /*
+ * Initialize hw specifications.
+ */
+ retval = rt2400pci_probe_hw_mode(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * This device requires the atim queue and DMA-mapped skbs.
+ */
+ __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
+
+ /*
+ * Set the rssi offset.
+ */
+ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+ return 0;
+}
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ unsigned int link_id, u16 queue,
+ const struct ieee80211_tx_queue_params *params)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ /*
+ * We don't support variating cw_min and cw_max variables
+ * per queue. So by default we only configure the TX queue,
+ * and ignore all other configurations.
+ */
+ if (queue != 0)
+ return -EINVAL;
+
+ if (rt2x00mac_conf_tx(hw, vif, link_id, queue, params))
+ return -EINVAL;
+
+ /*
+ * Write configuration to register.
+ */
+ rt2400pci_config_cw(rt2x00dev,
+ rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
+
+ return 0;
+}
+
+static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u64 tsf;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
+ tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
+ tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
+
+ return tsf;
+}
+
+static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
+ return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
+}
+
+static const struct ieee80211_ops rt2400pci_mac80211_ops = {
+ .tx = rt2x00mac_tx,
+ .wake_tx_queue = ieee80211_handle_wake_tx_queue,
+ .start = rt2x00mac_start,
+ .stop = rt2x00mac_stop,
+ .add_interface = rt2x00mac_add_interface,
+ .remove_interface = rt2x00mac_remove_interface,
+ .config = rt2x00mac_config,
+ .configure_filter = rt2x00mac_configure_filter,
+ .sw_scan_start = rt2x00mac_sw_scan_start,
+ .sw_scan_complete = rt2x00mac_sw_scan_complete,
+ .get_stats = rt2x00mac_get_stats,
+ .bss_info_changed = rt2x00mac_bss_info_changed,
+ .conf_tx = rt2400pci_conf_tx,
+ .get_tsf = rt2400pci_get_tsf,
+ .tx_last_beacon = rt2400pci_tx_last_beacon,
+ .rfkill_poll = rt2x00mac_rfkill_poll,
+ .flush = rt2x00mac_flush,
+ .set_antenna = rt2x00mac_set_antenna,
+ .get_antenna = rt2x00mac_get_antenna,
+ .get_ringparam = rt2x00mac_get_ringparam,
+ .tx_frames_pending = rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
+ .irq_handler = rt2400pci_interrupt,
+ .txstatus_tasklet = rt2400pci_txstatus_tasklet,
+ .tbtt_tasklet = rt2400pci_tbtt_tasklet,
+ .rxdone_tasklet = rt2400pci_rxdone_tasklet,
+ .probe_hw = rt2400pci_probe_hw,
+ .initialize = rt2x00mmio_initialize,
+ .uninitialize = rt2x00mmio_uninitialize,
+ .get_entry_state = rt2400pci_get_entry_state,
+ .clear_entry = rt2400pci_clear_entry,
+ .set_device_state = rt2400pci_set_device_state,
+ .rfkill_poll = rt2400pci_rfkill_poll,
+ .link_stats = rt2400pci_link_stats,
+ .reset_tuner = rt2400pci_reset_tuner,
+ .link_tuner = rt2400pci_link_tuner,
+ .start_queue = rt2400pci_start_queue,
+ .kick_queue = rt2400pci_kick_queue,
+ .stop_queue = rt2400pci_stop_queue,
+ .flush_queue = rt2x00mmio_flush_queue,
+ .write_tx_desc = rt2400pci_write_tx_desc,
+ .write_beacon = rt2400pci_write_beacon,
+ .fill_rxdone = rt2400pci_fill_rxdone,
+ .config_filter = rt2400pci_config_filter,
+ .config_intf = rt2400pci_config_intf,
+ .config_erp = rt2400pci_config_erp,
+ .config_ant = rt2400pci_config_ant,
+ .config = rt2400pci_config,
+};
+
+static void rt2400pci_queue_init(struct data_queue *queue)
+{
+ switch (queue->qid) {
+ case QID_RX:
+ queue->limit = 24;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = RXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ queue->limit = 24;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_BEACON:
+ queue->limit = 1;
+ queue->data_size = MGMT_FRAME_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_ATIM:
+ queue->limit = 8;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ default:
+ BUG();
+ break;
+ }
+}
+
+static const struct rt2x00_ops rt2400pci_ops = {
+ .name = KBUILD_MODNAME,
+ .max_ap_intf = 1,
+ .eeprom_size = EEPROM_SIZE,
+ .rf_size = RF_SIZE,
+ .tx_queues = NUM_TX_QUEUES,
+ .queue_init = rt2400pci_queue_init,
+ .lib = &rt2400pci_rt2x00_ops,
+ .hw = &rt2400pci_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+ .debugfs = &rt2400pci_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * RT2400pci module information.
+ */
+static const struct pci_device_id rt2400pci_device_table[] = {
+ { PCI_DEVICE(0x1814, 0x0101) },
+ { 0, }
+};
+
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
+MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
+MODULE_LICENSE("GPL");
+
+static int rt2400pci_probe(struct pci_dev *pci_dev,
+ const struct pci_device_id *id)
+{
+ return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
+}
+
+static struct pci_driver rt2400pci_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = rt2400pci_device_table,
+ .probe = rt2400pci_probe,
+ .remove = rt2x00pci_remove,
+ .driver.pm = &rt2x00pci_pm_ops,
+};
+
+module_pci_driver(rt2400pci_driver);
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2400pci.h b/drivers/net/wireless/ralink/rt2x00/rt2400pci.h
new file mode 100644
index 0000000000..979d5fd8ba
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2400pci.h
@@ -0,0 +1,950 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2400pci
+ Abstract: Data structures and registers for the rt2400pci module.
+ Supported chipsets: RT2460.
+ */
+
+#ifndef RT2400PCI_H
+#define RT2400PCI_H
+
+/*
+ * RF chip defines.
+ */
+#define RF2420 0x0000
+#define RF2421 0x0001
+
+/*
+ * Signal information.
+ * Default offset is required for RSSI <-> dBm conversion.
+ */
+#define DEFAULT_RSSI_OFFSET 100
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE 0x0000
+#define CSR_REG_SIZE 0x014c
+#define EEPROM_BASE 0x0000
+#define EEPROM_SIZE 0x0100
+#define BBP_BASE 0x0000
+#define BBP_SIZE 0x0020
+#define RF_BASE 0x0004
+#define RF_SIZE 0x000c
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES 2
+
+/*
+ * Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * CSR0: ASIC revision number.
+ */
+#define CSR0 0x0000
+#define CSR0_REVISION FIELD32(0x0000ffff)
+
+/*
+ * CSR1: System control register.
+ * SOFT_RESET: Software reset, 1: reset, 0: normal.
+ * BBP_RESET: Hardware reset, 1: reset, 0, release.
+ * HOST_READY: Host ready after initialization.
+ */
+#define CSR1 0x0004
+#define CSR1_SOFT_RESET FIELD32(0x00000001)
+#define CSR1_BBP_RESET FIELD32(0x00000002)
+#define CSR1_HOST_READY FIELD32(0x00000004)
+
+/*
+ * CSR2: System admin status register (invalid).
+ */
+#define CSR2 0x0008
+
+/*
+ * CSR3: STA MAC address register 0.
+ */
+#define CSR3 0x000c
+#define CSR3_BYTE0 FIELD32(0x000000ff)
+#define CSR3_BYTE1 FIELD32(0x0000ff00)
+#define CSR3_BYTE2 FIELD32(0x00ff0000)
+#define CSR3_BYTE3 FIELD32(0xff000000)
+
+/*
+ * CSR4: STA MAC address register 1.
+ */
+#define CSR4 0x0010
+#define CSR4_BYTE4 FIELD32(0x000000ff)
+#define CSR4_BYTE5 FIELD32(0x0000ff00)
+
+/*
+ * CSR5: BSSID register 0.
+ */
+#define CSR5 0x0014
+#define CSR5_BYTE0 FIELD32(0x000000ff)
+#define CSR5_BYTE1 FIELD32(0x0000ff00)
+#define CSR5_BYTE2 FIELD32(0x00ff0000)
+#define CSR5_BYTE3 FIELD32(0xff000000)
+
+/*
+ * CSR6: BSSID register 1.
+ */
+#define CSR6 0x0018
+#define CSR6_BYTE4 FIELD32(0x000000ff)
+#define CSR6_BYTE5 FIELD32(0x0000ff00)
+
+/*
+ * CSR7: Interrupt source register.
+ * Write 1 to clear interrupt.
+ * TBCN_EXPIRE: Beacon timer expired interrupt.
+ * TWAKE_EXPIRE: Wakeup timer expired interrupt.
+ * TATIMW_EXPIRE: Timer of atim window expired interrupt.
+ * TXDONE_TXRING: Tx ring transmit done interrupt.
+ * TXDONE_ATIMRING: Atim ring transmit done interrupt.
+ * TXDONE_PRIORING: Priority ring transmit done interrupt.
+ * RXDONE: Receive done interrupt.
+ */
+#define CSR7 0x001c
+#define CSR7_TBCN_EXPIRE FIELD32(0x00000001)
+#define CSR7_TWAKE_EXPIRE FIELD32(0x00000002)
+#define CSR7_TATIMW_EXPIRE FIELD32(0x00000004)
+#define CSR7_TXDONE_TXRING FIELD32(0x00000008)
+#define CSR7_TXDONE_ATIMRING FIELD32(0x00000010)
+#define CSR7_TXDONE_PRIORING FIELD32(0x00000020)
+#define CSR7_RXDONE FIELD32(0x00000040)
+
+/*
+ * CSR8: Interrupt mask register.
+ * Write 1 to mask interrupt.
+ * TBCN_EXPIRE: Beacon timer expired interrupt.
+ * TWAKE_EXPIRE: Wakeup timer expired interrupt.
+ * TATIMW_EXPIRE: Timer of atim window expired interrupt.
+ * TXDONE_TXRING: Tx ring transmit done interrupt.
+ * TXDONE_ATIMRING: Atim ring transmit done interrupt.
+ * TXDONE_PRIORING: Priority ring transmit done interrupt.
+ * RXDONE: Receive done interrupt.
+ */
+#define CSR8 0x0020
+#define CSR8_TBCN_EXPIRE FIELD32(0x00000001)
+#define CSR8_TWAKE_EXPIRE FIELD32(0x00000002)
+#define CSR8_TATIMW_EXPIRE FIELD32(0x00000004)
+#define CSR8_TXDONE_TXRING FIELD32(0x00000008)
+#define CSR8_TXDONE_ATIMRING FIELD32(0x00000010)
+#define CSR8_TXDONE_PRIORING FIELD32(0x00000020)
+#define CSR8_RXDONE FIELD32(0x00000040)
+
+/*
+ * CSR9: Maximum frame length register.
+ * MAX_FRAME_UNIT: Maximum frame length in 128b unit, default: 12.
+ */
+#define CSR9 0x0024
+#define CSR9_MAX_FRAME_UNIT FIELD32(0x00000f80)
+
+/*
+ * CSR11: Back-off control register.
+ * CWMIN: CWmin. Default cwmin is 31 (2^5 - 1).
+ * CWMAX: CWmax. Default cwmax is 1023 (2^10 - 1).
+ * SLOT_TIME: Slot time, default is 20us for 802.11b.
+ * LONG_RETRY: Long retry count.
+ * SHORT_RETRY: Short retry count.
+ */
+#define CSR11 0x002c
+#define CSR11_CWMIN FIELD32(0x0000000f)
+#define CSR11_CWMAX FIELD32(0x000000f0)
+#define CSR11_SLOT_TIME FIELD32(0x00001f00)
+#define CSR11_LONG_RETRY FIELD32(0x00ff0000)
+#define CSR11_SHORT_RETRY FIELD32(0xff000000)
+
+/*
+ * CSR12: Synchronization configuration register 0.
+ * All units in 1/16 TU.
+ * BEACON_INTERVAL: Beacon interval, default is 100 TU.
+ * CFPMAX_DURATION: Cfp maximum duration, default is 100 TU.
+ */
+#define CSR12 0x0030
+#define CSR12_BEACON_INTERVAL FIELD32(0x0000ffff)
+#define CSR12_CFP_MAX_DURATION FIELD32(0xffff0000)
+
+/*
+ * CSR13: Synchronization configuration register 1.
+ * All units in 1/16 TU.
+ * ATIMW_DURATION: Atim window duration.
+ * CFP_PERIOD: Cfp period, default is 0 TU.
+ */
+#define CSR13 0x0034
+#define CSR13_ATIMW_DURATION FIELD32(0x0000ffff)
+#define CSR13_CFP_PERIOD FIELD32(0x00ff0000)
+
+/*
+ * CSR14: Synchronization control register.
+ * TSF_COUNT: Enable tsf auto counting.
+ * TSF_SYNC: Tsf sync, 0: disable, 1: infra, 2: ad-hoc/master mode.
+ * TBCN: Enable tbcn with reload value.
+ * TCFP: Enable tcfp & cfp / cp switching.
+ * TATIMW: Enable tatimw & atim window switching.
+ * BEACON_GEN: Enable beacon generator.
+ * CFP_COUNT_PRELOAD: Cfp count preload value.
+ * TBCM_PRELOAD: Tbcn preload value in units of 64us.
+ */
+#define CSR14 0x0038
+#define CSR14_TSF_COUNT FIELD32(0x00000001)
+#define CSR14_TSF_SYNC FIELD32(0x00000006)
+#define CSR14_TBCN FIELD32(0x00000008)
+#define CSR14_TCFP FIELD32(0x00000010)
+#define CSR14_TATIMW FIELD32(0x00000020)
+#define CSR14_BEACON_GEN FIELD32(0x00000040)
+#define CSR14_CFP_COUNT_PRELOAD FIELD32(0x0000ff00)
+#define CSR14_TBCM_PRELOAD FIELD32(0xffff0000)
+
+/*
+ * CSR15: Synchronization status register.
+ * CFP: ASIC is in contention-free period.
+ * ATIMW: ASIC is in ATIM window.
+ * BEACON_SENT: Beacon is send.
+ */
+#define CSR15 0x003c
+#define CSR15_CFP FIELD32(0x00000001)
+#define CSR15_ATIMW FIELD32(0x00000002)
+#define CSR15_BEACON_SENT FIELD32(0x00000004)
+
+/*
+ * CSR16: TSF timer register 0.
+ */
+#define CSR16 0x0040
+#define CSR16_LOW_TSFTIMER FIELD32(0xffffffff)
+
+/*
+ * CSR17: TSF timer register 1.
+ */
+#define CSR17 0x0044
+#define CSR17_HIGH_TSFTIMER FIELD32(0xffffffff)
+
+/*
+ * CSR18: IFS timer register 0.
+ * SIFS: Sifs, default is 10 us.
+ * PIFS: Pifs, default is 30 us.
+ */
+#define CSR18 0x0048
+#define CSR18_SIFS FIELD32(0x0000ffff)
+#define CSR18_PIFS FIELD32(0xffff0000)
+
+/*
+ * CSR19: IFS timer register 1.
+ * DIFS: Difs, default is 50 us.
+ * EIFS: Eifs, default is 364 us.
+ */
+#define CSR19 0x004c
+#define CSR19_DIFS FIELD32(0x0000ffff)
+#define CSR19_EIFS FIELD32(0xffff0000)
+
+/*
+ * CSR20: Wakeup timer register.
+ * DELAY_AFTER_TBCN: Delay after tbcn expired in units of 1/16 TU.
+ * TBCN_BEFORE_WAKEUP: Number of beacon before wakeup.
+ * AUTOWAKE: Enable auto wakeup / sleep mechanism.
+ */
+#define CSR20 0x0050
+#define CSR20_DELAY_AFTER_TBCN FIELD32(0x0000ffff)
+#define CSR20_TBCN_BEFORE_WAKEUP FIELD32(0x00ff0000)
+#define CSR20_AUTOWAKE FIELD32(0x01000000)
+
+/*
+ * CSR21: EEPROM control register.
+ * RELOAD: Write 1 to reload eeprom content.
+ * TYPE_93C46: 1: 93c46, 0:93c66.
+ */
+#define CSR21 0x0054
+#define CSR21_RELOAD FIELD32(0x00000001)
+#define CSR21_EEPROM_DATA_CLOCK FIELD32(0x00000002)
+#define CSR21_EEPROM_CHIP_SELECT FIELD32(0x00000004)
+#define CSR21_EEPROM_DATA_IN FIELD32(0x00000008)
+#define CSR21_EEPROM_DATA_OUT FIELD32(0x00000010)
+#define CSR21_TYPE_93C46 FIELD32(0x00000020)
+
+/*
+ * CSR22: CFP control register.
+ * CFP_DURATION_REMAIN: Cfp duration remain, in units of TU.
+ * RELOAD_CFP_DURATION: Write 1 to reload cfp duration remain.
+ */
+#define CSR22 0x0058
+#define CSR22_CFP_DURATION_REMAIN FIELD32(0x0000ffff)
+#define CSR22_RELOAD_CFP_DURATION FIELD32(0x00010000)
+
+/*
+ * Transmit related CSRs.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * TXCSR0: TX Control Register.
+ * KICK_TX: Kick tx ring.
+ * KICK_ATIM: Kick atim ring.
+ * KICK_PRIO: Kick priority ring.
+ * ABORT: Abort all transmit related ring operation.
+ */
+#define TXCSR0 0x0060
+#define TXCSR0_KICK_TX FIELD32(0x00000001)
+#define TXCSR0_KICK_ATIM FIELD32(0x00000002)
+#define TXCSR0_KICK_PRIO FIELD32(0x00000004)
+#define TXCSR0_ABORT FIELD32(0x00000008)
+
+/*
+ * TXCSR1: TX Configuration Register.
+ * ACK_TIMEOUT: Ack timeout, default = sifs + 2*slottime + acktime @ 1mbps.
+ * ACK_CONSUME_TIME: Ack consume time, default = sifs + acktime @ 1mbps.
+ * TSF_OFFSET: Insert tsf offset.
+ * AUTORESPONDER: Enable auto responder which include ack & cts.
+ */
+#define TXCSR1 0x0064
+#define TXCSR1_ACK_TIMEOUT FIELD32(0x000001ff)
+#define TXCSR1_ACK_CONSUME_TIME FIELD32(0x0003fe00)
+#define TXCSR1_TSF_OFFSET FIELD32(0x00fc0000)
+#define TXCSR1_AUTORESPONDER FIELD32(0x01000000)
+
+/*
+ * TXCSR2: Tx descriptor configuration register.
+ * TXD_SIZE: Tx descriptor size, default is 48.
+ * NUM_TXD: Number of tx entries in ring.
+ * NUM_ATIM: Number of atim entries in ring.
+ * NUM_PRIO: Number of priority entries in ring.
+ */
+#define TXCSR2 0x0068
+#define TXCSR2_TXD_SIZE FIELD32(0x000000ff)
+#define TXCSR2_NUM_TXD FIELD32(0x0000ff00)
+#define TXCSR2_NUM_ATIM FIELD32(0x00ff0000)
+#define TXCSR2_NUM_PRIO FIELD32(0xff000000)
+
+/*
+ * TXCSR3: TX Ring Base address register.
+ */
+#define TXCSR3 0x006c
+#define TXCSR3_TX_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * TXCSR4: TX Atim Ring Base address register.
+ */
+#define TXCSR4 0x0070
+#define TXCSR4_ATIM_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * TXCSR5: TX Prio Ring Base address register.
+ */
+#define TXCSR5 0x0074
+#define TXCSR5_PRIO_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * TXCSR6: Beacon Base address register.
+ */
+#define TXCSR6 0x0078
+#define TXCSR6_BEACON_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * TXCSR7: Auto responder control register.
+ * AR_POWERMANAGEMENT: Auto responder power management bit.
+ */
+#define TXCSR7 0x007c
+#define TXCSR7_AR_POWERMANAGEMENT FIELD32(0x00000001)
+
+/*
+ * Receive related CSRs.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * RXCSR0: RX Control Register.
+ * DISABLE_RX: Disable rx engine.
+ * DROP_CRC: Drop crc error.
+ * DROP_PHYSICAL: Drop physical error.
+ * DROP_CONTROL: Drop control frame.
+ * DROP_NOT_TO_ME: Drop not to me unicast frame.
+ * DROP_TODS: Drop frame tods bit is true.
+ * DROP_VERSION_ERROR: Drop version error frame.
+ * PASS_CRC: Pass all packets with crc attached.
+ */
+#define RXCSR0 0x0080
+#define RXCSR0_DISABLE_RX FIELD32(0x00000001)
+#define RXCSR0_DROP_CRC FIELD32(0x00000002)
+#define RXCSR0_DROP_PHYSICAL FIELD32(0x00000004)
+#define RXCSR0_DROP_CONTROL FIELD32(0x00000008)
+#define RXCSR0_DROP_NOT_TO_ME FIELD32(0x00000010)
+#define RXCSR0_DROP_TODS FIELD32(0x00000020)
+#define RXCSR0_DROP_VERSION_ERROR FIELD32(0x00000040)
+#define RXCSR0_PASS_CRC FIELD32(0x00000080)
+
+/*
+ * RXCSR1: RX descriptor configuration register.
+ * RXD_SIZE: Rx descriptor size, default is 32b.
+ * NUM_RXD: Number of rx entries in ring.
+ */
+#define RXCSR1 0x0084
+#define RXCSR1_RXD_SIZE FIELD32(0x000000ff)
+#define RXCSR1_NUM_RXD FIELD32(0x0000ff00)
+
+/*
+ * RXCSR2: RX Ring base address register.
+ */
+#define RXCSR2 0x0088
+#define RXCSR2_RX_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * RXCSR3: BBP ID register for Rx operation.
+ * BBP_ID#: BBP register # id.
+ * BBP_ID#_VALID: BBP register # id is valid or not.
+ */
+#define RXCSR3 0x0090
+#define RXCSR3_BBP_ID0 FIELD32(0x0000007f)
+#define RXCSR3_BBP_ID0_VALID FIELD32(0x00000080)
+#define RXCSR3_BBP_ID1 FIELD32(0x00007f00)
+#define RXCSR3_BBP_ID1_VALID FIELD32(0x00008000)
+#define RXCSR3_BBP_ID2 FIELD32(0x007f0000)
+#define RXCSR3_BBP_ID2_VALID FIELD32(0x00800000)
+#define RXCSR3_BBP_ID3 FIELD32(0x7f000000)
+#define RXCSR3_BBP_ID3_VALID FIELD32(0x80000000)
+
+/*
+ * RXCSR4: BBP ID register for Rx operation.
+ * BBP_ID#: BBP register # id.
+ * BBP_ID#_VALID: BBP register # id is valid or not.
+ */
+#define RXCSR4 0x0094
+#define RXCSR4_BBP_ID4 FIELD32(0x0000007f)
+#define RXCSR4_BBP_ID4_VALID FIELD32(0x00000080)
+#define RXCSR4_BBP_ID5 FIELD32(0x00007f00)
+#define RXCSR4_BBP_ID5_VALID FIELD32(0x00008000)
+
+/*
+ * ARCSR0: Auto Responder PLCP config register 0.
+ * ARCSR0_AR_BBP_DATA#: Auto responder BBP register # data.
+ * ARCSR0_AR_BBP_ID#: Auto responder BBP register # Id.
+ */
+#define ARCSR0 0x0098
+#define ARCSR0_AR_BBP_DATA0 FIELD32(0x000000ff)
+#define ARCSR0_AR_BBP_ID0 FIELD32(0x0000ff00)
+#define ARCSR0_AR_BBP_DATA1 FIELD32(0x00ff0000)
+#define ARCSR0_AR_BBP_ID1 FIELD32(0xff000000)
+
+/*
+ * ARCSR1: Auto Responder PLCP config register 1.
+ * ARCSR0_AR_BBP_DATA#: Auto responder BBP register # data.
+ * ARCSR0_AR_BBP_ID#: Auto responder BBP register # Id.
+ */
+#define ARCSR1 0x009c
+#define ARCSR1_AR_BBP_DATA2 FIELD32(0x000000ff)
+#define ARCSR1_AR_BBP_ID2 FIELD32(0x0000ff00)
+#define ARCSR1_AR_BBP_DATA3 FIELD32(0x00ff0000)
+#define ARCSR1_AR_BBP_ID3 FIELD32(0xff000000)
+
+/*
+ * Miscellaneous Registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * PCICSR: PCI control register.
+ * BIG_ENDIAN: 1: big endian, 0: little endian.
+ * RX_TRESHOLD: Rx threshold in dw to start pci access
+ * 0: 16dw (default), 1: 8dw, 2: 4dw, 3: 32dw.
+ * TX_TRESHOLD: Tx threshold in dw to start pci access
+ * 0: 0dw (default), 1: 1dw, 2: 4dw, 3: forward.
+ * BURST_LENTH: Pci burst length 0: 4dw (default, 1: 8dw, 2: 16dw, 3:32dw.
+ * ENABLE_CLK: Enable clk_run, pci clock can't going down to non-operational.
+ */
+#define PCICSR 0x008c
+#define PCICSR_BIG_ENDIAN FIELD32(0x00000001)
+#define PCICSR_RX_TRESHOLD FIELD32(0x00000006)
+#define PCICSR_TX_TRESHOLD FIELD32(0x00000018)
+#define PCICSR_BURST_LENTH FIELD32(0x00000060)
+#define PCICSR_ENABLE_CLK FIELD32(0x00000080)
+
+/*
+ * CNT0: FCS error count.
+ * FCS_ERROR: FCS error count, cleared when read.
+ */
+#define CNT0 0x00a0
+#define CNT0_FCS_ERROR FIELD32(0x0000ffff)
+
+/*
+ * Statistic Register.
+ * CNT1: PLCP error count.
+ * CNT2: Long error count.
+ * CNT3: CCA false alarm count.
+ * CNT4: Rx FIFO overflow count.
+ * CNT5: Tx FIFO underrun count.
+ */
+#define TIMECSR2 0x00a8
+#define CNT1 0x00ac
+#define CNT2 0x00b0
+#define TIMECSR3 0x00b4
+#define CNT3 0x00b8
+#define CNT4 0x00bc
+#define CNT5 0x00c0
+
+/*
+ * Baseband Control Register.
+ */
+
+/*
+ * PWRCSR0: Power mode configuration register.
+ */
+#define PWRCSR0 0x00c4
+
+/*
+ * Power state transition time registers.
+ */
+#define PSCSR0 0x00c8
+#define PSCSR1 0x00cc
+#define PSCSR2 0x00d0
+#define PSCSR3 0x00d4
+
+/*
+ * PWRCSR1: Manual power control / status register.
+ * Allowed state: 0 deep_sleep, 1: sleep, 2: standby, 3: awake.
+ * SET_STATE: Set state. Write 1 to trigger, self cleared.
+ * BBP_DESIRE_STATE: BBP desired state.
+ * RF_DESIRE_STATE: RF desired state.
+ * BBP_CURR_STATE: BBP current state.
+ * RF_CURR_STATE: RF current state.
+ * PUT_TO_SLEEP: Put to sleep. Write 1 to trigger, self cleared.
+ */
+#define PWRCSR1 0x00d8
+#define PWRCSR1_SET_STATE FIELD32(0x00000001)
+#define PWRCSR1_BBP_DESIRE_STATE FIELD32(0x00000006)
+#define PWRCSR1_RF_DESIRE_STATE FIELD32(0x00000018)
+#define PWRCSR1_BBP_CURR_STATE FIELD32(0x00000060)
+#define PWRCSR1_RF_CURR_STATE FIELD32(0x00000180)
+#define PWRCSR1_PUT_TO_SLEEP FIELD32(0x00000200)
+
+/*
+ * TIMECSR: Timer control register.
+ * US_COUNT: 1 us timer count in units of clock cycles.
+ * US_64_COUNT: 64 us timer count in units of 1 us timer.
+ * BEACON_EXPECT: Beacon expect window.
+ */
+#define TIMECSR 0x00dc
+#define TIMECSR_US_COUNT FIELD32(0x000000ff)
+#define TIMECSR_US_64_COUNT FIELD32(0x0000ff00)
+#define TIMECSR_BEACON_EXPECT FIELD32(0x00070000)
+
+/*
+ * MACCSR0: MAC configuration register 0.
+ */
+#define MACCSR0 0x00e0
+
+/*
+ * MACCSR1: MAC configuration register 1.
+ * KICK_RX: Kick one-shot rx in one-shot rx mode.
+ * ONESHOT_RXMODE: Enable one-shot rx mode for debugging.
+ * BBPRX_RESET_MODE: Ralink bbp rx reset mode.
+ * AUTO_TXBBP: Auto tx logic access bbp control register.
+ * AUTO_RXBBP: Auto rx logic access bbp control register.
+ * LOOPBACK: Loopback mode. 0: normal, 1: internal, 2: external, 3:rsvd.
+ * INTERSIL_IF: Intersil if calibration pin.
+ */
+#define MACCSR1 0x00e4
+#define MACCSR1_KICK_RX FIELD32(0x00000001)
+#define MACCSR1_ONESHOT_RXMODE FIELD32(0x00000002)
+#define MACCSR1_BBPRX_RESET_MODE FIELD32(0x00000004)
+#define MACCSR1_AUTO_TXBBP FIELD32(0x00000008)
+#define MACCSR1_AUTO_RXBBP FIELD32(0x00000010)
+#define MACCSR1_LOOPBACK FIELD32(0x00000060)
+#define MACCSR1_INTERSIL_IF FIELD32(0x00000080)
+
+/*
+ * RALINKCSR: Ralink Rx auto-reset BBCR.
+ * AR_BBP_DATA#: Auto reset BBP register # data.
+ * AR_BBP_ID#: Auto reset BBP register # id.
+ */
+#define RALINKCSR 0x00e8
+#define RALINKCSR_AR_BBP_DATA0 FIELD32(0x000000ff)
+#define RALINKCSR_AR_BBP_ID0 FIELD32(0x0000ff00)
+#define RALINKCSR_AR_BBP_DATA1 FIELD32(0x00ff0000)
+#define RALINKCSR_AR_BBP_ID1 FIELD32(0xff000000)
+
+/*
+ * BCNCSR: Beacon interval control register.
+ * CHANGE: Write one to change beacon interval.
+ * DELTATIME: The delta time value.
+ * NUM_BEACON: Number of beacon according to mode.
+ * MODE: Please refer to asic specs.
+ * PLUS: Plus or minus delta time value.
+ */
+#define BCNCSR 0x00ec
+#define BCNCSR_CHANGE FIELD32(0x00000001)
+#define BCNCSR_DELTATIME FIELD32(0x0000001e)
+#define BCNCSR_NUM_BEACON FIELD32(0x00001fe0)
+#define BCNCSR_MODE FIELD32(0x00006000)
+#define BCNCSR_PLUS FIELD32(0x00008000)
+
+/*
+ * BBP / RF / IF Control Register.
+ */
+
+/*
+ * BBPCSR: BBP serial control register.
+ * VALUE: Register value to program into BBP.
+ * REGNUM: Selected BBP register.
+ * BUSY: 1: asic is busy execute BBP programming.
+ * WRITE_CONTROL: 1: write BBP, 0: read BBP.
+ */
+#define BBPCSR 0x00f0
+#define BBPCSR_VALUE FIELD32(0x000000ff)
+#define BBPCSR_REGNUM FIELD32(0x00007f00)
+#define BBPCSR_BUSY FIELD32(0x00008000)
+#define BBPCSR_WRITE_CONTROL FIELD32(0x00010000)
+
+/*
+ * RFCSR: RF serial control register.
+ * VALUE: Register value + id to program into rf/if.
+ * NUMBER_OF_BITS: Number of bits used in value (i:20, rfmd:22).
+ * IF_SELECT: Chip to program: 0: rf, 1: if.
+ * PLL_LD: Rf pll_ld status.
+ * BUSY: 1: asic is busy execute rf programming.
+ */
+#define RFCSR 0x00f4
+#define RFCSR_VALUE FIELD32(0x00ffffff)
+#define RFCSR_NUMBER_OF_BITS FIELD32(0x1f000000)
+#define RFCSR_IF_SELECT FIELD32(0x20000000)
+#define RFCSR_PLL_LD FIELD32(0x40000000)
+#define RFCSR_BUSY FIELD32(0x80000000)
+
+/*
+ * LEDCSR: LED control register.
+ * ON_PERIOD: On period, default 70ms.
+ * OFF_PERIOD: Off period, default 30ms.
+ * LINK: 0: linkoff, 1: linkup.
+ * ACTIVITY: 0: idle, 1: active.
+ */
+#define LEDCSR 0x00f8
+#define LEDCSR_ON_PERIOD FIELD32(0x000000ff)
+#define LEDCSR_OFF_PERIOD FIELD32(0x0000ff00)
+#define LEDCSR_LINK FIELD32(0x00010000)
+#define LEDCSR_ACTIVITY FIELD32(0x00020000)
+
+/*
+ * ASIC pointer information.
+ * RXPTR: Current RX ring address.
+ * TXPTR: Current Tx ring address.
+ * PRIPTR: Current Priority ring address.
+ * ATIMPTR: Current ATIM ring address.
+ */
+#define RXPTR 0x0100
+#define TXPTR 0x0104
+#define PRIPTR 0x0108
+#define ATIMPTR 0x010c
+
+/*
+ * GPIO and others.
+ */
+
+/*
+ * GPIOCSR: GPIO control register.
+ * GPIOCSR_VALx: Actual GPIO pin x value
+ * GPIOCSR_DIRx: GPIO direction: 0 = output; 1 = input
+ */
+#define GPIOCSR 0x0120
+#define GPIOCSR_VAL0 FIELD32(0x00000001)
+#define GPIOCSR_VAL1 FIELD32(0x00000002)
+#define GPIOCSR_VAL2 FIELD32(0x00000004)
+#define GPIOCSR_VAL3 FIELD32(0x00000008)
+#define GPIOCSR_VAL4 FIELD32(0x00000010)
+#define GPIOCSR_VAL5 FIELD32(0x00000020)
+#define GPIOCSR_VAL6 FIELD32(0x00000040)
+#define GPIOCSR_VAL7 FIELD32(0x00000080)
+#define GPIOCSR_DIR0 FIELD32(0x00000100)
+#define GPIOCSR_DIR1 FIELD32(0x00000200)
+#define GPIOCSR_DIR2 FIELD32(0x00000400)
+#define GPIOCSR_DIR3 FIELD32(0x00000800)
+#define GPIOCSR_DIR4 FIELD32(0x00001000)
+#define GPIOCSR_DIR5 FIELD32(0x00002000)
+#define GPIOCSR_DIR6 FIELD32(0x00004000)
+#define GPIOCSR_DIR7 FIELD32(0x00008000)
+
+/*
+ * BBPPCSR: BBP Pin control register.
+ */
+#define BBPPCSR 0x0124
+
+/*
+ * BCNCSR1: Tx BEACON offset time control register.
+ * PRELOAD: Beacon timer offset in units of usec.
+ */
+#define BCNCSR1 0x0130
+#define BCNCSR1_PRELOAD FIELD32(0x0000ffff)
+
+/*
+ * MACCSR2: TX_PE to RX_PE turn-around time control register
+ * DELAY: RX_PE low width, in units of pci clock cycle.
+ */
+#define MACCSR2 0x0134
+#define MACCSR2_DELAY FIELD32(0x000000ff)
+
+/*
+ * ARCSR2: 1 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR2 0x013c
+#define ARCSR2_SIGNAL FIELD32(0x000000ff)
+#define ARCSR2_SERVICE FIELD32(0x0000ff00)
+#define ARCSR2_LENGTH_LOW FIELD32(0x00ff0000)
+#define ARCSR2_LENGTH FIELD32(0xffff0000)
+
+/*
+ * ARCSR3: 2 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR3 0x0140
+#define ARCSR3_SIGNAL FIELD32(0x000000ff)
+#define ARCSR3_SERVICE FIELD32(0x0000ff00)
+#define ARCSR3_LENGTH FIELD32(0xffff0000)
+
+/*
+ * ARCSR4: 5.5 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR4 0x0144
+#define ARCSR4_SIGNAL FIELD32(0x000000ff)
+#define ARCSR4_SERVICE FIELD32(0x0000ff00)
+#define ARCSR4_LENGTH FIELD32(0xffff0000)
+
+/*
+ * ARCSR5: 11 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR5 0x0148
+#define ARCSR5_SIGNAL FIELD32(0x000000ff)
+#define ARCSR5_SERVICE FIELD32(0x0000ff00)
+#define ARCSR5_LENGTH FIELD32(0xffff0000)
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * R1: TX antenna control
+ */
+#define BBP_R1_TX_ANTENNA FIELD8(0x03)
+
+/*
+ * R4: RX antenna control
+ */
+#define BBP_R4_RX_ANTENNA FIELD8(0x06)
+
+/*
+ * RF registers
+ */
+
+/*
+ * RF 1
+ */
+#define RF1_TUNER FIELD32(0x00020000)
+
+/*
+ * RF 3
+ */
+#define RF3_TUNER FIELD32(0x00000100)
+#define RF3_TXPOWER FIELD32(0x00003e00)
+
+/*
+ * EEPROM content.
+ * The wordsize of the EEPROM is 16 bits.
+ */
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_0 0x0002
+#define EEPROM_MAC_ADDR_BYTE0 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR1 0x0003
+#define EEPROM_MAC_ADDR_BYTE2 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_2 0x0004
+#define EEPROM_MAC_ADDR_BYTE4 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5 FIELD16(0xff00)
+
+/*
+ * EEPROM antenna.
+ * ANTENNA_NUM: Number of antenna's.
+ * TX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RF_TYPE: Rf_type of this adapter.
+ * LED_MODE: 0: default, 1: TX/RX activity,2: Single (ignore link), 3: rsvd.
+ * RX_AGCVGC: 0: disable, 1:enable BBP R13 tuning.
+ * HARDWARE_RADIO: 1: Hardware controlled radio. Read GPIO0.
+ */
+#define EEPROM_ANTENNA 0x0b
+#define EEPROM_ANTENNA_NUM FIELD16(0x0003)
+#define EEPROM_ANTENNA_TX_DEFAULT FIELD16(0x000c)
+#define EEPROM_ANTENNA_RX_DEFAULT FIELD16(0x0030)
+#define EEPROM_ANTENNA_RF_TYPE FIELD16(0x0040)
+#define EEPROM_ANTENNA_LED_MODE FIELD16(0x0180)
+#define EEPROM_ANTENNA_RX_AGCVGC_TUNING FIELD16(0x0200)
+#define EEPROM_ANTENNA_HARDWARE_RADIO FIELD16(0x0400)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_START 0x0c
+#define EEPROM_BBP_SIZE 7
+#define EEPROM_BBP_VALUE FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER
+ */
+#define EEPROM_TXPOWER_START 0x13
+#define EEPROM_TXPOWER_SIZE 7
+#define EEPROM_TXPOWER_1 FIELD16(0x00ff)
+#define EEPROM_TXPOWER_2 FIELD16(0xff00)
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE (8 * sizeof(__le32))
+#define RXD_DESC_SIZE (8 * sizeof(__le32))
+
+/*
+ * TX descriptor format for TX, PRIO, ATIM and Beacon Ring.
+ */
+
+/*
+ * Word0
+ */
+#define TXD_W0_OWNER_NIC FIELD32(0x00000001)
+#define TXD_W0_VALID FIELD32(0x00000002)
+#define TXD_W0_RESULT FIELD32(0x0000001c)
+#define TXD_W0_RETRY_COUNT FIELD32(0x000000e0)
+#define TXD_W0_MORE_FRAG FIELD32(0x00000100)
+#define TXD_W0_ACK FIELD32(0x00000200)
+#define TXD_W0_TIMESTAMP FIELD32(0x00000400)
+#define TXD_W0_RTS FIELD32(0x00000800)
+#define TXD_W0_IFS FIELD32(0x00006000)
+#define TXD_W0_RETRY_MODE FIELD32(0x00008000)
+#define TXD_W0_AGC FIELD32(0x00ff0000)
+#define TXD_W0_R2 FIELD32(0xff000000)
+
+/*
+ * Word1
+ */
+#define TXD_W1_BUFFER_ADDRESS FIELD32(0xffffffff)
+
+/*
+ * Word2
+ */
+#define TXD_W2_BUFFER_LENGTH FIELD32(0x0000ffff)
+#define TXD_W2_DATABYTE_COUNT FIELD32(0xffff0000)
+
+/*
+ * Word3 & 4: PLCP information
+ * The PLCP values should be treated as if they were BBP values.
+ */
+#define TXD_W3_PLCP_SIGNAL FIELD32(0x000000ff)
+#define TXD_W3_PLCP_SIGNAL_REGNUM FIELD32(0x00007f00)
+#define TXD_W3_PLCP_SIGNAL_BUSY FIELD32(0x00008000)
+#define TXD_W3_PLCP_SERVICE FIELD32(0x00ff0000)
+#define TXD_W3_PLCP_SERVICE_REGNUM FIELD32(0x7f000000)
+#define TXD_W3_PLCP_SERVICE_BUSY FIELD32(0x80000000)
+
+#define TXD_W4_PLCP_LENGTH_LOW FIELD32(0x000000ff)
+#define TXD_W3_PLCP_LENGTH_LOW_REGNUM FIELD32(0x00007f00)
+#define TXD_W3_PLCP_LENGTH_LOW_BUSY FIELD32(0x00008000)
+#define TXD_W4_PLCP_LENGTH_HIGH FIELD32(0x00ff0000)
+#define TXD_W3_PLCP_LENGTH_HIGH_REGNUM FIELD32(0x7f000000)
+#define TXD_W3_PLCP_LENGTH_HIGH_BUSY FIELD32(0x80000000)
+
+/*
+ * Word5
+ */
+#define TXD_W5_BBCR4 FIELD32(0x0000ffff)
+#define TXD_W5_AGC_REG FIELD32(0x007f0000)
+#define TXD_W5_AGC_REG_VALID FIELD32(0x00800000)
+#define TXD_W5_XXX_REG FIELD32(0x7f000000)
+#define TXD_W5_XXX_REG_VALID FIELD32(0x80000000)
+
+/*
+ * Word6
+ */
+#define TXD_W6_SK_BUFF FIELD32(0xffffffff)
+
+/*
+ * Word7
+ */
+#define TXD_W7_RESERVED FIELD32(0xffffffff)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ */
+#define RXD_W0_OWNER_NIC FIELD32(0x00000001)
+#define RXD_W0_UNICAST_TO_ME FIELD32(0x00000002)
+#define RXD_W0_MULTICAST FIELD32(0x00000004)
+#define RXD_W0_BROADCAST FIELD32(0x00000008)
+#define RXD_W0_MY_BSS FIELD32(0x00000010)
+#define RXD_W0_CRC_ERROR FIELD32(0x00000020)
+#define RXD_W0_PHYSICAL_ERROR FIELD32(0x00000080)
+#define RXD_W0_DATABYTE_COUNT FIELD32(0xffff0000)
+
+/*
+ * Word1
+ */
+#define RXD_W1_BUFFER_ADDRESS FIELD32(0xffffffff)
+
+/*
+ * Word2
+ */
+#define RXD_W2_BUFFER_LENGTH FIELD32(0x0000ffff)
+#define RXD_W2_BBR0 FIELD32(0x00ff0000)
+#define RXD_W2_SIGNAL FIELD32(0xff000000)
+
+/*
+ * Word3
+ */
+#define RXD_W3_RSSI FIELD32(0x000000ff)
+#define RXD_W3_BBR3 FIELD32(0x0000ff00)
+#define RXD_W3_BBR4 FIELD32(0x00ff0000)
+#define RXD_W3_BBR5 FIELD32(0xff000000)
+
+/*
+ * Word4
+ */
+#define RXD_W4_RX_END_TIME FIELD32(0xffffffff)
+
+/*
+ * Word5 & 6 & 7: Reserved
+ */
+#define RXD_W5_RESERVED FIELD32(0xffffffff)
+#define RXD_W6_RESERVED FIELD32(0xffffffff)
+#define RXD_W7_RESERVED FIELD32(0xffffffff)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ * NOTE: Logics in rt2400pci for txpower are reversed
+ * compared to the other rt2x00 drivers. A higher txpower
+ * value means that the txpower must be lowered. This is
+ * important when converting the value coming from the
+ * mac80211 stack to the rt2400 acceptable value.
+ */
+#define MIN_TXPOWER 31
+#define MAX_TXPOWER 62
+#define DEFAULT_TXPOWER 39
+
+#define __CLAMP_TX(__txpower) \
+ clamp_t(u8, (__txpower), MIN_TXPOWER, MAX_TXPOWER)
+
+#define TXPOWER_FROM_DEV(__txpower) \
+ ((__CLAMP_TX(__txpower) - MAX_TXPOWER) + MIN_TXPOWER)
+
+#define TXPOWER_TO_DEV(__txpower) \
+ (MAX_TXPOWER - (__CLAMP_TX(__txpower) - MIN_TXPOWER))
+
+#endif /* RT2400PCI_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2500pci.c b/drivers/net/wireless/ralink/rt2x00/rt2500pci.c
new file mode 100644
index 0000000000..ecddda4c47
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2500pci.c
@@ -0,0 +1,2140 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2500pci
+ Abstract: rt2500pci device specific routines.
+ Supported chipsets: RT2560.
+ */
+
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/eeprom_93cx6.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2x00pci.h"
+#include "rt2500pci.h"
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2x00mmio_register_read and rt2x00mmio_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attampt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+ rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+ rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
+
+static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u8 value)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
+ rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
+ rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+ rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
+
+ rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word)
+{
+ u32 reg;
+ u8 value;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the read request into the register.
+ * After the data has been written, we wait until hardware
+ * returns the correct value, if at any time the register
+ * doesn't become available in time, reg will be 0xffffffff
+ * which means we return 0xff to the caller.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
+ rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+ rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
+
+ rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
+
+ WAIT_FOR_BBP(rt2x00dev, &reg);
+ }
+
+ value = rt2x00_get_field32(reg, BBPCSR_VALUE);
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+
+ return value;
+}
+
+static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u32 value)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the RF becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, RFCSR_VALUE, value);
+ rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
+ rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
+ rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
+
+ rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
+ rt2x00_rf_write(rt2x00dev, word, value);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
+{
+ struct rt2x00_dev *rt2x00dev = eeprom->data;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
+
+ eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
+ eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
+ eeprom->reg_data_clock =
+ !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
+ eeprom->reg_chip_select =
+ !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
+}
+
+static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
+{
+ struct rt2x00_dev *rt2x00dev = eeprom->data;
+ u32 reg = 0;
+
+ rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
+ rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
+ rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
+ !!eeprom->reg_data_clock);
+ rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
+ !!eeprom->reg_chip_select);
+
+ rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static const struct rt2x00debug rt2500pci_rt2x00debug = {
+ .owner = THIS_MODULE,
+ .csr = {
+ .read = rt2x00mmio_register_read,
+ .write = rt2x00mmio_register_write,
+ .flags = RT2X00DEBUGFS_OFFSET,
+ .word_base = CSR_REG_BASE,
+ .word_size = sizeof(u32),
+ .word_count = CSR_REG_SIZE / sizeof(u32),
+ },
+ .eeprom = {
+ .read = rt2x00_eeprom_read,
+ .write = rt2x00_eeprom_write,
+ .word_base = EEPROM_BASE,
+ .word_size = sizeof(u16),
+ .word_count = EEPROM_SIZE / sizeof(u16),
+ },
+ .bbp = {
+ .read = rt2500pci_bbp_read,
+ .write = rt2500pci_bbp_write,
+ .word_base = BBP_BASE,
+ .word_size = sizeof(u8),
+ .word_count = BBP_SIZE / sizeof(u8),
+ },
+ .rf = {
+ .read = rt2x00_rf_read,
+ .write = rt2500pci_rf_write,
+ .word_base = RF_BASE,
+ .word_size = sizeof(u32),
+ .word_count = RF_SIZE / sizeof(u32),
+ },
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
+ return rt2x00_get_field32(reg, GPIOCSR_VAL0);
+}
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
+ enum led_brightness brightness)
+{
+ struct rt2x00_led *led =
+ container_of(led_cdev, struct rt2x00_led, led_dev);
+ unsigned int enabled = brightness != LED_OFF;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
+
+ if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
+ rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
+ else if (led->type == LED_TYPE_ACTIVITY)
+ rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
+
+ rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
+}
+
+static int rt2500pci_blink_set(struct led_classdev *led_cdev,
+ unsigned long *delay_on,
+ unsigned long *delay_off)
+{
+ struct rt2x00_led *led =
+ container_of(led_cdev, struct rt2x00_led, led_dev);
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
+ rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
+ rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
+ rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
+
+ return 0;
+}
+
+static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_led *led,
+ enum led_type type)
+{
+ led->rt2x00dev = rt2x00dev;
+ led->type = type;
+ led->led_dev.brightness_set = rt2500pci_brightness_set;
+ led->led_dev.blink_set = rt2500pci_blink_set;
+ led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
+ const unsigned int filter_flags)
+{
+ u32 reg;
+
+ /*
+ * Start configuration steps.
+ * Note that the version error will always be dropped
+ * and broadcast frames will always be accepted since
+ * there is no filter for it at this time.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
+ rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
+ !(filter_flags & FIF_FCSFAIL));
+ rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
+ !(filter_flags & FIF_PLCPFAIL));
+ rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
+ !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
+ rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
+ !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
+ !rt2x00dev->intf_ap_count);
+ rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
+ rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
+ !(filter_flags & FIF_ALLMULTI));
+ rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+}
+
+static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_intf *intf,
+ struct rt2x00intf_conf *conf,
+ const unsigned int flags)
+{
+ struct data_queue *queue = rt2x00dev->bcn;
+ unsigned int bcn_preload;
+ u32 reg;
+
+ if (flags & CONFIG_UPDATE_TYPE) {
+ /*
+ * Enable beacon config
+ */
+ bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
+ reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
+ rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
+ rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
+ rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
+
+ /*
+ * Enable synchronisation.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
+ rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+ }
+
+ if (flags & CONFIG_UPDATE_MAC)
+ rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
+ conf->mac, sizeof(conf->mac));
+
+ if (flags & CONFIG_UPDATE_BSSID)
+ rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
+ conf->bssid, sizeof(conf->bssid));
+}
+
+static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_erp *erp,
+ u32 changed)
+{
+ int preamble_mask;
+ u32 reg;
+
+ /*
+ * When short preamble is enabled, we should set bit 0x08
+ */
+ if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+ preamble_mask = erp->short_preamble << 3;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
+ rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
+ rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
+ rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
+ rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
+ rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
+ rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+ GET_DURATION(ACK_SIZE, 10));
+ rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
+ rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
+ rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+ GET_DURATION(ACK_SIZE, 20));
+ rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
+ rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
+ rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+ GET_DURATION(ACK_SIZE, 55));
+ rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
+ rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
+ rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
+ rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+ GET_DURATION(ACK_SIZE, 110));
+ rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
+ }
+
+ if (changed & BSS_CHANGED_BASIC_RATES)
+ rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
+
+ if (changed & BSS_CHANGED_ERP_SLOT) {
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
+ rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
+ rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
+ rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
+ rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
+ rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
+ rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
+ rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
+ rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
+ }
+
+ if (changed & BSS_CHANGED_BEACON_INT) {
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
+ rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
+ erp->beacon_int * 16);
+ rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
+ erp->beacon_int * 16);
+ rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
+ }
+
+}
+
+static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant)
+{
+ u32 reg;
+ u8 r14;
+ u8 r2;
+
+ /*
+ * We should never come here because rt2x00lib is supposed
+ * to catch this and send us the correct antenna explicitely.
+ */
+ BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
+ ant->tx == ANTENNA_SW_DIVERSITY);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
+ r14 = rt2500pci_bbp_read(rt2x00dev, 14);
+ r2 = rt2500pci_bbp_read(rt2x00dev, 2);
+
+ /*
+ * Configure the TX antenna.
+ */
+ switch (ant->tx) {
+ case ANTENNA_A:
+ rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
+ rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
+ rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
+ break;
+ case ANTENNA_B:
+ default:
+ rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
+ rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
+ rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
+ break;
+ }
+
+ /*
+ * Configure the RX antenna.
+ */
+ switch (ant->rx) {
+ case ANTENNA_A:
+ rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
+ break;
+ case ANTENNA_B:
+ default:
+ rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
+ break;
+ }
+
+ /*
+ * RT2525E and RT5222 need to flip TX I/Q
+ */
+ if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
+ rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
+ rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
+ rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
+
+ /*
+ * RT2525E does not need RX I/Q Flip.
+ */
+ if (rt2x00_rf(rt2x00dev, RF2525E))
+ rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
+ } else {
+ rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
+ rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
+ }
+
+ rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
+ rt2500pci_bbp_write(rt2x00dev, 14, r14);
+ rt2500pci_bbp_write(rt2x00dev, 2, r2);
+}
+
+static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
+ struct rf_channel *rf, const int txpower)
+{
+ u8 r70;
+
+ /*
+ * Set TXpower.
+ */
+ rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+
+ /*
+ * Switch on tuning bits.
+ * For RT2523 devices we do not need to update the R1 register.
+ */
+ if (!rt2x00_rf(rt2x00dev, RF2523))
+ rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
+ rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
+
+ /*
+ * For RT2525 we should first set the channel to half band higher.
+ */
+ if (rt2x00_rf(rt2x00dev, RF2525)) {
+ static const u32 vals[] = {
+ 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
+ 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
+ 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
+ 0x00080d2e, 0x00080d3a
+ };
+
+ rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
+ rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
+ rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
+ if (rf->rf4)
+ rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
+ }
+
+ rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
+ rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
+ rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
+ if (rf->rf4)
+ rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
+
+ /*
+ * Channel 14 requires the Japan filter bit to be set.
+ */
+ r70 = 0x46;
+ rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
+ rt2500pci_bbp_write(rt2x00dev, 70, r70);
+
+ msleep(1);
+
+ /*
+ * Switch off tuning bits.
+ * For RT2523 devices we do not need to update the R1 register.
+ */
+ if (!rt2x00_rf(rt2x00dev, RF2523)) {
+ rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
+ rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
+ }
+
+ rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
+ rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
+
+ /*
+ * Clear false CRC during channel switch.
+ */
+ rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
+}
+
+static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
+ const int txpower)
+{
+ u32 rf3;
+
+ rf3 = rt2x00_rf_read(rt2x00dev, 3);
+ rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+ rt2500pci_rf_write(rt2x00dev, 3, rf3);
+}
+
+static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
+ rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
+ libconf->conf->long_frame_max_tx_count);
+ rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
+ libconf->conf->short_frame_max_tx_count);
+ rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+}
+
+static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ enum dev_state state =
+ (libconf->conf->flags & IEEE80211_CONF_PS) ?
+ STATE_SLEEP : STATE_AWAKE;
+ u32 reg;
+
+ if (state == STATE_SLEEP) {
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
+ rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
+ (rt2x00dev->beacon_int - 20) * 16);
+ rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
+ libconf->conf->listen_interval - 1);
+
+ /* We must first disable autowake before it can be enabled */
+ rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+
+ rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
+ rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+ } else {
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
+ rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+ }
+
+ rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+}
+
+static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf,
+ const unsigned int flags)
+{
+ if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
+ rt2500pci_config_channel(rt2x00dev, &libconf->rf,
+ libconf->conf->power_level);
+ if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
+ !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
+ rt2500pci_config_txpower(rt2x00dev,
+ libconf->conf->power_level);
+ if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+ rt2500pci_config_retry_limit(rt2x00dev, libconf);
+ if (flags & IEEE80211_CONF_CHANGE_PS)
+ rt2500pci_config_ps(rt2x00dev, libconf);
+}
+
+/*
+ * Link tuning
+ */
+static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual)
+{
+ u32 reg;
+
+ /*
+ * Update FCS error count from register.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
+ qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
+
+ /*
+ * Update False CCA count from register.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
+ qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
+}
+
+static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual, u8 vgc_level)
+{
+ if (qual->vgc_level_reg != vgc_level) {
+ rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
+ qual->vgc_level = vgc_level;
+ qual->vgc_level_reg = vgc_level;
+ }
+}
+
+static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual)
+{
+ rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
+}
+
+static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual, const u32 count)
+{
+ /*
+ * To prevent collisions with MAC ASIC on chipsets
+ * up to version C the link tuning should halt after 20
+ * seconds while being associated.
+ */
+ if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
+ rt2x00dev->intf_associated && count > 20)
+ return;
+
+ /*
+ * Chipset versions C and lower should directly continue
+ * to the dynamic CCA tuning. Chipset version D and higher
+ * should go straight to dynamic CCA tuning when they
+ * are not associated.
+ */
+ if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
+ !rt2x00dev->intf_associated)
+ goto dynamic_cca_tune;
+
+ /*
+ * A too low RSSI will cause too much false CCA which will
+ * then corrupt the R17 tuning. To remidy this the tuning should
+ * be stopped (While making sure the R17 value will not exceed limits)
+ */
+ if (qual->rssi < -80 && count > 20) {
+ if (qual->vgc_level_reg >= 0x41)
+ rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
+ return;
+ }
+
+ /*
+ * Special big-R17 for short distance
+ */
+ if (qual->rssi >= -58) {
+ rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
+ return;
+ }
+
+ /*
+ * Special mid-R17 for middle distance
+ */
+ if (qual->rssi >= -74) {
+ rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
+ return;
+ }
+
+ /*
+ * Leave short or middle distance condition, restore r17
+ * to the dynamic tuning range.
+ */
+ if (qual->vgc_level_reg >= 0x41) {
+ rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
+ return;
+ }
+
+dynamic_cca_tune:
+
+ /*
+ * R17 is inside the dynamic tuning range,
+ * start tuning the link based on the false cca counter.
+ */
+ if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
+ rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
+ else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
+ rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt2500pci_start_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_RX:
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
+ rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
+ rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
+ rt2x00_set_field32(&reg, CSR14_TBCN, 1);
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+static void rt2500pci_kick_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_AC_VO:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
+ rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+ break;
+ case QID_AC_VI:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
+ rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+ break;
+ case QID_ATIM:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
+ rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+static void rt2500pci_stop_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_ATIM:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
+ rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+ break;
+ case QID_RX:
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
+ rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
+ rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
+ rt2x00_set_field32(&reg, CSR14_TBCN, 0);
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+ /*
+ * Wait for possibly running tbtt tasklets.
+ */
+ tasklet_kill(&rt2x00dev->tbtt_tasklet);
+ break;
+ default:
+ break;
+ }
+}
+
+/*
+ * Initialization functions.
+ */
+static bool rt2500pci_get_entry_state(struct queue_entry *entry)
+{
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ u32 word;
+
+ if (entry->queue->qid == QID_RX) {
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+
+ return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
+ } else {
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+
+ return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+ rt2x00_get_field32(word, TXD_W0_VALID));
+ }
+}
+
+static void rt2500pci_clear_entry(struct queue_entry *entry)
+{
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ u32 word;
+
+ if (entry->queue->qid == QID_RX) {
+ word = rt2x00_desc_read(entry_priv->desc, 1);
+ rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
+ rt2x00_desc_write(entry_priv->desc, 1, word);
+
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+ rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
+ rt2x00_desc_write(entry_priv->desc, 0, word);
+ } else {
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+ rt2x00_set_field32(&word, TXD_W0_VALID, 0);
+ rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
+ rt2x00_desc_write(entry_priv->desc, 0, word);
+ }
+}
+
+static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
+{
+ struct queue_entry_priv_mmio *entry_priv;
+ u32 reg;
+
+ /*
+ * Initialize registers.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
+ rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
+ rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
+ rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
+ rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
+
+ entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
+ rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
+
+ entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
+ rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
+
+ entry_priv = rt2x00dev->atim->entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
+ rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
+
+ entry_priv = rt2x00dev->bcn->entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
+ rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
+ rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
+ rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
+
+ entry_priv = rt2x00dev->rx->entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
+ rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
+
+ return 0;
+}
+
+static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
+ rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
+ rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
+ rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
+ rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
+ rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
+ rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
+ rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
+ rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
+ rt2x00dev->rx->data_size / 128);
+ rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
+
+ /*
+ * Always use CWmin and CWmax set in descriptor.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
+ rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
+ rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
+ rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
+ rt2x00_set_field32(&reg, CSR14_TBCN, 0);
+ rt2x00_set_field32(&reg, CSR14_TCFP, 0);
+ rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+ rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
+ rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+ rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
+ rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
+ rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
+ rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
+ rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
+ rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
+ rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
+ rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
+ rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
+ rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
+ rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
+ rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
+ rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
+ rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
+ rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
+ rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
+ rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
+ rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
+ rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
+ rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
+ rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
+ rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
+ rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
+ rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
+ rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
+ rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
+ rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
+ rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
+ rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
+ rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
+ rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
+ rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
+ rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
+ rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
+
+ rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
+
+ rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
+ rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
+
+ if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+ return -EBUSY;
+
+ rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
+ rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
+ rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
+ rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
+ rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
+ rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
+
+ rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
+
+ rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
+ rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
+ rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
+ rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
+ rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
+ rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
+ rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
+
+ /*
+ * We must clear the FCS and FIFO error count.
+ * These registers are cleared on read,
+ * so we may pass a useless variable to store the value.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
+ reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
+
+ return 0;
+}
+
+static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u8 value;
+
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ value = rt2500pci_bbp_read(rt2x00dev, 0);
+ if ((value != 0xff) && (value != 0x00))
+ return 0;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+ return -EACCES;
+}
+
+static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u16 eeprom;
+ u8 reg_id;
+ u8 value;
+
+ if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
+ return -EACCES;
+
+ rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
+ rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
+ rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
+ rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
+ rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
+ rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
+ rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
+ rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
+ rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
+ rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
+ rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
+ rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
+ rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
+ rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
+ rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
+ rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
+ rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
+ rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
+ rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
+ rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
+ rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
+ rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
+ rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
+ rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
+ rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
+
+ for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
+
+ if (eeprom != 0xffff && eeprom != 0x0000) {
+ reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+ value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+ rt2500pci_bbp_write(rt2x00dev, reg_id, value);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int mask = (state == STATE_RADIO_IRQ_OFF);
+ u32 reg;
+ unsigned long flags;
+
+ /*
+ * When interrupts are being enabled, the interrupt registers
+ * should clear the register to assure a clean state.
+ */
+ if (state == STATE_RADIO_IRQ_ON) {
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
+ rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
+ }
+
+ /*
+ * Only toggle the interrupts bits we are going to use.
+ * Non-checked interrupt bits are disabled by default.
+ */
+ spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
+ rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
+ rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
+ rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+ spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
+
+ if (state == STATE_RADIO_IRQ_OFF) {
+ /*
+ * Ensure that all tasklets are finished.
+ */
+ tasklet_kill(&rt2x00dev->txstatus_tasklet);
+ tasklet_kill(&rt2x00dev->rxdone_tasklet);
+ tasklet_kill(&rt2x00dev->tbtt_tasklet);
+ }
+}
+
+static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ /*
+ * Initialize all registers.
+ */
+ if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
+ rt2500pci_init_registers(rt2x00dev) ||
+ rt2500pci_init_bbp(rt2x00dev)))
+ return -EIO;
+
+ return 0;
+}
+
+static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ /*
+ * Disable power
+ */
+ rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
+}
+
+static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ u32 reg, reg2;
+ unsigned int i;
+ bool put_to_sleep;
+ u8 bbp_state;
+ u8 rf_state;
+
+ put_to_sleep = (state != STATE_AWAKE);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
+ rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
+ rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
+ rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
+ rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
+ rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
+
+ /*
+ * Device is not guaranteed to be in the requested state yet.
+ * We must wait until the register indicates that the
+ * device has entered the correct state.
+ */
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
+ bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
+ rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
+ if (bbp_state == state && rf_state == state)
+ return 0;
+ rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
+ msleep(10);
+ }
+
+ return -EBUSY;
+}
+
+static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int retval = 0;
+
+ switch (state) {
+ case STATE_RADIO_ON:
+ retval = rt2500pci_enable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_OFF:
+ rt2500pci_disable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_IRQ_ON:
+ case STATE_RADIO_IRQ_OFF:
+ rt2500pci_toggle_irq(rt2x00dev, state);
+ break;
+ case STATE_DEEP_SLEEP:
+ case STATE_SLEEP:
+ case STATE_STANDBY:
+ case STATE_AWAKE:
+ retval = rt2500pci_set_state(rt2x00dev, state);
+ break;
+ default:
+ retval = -ENOTSUPP;
+ break;
+ }
+
+ if (unlikely(retval))
+ rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+ state, retval);
+
+ return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt2500pci_write_tx_desc(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ __le32 *txd = entry_priv->desc;
+ u32 word;
+
+ /*
+ * Start writing the descriptor words.
+ */
+ word = rt2x00_desc_read(txd, 1);
+ rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
+ rt2x00_desc_write(txd, 1, word);
+
+ word = rt2x00_desc_read(txd, 2);
+ rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
+ rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
+ rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
+ rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
+ rt2x00_desc_write(txd, 2, word);
+
+ word = rt2x00_desc_read(txd, 3);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
+ txdesc->u.plcp.length_low);
+ rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
+ txdesc->u.plcp.length_high);
+ rt2x00_desc_write(txd, 3, word);
+
+ word = rt2x00_desc_read(txd, 10);
+ rt2x00_set_field32(&word, TXD_W10_RTS,
+ test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
+ rt2x00_desc_write(txd, 10, word);
+
+ /*
+ * Writing TXD word 0 must the last to prevent a race condition with
+ * the device, whereby the device may take hold of the TXD before we
+ * finished updating it.
+ */
+ word = rt2x00_desc_read(txd, 0);
+ rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
+ rt2x00_set_field32(&word, TXD_W0_VALID, 1);
+ rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+ test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_ACK,
+ test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+ test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_OFDM,
+ (txdesc->rate_mode == RATE_MODE_OFDM));
+ rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
+ rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
+ rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
+ test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
+ rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
+ rt2x00_desc_write(txd, 0, word);
+
+ /*
+ * Register descriptor details in skb frame descriptor.
+ */
+ skbdesc->desc = txd;
+ skbdesc->desc_len = TXD_DESC_SIZE;
+}
+
+/*
+ * TX data initialization
+ */
+static void rt2500pci_write_beacon(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ u32 reg;
+
+ /*
+ * Disable beaconing while we are reloading the beacon data,
+ * otherwise we might be sending out invalid data.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+ if (rt2x00queue_map_txskb(entry)) {
+ rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
+ goto out;
+ }
+
+ /*
+ * Write the TX descriptor for the beacon.
+ */
+ rt2500pci_write_tx_desc(entry, txdesc);
+
+ /*
+ * Dump beacon to userspace through debugfs.
+ */
+ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
+out:
+ /*
+ * Enable beaconing again.
+ */
+ rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+ rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+}
+
+/*
+ * RX control handlers
+ */
+static void rt2500pci_fill_rxdone(struct queue_entry *entry,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ u32 word0;
+ u32 word2;
+
+ word0 = rt2x00_desc_read(entry_priv->desc, 0);
+ word2 = rt2x00_desc_read(entry_priv->desc, 2);
+
+ if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
+ rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+ if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
+ rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
+
+ /*
+ * Obtain the status about this packet.
+ * When frame was received with an OFDM bitrate,
+ * the signal is the PLCP value. If it was received with
+ * a CCK bitrate the signal is the rate in 100kbit/s.
+ */
+ rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
+ rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
+ entry->queue->rt2x00dev->rssi_offset;
+ rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+
+ if (rt2x00_get_field32(word0, RXD_W0_OFDM))
+ rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
+ else
+ rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
+ if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
+ rxdesc->dev_flags |= RXDONE_MY_BSS;
+}
+
+/*
+ * Interrupt functions.
+ */
+static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
+ const enum data_queue_qid queue_idx)
+{
+ struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+ struct queue_entry_priv_mmio *entry_priv;
+ struct queue_entry *entry;
+ struct txdone_entry_desc txdesc;
+ u32 word;
+
+ while (!rt2x00queue_empty(queue)) {
+ entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+ entry_priv = entry->priv_data;
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+
+ if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+ !rt2x00_get_field32(word, TXD_W0_VALID))
+ break;
+
+ /*
+ * Obtain the status about this packet.
+ */
+ txdesc.flags = 0;
+ switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
+ case 0: /* Success */
+ case 1: /* Success with retry */
+ __set_bit(TXDONE_SUCCESS, &txdesc.flags);
+ break;
+ case 2: /* Failure, excessive retries */
+ __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
+ fallthrough; /* this is a failed frame! */
+ default: /* Failure */
+ __set_bit(TXDONE_FAILURE, &txdesc.flags);
+ }
+ txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
+
+ rt2x00lib_txdone(entry, &txdesc);
+ }
+}
+
+static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_field32 irq_field)
+{
+ u32 reg;
+
+ /*
+ * Enable a single interrupt. The interrupt mask register
+ * access needs locking.
+ */
+ spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
+ rt2x00_set_field32(&reg, irq_field, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+ spin_unlock_irq(&rt2x00dev->irqmask_lock);
+}
+
+static void rt2500pci_txstatus_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
+ txstatus_tasklet);
+ u32 reg;
+
+ /*
+ * Handle all tx queues.
+ */
+ rt2500pci_txdone(rt2x00dev, QID_ATIM);
+ rt2500pci_txdone(rt2x00dev, QID_AC_VO);
+ rt2500pci_txdone(rt2x00dev, QID_AC_VI);
+
+ /*
+ * Enable all TXDONE interrupts again.
+ */
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
+ spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
+ rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
+ rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+ spin_unlock_irq(&rt2x00dev->irqmask_lock);
+ }
+}
+
+static void rt2500pci_tbtt_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
+ rt2x00lib_beacondone(rt2x00dev);
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
+}
+
+static void rt2500pci_rxdone_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
+ rxdone_tasklet);
+ if (rt2x00mmio_rxdone(rt2x00dev))
+ tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+ else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
+}
+
+static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
+{
+ struct rt2x00_dev *rt2x00dev = dev_instance;
+ u32 reg, mask;
+
+ /*
+ * Get the interrupt sources & saved to local variable.
+ * Write register value back to clear pending interrupts.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
+ rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
+
+ if (!reg)
+ return IRQ_NONE;
+
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return IRQ_HANDLED;
+
+ mask = reg;
+
+ /*
+ * Schedule tasklets for interrupt handling.
+ */
+ if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
+ tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
+
+ if (rt2x00_get_field32(reg, CSR7_RXDONE))
+ tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+
+ if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
+ rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
+ rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
+ tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+ /*
+ * Mask out all txdone interrupts.
+ */
+ rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
+ rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
+ rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
+ }
+
+ /*
+ * Disable all interrupts for which a tasklet was scheduled right now,
+ * the tasklet will reenable the appropriate interrupts.
+ */
+ spin_lock(&rt2x00dev->irqmask_lock);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
+ reg |= mask;
+ rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+ spin_unlock(&rt2x00dev->irqmask_lock);
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ struct eeprom_93cx6 eeprom;
+ u32 reg;
+ u16 word;
+ u8 *mac;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
+
+ eeprom.data = rt2x00dev;
+ eeprom.register_read = rt2500pci_eepromregister_read;
+ eeprom.register_write = rt2500pci_eepromregister_write;
+ eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
+ PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
+ eeprom.reg_data_in = 0;
+ eeprom.reg_data_out = 0;
+ eeprom.reg_data_clock = 0;
+ eeprom.reg_chip_select = 0;
+
+ eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
+ EEPROM_SIZE / sizeof(u16));
+
+ /*
+ * Start validation of the data that has been read.
+ */
+ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+ rt2x00lib_set_mac_address(rt2x00dev, mac);
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
+ ANTENNA_SW_DIVERSITY);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
+ ANTENNA_SW_DIVERSITY);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
+ LED_MODE_DEFAULT);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
+ DEFAULT_RSSI_OFFSET);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
+ word);
+ }
+
+ return 0;
+}
+
+static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+ u16 value;
+ u16 eeprom;
+
+ /*
+ * Read EEPROM word for configuration.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
+
+ /*
+ * Identify RF chipset.
+ */
+ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
+ rt2x00_set_chip(rt2x00dev, RT2560, value,
+ rt2x00_get_field32(reg, CSR0_REVISION));
+
+ if (!rt2x00_rf(rt2x00dev, RF2522) &&
+ !rt2x00_rf(rt2x00dev, RF2523) &&
+ !rt2x00_rf(rt2x00dev, RF2524) &&
+ !rt2x00_rf(rt2x00dev, RF2525) &&
+ !rt2x00_rf(rt2x00dev, RF2525E) &&
+ !rt2x00_rf(rt2x00dev, RF5222)) {
+ rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
+ return -ENODEV;
+ }
+
+ /*
+ * Identify default antenna configuration.
+ */
+ rt2x00dev->default_ant.tx =
+ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
+ rt2x00dev->default_ant.rx =
+ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
+
+ /*
+ * Store led mode, for correct led behaviour.
+ */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
+
+ rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+ if (value == LED_MODE_TXRX_ACTIVITY ||
+ value == LED_MODE_DEFAULT ||
+ value == LED_MODE_ASUS)
+ rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
+ LED_TYPE_ACTIVITY);
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+ /*
+ * Detect if this device has an hardware controlled radio.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
+ __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+ /*
+ * On this device RFKILL initialized during probe does not work.
+ */
+ __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
+ }
+
+ /*
+ * Check if the BBP tuning should be enabled.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
+ if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
+ __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
+
+ /*
+ * Read the RSSI <-> dBm offset information.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
+ rt2x00dev->rssi_offset =
+ rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
+
+ return 0;
+}
+
+/*
+ * RF value list for RF2522
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2522[] = {
+ { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
+ { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
+ { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
+ { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
+ { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
+ { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
+ { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
+ { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
+ { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
+ { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
+ { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
+ { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
+ { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
+ { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
+};
+
+/*
+ * RF value list for RF2523
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2523[] = {
+ { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
+ { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
+ { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
+ { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
+ { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
+ { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
+ { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
+ { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
+ { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
+ { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
+ { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
+ { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
+ { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
+ { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2524
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2524[] = {
+ { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
+ { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
+ { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
+ { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
+ { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
+ { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
+ { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
+ { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
+ { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
+ { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
+ { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
+ { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
+ { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
+ { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2525
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2525[] = {
+ { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
+ { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
+ { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
+ { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
+ { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
+ { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
+ { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
+ { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
+ { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
+ { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
+ { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
+ { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
+ { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
+ { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2525e
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2525e[] = {
+ { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
+ { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
+ { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
+ { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
+ { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
+ { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
+ { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
+ { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
+ { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
+ { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
+ { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
+ { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
+ { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
+ { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
+};
+
+/*
+ * RF value list for RF5222
+ * Supports: 2.4 GHz & 5.2 GHz
+ */
+static const struct rf_channel rf_vals_5222[] = {
+ { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
+ { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
+ { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
+ { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
+ { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
+ { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
+ { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
+ { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
+ { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
+ { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
+ { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
+ { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
+ { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
+ { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
+
+ /* 802.11 UNI / HyperLan 2 */
+ { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
+ { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
+ { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
+ { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
+ { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
+ { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
+ { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
+ { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
+
+ /* 802.11 HyperLan 2 */
+ { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
+ { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
+ { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
+ { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
+ { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
+ { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
+ { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
+ { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
+ { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
+ { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
+
+ /* 802.11 UNII */
+ { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
+ { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
+ { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
+ { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
+ { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
+};
+
+static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+ struct hw_mode_spec *spec = &rt2x00dev->spec;
+ struct channel_info *info;
+ u8 *tx_power;
+ unsigned int i;
+
+ /*
+ * Initialize all hw fields.
+ */
+ ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+ ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+ ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
+ ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+
+ SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+ SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+ rt2x00_eeprom_addr(rt2x00dev,
+ EEPROM_MAC_ADDR_0));
+
+ /*
+ * Disable powersaving as default.
+ */
+ rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
+
+ /*
+ * Initialize hw_mode information.
+ */
+ spec->supported_bands = SUPPORT_BAND_2GHZ;
+ spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+ if (rt2x00_rf(rt2x00dev, RF2522)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
+ spec->channels = rf_vals_bg_2522;
+ } else if (rt2x00_rf(rt2x00dev, RF2523)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
+ spec->channels = rf_vals_bg_2523;
+ } else if (rt2x00_rf(rt2x00dev, RF2524)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
+ spec->channels = rf_vals_bg_2524;
+ } else if (rt2x00_rf(rt2x00dev, RF2525)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
+ spec->channels = rf_vals_bg_2525;
+ } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
+ spec->channels = rf_vals_bg_2525e;
+ } else if (rt2x00_rf(rt2x00dev, RF5222)) {
+ spec->supported_bands |= SUPPORT_BAND_5GHZ;
+ spec->num_channels = ARRAY_SIZE(rf_vals_5222);
+ spec->channels = rf_vals_5222;
+ }
+
+ /*
+ * Create channel information array
+ */
+ info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ spec->channels_info = info;
+
+ tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
+ for (i = 0; i < 14; i++) {
+ info[i].max_power = MAX_TXPOWER;
+ info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
+ }
+
+ if (spec->num_channels > 14) {
+ for (i = 14; i < spec->num_channels; i++) {
+ info[i].max_power = MAX_TXPOWER;
+ info[i].default_power1 = DEFAULT_TXPOWER;
+ }
+ }
+
+ return 0;
+}
+
+static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+ u32 reg;
+
+ /*
+ * Allocate eeprom data.
+ */
+ retval = rt2500pci_validate_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ retval = rt2500pci_init_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Enable rfkill polling by setting GPIO direction of the
+ * rfkill switch GPIO pin correctly.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
+ rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
+ rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
+
+ /*
+ * Initialize hw specifications.
+ */
+ retval = rt2500pci_probe_hw_mode(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * This device requires the atim queue and DMA-mapped skbs.
+ */
+ __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
+
+ /*
+ * Set the rssi offset.
+ */
+ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+ return 0;
+}
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u64 tsf;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
+ tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
+ tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
+
+ return tsf;
+}
+
+static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
+ return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
+}
+
+static const struct ieee80211_ops rt2500pci_mac80211_ops = {
+ .tx = rt2x00mac_tx,
+ .wake_tx_queue = ieee80211_handle_wake_tx_queue,
+ .start = rt2x00mac_start,
+ .stop = rt2x00mac_stop,
+ .add_interface = rt2x00mac_add_interface,
+ .remove_interface = rt2x00mac_remove_interface,
+ .config = rt2x00mac_config,
+ .configure_filter = rt2x00mac_configure_filter,
+ .sw_scan_start = rt2x00mac_sw_scan_start,
+ .sw_scan_complete = rt2x00mac_sw_scan_complete,
+ .get_stats = rt2x00mac_get_stats,
+ .bss_info_changed = rt2x00mac_bss_info_changed,
+ .conf_tx = rt2x00mac_conf_tx,
+ .get_tsf = rt2500pci_get_tsf,
+ .tx_last_beacon = rt2500pci_tx_last_beacon,
+ .rfkill_poll = rt2x00mac_rfkill_poll,
+ .flush = rt2x00mac_flush,
+ .set_antenna = rt2x00mac_set_antenna,
+ .get_antenna = rt2x00mac_get_antenna,
+ .get_ringparam = rt2x00mac_get_ringparam,
+ .tx_frames_pending = rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
+ .irq_handler = rt2500pci_interrupt,
+ .txstatus_tasklet = rt2500pci_txstatus_tasklet,
+ .tbtt_tasklet = rt2500pci_tbtt_tasklet,
+ .rxdone_tasklet = rt2500pci_rxdone_tasklet,
+ .probe_hw = rt2500pci_probe_hw,
+ .initialize = rt2x00mmio_initialize,
+ .uninitialize = rt2x00mmio_uninitialize,
+ .get_entry_state = rt2500pci_get_entry_state,
+ .clear_entry = rt2500pci_clear_entry,
+ .set_device_state = rt2500pci_set_device_state,
+ .rfkill_poll = rt2500pci_rfkill_poll,
+ .link_stats = rt2500pci_link_stats,
+ .reset_tuner = rt2500pci_reset_tuner,
+ .link_tuner = rt2500pci_link_tuner,
+ .start_queue = rt2500pci_start_queue,
+ .kick_queue = rt2500pci_kick_queue,
+ .stop_queue = rt2500pci_stop_queue,
+ .flush_queue = rt2x00mmio_flush_queue,
+ .write_tx_desc = rt2500pci_write_tx_desc,
+ .write_beacon = rt2500pci_write_beacon,
+ .fill_rxdone = rt2500pci_fill_rxdone,
+ .config_filter = rt2500pci_config_filter,
+ .config_intf = rt2500pci_config_intf,
+ .config_erp = rt2500pci_config_erp,
+ .config_ant = rt2500pci_config_ant,
+ .config = rt2500pci_config,
+};
+
+static void rt2500pci_queue_init(struct data_queue *queue)
+{
+ switch (queue->qid) {
+ case QID_RX:
+ queue->limit = 32;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = RXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ queue->limit = 32;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_BEACON:
+ queue->limit = 1;
+ queue->data_size = MGMT_FRAME_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_ATIM:
+ queue->limit = 8;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ default:
+ BUG();
+ break;
+ }
+}
+
+static const struct rt2x00_ops rt2500pci_ops = {
+ .name = KBUILD_MODNAME,
+ .max_ap_intf = 1,
+ .eeprom_size = EEPROM_SIZE,
+ .rf_size = RF_SIZE,
+ .tx_queues = NUM_TX_QUEUES,
+ .queue_init = rt2500pci_queue_init,
+ .lib = &rt2500pci_rt2x00_ops,
+ .hw = &rt2500pci_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+ .debugfs = &rt2500pci_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * RT2500pci module information.
+ */
+static const struct pci_device_id rt2500pci_device_table[] = {
+ { PCI_DEVICE(0x1814, 0x0201) },
+ { 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
+MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
+MODULE_LICENSE("GPL");
+
+static int rt2500pci_probe(struct pci_dev *pci_dev,
+ const struct pci_device_id *id)
+{
+ return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
+}
+
+static struct pci_driver rt2500pci_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = rt2500pci_device_table,
+ .probe = rt2500pci_probe,
+ .remove = rt2x00pci_remove,
+ .driver.pm = &rt2x00pci_pm_ops,
+};
+
+module_pci_driver(rt2500pci_driver);
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2500pci.h b/drivers/net/wireless/ralink/rt2x00/rt2500pci.h
new file mode 100644
index 0000000000..ba362675c5
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2500pci.h
@@ -0,0 +1,1224 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2500pci
+ Abstract: Data structures and registers for the rt2500pci module.
+ Supported chipsets: RT2560.
+ */
+
+#ifndef RT2500PCI_H
+#define RT2500PCI_H
+
+/*
+ * RF chip defines.
+ */
+#define RF2522 0x0000
+#define RF2523 0x0001
+#define RF2524 0x0002
+#define RF2525 0x0003
+#define RF2525E 0x0004
+#define RF5222 0x0010
+
+/*
+ * RT2560 version
+ */
+#define RT2560_VERSION_B 2
+#define RT2560_VERSION_C 3
+#define RT2560_VERSION_D 4
+
+/*
+ * Signal information.
+ * Default offset is required for RSSI <-> dBm conversion.
+ */
+#define DEFAULT_RSSI_OFFSET 121
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE 0x0000
+#define CSR_REG_SIZE 0x0174
+#define EEPROM_BASE 0x0000
+#define EEPROM_SIZE 0x0200
+#define BBP_BASE 0x0000
+#define BBP_SIZE 0x0040
+#define RF_BASE 0x0004
+#define RF_SIZE 0x0010
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES 2
+
+/*
+ * Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * CSR0: ASIC revision number.
+ */
+#define CSR0 0x0000
+#define CSR0_REVISION FIELD32(0x0000ffff)
+
+/*
+ * CSR1: System control register.
+ * SOFT_RESET: Software reset, 1: reset, 0: normal.
+ * BBP_RESET: Hardware reset, 1: reset, 0, release.
+ * HOST_READY: Host ready after initialization.
+ */
+#define CSR1 0x0004
+#define CSR1_SOFT_RESET FIELD32(0x00000001)
+#define CSR1_BBP_RESET FIELD32(0x00000002)
+#define CSR1_HOST_READY FIELD32(0x00000004)
+
+/*
+ * CSR2: System admin status register (invalid).
+ */
+#define CSR2 0x0008
+
+/*
+ * CSR3: STA MAC address register 0.
+ */
+#define CSR3 0x000c
+#define CSR3_BYTE0 FIELD32(0x000000ff)
+#define CSR3_BYTE1 FIELD32(0x0000ff00)
+#define CSR3_BYTE2 FIELD32(0x00ff0000)
+#define CSR3_BYTE3 FIELD32(0xff000000)
+
+/*
+ * CSR4: STA MAC address register 1.
+ */
+#define CSR4 0x0010
+#define CSR4_BYTE4 FIELD32(0x000000ff)
+#define CSR4_BYTE5 FIELD32(0x0000ff00)
+
+/*
+ * CSR5: BSSID register 0.
+ */
+#define CSR5 0x0014
+#define CSR5_BYTE0 FIELD32(0x000000ff)
+#define CSR5_BYTE1 FIELD32(0x0000ff00)
+#define CSR5_BYTE2 FIELD32(0x00ff0000)
+#define CSR5_BYTE3 FIELD32(0xff000000)
+
+/*
+ * CSR6: BSSID register 1.
+ */
+#define CSR6 0x0018
+#define CSR6_BYTE4 FIELD32(0x000000ff)
+#define CSR6_BYTE5 FIELD32(0x0000ff00)
+
+/*
+ * CSR7: Interrupt source register.
+ * Write 1 to clear.
+ * TBCN_EXPIRE: Beacon timer expired interrupt.
+ * TWAKE_EXPIRE: Wakeup timer expired interrupt.
+ * TATIMW_EXPIRE: Timer of atim window expired interrupt.
+ * TXDONE_TXRING: Tx ring transmit done interrupt.
+ * TXDONE_ATIMRING: Atim ring transmit done interrupt.
+ * TXDONE_PRIORING: Priority ring transmit done interrupt.
+ * RXDONE: Receive done interrupt.
+ * DECRYPTION_DONE: Decryption done interrupt.
+ * ENCRYPTION_DONE: Encryption done interrupt.
+ * UART1_TX_TRESHOLD: UART1 TX reaches threshold.
+ * UART1_RX_TRESHOLD: UART1 RX reaches threshold.
+ * UART1_IDLE_TRESHOLD: UART1 IDLE over threshold.
+ * UART1_TX_BUFF_ERROR: UART1 TX buffer error.
+ * UART1_RX_BUFF_ERROR: UART1 RX buffer error.
+ * UART2_TX_TRESHOLD: UART2 TX reaches threshold.
+ * UART2_RX_TRESHOLD: UART2 RX reaches threshold.
+ * UART2_IDLE_TRESHOLD: UART2 IDLE over threshold.
+ * UART2_TX_BUFF_ERROR: UART2 TX buffer error.
+ * UART2_RX_BUFF_ERROR: UART2 RX buffer error.
+ * TIMER_CSR3_EXPIRE: TIMECSR3 timer expired (802.1H quiet period).
+
+ */
+#define CSR7 0x001c
+#define CSR7_TBCN_EXPIRE FIELD32(0x00000001)
+#define CSR7_TWAKE_EXPIRE FIELD32(0x00000002)
+#define CSR7_TATIMW_EXPIRE FIELD32(0x00000004)
+#define CSR7_TXDONE_TXRING FIELD32(0x00000008)
+#define CSR7_TXDONE_ATIMRING FIELD32(0x00000010)
+#define CSR7_TXDONE_PRIORING FIELD32(0x00000020)
+#define CSR7_RXDONE FIELD32(0x00000040)
+#define CSR7_DECRYPTION_DONE FIELD32(0x00000080)
+#define CSR7_ENCRYPTION_DONE FIELD32(0x00000100)
+#define CSR7_UART1_TX_TRESHOLD FIELD32(0x00000200)
+#define CSR7_UART1_RX_TRESHOLD FIELD32(0x00000400)
+#define CSR7_UART1_IDLE_TRESHOLD FIELD32(0x00000800)
+#define CSR7_UART1_TX_BUFF_ERROR FIELD32(0x00001000)
+#define CSR7_UART1_RX_BUFF_ERROR FIELD32(0x00002000)
+#define CSR7_UART2_TX_TRESHOLD FIELD32(0x00004000)
+#define CSR7_UART2_RX_TRESHOLD FIELD32(0x00008000)
+#define CSR7_UART2_IDLE_TRESHOLD FIELD32(0x00010000)
+#define CSR7_UART2_TX_BUFF_ERROR FIELD32(0x00020000)
+#define CSR7_UART2_RX_BUFF_ERROR FIELD32(0x00040000)
+#define CSR7_TIMER_CSR3_EXPIRE FIELD32(0x00080000)
+
+/*
+ * CSR8: Interrupt mask register.
+ * Write 1 to mask interrupt.
+ * TBCN_EXPIRE: Beacon timer expired interrupt.
+ * TWAKE_EXPIRE: Wakeup timer expired interrupt.
+ * TATIMW_EXPIRE: Timer of atim window expired interrupt.
+ * TXDONE_TXRING: Tx ring transmit done interrupt.
+ * TXDONE_ATIMRING: Atim ring transmit done interrupt.
+ * TXDONE_PRIORING: Priority ring transmit done interrupt.
+ * RXDONE: Receive done interrupt.
+ * DECRYPTION_DONE: Decryption done interrupt.
+ * ENCRYPTION_DONE: Encryption done interrupt.
+ * UART1_TX_TRESHOLD: UART1 TX reaches threshold.
+ * UART1_RX_TRESHOLD: UART1 RX reaches threshold.
+ * UART1_IDLE_TRESHOLD: UART1 IDLE over threshold.
+ * UART1_TX_BUFF_ERROR: UART1 TX buffer error.
+ * UART1_RX_BUFF_ERROR: UART1 RX buffer error.
+ * UART2_TX_TRESHOLD: UART2 TX reaches threshold.
+ * UART2_RX_TRESHOLD: UART2 RX reaches threshold.
+ * UART2_IDLE_TRESHOLD: UART2 IDLE over threshold.
+ * UART2_TX_BUFF_ERROR: UART2 TX buffer error.
+ * UART2_RX_BUFF_ERROR: UART2 RX buffer error.
+ * TIMER_CSR3_EXPIRE: TIMECSR3 timer expired (802.1H quiet period).
+ */
+#define CSR8 0x0020
+#define CSR8_TBCN_EXPIRE FIELD32(0x00000001)
+#define CSR8_TWAKE_EXPIRE FIELD32(0x00000002)
+#define CSR8_TATIMW_EXPIRE FIELD32(0x00000004)
+#define CSR8_TXDONE_TXRING FIELD32(0x00000008)
+#define CSR8_TXDONE_ATIMRING FIELD32(0x00000010)
+#define CSR8_TXDONE_PRIORING FIELD32(0x00000020)
+#define CSR8_RXDONE FIELD32(0x00000040)
+#define CSR8_DECRYPTION_DONE FIELD32(0x00000080)
+#define CSR8_ENCRYPTION_DONE FIELD32(0x00000100)
+#define CSR8_UART1_TX_TRESHOLD FIELD32(0x00000200)
+#define CSR8_UART1_RX_TRESHOLD FIELD32(0x00000400)
+#define CSR8_UART1_IDLE_TRESHOLD FIELD32(0x00000800)
+#define CSR8_UART1_TX_BUFF_ERROR FIELD32(0x00001000)
+#define CSR8_UART1_RX_BUFF_ERROR FIELD32(0x00002000)
+#define CSR8_UART2_TX_TRESHOLD FIELD32(0x00004000)
+#define CSR8_UART2_RX_TRESHOLD FIELD32(0x00008000)
+#define CSR8_UART2_IDLE_TRESHOLD FIELD32(0x00010000)
+#define CSR8_UART2_TX_BUFF_ERROR FIELD32(0x00020000)
+#define CSR8_UART2_RX_BUFF_ERROR FIELD32(0x00040000)
+#define CSR8_TIMER_CSR3_EXPIRE FIELD32(0x00080000)
+
+/*
+ * CSR9: Maximum frame length register.
+ * MAX_FRAME_UNIT: Maximum frame length in 128b unit, default: 12.
+ */
+#define CSR9 0x0024
+#define CSR9_MAX_FRAME_UNIT FIELD32(0x00000f80)
+
+/*
+ * SECCSR0: WEP control register.
+ * KICK_DECRYPT: Kick decryption engine, self-clear.
+ * ONE_SHOT: 0: ring mode, 1: One shot only mode.
+ * DESC_ADDRESS: Descriptor physical address of frame.
+ */
+#define SECCSR0 0x0028
+#define SECCSR0_KICK_DECRYPT FIELD32(0x00000001)
+#define SECCSR0_ONE_SHOT FIELD32(0x00000002)
+#define SECCSR0_DESC_ADDRESS FIELD32(0xfffffffc)
+
+/*
+ * CSR11: Back-off control register.
+ * CWMIN: CWmin. Default cwmin is 31 (2^5 - 1).
+ * CWMAX: CWmax. Default cwmax is 1023 (2^10 - 1).
+ * SLOT_TIME: Slot time, default is 20us for 802.11b
+ * CW_SELECT: CWmin/CWmax selection, 1: Register, 0: TXD.
+ * LONG_RETRY: Long retry count.
+ * SHORT_RETRY: Short retry count.
+ */
+#define CSR11 0x002c
+#define CSR11_CWMIN FIELD32(0x0000000f)
+#define CSR11_CWMAX FIELD32(0x000000f0)
+#define CSR11_SLOT_TIME FIELD32(0x00001f00)
+#define CSR11_CW_SELECT FIELD32(0x00002000)
+#define CSR11_LONG_RETRY FIELD32(0x00ff0000)
+#define CSR11_SHORT_RETRY FIELD32(0xff000000)
+
+/*
+ * CSR12: Synchronization configuration register 0.
+ * All units in 1/16 TU.
+ * BEACON_INTERVAL: Beacon interval, default is 100 TU.
+ * CFP_MAX_DURATION: Cfp maximum duration, default is 100 TU.
+ */
+#define CSR12 0x0030
+#define CSR12_BEACON_INTERVAL FIELD32(0x0000ffff)
+#define CSR12_CFP_MAX_DURATION FIELD32(0xffff0000)
+
+/*
+ * CSR13: Synchronization configuration register 1.
+ * All units in 1/16 TU.
+ * ATIMW_DURATION: Atim window duration.
+ * CFP_PERIOD: Cfp period, default is 0 TU.
+ */
+#define CSR13 0x0034
+#define CSR13_ATIMW_DURATION FIELD32(0x0000ffff)
+#define CSR13_CFP_PERIOD FIELD32(0x00ff0000)
+
+/*
+ * CSR14: Synchronization control register.
+ * TSF_COUNT: Enable tsf auto counting.
+ * TSF_SYNC: Tsf sync, 0: disable, 1: infra, 2: ad-hoc/master mode.
+ * TBCN: Enable tbcn with reload value.
+ * TCFP: Enable tcfp & cfp / cp switching.
+ * TATIMW: Enable tatimw & atim window switching.
+ * BEACON_GEN: Enable beacon generator.
+ * CFP_COUNT_PRELOAD: Cfp count preload value.
+ * TBCM_PRELOAD: Tbcn preload value in units of 64us.
+ */
+#define CSR14 0x0038
+#define CSR14_TSF_COUNT FIELD32(0x00000001)
+#define CSR14_TSF_SYNC FIELD32(0x00000006)
+#define CSR14_TBCN FIELD32(0x00000008)
+#define CSR14_TCFP FIELD32(0x00000010)
+#define CSR14_TATIMW FIELD32(0x00000020)
+#define CSR14_BEACON_GEN FIELD32(0x00000040)
+#define CSR14_CFP_COUNT_PRELOAD FIELD32(0x0000ff00)
+#define CSR14_TBCM_PRELOAD FIELD32(0xffff0000)
+
+/*
+ * CSR15: Synchronization status register.
+ * CFP: ASIC is in contention-free period.
+ * ATIMW: ASIC is in ATIM window.
+ * BEACON_SENT: Beacon is send.
+ */
+#define CSR15 0x003c
+#define CSR15_CFP FIELD32(0x00000001)
+#define CSR15_ATIMW FIELD32(0x00000002)
+#define CSR15_BEACON_SENT FIELD32(0x00000004)
+
+/*
+ * CSR16: TSF timer register 0.
+ */
+#define CSR16 0x0040
+#define CSR16_LOW_TSFTIMER FIELD32(0xffffffff)
+
+/*
+ * CSR17: TSF timer register 1.
+ */
+#define CSR17 0x0044
+#define CSR17_HIGH_TSFTIMER FIELD32(0xffffffff)
+
+/*
+ * CSR18: IFS timer register 0.
+ * SIFS: Sifs, default is 10 us.
+ * PIFS: Pifs, default is 30 us.
+ */
+#define CSR18 0x0048
+#define CSR18_SIFS FIELD32(0x000001ff)
+#define CSR18_PIFS FIELD32(0x001f0000)
+
+/*
+ * CSR19: IFS timer register 1.
+ * DIFS: Difs, default is 50 us.
+ * EIFS: Eifs, default is 364 us.
+ */
+#define CSR19 0x004c
+#define CSR19_DIFS FIELD32(0x0000ffff)
+#define CSR19_EIFS FIELD32(0xffff0000)
+
+/*
+ * CSR20: Wakeup timer register.
+ * DELAY_AFTER_TBCN: Delay after tbcn expired in units of 1/16 TU.
+ * TBCN_BEFORE_WAKEUP: Number of beacon before wakeup.
+ * AUTOWAKE: Enable auto wakeup / sleep mechanism.
+ */
+#define CSR20 0x0050
+#define CSR20_DELAY_AFTER_TBCN FIELD32(0x0000ffff)
+#define CSR20_TBCN_BEFORE_WAKEUP FIELD32(0x00ff0000)
+#define CSR20_AUTOWAKE FIELD32(0x01000000)
+
+/*
+ * CSR21: EEPROM control register.
+ * RELOAD: Write 1 to reload eeprom content.
+ * TYPE_93C46: 1: 93c46, 0:93c66.
+ */
+#define CSR21 0x0054
+#define CSR21_RELOAD FIELD32(0x00000001)
+#define CSR21_EEPROM_DATA_CLOCK FIELD32(0x00000002)
+#define CSR21_EEPROM_CHIP_SELECT FIELD32(0x00000004)
+#define CSR21_EEPROM_DATA_IN FIELD32(0x00000008)
+#define CSR21_EEPROM_DATA_OUT FIELD32(0x00000010)
+#define CSR21_TYPE_93C46 FIELD32(0x00000020)
+
+/*
+ * CSR22: CFP control register.
+ * CFP_DURATION_REMAIN: Cfp duration remain, in units of TU.
+ * RELOAD_CFP_DURATION: Write 1 to reload cfp duration remain.
+ */
+#define CSR22 0x0058
+#define CSR22_CFP_DURATION_REMAIN FIELD32(0x0000ffff)
+#define CSR22_RELOAD_CFP_DURATION FIELD32(0x00010000)
+
+/*
+ * Transmit related CSRs.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * TXCSR0: TX Control Register.
+ * KICK_TX: Kick tx ring.
+ * KICK_ATIM: Kick atim ring.
+ * KICK_PRIO: Kick priority ring.
+ * ABORT: Abort all transmit related ring operation.
+ */
+#define TXCSR0 0x0060
+#define TXCSR0_KICK_TX FIELD32(0x00000001)
+#define TXCSR0_KICK_ATIM FIELD32(0x00000002)
+#define TXCSR0_KICK_PRIO FIELD32(0x00000004)
+#define TXCSR0_ABORT FIELD32(0x00000008)
+
+/*
+ * TXCSR1: TX Configuration Register.
+ * ACK_TIMEOUT: Ack timeout, default = sifs + 2*slottime + acktime @ 1mbps.
+ * ACK_CONSUME_TIME: Ack consume time, default = sifs + acktime @ 1mbps.
+ * TSF_OFFSET: Insert tsf offset.
+ * AUTORESPONDER: Enable auto responder which include ack & cts.
+ */
+#define TXCSR1 0x0064
+#define TXCSR1_ACK_TIMEOUT FIELD32(0x000001ff)
+#define TXCSR1_ACK_CONSUME_TIME FIELD32(0x0003fe00)
+#define TXCSR1_TSF_OFFSET FIELD32(0x00fc0000)
+#define TXCSR1_AUTORESPONDER FIELD32(0x01000000)
+
+/*
+ * TXCSR2: Tx descriptor configuration register.
+ * TXD_SIZE: Tx descriptor size, default is 48.
+ * NUM_TXD: Number of tx entries in ring.
+ * NUM_ATIM: Number of atim entries in ring.
+ * NUM_PRIO: Number of priority entries in ring.
+ */
+#define TXCSR2 0x0068
+#define TXCSR2_TXD_SIZE FIELD32(0x000000ff)
+#define TXCSR2_NUM_TXD FIELD32(0x0000ff00)
+#define TXCSR2_NUM_ATIM FIELD32(0x00ff0000)
+#define TXCSR2_NUM_PRIO FIELD32(0xff000000)
+
+/*
+ * TXCSR3: TX Ring Base address register.
+ */
+#define TXCSR3 0x006c
+#define TXCSR3_TX_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * TXCSR4: TX Atim Ring Base address register.
+ */
+#define TXCSR4 0x0070
+#define TXCSR4_ATIM_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * TXCSR5: TX Prio Ring Base address register.
+ */
+#define TXCSR5 0x0074
+#define TXCSR5_PRIO_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * TXCSR6: Beacon Base address register.
+ */
+#define TXCSR6 0x0078
+#define TXCSR6_BEACON_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * TXCSR7: Auto responder control register.
+ * AR_POWERMANAGEMENT: Auto responder power management bit.
+ */
+#define TXCSR7 0x007c
+#define TXCSR7_AR_POWERMANAGEMENT FIELD32(0x00000001)
+
+/*
+ * TXCSR8: CCK Tx BBP register.
+ */
+#define TXCSR8 0x0098
+#define TXCSR8_BBP_ID0 FIELD32(0x0000007f)
+#define TXCSR8_BBP_ID0_VALID FIELD32(0x00000080)
+#define TXCSR8_BBP_ID1 FIELD32(0x00007f00)
+#define TXCSR8_BBP_ID1_VALID FIELD32(0x00008000)
+#define TXCSR8_BBP_ID2 FIELD32(0x007f0000)
+#define TXCSR8_BBP_ID2_VALID FIELD32(0x00800000)
+#define TXCSR8_BBP_ID3 FIELD32(0x7f000000)
+#define TXCSR8_BBP_ID3_VALID FIELD32(0x80000000)
+
+/*
+ * TXCSR9: OFDM TX BBP registers
+ * OFDM_SIGNAL: BBP rate field address for OFDM.
+ * OFDM_SERVICE: BBP service field address for OFDM.
+ * OFDM_LENGTH_LOW: BBP length low byte address for OFDM.
+ * OFDM_LENGTH_HIGH: BBP length high byte address for OFDM.
+ */
+#define TXCSR9 0x0094
+#define TXCSR9_OFDM_RATE FIELD32(0x000000ff)
+#define TXCSR9_OFDM_SERVICE FIELD32(0x0000ff00)
+#define TXCSR9_OFDM_LENGTH_LOW FIELD32(0x00ff0000)
+#define TXCSR9_OFDM_LENGTH_HIGH FIELD32(0xff000000)
+
+/*
+ * Receive related CSRs.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * RXCSR0: RX Control Register.
+ * DISABLE_RX: Disable rx engine.
+ * DROP_CRC: Drop crc error.
+ * DROP_PHYSICAL: Drop physical error.
+ * DROP_CONTROL: Drop control frame.
+ * DROP_NOT_TO_ME: Drop not to me unicast frame.
+ * DROP_TODS: Drop frame tods bit is true.
+ * DROP_VERSION_ERROR: Drop version error frame.
+ * PASS_CRC: Pass all packets with crc attached.
+ * PASS_CRC: Pass all packets with crc attached.
+ * PASS_PLCP: Pass all packets with 4 bytes PLCP attached.
+ * DROP_MCAST: Drop multicast frames.
+ * DROP_BCAST: Drop broadcast frames.
+ * ENABLE_QOS: Accept QOS data frame and parse QOS field.
+ */
+#define RXCSR0 0x0080
+#define RXCSR0_DISABLE_RX FIELD32(0x00000001)
+#define RXCSR0_DROP_CRC FIELD32(0x00000002)
+#define RXCSR0_DROP_PHYSICAL FIELD32(0x00000004)
+#define RXCSR0_DROP_CONTROL FIELD32(0x00000008)
+#define RXCSR0_DROP_NOT_TO_ME FIELD32(0x00000010)
+#define RXCSR0_DROP_TODS FIELD32(0x00000020)
+#define RXCSR0_DROP_VERSION_ERROR FIELD32(0x00000040)
+#define RXCSR0_PASS_CRC FIELD32(0x00000080)
+#define RXCSR0_PASS_PLCP FIELD32(0x00000100)
+#define RXCSR0_DROP_MCAST FIELD32(0x00000200)
+#define RXCSR0_DROP_BCAST FIELD32(0x00000400)
+#define RXCSR0_ENABLE_QOS FIELD32(0x00000800)
+
+/*
+ * RXCSR1: RX descriptor configuration register.
+ * RXD_SIZE: Rx descriptor size, default is 32b.
+ * NUM_RXD: Number of rx entries in ring.
+ */
+#define RXCSR1 0x0084
+#define RXCSR1_RXD_SIZE FIELD32(0x000000ff)
+#define RXCSR1_NUM_RXD FIELD32(0x0000ff00)
+
+/*
+ * RXCSR2: RX Ring base address register.
+ */
+#define RXCSR2 0x0088
+#define RXCSR2_RX_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * RXCSR3: BBP ID register for Rx operation.
+ * BBP_ID#: BBP register # id.
+ * BBP_ID#_VALID: BBP register # id is valid or not.
+ */
+#define RXCSR3 0x0090
+#define RXCSR3_BBP_ID0 FIELD32(0x0000007f)
+#define RXCSR3_BBP_ID0_VALID FIELD32(0x00000080)
+#define RXCSR3_BBP_ID1 FIELD32(0x00007f00)
+#define RXCSR3_BBP_ID1_VALID FIELD32(0x00008000)
+#define RXCSR3_BBP_ID2 FIELD32(0x007f0000)
+#define RXCSR3_BBP_ID2_VALID FIELD32(0x00800000)
+#define RXCSR3_BBP_ID3 FIELD32(0x7f000000)
+#define RXCSR3_BBP_ID3_VALID FIELD32(0x80000000)
+
+/*
+ * ARCSR1: Auto Responder PLCP config register 1.
+ * AR_BBP_DATA#: Auto responder BBP register # data.
+ * AR_BBP_ID#: Auto responder BBP register # Id.
+ */
+#define ARCSR1 0x009c
+#define ARCSR1_AR_BBP_DATA2 FIELD32(0x000000ff)
+#define ARCSR1_AR_BBP_ID2 FIELD32(0x0000ff00)
+#define ARCSR1_AR_BBP_DATA3 FIELD32(0x00ff0000)
+#define ARCSR1_AR_BBP_ID3 FIELD32(0xff000000)
+
+/*
+ * Miscellaneous Registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+
+ */
+
+/*
+ * PCICSR: PCI control register.
+ * BIG_ENDIAN: 1: big endian, 0: little endian.
+ * RX_TRESHOLD: Rx threshold in dw to start pci access
+ * 0: 16dw (default), 1: 8dw, 2: 4dw, 3: 32dw.
+ * TX_TRESHOLD: Tx threshold in dw to start pci access
+ * 0: 0dw (default), 1: 1dw, 2: 4dw, 3: forward.
+ * BURST_LENTH: Pci burst length 0: 4dw (default, 1: 8dw, 2: 16dw, 3:32dw.
+ * ENABLE_CLK: Enable clk_run, pci clock can't going down to non-operational.
+ * READ_MULTIPLE: Enable memory read multiple.
+ * WRITE_INVALID: Enable memory write & invalid.
+ */
+#define PCICSR 0x008c
+#define PCICSR_BIG_ENDIAN FIELD32(0x00000001)
+#define PCICSR_RX_TRESHOLD FIELD32(0x00000006)
+#define PCICSR_TX_TRESHOLD FIELD32(0x00000018)
+#define PCICSR_BURST_LENTH FIELD32(0x00000060)
+#define PCICSR_ENABLE_CLK FIELD32(0x00000080)
+#define PCICSR_READ_MULTIPLE FIELD32(0x00000100)
+#define PCICSR_WRITE_INVALID FIELD32(0x00000200)
+
+/*
+ * CNT0: FCS error count.
+ * FCS_ERROR: FCS error count, cleared when read.
+ */
+#define CNT0 0x00a0
+#define CNT0_FCS_ERROR FIELD32(0x0000ffff)
+
+/*
+ * Statistic Register.
+ * CNT1: PLCP error count.
+ * CNT2: Long error count.
+ */
+#define TIMECSR2 0x00a8
+#define CNT1 0x00ac
+#define CNT2 0x00b0
+#define TIMECSR3 0x00b4
+
+/*
+ * CNT3: CCA false alarm count.
+ */
+#define CNT3 0x00b8
+#define CNT3_FALSE_CCA FIELD32(0x0000ffff)
+
+/*
+ * Statistic Register.
+ * CNT4: Rx FIFO overflow count.
+ * CNT5: Tx FIFO underrun count.
+ */
+#define CNT4 0x00bc
+#define CNT5 0x00c0
+
+/*
+ * Baseband Control Register.
+ */
+
+/*
+ * PWRCSR0: Power mode configuration register.
+ */
+#define PWRCSR0 0x00c4
+
+/*
+ * Power state transition time registers.
+ */
+#define PSCSR0 0x00c8
+#define PSCSR1 0x00cc
+#define PSCSR2 0x00d0
+#define PSCSR3 0x00d4
+
+/*
+ * PWRCSR1: Manual power control / status register.
+ * Allowed state: 0 deep_sleep, 1: sleep, 2: standby, 3: awake.
+ * SET_STATE: Set state. Write 1 to trigger, self cleared.
+ * BBP_DESIRE_STATE: BBP desired state.
+ * RF_DESIRE_STATE: RF desired state.
+ * BBP_CURR_STATE: BBP current state.
+ * RF_CURR_STATE: RF current state.
+ * PUT_TO_SLEEP: Put to sleep. Write 1 to trigger, self cleared.
+ */
+#define PWRCSR1 0x00d8
+#define PWRCSR1_SET_STATE FIELD32(0x00000001)
+#define PWRCSR1_BBP_DESIRE_STATE FIELD32(0x00000006)
+#define PWRCSR1_RF_DESIRE_STATE FIELD32(0x00000018)
+#define PWRCSR1_BBP_CURR_STATE FIELD32(0x00000060)
+#define PWRCSR1_RF_CURR_STATE FIELD32(0x00000180)
+#define PWRCSR1_PUT_TO_SLEEP FIELD32(0x00000200)
+
+/*
+ * TIMECSR: Timer control register.
+ * US_COUNT: 1 us timer count in units of clock cycles.
+ * US_64_COUNT: 64 us timer count in units of 1 us timer.
+ * BEACON_EXPECT: Beacon expect window.
+ */
+#define TIMECSR 0x00dc
+#define TIMECSR_US_COUNT FIELD32(0x000000ff)
+#define TIMECSR_US_64_COUNT FIELD32(0x0000ff00)
+#define TIMECSR_BEACON_EXPECT FIELD32(0x00070000)
+
+/*
+ * MACCSR0: MAC configuration register 0.
+ */
+#define MACCSR0 0x00e0
+
+/*
+ * MACCSR1: MAC configuration register 1.
+ * KICK_RX: Kick one-shot rx in one-shot rx mode.
+ * ONESHOT_RXMODE: Enable one-shot rx mode for debugging.
+ * BBPRX_RESET_MODE: Ralink bbp rx reset mode.
+ * AUTO_TXBBP: Auto tx logic access bbp control register.
+ * AUTO_RXBBP: Auto rx logic access bbp control register.
+ * LOOPBACK: Loopback mode. 0: normal, 1: internal, 2: external, 3:rsvd.
+ * INTERSIL_IF: Intersil if calibration pin.
+ */
+#define MACCSR1 0x00e4
+#define MACCSR1_KICK_RX FIELD32(0x00000001)
+#define MACCSR1_ONESHOT_RXMODE FIELD32(0x00000002)
+#define MACCSR1_BBPRX_RESET_MODE FIELD32(0x00000004)
+#define MACCSR1_AUTO_TXBBP FIELD32(0x00000008)
+#define MACCSR1_AUTO_RXBBP FIELD32(0x00000010)
+#define MACCSR1_LOOPBACK FIELD32(0x00000060)
+#define MACCSR1_INTERSIL_IF FIELD32(0x00000080)
+
+/*
+ * RALINKCSR: Ralink Rx auto-reset BBCR.
+ * AR_BBP_DATA#: Auto reset BBP register # data.
+ * AR_BBP_ID#: Auto reset BBP register # id.
+ */
+#define RALINKCSR 0x00e8
+#define RALINKCSR_AR_BBP_DATA0 FIELD32(0x000000ff)
+#define RALINKCSR_AR_BBP_ID0 FIELD32(0x00007f00)
+#define RALINKCSR_AR_BBP_VALID0 FIELD32(0x00008000)
+#define RALINKCSR_AR_BBP_DATA1 FIELD32(0x00ff0000)
+#define RALINKCSR_AR_BBP_ID1 FIELD32(0x7f000000)
+#define RALINKCSR_AR_BBP_VALID1 FIELD32(0x80000000)
+
+/*
+ * BCNCSR: Beacon interval control register.
+ * CHANGE: Write one to change beacon interval.
+ * DELTATIME: The delta time value.
+ * NUM_BEACON: Number of beacon according to mode.
+ * MODE: Please refer to asic specs.
+ * PLUS: Plus or minus delta time value.
+ */
+#define BCNCSR 0x00ec
+#define BCNCSR_CHANGE FIELD32(0x00000001)
+#define BCNCSR_DELTATIME FIELD32(0x0000001e)
+#define BCNCSR_NUM_BEACON FIELD32(0x00001fe0)
+#define BCNCSR_MODE FIELD32(0x00006000)
+#define BCNCSR_PLUS FIELD32(0x00008000)
+
+/*
+ * BBP / RF / IF Control Register.
+ */
+
+/*
+ * BBPCSR: BBP serial control register.
+ * VALUE: Register value to program into BBP.
+ * REGNUM: Selected BBP register.
+ * BUSY: 1: asic is busy execute BBP programming.
+ * WRITE_CONTROL: 1: write BBP, 0: read BBP.
+ */
+#define BBPCSR 0x00f0
+#define BBPCSR_VALUE FIELD32(0x000000ff)
+#define BBPCSR_REGNUM FIELD32(0x00007f00)
+#define BBPCSR_BUSY FIELD32(0x00008000)
+#define BBPCSR_WRITE_CONTROL FIELD32(0x00010000)
+
+/*
+ * RFCSR: RF serial control register.
+ * VALUE: Register value + id to program into rf/if.
+ * NUMBER_OF_BITS: Number of bits used in value (i:20, rfmd:22).
+ * IF_SELECT: Chip to program: 0: rf, 1: if.
+ * PLL_LD: Rf pll_ld status.
+ * BUSY: 1: asic is busy execute rf programming.
+ */
+#define RFCSR 0x00f4
+#define RFCSR_VALUE FIELD32(0x00ffffff)
+#define RFCSR_NUMBER_OF_BITS FIELD32(0x1f000000)
+#define RFCSR_IF_SELECT FIELD32(0x20000000)
+#define RFCSR_PLL_LD FIELD32(0x40000000)
+#define RFCSR_BUSY FIELD32(0x80000000)
+
+/*
+ * LEDCSR: LED control register.
+ * ON_PERIOD: On period, default 70ms.
+ * OFF_PERIOD: Off period, default 30ms.
+ * LINK: 0: linkoff, 1: linkup.
+ * ACTIVITY: 0: idle, 1: active.
+ * LINK_POLARITY: 0: active low, 1: active high.
+ * ACTIVITY_POLARITY: 0: active low, 1: active high.
+ * LED_DEFAULT: LED state for "enable" 0: ON, 1: OFF.
+ */
+#define LEDCSR 0x00f8
+#define LEDCSR_ON_PERIOD FIELD32(0x000000ff)
+#define LEDCSR_OFF_PERIOD FIELD32(0x0000ff00)
+#define LEDCSR_LINK FIELD32(0x00010000)
+#define LEDCSR_ACTIVITY FIELD32(0x00020000)
+#define LEDCSR_LINK_POLARITY FIELD32(0x00040000)
+#define LEDCSR_ACTIVITY_POLARITY FIELD32(0x00080000)
+#define LEDCSR_LED_DEFAULT FIELD32(0x00100000)
+
+/*
+ * SECCSR3: AES control register.
+ */
+#define SECCSR3 0x00fc
+
+/*
+ * ASIC pointer information.
+ * RXPTR: Current RX ring address.
+ * TXPTR: Current Tx ring address.
+ * PRIPTR: Current Priority ring address.
+ * ATIMPTR: Current ATIM ring address.
+ */
+#define RXPTR 0x0100
+#define TXPTR 0x0104
+#define PRIPTR 0x0108
+#define ATIMPTR 0x010c
+
+/*
+ * TXACKCSR0: TX ACK timeout.
+ */
+#define TXACKCSR0 0x0110
+
+/*
+ * ACK timeout count registers.
+ * ACKCNT0: TX ACK timeout count.
+ * ACKCNT1: RX ACK timeout count.
+ */
+#define ACKCNT0 0x0114
+#define ACKCNT1 0x0118
+
+/*
+ * GPIO and others.
+ */
+
+/*
+ * GPIOCSR: GPIO control register.
+ * GPIOCSR_VALx: GPIO value
+ * GPIOCSR_DIRx: GPIO direction: 0 = output; 1 = input
+ */
+#define GPIOCSR 0x0120
+#define GPIOCSR_VAL0 FIELD32(0x00000001)
+#define GPIOCSR_VAL1 FIELD32(0x00000002)
+#define GPIOCSR_VAL2 FIELD32(0x00000004)
+#define GPIOCSR_VAL3 FIELD32(0x00000008)
+#define GPIOCSR_VAL4 FIELD32(0x00000010)
+#define GPIOCSR_VAL5 FIELD32(0x00000020)
+#define GPIOCSR_VAL6 FIELD32(0x00000040)
+#define GPIOCSR_VAL7 FIELD32(0x00000080)
+#define GPIOCSR_DIR0 FIELD32(0x00000100)
+#define GPIOCSR_DIR1 FIELD32(0x00000200)
+#define GPIOCSR_DIR2 FIELD32(0x00000400)
+#define GPIOCSR_DIR3 FIELD32(0x00000800)
+#define GPIOCSR_DIR4 FIELD32(0x00001000)
+#define GPIOCSR_DIR5 FIELD32(0x00002000)
+#define GPIOCSR_DIR6 FIELD32(0x00004000)
+#define GPIOCSR_DIR7 FIELD32(0x00008000)
+
+/*
+ * FIFO pointer registers.
+ * FIFOCSR0: TX FIFO pointer.
+ * FIFOCSR1: RX FIFO pointer.
+ */
+#define FIFOCSR0 0x0128
+#define FIFOCSR1 0x012c
+
+/*
+ * BCNCSR1: Tx BEACON offset time control register.
+ * PRELOAD: Beacon timer offset in units of usec.
+ * BEACON_CWMIN: 2^CwMin.
+ */
+#define BCNCSR1 0x0130
+#define BCNCSR1_PRELOAD FIELD32(0x0000ffff)
+#define BCNCSR1_BEACON_CWMIN FIELD32(0x000f0000)
+
+/*
+ * MACCSR2: TX_PE to RX_PE turn-around time control register
+ * DELAY: RX_PE low width, in units of pci clock cycle.
+ */
+#define MACCSR2 0x0134
+#define MACCSR2_DELAY FIELD32(0x000000ff)
+
+/*
+ * TESTCSR: TEST mode selection register.
+ */
+#define TESTCSR 0x0138
+
+/*
+ * ARCSR2: 1 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR2 0x013c
+#define ARCSR2_SIGNAL FIELD32(0x000000ff)
+#define ARCSR2_SERVICE FIELD32(0x0000ff00)
+#define ARCSR2_LENGTH FIELD32(0xffff0000)
+
+/*
+ * ARCSR3: 2 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR3 0x0140
+#define ARCSR3_SIGNAL FIELD32(0x000000ff)
+#define ARCSR3_SERVICE FIELD32(0x0000ff00)
+#define ARCSR3_LENGTH FIELD32(0xffff0000)
+
+/*
+ * ARCSR4: 5.5 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR4 0x0144
+#define ARCSR4_SIGNAL FIELD32(0x000000ff)
+#define ARCSR4_SERVICE FIELD32(0x0000ff00)
+#define ARCSR4_LENGTH FIELD32(0xffff0000)
+
+/*
+ * ARCSR5: 11 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR5 0x0148
+#define ARCSR5_SIGNAL FIELD32(0x000000ff)
+#define ARCSR5_SERVICE FIELD32(0x0000ff00)
+#define ARCSR5_LENGTH FIELD32(0xffff0000)
+
+/*
+ * ARTCSR0: CCK ACK/CTS payload consumed time for 1/2/5.5/11 mbps.
+ */
+#define ARTCSR0 0x014c
+#define ARTCSR0_ACK_CTS_11MBS FIELD32(0x000000ff)
+#define ARTCSR0_ACK_CTS_5_5MBS FIELD32(0x0000ff00)
+#define ARTCSR0_ACK_CTS_2MBS FIELD32(0x00ff0000)
+#define ARTCSR0_ACK_CTS_1MBS FIELD32(0xff000000)
+
+
+/*
+ * ARTCSR1: OFDM ACK/CTS payload consumed time for 6/9/12/18 mbps.
+ */
+#define ARTCSR1 0x0150
+#define ARTCSR1_ACK_CTS_6MBS FIELD32(0x000000ff)
+#define ARTCSR1_ACK_CTS_9MBS FIELD32(0x0000ff00)
+#define ARTCSR1_ACK_CTS_12MBS FIELD32(0x00ff0000)
+#define ARTCSR1_ACK_CTS_18MBS FIELD32(0xff000000)
+
+/*
+ * ARTCSR2: OFDM ACK/CTS payload consumed time for 24/36/48/54 mbps.
+ */
+#define ARTCSR2 0x0154
+#define ARTCSR2_ACK_CTS_24MBS FIELD32(0x000000ff)
+#define ARTCSR2_ACK_CTS_36MBS FIELD32(0x0000ff00)
+#define ARTCSR2_ACK_CTS_48MBS FIELD32(0x00ff0000)
+#define ARTCSR2_ACK_CTS_54MBS FIELD32(0xff000000)
+
+/*
+ * SECCSR1: WEP control register.
+ * KICK_ENCRYPT: Kick encryption engine, self-clear.
+ * ONE_SHOT: 0: ring mode, 1: One shot only mode.
+ * DESC_ADDRESS: Descriptor physical address of frame.
+ */
+#define SECCSR1 0x0158
+#define SECCSR1_KICK_ENCRYPT FIELD32(0x00000001)
+#define SECCSR1_ONE_SHOT FIELD32(0x00000002)
+#define SECCSR1_DESC_ADDRESS FIELD32(0xfffffffc)
+
+/*
+ * BBPCSR1: BBP TX configuration.
+ */
+#define BBPCSR1 0x015c
+#define BBPCSR1_CCK FIELD32(0x00000003)
+#define BBPCSR1_CCK_FLIP FIELD32(0x00000004)
+#define BBPCSR1_OFDM FIELD32(0x00030000)
+#define BBPCSR1_OFDM_FLIP FIELD32(0x00040000)
+
+/*
+ * Dual band configuration registers.
+ * DBANDCSR0: Dual band configuration register 0.
+ * DBANDCSR1: Dual band configuration register 1.
+ */
+#define DBANDCSR0 0x0160
+#define DBANDCSR1 0x0164
+
+/*
+ * BBPPCSR: BBP Pin control register.
+ */
+#define BBPPCSR 0x0168
+
+/*
+ * MAC special debug mode selection registers.
+ * DBGSEL0: MAC special debug mode selection register 0.
+ * DBGSEL1: MAC special debug mode selection register 1.
+ */
+#define DBGSEL0 0x016c
+#define DBGSEL1 0x0170
+
+/*
+ * BISTCSR: BBP BIST register.
+ */
+#define BISTCSR 0x0174
+
+/*
+ * Multicast filter registers.
+ * MCAST0: Multicast filter register 0.
+ * MCAST1: Multicast filter register 1.
+ */
+#define MCAST0 0x0178
+#define MCAST1 0x017c
+
+/*
+ * UART registers.
+ * UARTCSR0: UART1 TX register.
+ * UARTCSR1: UART1 RX register.
+ * UARTCSR3: UART1 frame control register.
+ * UARTCSR4: UART1 buffer control register.
+ * UART2CSR0: UART2 TX register.
+ * UART2CSR1: UART2 RX register.
+ * UART2CSR3: UART2 frame control register.
+ * UART2CSR4: UART2 buffer control register.
+ */
+#define UARTCSR0 0x0180
+#define UARTCSR1 0x0184
+#define UARTCSR3 0x0188
+#define UARTCSR4 0x018c
+#define UART2CSR0 0x0190
+#define UART2CSR1 0x0194
+#define UART2CSR3 0x0198
+#define UART2CSR4 0x019c
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * R2: TX antenna control
+ */
+#define BBP_R2_TX_ANTENNA FIELD8(0x03)
+#define BBP_R2_TX_IQ_FLIP FIELD8(0x04)
+
+/*
+ * R14: RX antenna control
+ */
+#define BBP_R14_RX_ANTENNA FIELD8(0x03)
+#define BBP_R14_RX_IQ_FLIP FIELD8(0x04)
+
+/*
+ * BBP_R70
+ */
+#define BBP_R70_JAPAN_FILTER FIELD8(0x08)
+
+/*
+ * RF registers
+ */
+
+/*
+ * RF 1
+ */
+#define RF1_TUNER FIELD32(0x00020000)
+
+/*
+ * RF 3
+ */
+#define RF3_TUNER FIELD32(0x00000100)
+#define RF3_TXPOWER FIELD32(0x00003e00)
+
+/*
+ * EEPROM content.
+ * The wordsize of the EEPROM is 16 bits.
+ */
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_0 0x0002
+#define EEPROM_MAC_ADDR_BYTE0 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR1 0x0003
+#define EEPROM_MAC_ADDR_BYTE2 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_2 0x0004
+#define EEPROM_MAC_ADDR_BYTE4 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5 FIELD16(0xff00)
+
+/*
+ * EEPROM antenna.
+ * ANTENNA_NUM: Number of antenna's.
+ * TX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * LED_MODE: 0: default, 1: TX/RX activity,2: Single (ignore link), 3: rsvd.
+ * DYN_TXAGC: Dynamic TX AGC control.
+ * HARDWARE_RADIO: 1: Hardware controlled radio. Read GPIO0.
+ * RF_TYPE: Rf_type of this adapter.
+ */
+#define EEPROM_ANTENNA 0x10
+#define EEPROM_ANTENNA_NUM FIELD16(0x0003)
+#define EEPROM_ANTENNA_TX_DEFAULT FIELD16(0x000c)
+#define EEPROM_ANTENNA_RX_DEFAULT FIELD16(0x0030)
+#define EEPROM_ANTENNA_LED_MODE FIELD16(0x01c0)
+#define EEPROM_ANTENNA_DYN_TXAGC FIELD16(0x0200)
+#define EEPROM_ANTENNA_HARDWARE_RADIO FIELD16(0x0400)
+#define EEPROM_ANTENNA_RF_TYPE FIELD16(0xf800)
+
+/*
+ * EEPROM NIC config.
+ * CARDBUS_ACCEL: 0: enable, 1: disable.
+ * DYN_BBP_TUNE: 0: enable, 1: disable.
+ * CCK_TX_POWER: CCK TX power compensation.
+ */
+#define EEPROM_NIC 0x11
+#define EEPROM_NIC_CARDBUS_ACCEL FIELD16(0x0001)
+#define EEPROM_NIC_DYN_BBP_TUNE FIELD16(0x0002)
+#define EEPROM_NIC_CCK_TX_POWER FIELD16(0x000c)
+
+/*
+ * EEPROM geography.
+ * GEO: Default geography setting for device.
+ */
+#define EEPROM_GEOGRAPHY 0x12
+#define EEPROM_GEOGRAPHY_GEO FIELD16(0x0f00)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_START 0x13
+#define EEPROM_BBP_SIZE 16
+#define EEPROM_BBP_VALUE FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER
+ */
+#define EEPROM_TXPOWER_START 0x23
+#define EEPROM_TXPOWER_SIZE 7
+#define EEPROM_TXPOWER_1 FIELD16(0x00ff)
+#define EEPROM_TXPOWER_2 FIELD16(0xff00)
+
+/*
+ * RSSI <-> dBm offset calibration
+ */
+#define EEPROM_CALIBRATE_OFFSET 0x3e
+#define EEPROM_CALIBRATE_OFFSET_RSSI FIELD16(0x00ff)
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE (11 * sizeof(__le32))
+#define RXD_DESC_SIZE (11 * sizeof(__le32))
+
+/*
+ * TX descriptor format for TX, PRIO, ATIM and Beacon Ring.
+ */
+
+/*
+ * Word0
+ */
+#define TXD_W0_OWNER_NIC FIELD32(0x00000001)
+#define TXD_W0_VALID FIELD32(0x00000002)
+#define TXD_W0_RESULT FIELD32(0x0000001c)
+#define TXD_W0_RETRY_COUNT FIELD32(0x000000e0)
+#define TXD_W0_MORE_FRAG FIELD32(0x00000100)
+#define TXD_W0_ACK FIELD32(0x00000200)
+#define TXD_W0_TIMESTAMP FIELD32(0x00000400)
+#define TXD_W0_OFDM FIELD32(0x00000800)
+#define TXD_W0_CIPHER_OWNER FIELD32(0x00001000)
+#define TXD_W0_IFS FIELD32(0x00006000)
+#define TXD_W0_RETRY_MODE FIELD32(0x00008000)
+#define TXD_W0_DATABYTE_COUNT FIELD32(0x0fff0000)
+#define TXD_W0_CIPHER_ALG FIELD32(0xe0000000)
+
+/*
+ * Word1
+ */
+#define TXD_W1_BUFFER_ADDRESS FIELD32(0xffffffff)
+
+/*
+ * Word2
+ */
+#define TXD_W2_IV_OFFSET FIELD32(0x0000003f)
+#define TXD_W2_AIFS FIELD32(0x000000c0)
+#define TXD_W2_CWMIN FIELD32(0x00000f00)
+#define TXD_W2_CWMAX FIELD32(0x0000f000)
+
+/*
+ * Word3: PLCP information
+ */
+#define TXD_W3_PLCP_SIGNAL FIELD32(0x000000ff)
+#define TXD_W3_PLCP_SERVICE FIELD32(0x0000ff00)
+#define TXD_W3_PLCP_LENGTH_LOW FIELD32(0x00ff0000)
+#define TXD_W3_PLCP_LENGTH_HIGH FIELD32(0xff000000)
+
+/*
+ * Word4
+ */
+#define TXD_W4_IV FIELD32(0xffffffff)
+
+/*
+ * Word5
+ */
+#define TXD_W5_EIV FIELD32(0xffffffff)
+
+/*
+ * Word6-9: Key
+ */
+#define TXD_W6_KEY FIELD32(0xffffffff)
+#define TXD_W7_KEY FIELD32(0xffffffff)
+#define TXD_W8_KEY FIELD32(0xffffffff)
+#define TXD_W9_KEY FIELD32(0xffffffff)
+
+/*
+ * Word10
+ */
+#define TXD_W10_RTS FIELD32(0x00000001)
+#define TXD_W10_TX_RATE FIELD32(0x000000fe)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ */
+#define RXD_W0_OWNER_NIC FIELD32(0x00000001)
+#define RXD_W0_UNICAST_TO_ME FIELD32(0x00000002)
+#define RXD_W0_MULTICAST FIELD32(0x00000004)
+#define RXD_W0_BROADCAST FIELD32(0x00000008)
+#define RXD_W0_MY_BSS FIELD32(0x00000010)
+#define RXD_W0_CRC_ERROR FIELD32(0x00000020)
+#define RXD_W0_OFDM FIELD32(0x00000040)
+#define RXD_W0_PHYSICAL_ERROR FIELD32(0x00000080)
+#define RXD_W0_CIPHER_OWNER FIELD32(0x00000100)
+#define RXD_W0_ICV_ERROR FIELD32(0x00000200)
+#define RXD_W0_IV_OFFSET FIELD32(0x0000fc00)
+#define RXD_W0_DATABYTE_COUNT FIELD32(0x0fff0000)
+#define RXD_W0_CIPHER_ALG FIELD32(0xe0000000)
+
+/*
+ * Word1
+ */
+#define RXD_W1_BUFFER_ADDRESS FIELD32(0xffffffff)
+
+/*
+ * Word2
+ */
+#define RXD_W2_SIGNAL FIELD32(0x000000ff)
+#define RXD_W2_RSSI FIELD32(0x0000ff00)
+#define RXD_W2_TA FIELD32(0xffff0000)
+
+/*
+ * Word3
+ */
+#define RXD_W3_TA FIELD32(0xffffffff)
+
+/*
+ * Word4
+ */
+#define RXD_W4_IV FIELD32(0xffffffff)
+
+/*
+ * Word5
+ */
+#define RXD_W5_EIV FIELD32(0xffffffff)
+
+/*
+ * Word6-9: Key
+ */
+#define RXD_W6_KEY FIELD32(0xffffffff)
+#define RXD_W7_KEY FIELD32(0xffffffff)
+#define RXD_W8_KEY FIELD32(0xffffffff)
+#define RXD_W9_KEY FIELD32(0xffffffff)
+
+/*
+ * Word10
+ */
+#define RXD_W10_DROP FIELD32(0x00000001)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ */
+#define MIN_TXPOWER 0
+#define MAX_TXPOWER 31
+#define DEFAULT_TXPOWER 24
+
+#define TXPOWER_FROM_DEV(__txpower) \
+ (((u8)(__txpower)) > MAX_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+#define TXPOWER_TO_DEV(__txpower) \
+ clamp_t(u8, __txpower, MIN_TXPOWER, MAX_TXPOWER)
+
+#endif /* RT2500PCI_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2500usb.c b/drivers/net/wireless/ralink/rt2x00/rt2500usb.c
new file mode 100644
index 0000000000..13fdcff0ad
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2500usb.c
@@ -0,0 +1,1980 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2500usb
+ Abstract: rt2500usb device specific routines.
+ Supported chipsets: RT2570.
+ */
+
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/usb.h>
+
+#include "rt2x00.h"
+#include "rt2x00usb.h"
+#include "rt2500usb.h"
+
+/*
+ * Allow hardware encryption to be disabled.
+ */
+static bool modparam_nohwcrypt;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2500usb_register_read and rt2500usb_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attampt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ * If the csr_mutex is already held then the _lock variants must
+ * be used instead.
+ */
+static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset)
+{
+ __le16 reg;
+ rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
+ USB_VENDOR_REQUEST_IN, offset,
+ &reg, sizeof(reg));
+ return le16_to_cpu(reg);
+}
+
+static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset)
+{
+ __le16 reg;
+ rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
+ USB_VENDOR_REQUEST_IN, offset,
+ &reg, sizeof(reg), REGISTER_TIMEOUT);
+ return le16_to_cpu(reg);
+}
+
+static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ u16 value)
+{
+ __le16 reg = cpu_to_le16(value);
+ rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
+ USB_VENDOR_REQUEST_OUT, offset,
+ &reg, sizeof(reg));
+}
+
+static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ u16 value)
+{
+ __le16 reg = cpu_to_le16(value);
+ rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
+ USB_VENDOR_REQUEST_OUT, offset,
+ &reg, sizeof(reg), REGISTER_TIMEOUT);
+}
+
+static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ void *value, const u16 length)
+{
+ rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
+ USB_VENDOR_REQUEST_OUT, offset,
+ value, length);
+}
+
+static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ struct rt2x00_field16 field,
+ u16 *reg)
+{
+ unsigned int i;
+
+ for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
+ *reg = rt2500usb_register_read_lock(rt2x00dev, offset);
+ if (!rt2x00_get_field16(*reg, field))
+ return 1;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
+ offset, *reg);
+ *reg = ~0;
+
+ return 0;
+}
+
+#define WAIT_FOR_BBP(__dev, __reg) \
+ rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+ rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
+
+static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u8 value)
+{
+ u16 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
+ rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
+ rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
+
+ rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word)
+{
+ u16 reg;
+ u8 value;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the read request into the register.
+ * After the data has been written, we wait until hardware
+ * returns the correct value, if at any time the register
+ * doesn't become available in time, reg will be 0xffffffff
+ * which means we return 0xff to the caller.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
+ rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
+
+ rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
+
+ if (WAIT_FOR_BBP(rt2x00dev, &reg))
+ reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
+ }
+
+ value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+
+ return value;
+}
+
+static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u32 value)
+{
+ u16 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the RF becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
+ rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
+
+ reg = 0;
+ rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
+ rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
+ rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
+ rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
+
+ rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
+ rt2x00_rf_write(rt2x00dev, word, value);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset)
+{
+ return rt2500usb_register_read(rt2x00dev, offset);
+}
+
+static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ u32 value)
+{
+ rt2500usb_register_write(rt2x00dev, offset, value);
+}
+
+static const struct rt2x00debug rt2500usb_rt2x00debug = {
+ .owner = THIS_MODULE,
+ .csr = {
+ .read = _rt2500usb_register_read,
+ .write = _rt2500usb_register_write,
+ .flags = RT2X00DEBUGFS_OFFSET,
+ .word_base = CSR_REG_BASE,
+ .word_size = sizeof(u16),
+ .word_count = CSR_REG_SIZE / sizeof(u16),
+ },
+ .eeprom = {
+ .read = rt2x00_eeprom_read,
+ .write = rt2x00_eeprom_write,
+ .word_base = EEPROM_BASE,
+ .word_size = sizeof(u16),
+ .word_count = EEPROM_SIZE / sizeof(u16),
+ },
+ .bbp = {
+ .read = rt2500usb_bbp_read,
+ .write = rt2500usb_bbp_write,
+ .word_base = BBP_BASE,
+ .word_size = sizeof(u8),
+ .word_count = BBP_SIZE / sizeof(u8),
+ },
+ .rf = {
+ .read = rt2x00_rf_read,
+ .write = rt2500usb_rf_write,
+ .word_base = RF_BASE,
+ .word_size = sizeof(u32),
+ .word_count = RF_SIZE / sizeof(u32),
+ },
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+ u16 reg;
+
+ reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
+ return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
+}
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
+ enum led_brightness brightness)
+{
+ struct rt2x00_led *led =
+ container_of(led_cdev, struct rt2x00_led, led_dev);
+ unsigned int enabled = brightness != LED_OFF;
+ u16 reg;
+
+ reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
+
+ if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
+ rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
+ else if (led->type == LED_TYPE_ACTIVITY)
+ rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
+
+ rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
+}
+
+static int rt2500usb_blink_set(struct led_classdev *led_cdev,
+ unsigned long *delay_on,
+ unsigned long *delay_off)
+{
+ struct rt2x00_led *led =
+ container_of(led_cdev, struct rt2x00_led, led_dev);
+ u16 reg;
+
+ reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
+ rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
+ rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
+ rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
+
+ return 0;
+}
+
+static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_led *led,
+ enum led_type type)
+{
+ led->rt2x00dev = rt2x00dev;
+ led->type = type;
+ led->led_dev.brightness_set = rt2500usb_brightness_set;
+ led->led_dev.blink_set = rt2500usb_blink_set;
+ led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+
+/*
+ * rt2500usb does not differentiate between shared and pairwise
+ * keys, so we should use the same function for both key types.
+ */
+static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key)
+{
+ u32 mask;
+ u16 reg;
+ enum cipher curr_cipher;
+
+ if (crypto->cmd == SET_KEY) {
+ /*
+ * Disallow to set WEP key other than with index 0,
+ * it is known that not work at least on some hardware.
+ * SW crypto will be used in that case.
+ */
+ if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
+ key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
+ key->keyidx != 0)
+ return -EOPNOTSUPP;
+
+ /*
+ * Pairwise key will always be entry 0, but this
+ * could collide with a shared key on the same
+ * position...
+ */
+ mask = TXRX_CSR0_KEY_ID.bit_mask;
+
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
+ curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
+ reg &= mask;
+
+ if (reg && reg == mask)
+ return -ENOSPC;
+
+ reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
+
+ key->hw_key_idx += reg ? ffz(reg) : 0;
+ /*
+ * Hardware requires that all keys use the same cipher
+ * (e.g. TKIP-only, AES-only, but not TKIP+AES).
+ * If this is not the first key, compare the cipher with the
+ * first one and fall back to SW crypto if not the same.
+ */
+ if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
+ return -EOPNOTSUPP;
+
+ rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
+ crypto->key, sizeof(crypto->key));
+
+ /*
+ * The driver does not support the IV/EIV generation
+ * in hardware. However it demands the data to be provided
+ * both separately as well as inside the frame.
+ * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
+ * to ensure rt2x00lib will not strip the data from the
+ * frame after the copy, now we must tell mac80211
+ * to generate the IV/EIV data.
+ */
+ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
+ key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
+ }
+
+ /*
+ * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
+ * a particular key is valid.
+ */
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
+ rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
+
+ mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
+ if (crypto->cmd == SET_KEY)
+ mask |= 1 << key->hw_key_idx;
+ else if (crypto->cmd == DISABLE_KEY)
+ mask &= ~(1 << key->hw_key_idx);
+ rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+ return 0;
+}
+
+static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
+ const unsigned int filter_flags)
+{
+ u16 reg;
+
+ /*
+ * Start configuration steps.
+ * Note that the version error will always be dropped
+ * and broadcast frames will always be accepted since
+ * there is no filter for it at this time.
+ */
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
+ rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
+ !(filter_flags & FIF_FCSFAIL));
+ rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
+ !(filter_flags & FIF_PLCPFAIL));
+ rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
+ !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
+ rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
+ !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
+ !rt2x00dev->intf_ap_count);
+ rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
+ rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
+ !(filter_flags & FIF_ALLMULTI));
+ rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
+}
+
+static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_intf *intf,
+ struct rt2x00intf_conf *conf,
+ const unsigned int flags)
+{
+ unsigned int bcn_preload;
+ u16 reg;
+
+ if (flags & CONFIG_UPDATE_TYPE) {
+ /*
+ * Enable beacon config
+ */
+ bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
+ rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
+ rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
+ 2 * (conf->type != NL80211_IFTYPE_STATION));
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
+
+ /*
+ * Enable synchronisation.
+ */
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
+ rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
+
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
+ rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+ }
+
+ if (flags & CONFIG_UPDATE_MAC)
+ rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
+ (3 * sizeof(__le16)));
+
+ if (flags & CONFIG_UPDATE_BSSID)
+ rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
+ (3 * sizeof(__le16)));
+}
+
+static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_erp *erp,
+ u32 changed)
+{
+ u16 reg;
+
+ if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
+ rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
+ !!erp->short_preamble);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
+ }
+
+ if (changed & BSS_CHANGED_BASIC_RATES)
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
+ erp->basic_rates);
+
+ if (changed & BSS_CHANGED_BEACON_INT) {
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
+ rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
+ erp->beacon_int * 4);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
+ }
+
+ if (changed & BSS_CHANGED_ERP_SLOT) {
+ rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
+ }
+}
+
+static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant)
+{
+ u8 r2;
+ u8 r14;
+ u16 csr5;
+ u16 csr6;
+
+ /*
+ * We should never come here because rt2x00lib is supposed
+ * to catch this and send us the correct antenna explicitely.
+ */
+ BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
+ ant->tx == ANTENNA_SW_DIVERSITY);
+
+ r2 = rt2500usb_bbp_read(rt2x00dev, 2);
+ r14 = rt2500usb_bbp_read(rt2x00dev, 14);
+ csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
+ csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
+
+ /*
+ * Configure the TX antenna.
+ */
+ switch (ant->tx) {
+ case ANTENNA_HW_DIVERSITY:
+ rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
+ rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
+ rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
+ break;
+ case ANTENNA_A:
+ rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
+ rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
+ rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
+ break;
+ case ANTENNA_B:
+ default:
+ rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
+ rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
+ rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
+ break;
+ }
+
+ /*
+ * Configure the RX antenna.
+ */
+ switch (ant->rx) {
+ case ANTENNA_HW_DIVERSITY:
+ rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
+ break;
+ case ANTENNA_A:
+ rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
+ break;
+ case ANTENNA_B:
+ default:
+ rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
+ break;
+ }
+
+ /*
+ * RT2525E and RT5222 need to flip TX I/Q
+ */
+ if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
+ rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
+ rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
+ rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
+
+ /*
+ * RT2525E does not need RX I/Q Flip.
+ */
+ if (rt2x00_rf(rt2x00dev, RF2525E))
+ rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
+ } else {
+ rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
+ rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
+ }
+
+ rt2500usb_bbp_write(rt2x00dev, 2, r2);
+ rt2500usb_bbp_write(rt2x00dev, 14, r14);
+ rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
+ rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
+}
+
+static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
+ struct rf_channel *rf, const int txpower)
+{
+ /*
+ * Set TXpower.
+ */
+ rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+
+ /*
+ * For RT2525E we should first set the channel to half band higher.
+ */
+ if (rt2x00_rf(rt2x00dev, RF2525E)) {
+ static const u32 vals[] = {
+ 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
+ 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
+ 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
+ 0x00000902, 0x00000906
+ };
+
+ rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
+ if (rf->rf4)
+ rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
+ }
+
+ rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
+ rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
+ rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
+ if (rf->rf4)
+ rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
+}
+
+static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
+ const int txpower)
+{
+ u32 rf3;
+
+ rf3 = rt2x00_rf_read(rt2x00dev, 3);
+ rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+ rt2500usb_rf_write(rt2x00dev, 3, rf3);
+}
+
+static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ enum dev_state state =
+ (libconf->conf->flags & IEEE80211_CONF_PS) ?
+ STATE_SLEEP : STATE_AWAKE;
+ u16 reg;
+
+ if (state == STATE_SLEEP) {
+ reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
+ rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
+ rt2x00dev->beacon_int - 20);
+ rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
+ libconf->conf->listen_interval - 1);
+
+ /* We must first disable autowake before it can be enabled */
+ rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
+
+ rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
+ } else {
+ reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
+ rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
+ }
+
+ rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+}
+
+static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf,
+ const unsigned int flags)
+{
+ if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
+ rt2500usb_config_channel(rt2x00dev, &libconf->rf,
+ libconf->conf->power_level);
+ if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
+ !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
+ rt2500usb_config_txpower(rt2x00dev,
+ libconf->conf->power_level);
+ if (flags & IEEE80211_CONF_CHANGE_PS)
+ rt2500usb_config_ps(rt2x00dev, libconf);
+}
+
+/*
+ * Link tuning
+ */
+static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual)
+{
+ u16 reg;
+
+ /*
+ * Update FCS error count from register.
+ */
+ reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
+ qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
+
+ /*
+ * Update False CCA count from register.
+ */
+ reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
+ qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
+}
+
+static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual)
+{
+ u16 eeprom;
+ u16 value;
+
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
+ value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
+ rt2500usb_bbp_write(rt2x00dev, 24, value);
+
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
+ value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
+ rt2500usb_bbp_write(rt2x00dev, 25, value);
+
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
+ value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
+ rt2500usb_bbp_write(rt2x00dev, 61, value);
+
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
+ value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
+ rt2500usb_bbp_write(rt2x00dev, 17, value);
+
+ qual->vgc_level = value;
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt2500usb_start_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u16 reg;
+
+ switch (queue->qid) {
+ case QID_RX:
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
+ rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
+ rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
+ rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
+ rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+static void rt2500usb_stop_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u16 reg;
+
+ switch (queue->qid) {
+ case QID_RX:
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
+ rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
+ rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
+ rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
+ rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+/*
+ * Initialization functions.
+ */
+static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+ u16 reg;
+
+ rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
+ USB_MODE_TEST, REGISTER_TIMEOUT);
+ rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
+ 0x00f0, REGISTER_TIMEOUT);
+
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
+ rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
+
+ rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
+
+ reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
+ rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
+ rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
+ rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
+ rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
+ rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
+ rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
+ rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
+ rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
+ rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
+ rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
+
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
+ rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
+ rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
+ rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
+ rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
+
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
+ rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
+ rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
+ rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
+ rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
+
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
+ rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
+ rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
+ rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
+ rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
+
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
+ rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
+ rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
+ rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
+ rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
+
+ if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+ return -EBUSY;
+
+ reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
+ rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
+ rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
+ rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
+ reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
+ rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
+ } else {
+ reg = 0;
+ rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
+ rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
+ }
+ rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
+
+ rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
+
+ reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
+ rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
+ rt2x00dev->rx->data_size);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
+
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
+ rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
+ rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+ reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
+ rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
+
+ reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
+ rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
+ rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
+
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
+ rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
+
+ return 0;
+}
+
+static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u8 value;
+
+ for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
+ value = rt2500usb_bbp_read(rt2x00dev, 0);
+ if ((value != 0xff) && (value != 0x00))
+ return 0;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+ return -EACCES;
+}
+
+static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u16 eeprom;
+ u8 value;
+ u8 reg_id;
+
+ if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
+ return -EACCES;
+
+ rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
+ rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
+ rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
+ rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
+ rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
+ rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
+ rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
+ rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
+ rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
+ rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
+ rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
+ rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
+ rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
+ rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
+ rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
+ rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
+ rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
+ rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
+ rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
+ rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
+ rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
+ rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
+ rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
+ rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
+ rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
+ rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
+ rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
+ rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
+ rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
+ rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
+ rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
+
+ for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
+
+ if (eeprom != 0xffff && eeprom != 0x0000) {
+ reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+ value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+ rt2500usb_bbp_write(rt2x00dev, reg_id, value);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ /*
+ * Initialize all registers.
+ */
+ if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
+ rt2500usb_init_bbp(rt2x00dev)))
+ return -EIO;
+
+ return 0;
+}
+
+static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
+
+ /*
+ * Disable synchronisation.
+ */
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
+
+ rt2x00usb_disable_radio(rt2x00dev);
+}
+
+static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ u16 reg;
+ u16 reg2;
+ unsigned int i;
+ bool put_to_sleep;
+ u8 bbp_state;
+ u8 rf_state;
+
+ put_to_sleep = (state != STATE_AWAKE);
+
+ reg = 0;
+ rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
+ rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
+ rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
+ rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
+
+ /*
+ * Device is not guaranteed to be in the requested state yet.
+ * We must wait until the register indicates that the
+ * device has entered the correct state.
+ */
+ for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
+ reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
+ bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
+ rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
+ if (bbp_state == state && rf_state == state)
+ return 0;
+ rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
+ msleep(30);
+ }
+
+ return -EBUSY;
+}
+
+static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int retval = 0;
+
+ switch (state) {
+ case STATE_RADIO_ON:
+ retval = rt2500usb_enable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_OFF:
+ rt2500usb_disable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_IRQ_ON:
+ case STATE_RADIO_IRQ_OFF:
+ /* No support, but no error either */
+ break;
+ case STATE_DEEP_SLEEP:
+ case STATE_SLEEP:
+ case STATE_STANDBY:
+ case STATE_AWAKE:
+ retval = rt2500usb_set_state(rt2x00dev, state);
+ break;
+ default:
+ retval = -ENOTSUPP;
+ break;
+ }
+
+ if (unlikely(retval))
+ rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+ state, retval);
+
+ return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt2500usb_write_tx_desc(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ __le32 *txd = (__le32 *) entry->skb->data;
+ u32 word;
+
+ /*
+ * Start writing the descriptor words.
+ */
+ word = rt2x00_desc_read(txd, 0);
+ rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
+ rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+ test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_ACK,
+ test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+ test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_OFDM,
+ (txdesc->rate_mode == RATE_MODE_OFDM));
+ rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
+ test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
+ rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
+ rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
+ rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
+ rt2x00_desc_write(txd, 0, word);
+
+ word = rt2x00_desc_read(txd, 1);
+ rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
+ rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
+ rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
+ rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
+ rt2x00_desc_write(txd, 1, word);
+
+ word = rt2x00_desc_read(txd, 2);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
+ txdesc->u.plcp.length_low);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
+ txdesc->u.plcp.length_high);
+ rt2x00_desc_write(txd, 2, word);
+
+ if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
+ _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
+ _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
+ }
+
+ /*
+ * Register descriptor details in skb frame descriptor.
+ */
+ skbdesc->flags |= SKBDESC_DESC_IN_SKB;
+ skbdesc->desc = txd;
+ skbdesc->desc_len = TXD_DESC_SIZE;
+}
+
+/*
+ * TX data initialization
+ */
+static void rt2500usb_beacondone(struct urb *urb);
+
+static void rt2500usb_write_beacon(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
+ struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
+ int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
+ int length;
+ u16 reg, reg0;
+
+ /*
+ * Disable beaconing while we are reloading the beacon data,
+ * otherwise we might be sending out invalid data.
+ */
+ reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
+ rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+
+ /*
+ * Add space for the descriptor in front of the skb.
+ */
+ skb_push(entry->skb, TXD_DESC_SIZE);
+ memset(entry->skb->data, 0, TXD_DESC_SIZE);
+
+ /*
+ * Write the TX descriptor for the beacon.
+ */
+ rt2500usb_write_tx_desc(entry, txdesc);
+
+ /*
+ * Dump beacon to userspace through debugfs.
+ */
+ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
+
+ /*
+ * USB devices cannot blindly pass the skb->len as the
+ * length of the data to usb_fill_bulk_urb. Pass the skb
+ * to the driver to determine what the length should be.
+ */
+ length = rt2x00dev->ops->lib->get_tx_data_len(entry);
+
+ usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
+ entry->skb->data, length, rt2500usb_beacondone,
+ entry);
+
+ /*
+ * Second we need to create the guardian byte.
+ * We only need a single byte, so lets recycle
+ * the 'flags' field we are not using for beacons.
+ */
+ bcn_priv->guardian_data = 0;
+ usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
+ &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
+ entry);
+
+ /*
+ * Send out the guardian byte.
+ */
+ usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
+
+ /*
+ * Enable beaconing again.
+ */
+ rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
+ rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
+ reg0 = reg;
+ rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
+ /*
+ * Beacon generation will fail initially.
+ * To prevent this we need to change the TXRX_CSR19
+ * register several times (reg0 is the same as reg
+ * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
+ * and 1 in reg).
+ */
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
+ rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+}
+
+static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
+{
+ int length;
+
+ /*
+ * The length _must_ be a multiple of 2,
+ * but it must _not_ be a multiple of the USB packet size.
+ */
+ length = roundup(entry->skb->len, 2);
+ length += (2 * !(length % entry->queue->usb_maxpacket));
+
+ return length;
+}
+
+/*
+ * RX control handlers
+ */
+static void rt2500usb_fill_rxdone(struct queue_entry *entry,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct queue_entry_priv_usb *entry_priv = entry->priv_data;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ __le32 *rxd =
+ (__le32 *)(entry->skb->data +
+ (entry_priv->urb->actual_length -
+ entry->queue->desc_size));
+ u32 word0;
+ u32 word1;
+
+ /*
+ * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
+ * frame data in rt2x00usb.
+ */
+ memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
+ rxd = (__le32 *)skbdesc->desc;
+
+ /*
+ * It is now safe to read the descriptor on all architectures.
+ */
+ word0 = rt2x00_desc_read(rxd, 0);
+ word1 = rt2x00_desc_read(rxd, 1);
+
+ if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
+ rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+ if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
+ rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
+
+ rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
+ if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
+ rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
+
+ if (rxdesc->cipher != CIPHER_NONE) {
+ rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
+ rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
+ rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
+
+ /* ICV is located at the end of frame */
+
+ rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
+ if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
+ rxdesc->flags |= RX_FLAG_DECRYPTED;
+ else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
+ rxdesc->flags |= RX_FLAG_MMIC_ERROR;
+ }
+
+ /*
+ * Obtain the status about this packet.
+ * When frame was received with an OFDM bitrate,
+ * the signal is the PLCP value. If it was received with
+ * a CCK bitrate the signal is the rate in 100kbit/s.
+ */
+ rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
+ rxdesc->rssi =
+ rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
+ rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+
+ if (rt2x00_get_field32(word0, RXD_W0_OFDM))
+ rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
+ else
+ rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
+ if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
+ rxdesc->dev_flags |= RXDONE_MY_BSS;
+
+ /*
+ * Adjust the skb memory window to the frame boundaries.
+ */
+ skb_trim(entry->skb, rxdesc->size);
+}
+
+/*
+ * Interrupt functions.
+ */
+static void rt2500usb_beacondone(struct urb *urb)
+{
+ struct queue_entry *entry = (struct queue_entry *)urb->context;
+ struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
+
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
+ return;
+
+ /*
+ * Check if this was the guardian beacon,
+ * if that was the case we need to send the real beacon now.
+ * Otherwise we should free the sk_buffer, the device
+ * should be doing the rest of the work now.
+ */
+ if (bcn_priv->guardian_urb == urb) {
+ usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
+ } else if (bcn_priv->urb == urb) {
+ dev_kfree_skb(entry->skb);
+ entry->skb = NULL;
+ }
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ u16 word;
+ u8 *mac;
+ u8 bbp;
+
+ rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
+
+ /*
+ * Start validation of the data that has been read.
+ */
+ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+ rt2x00lib_set_mac_address(rt2x00dev, mac);
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
+ ANTENNA_SW_DIVERSITY);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
+ ANTENNA_SW_DIVERSITY);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
+ LED_MODE_DEFAULT);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
+ DEFAULT_RSSI_OFFSET);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
+ word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
+ }
+
+ /*
+ * Switch lower vgc bound to current BBP R17 value,
+ * lower the value a bit for better quality.
+ */
+ bbp = rt2500usb_bbp_read(rt2x00dev, 17);
+ bbp -= 6;
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
+ } else {
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
+ rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
+ }
+
+ return 0;
+}
+
+static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ u16 reg;
+ u16 value;
+ u16 eeprom;
+
+ /*
+ * Read EEPROM word for configuration.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
+
+ /*
+ * Identify RF chipset.
+ */
+ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+ reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
+ rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
+
+ if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
+ rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
+ return -ENODEV;
+ }
+
+ if (!rt2x00_rf(rt2x00dev, RF2522) &&
+ !rt2x00_rf(rt2x00dev, RF2523) &&
+ !rt2x00_rf(rt2x00dev, RF2524) &&
+ !rt2x00_rf(rt2x00dev, RF2525) &&
+ !rt2x00_rf(rt2x00dev, RF2525E) &&
+ !rt2x00_rf(rt2x00dev, RF5222)) {
+ rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
+ return -ENODEV;
+ }
+
+ /*
+ * Identify default antenna configuration.
+ */
+ rt2x00dev->default_ant.tx =
+ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
+ rt2x00dev->default_ant.rx =
+ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
+
+ /*
+ * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
+ * I am not 100% sure about this, but the legacy drivers do not
+ * indicate antenna swapping in software is required when
+ * diversity is enabled.
+ */
+ if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
+ rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
+ if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
+ rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
+
+ /*
+ * Store led mode, for correct led behaviour.
+ */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
+
+ rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+ if (value == LED_MODE_TXRX_ACTIVITY ||
+ value == LED_MODE_DEFAULT ||
+ value == LED_MODE_ASUS)
+ rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
+ LED_TYPE_ACTIVITY);
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+ /*
+ * Detect if this device has an hardware controlled radio.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
+ __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+
+ /*
+ * Read the RSSI <-> dBm offset information.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
+ rt2x00dev->rssi_offset =
+ rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
+
+ return 0;
+}
+
+/*
+ * RF value list for RF2522
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2522[] = {
+ { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
+ { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
+ { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
+ { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
+ { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
+ { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
+ { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
+ { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
+ { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
+ { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
+ { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
+ { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
+ { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
+ { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
+};
+
+/*
+ * RF value list for RF2523
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2523[] = {
+ { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
+ { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
+ { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
+ { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
+ { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
+ { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
+ { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
+ { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
+ { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
+ { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
+ { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
+ { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
+ { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
+ { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2524
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2524[] = {
+ { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
+ { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
+ { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
+ { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
+ { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
+ { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
+ { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
+ { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
+ { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
+ { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
+ { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
+ { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
+ { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
+ { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2525
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2525[] = {
+ { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
+ { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
+ { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
+ { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
+ { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
+ { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
+ { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
+ { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
+ { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
+ { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
+ { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
+ { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
+ { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
+ { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2525e
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2525e[] = {
+ { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
+ { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
+ { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
+ { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
+ { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
+ { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
+ { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
+ { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
+ { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
+ { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
+ { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
+ { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
+ { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
+ { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
+};
+
+/*
+ * RF value list for RF5222
+ * Supports: 2.4 GHz & 5.2 GHz
+ */
+static const struct rf_channel rf_vals_5222[] = {
+ { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
+ { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
+ { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
+ { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
+ { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
+ { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
+ { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
+ { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
+ { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
+ { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
+ { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
+ { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
+ { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
+ { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
+
+ /* 802.11 UNI / HyperLan 2 */
+ { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
+ { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
+ { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
+ { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
+ { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
+ { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
+ { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
+ { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
+
+ /* 802.11 HyperLan 2 */
+ { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
+ { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
+ { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
+ { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
+ { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
+ { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
+ { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
+ { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
+ { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
+ { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
+
+ /* 802.11 UNII */
+ { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
+ { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
+ { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
+ { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
+ { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
+};
+
+static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+ struct hw_mode_spec *spec = &rt2x00dev->spec;
+ struct channel_info *info;
+ u8 *tx_power;
+ unsigned int i;
+
+ /*
+ * Initialize all hw fields.
+ *
+ * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
+ * capable of sending the buffered frames out after the DTIM
+ * transmission using rt2x00lib_beacondone. This will send out
+ * multicast and broadcast traffic immediately instead of buffering it
+ * infinitly and thus dropping it after some time.
+ */
+ ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+ ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+ ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
+ ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+
+ /*
+ * Disable powersaving as default.
+ */
+ rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
+
+ SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+ SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+ rt2x00_eeprom_addr(rt2x00dev,
+ EEPROM_MAC_ADDR_0));
+
+ /*
+ * Initialize hw_mode information.
+ */
+ spec->supported_bands = SUPPORT_BAND_2GHZ;
+ spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+ if (rt2x00_rf(rt2x00dev, RF2522)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
+ spec->channels = rf_vals_bg_2522;
+ } else if (rt2x00_rf(rt2x00dev, RF2523)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
+ spec->channels = rf_vals_bg_2523;
+ } else if (rt2x00_rf(rt2x00dev, RF2524)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
+ spec->channels = rf_vals_bg_2524;
+ } else if (rt2x00_rf(rt2x00dev, RF2525)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
+ spec->channels = rf_vals_bg_2525;
+ } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
+ spec->channels = rf_vals_bg_2525e;
+ } else if (rt2x00_rf(rt2x00dev, RF5222)) {
+ spec->supported_bands |= SUPPORT_BAND_5GHZ;
+ spec->num_channels = ARRAY_SIZE(rf_vals_5222);
+ spec->channels = rf_vals_5222;
+ }
+
+ /*
+ * Create channel information array
+ */
+ info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ spec->channels_info = info;
+
+ tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
+ for (i = 0; i < 14; i++) {
+ info[i].max_power = MAX_TXPOWER;
+ info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
+ }
+
+ if (spec->num_channels > 14) {
+ for (i = 14; i < spec->num_channels; i++) {
+ info[i].max_power = MAX_TXPOWER;
+ info[i].default_power1 = DEFAULT_TXPOWER;
+ }
+ }
+
+ return 0;
+}
+
+static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+ u16 reg;
+
+ /*
+ * Allocate eeprom data.
+ */
+ retval = rt2500usb_validate_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ retval = rt2500usb_init_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Enable rfkill polling by setting GPIO direction of the
+ * rfkill switch GPIO pin correctly.
+ */
+ reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
+ rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
+ rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
+
+ /*
+ * Initialize hw specifications.
+ */
+ retval = rt2500usb_probe_hw_mode(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * This device requires the atim queue
+ */
+ __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
+ if (!modparam_nohwcrypt) {
+ __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
+ }
+ __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
+
+ /*
+ * Set the rssi offset.
+ */
+ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+ return 0;
+}
+
+static const struct ieee80211_ops rt2500usb_mac80211_ops = {
+ .tx = rt2x00mac_tx,
+ .wake_tx_queue = ieee80211_handle_wake_tx_queue,
+ .start = rt2x00mac_start,
+ .stop = rt2x00mac_stop,
+ .add_interface = rt2x00mac_add_interface,
+ .remove_interface = rt2x00mac_remove_interface,
+ .config = rt2x00mac_config,
+ .configure_filter = rt2x00mac_configure_filter,
+ .set_tim = rt2x00mac_set_tim,
+ .set_key = rt2x00mac_set_key,
+ .sw_scan_start = rt2x00mac_sw_scan_start,
+ .sw_scan_complete = rt2x00mac_sw_scan_complete,
+ .get_stats = rt2x00mac_get_stats,
+ .bss_info_changed = rt2x00mac_bss_info_changed,
+ .conf_tx = rt2x00mac_conf_tx,
+ .rfkill_poll = rt2x00mac_rfkill_poll,
+ .flush = rt2x00mac_flush,
+ .set_antenna = rt2x00mac_set_antenna,
+ .get_antenna = rt2x00mac_get_antenna,
+ .get_ringparam = rt2x00mac_get_ringparam,
+ .tx_frames_pending = rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
+ .probe_hw = rt2500usb_probe_hw,
+ .initialize = rt2x00usb_initialize,
+ .uninitialize = rt2x00usb_uninitialize,
+ .clear_entry = rt2x00usb_clear_entry,
+ .set_device_state = rt2500usb_set_device_state,
+ .rfkill_poll = rt2500usb_rfkill_poll,
+ .link_stats = rt2500usb_link_stats,
+ .reset_tuner = rt2500usb_reset_tuner,
+ .watchdog = rt2x00usb_watchdog,
+ .start_queue = rt2500usb_start_queue,
+ .kick_queue = rt2x00usb_kick_queue,
+ .stop_queue = rt2500usb_stop_queue,
+ .flush_queue = rt2x00usb_flush_queue,
+ .write_tx_desc = rt2500usb_write_tx_desc,
+ .write_beacon = rt2500usb_write_beacon,
+ .get_tx_data_len = rt2500usb_get_tx_data_len,
+ .fill_rxdone = rt2500usb_fill_rxdone,
+ .config_shared_key = rt2500usb_config_key,
+ .config_pairwise_key = rt2500usb_config_key,
+ .config_filter = rt2500usb_config_filter,
+ .config_intf = rt2500usb_config_intf,
+ .config_erp = rt2500usb_config_erp,
+ .config_ant = rt2500usb_config_ant,
+ .config = rt2500usb_config,
+};
+
+static void rt2500usb_queue_init(struct data_queue *queue)
+{
+ switch (queue->qid) {
+ case QID_RX:
+ queue->limit = 32;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = RXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_usb);
+ break;
+
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ queue->limit = 32;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_usb);
+ break;
+
+ case QID_BEACON:
+ queue->limit = 1;
+ queue->data_size = MGMT_FRAME_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
+ break;
+
+ case QID_ATIM:
+ queue->limit = 8;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_usb);
+ break;
+
+ default:
+ BUG();
+ break;
+ }
+}
+
+static const struct rt2x00_ops rt2500usb_ops = {
+ .name = KBUILD_MODNAME,
+ .max_ap_intf = 1,
+ .eeprom_size = EEPROM_SIZE,
+ .rf_size = RF_SIZE,
+ .tx_queues = NUM_TX_QUEUES,
+ .queue_init = rt2500usb_queue_init,
+ .lib = &rt2500usb_rt2x00_ops,
+ .hw = &rt2500usb_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+ .debugfs = &rt2500usb_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * rt2500usb module information.
+ */
+static const struct usb_device_id rt2500usb_device_table[] = {
+ /* ASUS */
+ { USB_DEVICE(0x0b05, 0x1706) },
+ { USB_DEVICE(0x0b05, 0x1707) },
+ /* Belkin */
+ { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
+ { USB_DEVICE(0x050d, 0x7051) },
+ /* Cisco Systems */
+ { USB_DEVICE(0x13b1, 0x000d) },
+ { USB_DEVICE(0x13b1, 0x0011) },
+ { USB_DEVICE(0x13b1, 0x001a) },
+ /* Conceptronic */
+ { USB_DEVICE(0x14b2, 0x3c02) },
+ /* D-LINK */
+ { USB_DEVICE(0x2001, 0x3c00) },
+ /* Gigabyte */
+ { USB_DEVICE(0x1044, 0x8001) },
+ { USB_DEVICE(0x1044, 0x8007) },
+ /* Hercules */
+ { USB_DEVICE(0x06f8, 0xe000) },
+ /* Melco */
+ { USB_DEVICE(0x0411, 0x005e) },
+ { USB_DEVICE(0x0411, 0x0066) },
+ { USB_DEVICE(0x0411, 0x0067) },
+ { USB_DEVICE(0x0411, 0x008b) },
+ { USB_DEVICE(0x0411, 0x0097) },
+ /* MSI */
+ { USB_DEVICE(0x0db0, 0x6861) },
+ { USB_DEVICE(0x0db0, 0x6865) },
+ { USB_DEVICE(0x0db0, 0x6869) },
+ /* Ralink */
+ { USB_DEVICE(0x148f, 0x1706) },
+ { USB_DEVICE(0x148f, 0x2570) },
+ { USB_DEVICE(0x148f, 0x9020) },
+ /* Sagem */
+ { USB_DEVICE(0x079b, 0x004b) },
+ /* Siemens */
+ { USB_DEVICE(0x0681, 0x3c06) },
+ /* SMC */
+ { USB_DEVICE(0x0707, 0xee13) },
+ /* Spairon */
+ { USB_DEVICE(0x114b, 0x0110) },
+ /* SURECOM */
+ { USB_DEVICE(0x0769, 0x11f3) },
+ /* Trust */
+ { USB_DEVICE(0x0eb0, 0x9020) },
+ /* VTech */
+ { USB_DEVICE(0x0f88, 0x3012) },
+ /* Zinwell */
+ { USB_DEVICE(0x5a57, 0x0260) },
+ { 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
+MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
+MODULE_LICENSE("GPL");
+
+static int rt2500usb_probe(struct usb_interface *usb_intf,
+ const struct usb_device_id *id)
+{
+ return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
+}
+
+static struct usb_driver rt2500usb_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = rt2500usb_device_table,
+ .probe = rt2500usb_probe,
+ .disconnect = rt2x00usb_disconnect,
+ .suspend = rt2x00usb_suspend,
+ .resume = rt2x00usb_resume,
+ .reset_resume = rt2x00usb_resume,
+ .disable_hub_initiated_lpm = 1,
+};
+
+module_usb_driver(rt2500usb_driver);
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2500usb.h b/drivers/net/wireless/ralink/rt2x00/rt2500usb.h
new file mode 100644
index 0000000000..746f0e950b
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2500usb.h
@@ -0,0 +1,844 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2500usb
+ Abstract: Data structures and registers for the rt2500usb module.
+ Supported chipsets: RT2570.
+ */
+
+#ifndef RT2500USB_H
+#define RT2500USB_H
+
+/*
+ * RF chip defines.
+ */
+#define RF2522 0x0000
+#define RF2523 0x0001
+#define RF2524 0x0002
+#define RF2525 0x0003
+#define RF2525E 0x0005
+#define RF5222 0x0010
+
+/*
+ * RT2570 version
+ */
+#define RT2570_VERSION_B 2
+#define RT2570_VERSION_C 3
+#define RT2570_VERSION_D 4
+
+/*
+ * Signal information.
+ * Default offset is required for RSSI <-> dBm conversion.
+ */
+#define DEFAULT_RSSI_OFFSET 120
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE 0x0400
+#define CSR_REG_SIZE 0x0100
+#define EEPROM_BASE 0x0000
+#define EEPROM_SIZE 0x006e
+#define BBP_BASE 0x0000
+#define BBP_SIZE 0x0060
+#define RF_BASE 0x0004
+#define RF_SIZE 0x0010
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES 2
+
+/*
+ * Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * MAC_CSR0: ASIC revision number.
+ */
+#define MAC_CSR0 0x0400
+
+/*
+ * MAC_CSR1: System control.
+ * SOFT_RESET: Software reset, 1: reset, 0: normal.
+ * BBP_RESET: Hardware reset, 1: reset, 0, release.
+ * HOST_READY: Host ready after initialization.
+ */
+#define MAC_CSR1 0x0402
+#define MAC_CSR1_SOFT_RESET FIELD16(0x00000001)
+#define MAC_CSR1_BBP_RESET FIELD16(0x00000002)
+#define MAC_CSR1_HOST_READY FIELD16(0x00000004)
+
+/*
+ * MAC_CSR2: STA MAC register 0.
+ */
+#define MAC_CSR2 0x0404
+#define MAC_CSR2_BYTE0 FIELD16(0x00ff)
+#define MAC_CSR2_BYTE1 FIELD16(0xff00)
+
+/*
+ * MAC_CSR3: STA MAC register 1.
+ */
+#define MAC_CSR3 0x0406
+#define MAC_CSR3_BYTE2 FIELD16(0x00ff)
+#define MAC_CSR3_BYTE3 FIELD16(0xff00)
+
+/*
+ * MAC_CSR4: STA MAC register 2.
+ */
+#define MAC_CSR4 0X0408
+#define MAC_CSR4_BYTE4 FIELD16(0x00ff)
+#define MAC_CSR4_BYTE5 FIELD16(0xff00)
+
+/*
+ * MAC_CSR5: BSSID register 0.
+ */
+#define MAC_CSR5 0x040a
+#define MAC_CSR5_BYTE0 FIELD16(0x00ff)
+#define MAC_CSR5_BYTE1 FIELD16(0xff00)
+
+/*
+ * MAC_CSR6: BSSID register 1.
+ */
+#define MAC_CSR6 0x040c
+#define MAC_CSR6_BYTE2 FIELD16(0x00ff)
+#define MAC_CSR6_BYTE3 FIELD16(0xff00)
+
+/*
+ * MAC_CSR7: BSSID register 2.
+ */
+#define MAC_CSR7 0x040e
+#define MAC_CSR7_BYTE4 FIELD16(0x00ff)
+#define MAC_CSR7_BYTE5 FIELD16(0xff00)
+
+/*
+ * MAC_CSR8: Max frame length.
+ */
+#define MAC_CSR8 0x0410
+#define MAC_CSR8_MAX_FRAME_UNIT FIELD16(0x0fff)
+
+/*
+ * Misc MAC_CSR registers.
+ * MAC_CSR9: Timer control.
+ * MAC_CSR10: Slot time.
+ * MAC_CSR11: SIFS.
+ * MAC_CSR12: EIFS.
+ * MAC_CSR13: Power mode0.
+ * MAC_CSR14: Power mode1.
+ * MAC_CSR15: Power saving transition0
+ * MAC_CSR16: Power saving transition1
+ */
+#define MAC_CSR9 0x0412
+#define MAC_CSR10 0x0414
+#define MAC_CSR11 0x0416
+#define MAC_CSR12 0x0418
+#define MAC_CSR13 0x041a
+#define MAC_CSR14 0x041c
+#define MAC_CSR15 0x041e
+#define MAC_CSR16 0x0420
+
+/*
+ * MAC_CSR17: Manual power control / status register.
+ * Allowed state: 0 deep_sleep, 1: sleep, 2: standby, 3: awake.
+ * SET_STATE: Set state. Write 1 to trigger, self cleared.
+ * BBP_DESIRE_STATE: BBP desired state.
+ * RF_DESIRE_STATE: RF desired state.
+ * BBP_CURRENT_STATE: BBP current state.
+ * RF_CURRENT_STATE: RF current state.
+ * PUT_TO_SLEEP: Put to sleep. Write 1 to trigger, self cleared.
+ */
+#define MAC_CSR17 0x0422
+#define MAC_CSR17_SET_STATE FIELD16(0x0001)
+#define MAC_CSR17_BBP_DESIRE_STATE FIELD16(0x0006)
+#define MAC_CSR17_RF_DESIRE_STATE FIELD16(0x0018)
+#define MAC_CSR17_BBP_CURR_STATE FIELD16(0x0060)
+#define MAC_CSR17_RF_CURR_STATE FIELD16(0x0180)
+#define MAC_CSR17_PUT_TO_SLEEP FIELD16(0x0200)
+
+/*
+ * MAC_CSR18: Wakeup timer register.
+ * DELAY_AFTER_BEACON: Delay after Tbcn expired in units of 1/16 TU.
+ * BEACONS_BEFORE_WAKEUP: Number of beacon before wakeup.
+ * AUTO_WAKE: Enable auto wakeup / sleep mechanism.
+ */
+#define MAC_CSR18 0x0424
+#define MAC_CSR18_DELAY_AFTER_BEACON FIELD16(0x00ff)
+#define MAC_CSR18_BEACONS_BEFORE_WAKEUP FIELD16(0x7f00)
+#define MAC_CSR18_AUTO_WAKE FIELD16(0x8000)
+
+/*
+ * MAC_CSR19: GPIO control register.
+ * MAC_CSR19_VALx: GPIO value
+ * MAC_CSR19_DIRx: GPIO direction: 0 = input; 1 = output
+ */
+#define MAC_CSR19 0x0426
+#define MAC_CSR19_VAL0 FIELD16(0x0001)
+#define MAC_CSR19_VAL1 FIELD16(0x0002)
+#define MAC_CSR19_VAL2 FIELD16(0x0004)
+#define MAC_CSR19_VAL3 FIELD16(0x0008)
+#define MAC_CSR19_VAL4 FIELD16(0x0010)
+#define MAC_CSR19_VAL5 FIELD16(0x0020)
+#define MAC_CSR19_VAL6 FIELD16(0x0040)
+#define MAC_CSR19_VAL7 FIELD16(0x0080)
+#define MAC_CSR19_DIR0 FIELD16(0x0100)
+#define MAC_CSR19_DIR1 FIELD16(0x0200)
+#define MAC_CSR19_DIR2 FIELD16(0x0400)
+#define MAC_CSR19_DIR3 FIELD16(0x0800)
+#define MAC_CSR19_DIR4 FIELD16(0x1000)
+#define MAC_CSR19_DIR5 FIELD16(0x2000)
+#define MAC_CSR19_DIR6 FIELD16(0x4000)
+#define MAC_CSR19_DIR7 FIELD16(0x8000)
+
+/*
+ * MAC_CSR20: LED control register.
+ * ACTIVITY: 0: idle, 1: active.
+ * LINK: 0: linkoff, 1: linkup.
+ * ACTIVITY_POLARITY: 0: active low, 1: active high.
+ */
+#define MAC_CSR20 0x0428
+#define MAC_CSR20_ACTIVITY FIELD16(0x0001)
+#define MAC_CSR20_LINK FIELD16(0x0002)
+#define MAC_CSR20_ACTIVITY_POLARITY FIELD16(0x0004)
+
+/*
+ * MAC_CSR21: LED control register.
+ * ON_PERIOD: On period, default 70ms.
+ * OFF_PERIOD: Off period, default 30ms.
+ */
+#define MAC_CSR21 0x042a
+#define MAC_CSR21_ON_PERIOD FIELD16(0x00ff)
+#define MAC_CSR21_OFF_PERIOD FIELD16(0xff00)
+
+/*
+ * MAC_CSR22: Collision window control register.
+ */
+#define MAC_CSR22 0x042c
+
+/*
+ * Transmit related CSRs.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * TXRX_CSR0: Security control register.
+ */
+#define TXRX_CSR0 0x0440
+#define TXRX_CSR0_ALGORITHM FIELD16(0x0007)
+#define TXRX_CSR0_IV_OFFSET FIELD16(0x01f8)
+#define TXRX_CSR0_KEY_ID FIELD16(0x1e00)
+
+/*
+ * TXRX_CSR1: TX configuration.
+ * ACK_TIMEOUT: ACK Timeout in unit of 1-us.
+ * TSF_OFFSET: TSF offset in MAC header.
+ * AUTO_SEQUENCE: Let ASIC control frame sequence number.
+ */
+#define TXRX_CSR1 0x0442
+#define TXRX_CSR1_ACK_TIMEOUT FIELD16(0x00ff)
+#define TXRX_CSR1_TSF_OFFSET FIELD16(0x7f00)
+#define TXRX_CSR1_AUTO_SEQUENCE FIELD16(0x8000)
+
+/*
+ * TXRX_CSR2: RX control.
+ * DISABLE_RX: Disable rx engine.
+ * DROP_CRC: Drop crc error.
+ * DROP_PHYSICAL: Drop physical error.
+ * DROP_CONTROL: Drop control frame.
+ * DROP_NOT_TO_ME: Drop not to me unicast frame.
+ * DROP_TODS: Drop frame tods bit is true.
+ * DROP_VERSION_ERROR: Drop version error frame.
+ * DROP_MCAST: Drop multicast frames.
+ * DROP_BCAST: Drop broadcast frames.
+ */
+#define TXRX_CSR2 0x0444
+#define TXRX_CSR2_DISABLE_RX FIELD16(0x0001)
+#define TXRX_CSR2_DROP_CRC FIELD16(0x0002)
+#define TXRX_CSR2_DROP_PHYSICAL FIELD16(0x0004)
+#define TXRX_CSR2_DROP_CONTROL FIELD16(0x0008)
+#define TXRX_CSR2_DROP_NOT_TO_ME FIELD16(0x0010)
+#define TXRX_CSR2_DROP_TODS FIELD16(0x0020)
+#define TXRX_CSR2_DROP_VERSION_ERROR FIELD16(0x0040)
+#define TXRX_CSR2_DROP_MULTICAST FIELD16(0x0200)
+#define TXRX_CSR2_DROP_BROADCAST FIELD16(0x0400)
+
+/*
+ * RX BBP ID registers
+ * TXRX_CSR3: CCK RX BBP ID.
+ * TXRX_CSR4: OFDM RX BBP ID.
+ */
+#define TXRX_CSR3 0x0446
+#define TXRX_CSR4 0x0448
+
+/*
+ * TXRX_CSR5: CCK TX BBP ID0.
+ */
+#define TXRX_CSR5 0x044a
+#define TXRX_CSR5_BBP_ID0 FIELD16(0x007f)
+#define TXRX_CSR5_BBP_ID0_VALID FIELD16(0x0080)
+#define TXRX_CSR5_BBP_ID1 FIELD16(0x7f00)
+#define TXRX_CSR5_BBP_ID1_VALID FIELD16(0x8000)
+
+/*
+ * TXRX_CSR6: CCK TX BBP ID1.
+ */
+#define TXRX_CSR6 0x044c
+#define TXRX_CSR6_BBP_ID0 FIELD16(0x007f)
+#define TXRX_CSR6_BBP_ID0_VALID FIELD16(0x0080)
+#define TXRX_CSR6_BBP_ID1 FIELD16(0x7f00)
+#define TXRX_CSR6_BBP_ID1_VALID FIELD16(0x8000)
+
+/*
+ * TXRX_CSR7: OFDM TX BBP ID0.
+ */
+#define TXRX_CSR7 0x044e
+#define TXRX_CSR7_BBP_ID0 FIELD16(0x007f)
+#define TXRX_CSR7_BBP_ID0_VALID FIELD16(0x0080)
+#define TXRX_CSR7_BBP_ID1 FIELD16(0x7f00)
+#define TXRX_CSR7_BBP_ID1_VALID FIELD16(0x8000)
+
+/*
+ * TXRX_CSR8: OFDM TX BBP ID1.
+ */
+#define TXRX_CSR8 0x0450
+#define TXRX_CSR8_BBP_ID0 FIELD16(0x007f)
+#define TXRX_CSR8_BBP_ID0_VALID FIELD16(0x0080)
+#define TXRX_CSR8_BBP_ID1 FIELD16(0x7f00)
+#define TXRX_CSR8_BBP_ID1_VALID FIELD16(0x8000)
+
+/*
+ * TXRX_CSR9: TX ACK time-out.
+ */
+#define TXRX_CSR9 0x0452
+
+/*
+ * TXRX_CSR10: Auto responder control.
+ */
+#define TXRX_CSR10 0x0454
+#define TXRX_CSR10_AUTORESPOND_PREAMBLE FIELD16(0x0004)
+
+/*
+ * TXRX_CSR11: Auto responder basic rate.
+ */
+#define TXRX_CSR11 0x0456
+
+/*
+ * ACK/CTS time registers.
+ */
+#define TXRX_CSR12 0x0458
+#define TXRX_CSR13 0x045a
+#define TXRX_CSR14 0x045c
+#define TXRX_CSR15 0x045e
+#define TXRX_CSR16 0x0460
+#define TXRX_CSR17 0x0462
+
+/*
+ * TXRX_CSR18: Synchronization control register.
+ */
+#define TXRX_CSR18 0x0464
+#define TXRX_CSR18_OFFSET FIELD16(0x000f)
+#define TXRX_CSR18_INTERVAL FIELD16(0xfff0)
+
+/*
+ * TXRX_CSR19: Synchronization control register.
+ * TSF_COUNT: Enable TSF auto counting.
+ * TSF_SYNC: Tsf sync, 0: disable, 1: infra, 2: ad-hoc/master mode.
+ * TBCN: Enable Tbcn with reload value.
+ * BEACON_GEN: Enable beacon generator.
+ */
+#define TXRX_CSR19 0x0466
+#define TXRX_CSR19_TSF_COUNT FIELD16(0x0001)
+#define TXRX_CSR19_TSF_SYNC FIELD16(0x0006)
+#define TXRX_CSR19_TBCN FIELD16(0x0008)
+#define TXRX_CSR19_BEACON_GEN FIELD16(0x0010)
+
+/*
+ * TXRX_CSR20: Tx BEACON offset time control register.
+ * OFFSET: In units of usec.
+ * BCN_EXPECT_WINDOW: Default: 2^CWmin
+ */
+#define TXRX_CSR20 0x0468
+#define TXRX_CSR20_OFFSET FIELD16(0x1fff)
+#define TXRX_CSR20_BCN_EXPECT_WINDOW FIELD16(0xe000)
+
+/*
+ * TXRX_CSR21
+ */
+#define TXRX_CSR21 0x046a
+
+/*
+ * Encryption related CSRs.
+ *
+ */
+
+/*
+ * SEC_CSR0: Shared key 0, word 0
+ * SEC_CSR1: Shared key 0, word 1
+ * SEC_CSR2: Shared key 0, word 2
+ * SEC_CSR3: Shared key 0, word 3
+ * SEC_CSR4: Shared key 0, word 4
+ * SEC_CSR5: Shared key 0, word 5
+ * SEC_CSR6: Shared key 0, word 6
+ * SEC_CSR7: Shared key 0, word 7
+ */
+#define SEC_CSR0 0x0480
+#define SEC_CSR1 0x0482
+#define SEC_CSR2 0x0484
+#define SEC_CSR3 0x0486
+#define SEC_CSR4 0x0488
+#define SEC_CSR5 0x048a
+#define SEC_CSR6 0x048c
+#define SEC_CSR7 0x048e
+
+/*
+ * SEC_CSR8: Shared key 1, word 0
+ * SEC_CSR9: Shared key 1, word 1
+ * SEC_CSR10: Shared key 1, word 2
+ * SEC_CSR11: Shared key 1, word 3
+ * SEC_CSR12: Shared key 1, word 4
+ * SEC_CSR13: Shared key 1, word 5
+ * SEC_CSR14: Shared key 1, word 6
+ * SEC_CSR15: Shared key 1, word 7
+ */
+#define SEC_CSR8 0x0490
+#define SEC_CSR9 0x0492
+#define SEC_CSR10 0x0494
+#define SEC_CSR11 0x0496
+#define SEC_CSR12 0x0498
+#define SEC_CSR13 0x049a
+#define SEC_CSR14 0x049c
+#define SEC_CSR15 0x049e
+
+/*
+ * SEC_CSR16: Shared key 2, word 0
+ * SEC_CSR17: Shared key 2, word 1
+ * SEC_CSR18: Shared key 2, word 2
+ * SEC_CSR19: Shared key 2, word 3
+ * SEC_CSR20: Shared key 2, word 4
+ * SEC_CSR21: Shared key 2, word 5
+ * SEC_CSR22: Shared key 2, word 6
+ * SEC_CSR23: Shared key 2, word 7
+ */
+#define SEC_CSR16 0x04a0
+#define SEC_CSR17 0x04a2
+#define SEC_CSR18 0X04A4
+#define SEC_CSR19 0x04a6
+#define SEC_CSR20 0x04a8
+#define SEC_CSR21 0x04aa
+#define SEC_CSR22 0x04ac
+#define SEC_CSR23 0x04ae
+
+/*
+ * SEC_CSR24: Shared key 3, word 0
+ * SEC_CSR25: Shared key 3, word 1
+ * SEC_CSR26: Shared key 3, word 2
+ * SEC_CSR27: Shared key 3, word 3
+ * SEC_CSR28: Shared key 3, word 4
+ * SEC_CSR29: Shared key 3, word 5
+ * SEC_CSR30: Shared key 3, word 6
+ * SEC_CSR31: Shared key 3, word 7
+ */
+#define SEC_CSR24 0x04b0
+#define SEC_CSR25 0x04b2
+#define SEC_CSR26 0x04b4
+#define SEC_CSR27 0x04b6
+#define SEC_CSR28 0x04b8
+#define SEC_CSR29 0x04ba
+#define SEC_CSR30 0x04bc
+#define SEC_CSR31 0x04be
+
+#define KEY_ENTRY(__idx) \
+ ( SEC_CSR0 + ((__idx) * 16) )
+
+/*
+ * PHY control registers.
+ */
+
+/*
+ * PHY_CSR0: RF switching timing control.
+ */
+#define PHY_CSR0 0x04c0
+
+/*
+ * PHY_CSR1: TX PA configuration.
+ */
+#define PHY_CSR1 0x04c2
+
+/*
+ * MAC configuration registers.
+ */
+
+/*
+ * PHY_CSR2: TX MAC configuration.
+ * NOTE: Both register fields are complete dummy,
+ * documentation and legacy drivers are unclear un
+ * what this register means or what fields exists.
+ */
+#define PHY_CSR2 0x04c4
+#define PHY_CSR2_LNA FIELD16(0x0002)
+#define PHY_CSR2_LNA_MODE FIELD16(0x3000)
+
+/*
+ * PHY_CSR3: RX MAC configuration.
+ */
+#define PHY_CSR3 0x04c6
+
+/*
+ * PHY_CSR4: Interface configuration.
+ */
+#define PHY_CSR4 0x04c8
+#define PHY_CSR4_LOW_RF_LE FIELD16(0x0001)
+
+/*
+ * BBP pre-TX registers.
+ * PHY_CSR5: BBP pre-TX CCK.
+ */
+#define PHY_CSR5 0x04ca
+#define PHY_CSR5_CCK FIELD16(0x0003)
+#define PHY_CSR5_CCK_FLIP FIELD16(0x0004)
+
+/*
+ * BBP pre-TX registers.
+ * PHY_CSR6: BBP pre-TX OFDM.
+ */
+#define PHY_CSR6 0x04cc
+#define PHY_CSR6_OFDM FIELD16(0x0003)
+#define PHY_CSR6_OFDM_FLIP FIELD16(0x0004)
+
+/*
+ * PHY_CSR7: BBP access register 0.
+ * BBP_DATA: BBP data.
+ * BBP_REG_ID: BBP register ID.
+ * BBP_READ_CONTROL: 0: write, 1: read.
+ */
+#define PHY_CSR7 0x04ce
+#define PHY_CSR7_DATA FIELD16(0x00ff)
+#define PHY_CSR7_REG_ID FIELD16(0x7f00)
+#define PHY_CSR7_READ_CONTROL FIELD16(0x8000)
+
+/*
+ * PHY_CSR8: BBP access register 1.
+ * BBP_BUSY: ASIC is busy execute BBP programming.
+ */
+#define PHY_CSR8 0x04d0
+#define PHY_CSR8_BUSY FIELD16(0x0001)
+
+/*
+ * PHY_CSR9: RF access register.
+ * RF_VALUE: Register value + id to program into rf/if.
+ */
+#define PHY_CSR9 0x04d2
+#define PHY_CSR9_RF_VALUE FIELD16(0xffff)
+
+/*
+ * PHY_CSR10: RF access register.
+ * RF_VALUE: Register value + id to program into rf/if.
+ * RF_NUMBER_OF_BITS: Number of bits used in value (i:20, rfmd:22).
+ * RF_IF_SELECT: Chip to program: 0: rf, 1: if.
+ * RF_PLL_LD: Rf pll_ld status.
+ * RF_BUSY: 1: asic is busy execute rf programming.
+ */
+#define PHY_CSR10 0x04d4
+#define PHY_CSR10_RF_VALUE FIELD16(0x00ff)
+#define PHY_CSR10_RF_NUMBER_OF_BITS FIELD16(0x1f00)
+#define PHY_CSR10_RF_IF_SELECT FIELD16(0x2000)
+#define PHY_CSR10_RF_PLL_LD FIELD16(0x4000)
+#define PHY_CSR10_RF_BUSY FIELD16(0x8000)
+
+/*
+ * STA_CSR0: FCS error count.
+ * FCS_ERROR: FCS error count, cleared when read.
+ */
+#define STA_CSR0 0x04e0
+#define STA_CSR0_FCS_ERROR FIELD16(0xffff)
+
+/*
+ * STA_CSR1: PLCP error count.
+ */
+#define STA_CSR1 0x04e2
+
+/*
+ * STA_CSR2: LONG error count.
+ */
+#define STA_CSR2 0x04e4
+
+/*
+ * STA_CSR3: CCA false alarm.
+ * FALSE_CCA_ERROR: False CCA error count, cleared when read.
+ */
+#define STA_CSR3 0x04e6
+#define STA_CSR3_FALSE_CCA_ERROR FIELD16(0xffff)
+
+/*
+ * STA_CSR4: RX FIFO overflow.
+ */
+#define STA_CSR4 0x04e8
+
+/*
+ * STA_CSR5: Beacon sent counter.
+ */
+#define STA_CSR5 0x04ea
+
+/*
+ * Statistics registers
+ */
+#define STA_CSR6 0x04ec
+#define STA_CSR7 0x04ee
+#define STA_CSR8 0x04f0
+#define STA_CSR9 0x04f2
+#define STA_CSR10 0x04f4
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * R2: TX antenna control
+ */
+#define BBP_R2_TX_ANTENNA FIELD8(0x03)
+#define BBP_R2_TX_IQ_FLIP FIELD8(0x04)
+
+/*
+ * R14: RX antenna control
+ */
+#define BBP_R14_RX_ANTENNA FIELD8(0x03)
+#define BBP_R14_RX_IQ_FLIP FIELD8(0x04)
+
+/*
+ * RF registers.
+ */
+
+/*
+ * RF 1
+ */
+#define RF1_TUNER FIELD32(0x00020000)
+
+/*
+ * RF 3
+ */
+#define RF3_TUNER FIELD32(0x00000100)
+#define RF3_TXPOWER FIELD32(0x00003e00)
+
+/*
+ * EEPROM contents.
+ */
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_0 0x0002
+#define EEPROM_MAC_ADDR_BYTE0 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR1 0x0003
+#define EEPROM_MAC_ADDR_BYTE2 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_2 0x0004
+#define EEPROM_MAC_ADDR_BYTE4 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5 FIELD16(0xff00)
+
+/*
+ * EEPROM antenna.
+ * ANTENNA_NUM: Number of antenna's.
+ * TX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * LED_MODE: 0: default, 1: TX/RX activity, 2: Single (ignore link), 3: rsvd.
+ * DYN_TXAGC: Dynamic TX AGC control.
+ * HARDWARE_RADIO: 1: Hardware controlled radio. Read GPIO0.
+ * RF_TYPE: Rf_type of this adapter.
+ */
+#define EEPROM_ANTENNA 0x000b
+#define EEPROM_ANTENNA_NUM FIELD16(0x0003)
+#define EEPROM_ANTENNA_TX_DEFAULT FIELD16(0x000c)
+#define EEPROM_ANTENNA_RX_DEFAULT FIELD16(0x0030)
+#define EEPROM_ANTENNA_LED_MODE FIELD16(0x01c0)
+#define EEPROM_ANTENNA_DYN_TXAGC FIELD16(0x0200)
+#define EEPROM_ANTENNA_HARDWARE_RADIO FIELD16(0x0400)
+#define EEPROM_ANTENNA_RF_TYPE FIELD16(0xf800)
+
+/*
+ * EEPROM NIC config.
+ * CARDBUS_ACCEL: 0: enable, 1: disable.
+ * DYN_BBP_TUNE: 0: enable, 1: disable.
+ * CCK_TX_POWER: CCK TX power compensation.
+ */
+#define EEPROM_NIC 0x000c
+#define EEPROM_NIC_CARDBUS_ACCEL FIELD16(0x0001)
+#define EEPROM_NIC_DYN_BBP_TUNE FIELD16(0x0002)
+#define EEPROM_NIC_CCK_TX_POWER FIELD16(0x000c)
+
+/*
+ * EEPROM geography.
+ * GEO: Default geography setting for device.
+ */
+#define EEPROM_GEOGRAPHY 0x000d
+#define EEPROM_GEOGRAPHY_GEO FIELD16(0x0f00)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_START 0x000e
+#define EEPROM_BBP_SIZE 16
+#define EEPROM_BBP_VALUE FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER
+ */
+#define EEPROM_TXPOWER_START 0x001e
+#define EEPROM_TXPOWER_SIZE 7
+#define EEPROM_TXPOWER_1 FIELD16(0x00ff)
+#define EEPROM_TXPOWER_2 FIELD16(0xff00)
+
+/*
+ * EEPROM Tuning threshold
+ */
+#define EEPROM_BBPTUNE 0x0030
+#define EEPROM_BBPTUNE_THRESHOLD FIELD16(0x00ff)
+
+/*
+ * EEPROM BBP R24 Tuning.
+ */
+#define EEPROM_BBPTUNE_R24 0x0031
+#define EEPROM_BBPTUNE_R24_LOW FIELD16(0x00ff)
+#define EEPROM_BBPTUNE_R24_HIGH FIELD16(0xff00)
+
+/*
+ * EEPROM BBP R25 Tuning.
+ */
+#define EEPROM_BBPTUNE_R25 0x0032
+#define EEPROM_BBPTUNE_R25_LOW FIELD16(0x00ff)
+#define EEPROM_BBPTUNE_R25_HIGH FIELD16(0xff00)
+
+/*
+ * EEPROM BBP R24 Tuning.
+ */
+#define EEPROM_BBPTUNE_R61 0x0033
+#define EEPROM_BBPTUNE_R61_LOW FIELD16(0x00ff)
+#define EEPROM_BBPTUNE_R61_HIGH FIELD16(0xff00)
+
+/*
+ * EEPROM BBP VGC Tuning.
+ */
+#define EEPROM_BBPTUNE_VGC 0x0034
+#define EEPROM_BBPTUNE_VGCUPPER FIELD16(0x00ff)
+#define EEPROM_BBPTUNE_VGCLOWER FIELD16(0xff00)
+
+/*
+ * EEPROM BBP R17 Tuning.
+ */
+#define EEPROM_BBPTUNE_R17 0x0035
+#define EEPROM_BBPTUNE_R17_LOW FIELD16(0x00ff)
+#define EEPROM_BBPTUNE_R17_HIGH FIELD16(0xff00)
+
+/*
+ * RSSI <-> dBm offset calibration
+ */
+#define EEPROM_CALIBRATE_OFFSET 0x0036
+#define EEPROM_CALIBRATE_OFFSET_RSSI FIELD16(0x00ff)
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE ( 5 * sizeof(__le32) )
+#define RXD_DESC_SIZE ( 4 * sizeof(__le32) )
+
+/*
+ * TX descriptor format for TX, PRIO, ATIM and Beacon Ring.
+ */
+
+/*
+ * Word0
+ */
+#define TXD_W0_PACKET_ID FIELD32(0x0000000f)
+#define TXD_W0_RETRY_LIMIT FIELD32(0x000000f0)
+#define TXD_W0_MORE_FRAG FIELD32(0x00000100)
+#define TXD_W0_ACK FIELD32(0x00000200)
+#define TXD_W0_TIMESTAMP FIELD32(0x00000400)
+#define TXD_W0_OFDM FIELD32(0x00000800)
+#define TXD_W0_NEW_SEQ FIELD32(0x00001000)
+#define TXD_W0_IFS FIELD32(0x00006000)
+#define TXD_W0_DATABYTE_COUNT FIELD32(0x0fff0000)
+#define TXD_W0_CIPHER FIELD32(0x20000000)
+#define TXD_W0_KEY_ID FIELD32(0xc0000000)
+
+/*
+ * Word1
+ */
+#define TXD_W1_IV_OFFSET FIELD32(0x0000003f)
+#define TXD_W1_AIFS FIELD32(0x000000c0)
+#define TXD_W1_CWMIN FIELD32(0x00000f00)
+#define TXD_W1_CWMAX FIELD32(0x0000f000)
+
+/*
+ * Word2: PLCP information
+ */
+#define TXD_W2_PLCP_SIGNAL FIELD32(0x000000ff)
+#define TXD_W2_PLCP_SERVICE FIELD32(0x0000ff00)
+#define TXD_W2_PLCP_LENGTH_LOW FIELD32(0x00ff0000)
+#define TXD_W2_PLCP_LENGTH_HIGH FIELD32(0xff000000)
+
+/*
+ * Word3
+ */
+#define TXD_W3_IV FIELD32(0xffffffff)
+
+/*
+ * Word4
+ */
+#define TXD_W4_EIV FIELD32(0xffffffff)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ */
+#define RXD_W0_UNICAST_TO_ME FIELD32(0x00000002)
+#define RXD_W0_MULTICAST FIELD32(0x00000004)
+#define RXD_W0_BROADCAST FIELD32(0x00000008)
+#define RXD_W0_MY_BSS FIELD32(0x00000010)
+#define RXD_W0_CRC_ERROR FIELD32(0x00000020)
+#define RXD_W0_OFDM FIELD32(0x00000040)
+#define RXD_W0_PHYSICAL_ERROR FIELD32(0x00000080)
+#define RXD_W0_CIPHER FIELD32(0x00000100)
+#define RXD_W0_CIPHER_ERROR FIELD32(0x00000200)
+#define RXD_W0_DATABYTE_COUNT FIELD32(0x0fff0000)
+
+/*
+ * Word1
+ */
+#define RXD_W1_RSSI FIELD32(0x000000ff)
+#define RXD_W1_SIGNAL FIELD32(0x0000ff00)
+
+/*
+ * Word2
+ */
+#define RXD_W2_IV FIELD32(0xffffffff)
+
+/*
+ * Word3
+ */
+#define RXD_W3_EIV FIELD32(0xffffffff)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ */
+#define MIN_TXPOWER 0
+#define MAX_TXPOWER 31
+#define DEFAULT_TXPOWER 24
+
+#define TXPOWER_FROM_DEV(__txpower) \
+ (((u8)(__txpower)) > MAX_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+#define TXPOWER_TO_DEV(__txpower) \
+ clamp_t(u8, __txpower, MIN_TXPOWER, MAX_TXPOWER)
+
+#endif /* RT2500USB_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2800.h b/drivers/net/wireless/ralink/rt2x00/rt2800.h
new file mode 100644
index 0000000000..de2ee5ffc3
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2800.h
@@ -0,0 +1,3179 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+ Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+ Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+ Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+ Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2800
+ Abstract: Data structures and registers for the rt2800 modules.
+ Supported chipsets: RT2800E, RT2800ED & RT2800U.
+ */
+
+#ifndef RT2800_H
+#define RT2800_H
+
+/*
+ * RF chip defines.
+ *
+ * RF2820 2.4G 2T3R
+ * RF2850 2.4G/5G 2T3R
+ * RF2720 2.4G 1T2R
+ * RF2750 2.4G/5G 1T2R
+ * RF3020 2.4G 1T1R
+ * RF2020 2.4G B/G
+ * RF3021 2.4G 1T2R
+ * RF3022 2.4G 2T2R
+ * RF3052 2.4G/5G 2T2R
+ * RF2853 2.4G/5G 3T3R
+ * RF3320 2.4G 1T1R(RT3350/RT3370/RT3390)
+ * RF3322 2.4G 2T2R(RT3352/RT3371/RT3372/RT3391/RT3392)
+ * RF3053 2.4G/5G 3T3R(RT3563/RT3573/RT3593)
+ * RF3853 2.4G/5G 3T3R(RT3883/RT3662)
+ * RF5592 2.4G/5G 2T2R
+ * RF3070 2.4G 1T1R
+ * RF5360 2.4G 1T1R
+ * RF5362 2.4G 1T1R
+ * RF5370 2.4G 1T1R
+ * RF5390 2.4G 1T1R
+ */
+#define RF2820 0x0001
+#define RF2850 0x0002
+#define RF2720 0x0003
+#define RF2750 0x0004
+#define RF3020 0x0005
+#define RF2020 0x0006
+#define RF3021 0x0007
+#define RF3022 0x0008
+#define RF3052 0x0009
+#define RF2853 0x000a
+#define RF3320 0x000b
+#define RF3322 0x000c
+#define RF3053 0x000d
+#define RF5592 0x000f
+#define RF3070 0x3070
+#define RF3290 0x3290
+#define RF3853 0x3853
+#define RF5350 0x5350
+#define RF5360 0x5360
+#define RF5362 0x5362
+#define RF5370 0x5370
+#define RF5372 0x5372
+#define RF5390 0x5390
+#define RF5392 0x5392
+#define RF7620 0x7620
+
+/*
+ * Chipset revisions.
+ */
+#define REV_RT2860C 0x0100
+#define REV_RT2860D 0x0101
+#define REV_RT2872E 0x0200
+#define REV_RT3070E 0x0200
+#define REV_RT3070F 0x0201
+#define REV_RT3071E 0x0211
+#define REV_RT3090E 0x0211
+#define REV_RT3390E 0x0211
+#define REV_RT3593E 0x0211
+#define REV_RT5390F 0x0502
+#define REV_RT5370G 0x0503
+#define REV_RT5390R 0x1502
+#define REV_RT5592C 0x0221
+
+#define DEFAULT_RSSI_OFFSET 120
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE 0x1000
+#define CSR_REG_SIZE 0x0800
+#define EEPROM_BASE 0x0000
+#define EEPROM_SIZE 0x0200
+#define BBP_BASE 0x0000
+#define BBP_SIZE 0x00ff
+#define RF_BASE 0x0004
+#define RF_SIZE 0x0010
+#define RFCSR_BASE 0x0000
+#define RFCSR_SIZE 0x0040
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES 4
+
+/*
+ * Registers.
+ */
+
+
+/*
+ * MAC_CSR0_3290: MAC_CSR0 for RT3290 to identity MAC version number.
+ */
+#define MAC_CSR0_3290 0x0000
+
+/*
+ * E2PROM_CSR: PCI EEPROM control register.
+ * RELOAD: Write 1 to reload eeprom content.
+ * TYPE: 0: 93c46, 1:93c66.
+ * LOAD_STATUS: 1:loading, 0:done.
+ */
+#define E2PROM_CSR 0x0004
+#define E2PROM_CSR_DATA_CLOCK FIELD32(0x00000001)
+#define E2PROM_CSR_CHIP_SELECT FIELD32(0x00000002)
+#define E2PROM_CSR_DATA_IN FIELD32(0x00000004)
+#define E2PROM_CSR_DATA_OUT FIELD32(0x00000008)
+#define E2PROM_CSR_TYPE FIELD32(0x00000030)
+#define E2PROM_CSR_LOAD_STATUS FIELD32(0x00000040)
+#define E2PROM_CSR_RELOAD FIELD32(0x00000080)
+
+/*
+ * CMB_CTRL_CFG
+ */
+#define CMB_CTRL 0x0020
+#define AUX_OPT_BIT0 FIELD32(0x00000001)
+#define AUX_OPT_BIT1 FIELD32(0x00000002)
+#define AUX_OPT_BIT2 FIELD32(0x00000004)
+#define AUX_OPT_BIT3 FIELD32(0x00000008)
+#define AUX_OPT_BIT4 FIELD32(0x00000010)
+#define AUX_OPT_BIT5 FIELD32(0x00000020)
+#define AUX_OPT_BIT6 FIELD32(0x00000040)
+#define AUX_OPT_BIT7 FIELD32(0x00000080)
+#define AUX_OPT_BIT8 FIELD32(0x00000100)
+#define AUX_OPT_BIT9 FIELD32(0x00000200)
+#define AUX_OPT_BIT10 FIELD32(0x00000400)
+#define AUX_OPT_BIT11 FIELD32(0x00000800)
+#define AUX_OPT_BIT12 FIELD32(0x00001000)
+#define AUX_OPT_BIT13 FIELD32(0x00002000)
+#define AUX_OPT_BIT14 FIELD32(0x00004000)
+#define AUX_OPT_BIT15 FIELD32(0x00008000)
+#define LDO25_LEVEL FIELD32(0x00030000)
+#define LDO25_LARGEA FIELD32(0x00040000)
+#define LDO25_FRC_ON FIELD32(0x00080000)
+#define CMB_RSV FIELD32(0x00300000)
+#define XTAL_RDY FIELD32(0x00400000)
+#define PLL_LD FIELD32(0x00800000)
+#define LDO_CORE_LEVEL FIELD32(0x0F000000)
+#define LDO_BGSEL FIELD32(0x30000000)
+#define LDO3_EN FIELD32(0x40000000)
+#define LDO0_EN FIELD32(0x80000000)
+
+/*
+ * EFUSE_CSR_3290: RT3290 EEPROM
+ */
+#define EFUSE_CTRL_3290 0x0024
+
+/*
+ * EFUSE_DATA3 of 3290
+ */
+#define EFUSE_DATA3_3290 0x0028
+
+/*
+ * EFUSE_DATA2 of 3290
+ */
+#define EFUSE_DATA2_3290 0x002c
+
+/*
+ * EFUSE_DATA1 of 3290
+ */
+#define EFUSE_DATA1_3290 0x0030
+
+/*
+ * EFUSE_DATA0 of 3290
+ */
+#define EFUSE_DATA0_3290 0x0034
+
+/*
+ * OSC_CTRL_CFG
+ * Ring oscillator configuration
+ */
+#define OSC_CTRL 0x0038
+#define OSC_REF_CYCLE FIELD32(0x00001fff)
+#define OSC_RSV FIELD32(0x0000e000)
+#define OSC_CAL_CNT FIELD32(0x0fff0000)
+#define OSC_CAL_ACK FIELD32(0x10000000)
+#define OSC_CLK_32K_VLD FIELD32(0x20000000)
+#define OSC_CAL_REQ FIELD32(0x40000000)
+#define OSC_ROSC_EN FIELD32(0x80000000)
+
+/*
+ * COEX_CFG_0
+ */
+#define COEX_CFG0 0x0040
+#define COEX_CFG_ANT FIELD32(0xff000000)
+/*
+ * COEX_CFG_1
+ */
+#define COEX_CFG1 0x0044
+
+/*
+ * COEX_CFG_2
+ */
+#define COEX_CFG2 0x0048
+#define BT_COEX_CFG1 FIELD32(0xff000000)
+#define BT_COEX_CFG0 FIELD32(0x00ff0000)
+#define WL_COEX_CFG1 FIELD32(0x0000ff00)
+#define WL_COEX_CFG0 FIELD32(0x000000ff)
+/*
+ * PLL_CTRL_CFG
+ * PLL configuration register
+ */
+#define PLL_CTRL 0x0050
+#define PLL_RESERVED_INPUT1 FIELD32(0x000000ff)
+#define PLL_RESERVED_INPUT2 FIELD32(0x0000ff00)
+#define PLL_CONTROL FIELD32(0x00070000)
+#define PLL_LPF_R1 FIELD32(0x00080000)
+#define PLL_LPF_C1_CTRL FIELD32(0x00300000)
+#define PLL_LPF_C2_CTRL FIELD32(0x00c00000)
+#define PLL_CP_CURRENT_CTRL FIELD32(0x03000000)
+#define PLL_PFD_DELAY_CTRL FIELD32(0x0c000000)
+#define PLL_LOCK_CTRL FIELD32(0x70000000)
+#define PLL_VBGBK_EN FIELD32(0x80000000)
+
+
+/*
+ * WLAN_CTRL_CFG
+ * RT3290 wlan configuration
+ */
+#define WLAN_FUN_CTRL 0x0080
+#define WLAN_EN FIELD32(0x00000001)
+#define WLAN_CLK_EN FIELD32(0x00000002)
+#define WLAN_RSV1 FIELD32(0x00000004)
+#define WLAN_RESET FIELD32(0x00000008)
+#define PCIE_APP0_CLK_REQ FIELD32(0x00000010)
+#define FRC_WL_ANT_SET FIELD32(0x00000020)
+#define INV_TR_SW0 FIELD32(0x00000040)
+#define WLAN_GPIO_IN_BIT0 FIELD32(0x00000100)
+#define WLAN_GPIO_IN_BIT1 FIELD32(0x00000200)
+#define WLAN_GPIO_IN_BIT2 FIELD32(0x00000400)
+#define WLAN_GPIO_IN_BIT3 FIELD32(0x00000800)
+#define WLAN_GPIO_IN_BIT4 FIELD32(0x00001000)
+#define WLAN_GPIO_IN_BIT5 FIELD32(0x00002000)
+#define WLAN_GPIO_IN_BIT6 FIELD32(0x00004000)
+#define WLAN_GPIO_IN_BIT7 FIELD32(0x00008000)
+#define WLAN_GPIO_IN_BIT_ALL FIELD32(0x0000ff00)
+#define WLAN_GPIO_OUT_BIT0 FIELD32(0x00010000)
+#define WLAN_GPIO_OUT_BIT1 FIELD32(0x00020000)
+#define WLAN_GPIO_OUT_BIT2 FIELD32(0x00040000)
+#define WLAN_GPIO_OUT_BIT3 FIELD32(0x00050000)
+#define WLAN_GPIO_OUT_BIT4 FIELD32(0x00100000)
+#define WLAN_GPIO_OUT_BIT5 FIELD32(0x00200000)
+#define WLAN_GPIO_OUT_BIT6 FIELD32(0x00400000)
+#define WLAN_GPIO_OUT_BIT7 FIELD32(0x00800000)
+#define WLAN_GPIO_OUT_BIT_ALL FIELD32(0x00ff0000)
+#define WLAN_GPIO_OUT_OE_BIT0 FIELD32(0x01000000)
+#define WLAN_GPIO_OUT_OE_BIT1 FIELD32(0x02000000)
+#define WLAN_GPIO_OUT_OE_BIT2 FIELD32(0x04000000)
+#define WLAN_GPIO_OUT_OE_BIT3 FIELD32(0x08000000)
+#define WLAN_GPIO_OUT_OE_BIT4 FIELD32(0x10000000)
+#define WLAN_GPIO_OUT_OE_BIT5 FIELD32(0x20000000)
+#define WLAN_GPIO_OUT_OE_BIT6 FIELD32(0x40000000)
+#define WLAN_GPIO_OUT_OE_BIT7 FIELD32(0x80000000)
+#define WLAN_GPIO_OUT_OE_BIT_ALL FIELD32(0xff000000)
+
+/*
+ * AUX_CTRL: Aux/PCI-E related configuration
+ */
+#define AUX_CTRL 0x10c
+#define AUX_CTRL_WAKE_PCIE_EN FIELD32(0x00000002)
+#define AUX_CTRL_FORCE_PCIE_CLK FIELD32(0x00000400)
+
+/*
+ * OPT_14: Unknown register used by rt3xxx devices.
+ */
+#define OPT_14_CSR 0x0114
+#define OPT_14_CSR_BIT0 FIELD32(0x00000001)
+
+/*
+ * INT_SOURCE_CSR: Interrupt source register.
+ * Write one to clear corresponding bit.
+ * TX_FIFO_STATUS: FIFO Statistics is full, sw should read TX_STA_FIFO
+ */
+#define INT_SOURCE_CSR 0x0200
+#define INT_SOURCE_CSR_RXDELAYINT FIELD32(0x00000001)
+#define INT_SOURCE_CSR_TXDELAYINT FIELD32(0x00000002)
+#define INT_SOURCE_CSR_RX_DONE FIELD32(0x00000004)
+#define INT_SOURCE_CSR_AC0_DMA_DONE FIELD32(0x00000008)
+#define INT_SOURCE_CSR_AC1_DMA_DONE FIELD32(0x00000010)
+#define INT_SOURCE_CSR_AC2_DMA_DONE FIELD32(0x00000020)
+#define INT_SOURCE_CSR_AC3_DMA_DONE FIELD32(0x00000040)
+#define INT_SOURCE_CSR_HCCA_DMA_DONE FIELD32(0x00000080)
+#define INT_SOURCE_CSR_MGMT_DMA_DONE FIELD32(0x00000100)
+#define INT_SOURCE_CSR_MCU_COMMAND FIELD32(0x00000200)
+#define INT_SOURCE_CSR_RXTX_COHERENT FIELD32(0x00000400)
+#define INT_SOURCE_CSR_TBTT FIELD32(0x00000800)
+#define INT_SOURCE_CSR_PRE_TBTT FIELD32(0x00001000)
+#define INT_SOURCE_CSR_TX_FIFO_STATUS FIELD32(0x00002000)
+#define INT_SOURCE_CSR_AUTO_WAKEUP FIELD32(0x00004000)
+#define INT_SOURCE_CSR_GPTIMER FIELD32(0x00008000)
+#define INT_SOURCE_CSR_RX_COHERENT FIELD32(0x00010000)
+#define INT_SOURCE_CSR_TX_COHERENT FIELD32(0x00020000)
+
+/*
+ * INT_MASK_CSR: Interrupt MASK register. 1: the interrupt is mask OFF.
+ */
+#define INT_MASK_CSR 0x0204
+#define INT_MASK_CSR_RXDELAYINT FIELD32(0x00000001)
+#define INT_MASK_CSR_TXDELAYINT FIELD32(0x00000002)
+#define INT_MASK_CSR_RX_DONE FIELD32(0x00000004)
+#define INT_MASK_CSR_AC0_DMA_DONE FIELD32(0x00000008)
+#define INT_MASK_CSR_AC1_DMA_DONE FIELD32(0x00000010)
+#define INT_MASK_CSR_AC2_DMA_DONE FIELD32(0x00000020)
+#define INT_MASK_CSR_AC3_DMA_DONE FIELD32(0x00000040)
+#define INT_MASK_CSR_HCCA_DMA_DONE FIELD32(0x00000080)
+#define INT_MASK_CSR_MGMT_DMA_DONE FIELD32(0x00000100)
+#define INT_MASK_CSR_MCU_COMMAND FIELD32(0x00000200)
+#define INT_MASK_CSR_RXTX_COHERENT FIELD32(0x00000400)
+#define INT_MASK_CSR_TBTT FIELD32(0x00000800)
+#define INT_MASK_CSR_PRE_TBTT FIELD32(0x00001000)
+#define INT_MASK_CSR_TX_FIFO_STATUS FIELD32(0x00002000)
+#define INT_MASK_CSR_AUTO_WAKEUP FIELD32(0x00004000)
+#define INT_MASK_CSR_GPTIMER FIELD32(0x00008000)
+#define INT_MASK_CSR_RX_COHERENT FIELD32(0x00010000)
+#define INT_MASK_CSR_TX_COHERENT FIELD32(0x00020000)
+
+/*
+ * WPDMA_GLO_CFG
+ */
+#define WPDMA_GLO_CFG 0x0208
+#define WPDMA_GLO_CFG_ENABLE_TX_DMA FIELD32(0x00000001)
+#define WPDMA_GLO_CFG_TX_DMA_BUSY FIELD32(0x00000002)
+#define WPDMA_GLO_CFG_ENABLE_RX_DMA FIELD32(0x00000004)
+#define WPDMA_GLO_CFG_RX_DMA_BUSY FIELD32(0x00000008)
+#define WPDMA_GLO_CFG_WP_DMA_BURST_SIZE FIELD32(0x00000030)
+#define WPDMA_GLO_CFG_TX_WRITEBACK_DONE FIELD32(0x00000040)
+#define WPDMA_GLO_CFG_BIG_ENDIAN FIELD32(0x00000080)
+#define WPDMA_GLO_CFG_RX_HDR_SCATTER FIELD32(0x0000ff00)
+#define WPDMA_GLO_CFG_HDR_SEG_LEN FIELD32(0xffff0000)
+
+/*
+ * WPDMA_RST_IDX
+ */
+#define WPDMA_RST_IDX 0x020c
+#define WPDMA_RST_IDX_DTX_IDX0 FIELD32(0x00000001)
+#define WPDMA_RST_IDX_DTX_IDX1 FIELD32(0x00000002)
+#define WPDMA_RST_IDX_DTX_IDX2 FIELD32(0x00000004)
+#define WPDMA_RST_IDX_DTX_IDX3 FIELD32(0x00000008)
+#define WPDMA_RST_IDX_DTX_IDX4 FIELD32(0x00000010)
+#define WPDMA_RST_IDX_DTX_IDX5 FIELD32(0x00000020)
+#define WPDMA_RST_IDX_DRX_IDX0 FIELD32(0x00010000)
+
+/*
+ * DELAY_INT_CFG
+ */
+#define DELAY_INT_CFG 0x0210
+#define DELAY_INT_CFG_RXMAX_PTIME FIELD32(0x000000ff)
+#define DELAY_INT_CFG_RXMAX_PINT FIELD32(0x00007f00)
+#define DELAY_INT_CFG_RXDLY_INT_EN FIELD32(0x00008000)
+#define DELAY_INT_CFG_TXMAX_PTIME FIELD32(0x00ff0000)
+#define DELAY_INT_CFG_TXMAX_PINT FIELD32(0x7f000000)
+#define DELAY_INT_CFG_TXDLY_INT_EN FIELD32(0x80000000)
+
+/*
+ * WMM_AIFSN_CFG: Aifsn for each EDCA AC
+ * AIFSN0: AC_VO
+ * AIFSN1: AC_VI
+ * AIFSN2: AC_BE
+ * AIFSN3: AC_BK
+ */
+#define WMM_AIFSN_CFG 0x0214
+#define WMM_AIFSN_CFG_AIFSN0 FIELD32(0x0000000f)
+#define WMM_AIFSN_CFG_AIFSN1 FIELD32(0x000000f0)
+#define WMM_AIFSN_CFG_AIFSN2 FIELD32(0x00000f00)
+#define WMM_AIFSN_CFG_AIFSN3 FIELD32(0x0000f000)
+
+/*
+ * WMM_CWMIN_CSR: CWmin for each EDCA AC
+ * CWMIN0: AC_VO
+ * CWMIN1: AC_VI
+ * CWMIN2: AC_BE
+ * CWMIN3: AC_BK
+ */
+#define WMM_CWMIN_CFG 0x0218
+#define WMM_CWMIN_CFG_CWMIN0 FIELD32(0x0000000f)
+#define WMM_CWMIN_CFG_CWMIN1 FIELD32(0x000000f0)
+#define WMM_CWMIN_CFG_CWMIN2 FIELD32(0x00000f00)
+#define WMM_CWMIN_CFG_CWMIN3 FIELD32(0x0000f000)
+
+/*
+ * WMM_CWMAX_CSR: CWmax for each EDCA AC
+ * CWMAX0: AC_VO
+ * CWMAX1: AC_VI
+ * CWMAX2: AC_BE
+ * CWMAX3: AC_BK
+ */
+#define WMM_CWMAX_CFG 0x021c
+#define WMM_CWMAX_CFG_CWMAX0 FIELD32(0x0000000f)
+#define WMM_CWMAX_CFG_CWMAX1 FIELD32(0x000000f0)
+#define WMM_CWMAX_CFG_CWMAX2 FIELD32(0x00000f00)
+#define WMM_CWMAX_CFG_CWMAX3 FIELD32(0x0000f000)
+
+/*
+ * AC_TXOP0: AC_VO/AC_VI TXOP register
+ * AC0TXOP: AC_VO in unit of 32us
+ * AC1TXOP: AC_VI in unit of 32us
+ */
+#define WMM_TXOP0_CFG 0x0220
+#define WMM_TXOP0_CFG_AC0TXOP FIELD32(0x0000ffff)
+#define WMM_TXOP0_CFG_AC1TXOP FIELD32(0xffff0000)
+
+/*
+ * AC_TXOP1: AC_BE/AC_BK TXOP register
+ * AC2TXOP: AC_BE in unit of 32us
+ * AC3TXOP: AC_BK in unit of 32us
+ */
+#define WMM_TXOP1_CFG 0x0224
+#define WMM_TXOP1_CFG_AC2TXOP FIELD32(0x0000ffff)
+#define WMM_TXOP1_CFG_AC3TXOP FIELD32(0xffff0000)
+
+/*
+ * GPIO_CTRL:
+ * GPIO_CTRL_VALx: GPIO value
+ * GPIO_CTRL_DIRx: GPIO direction: 0 = output; 1 = input
+ */
+#define GPIO_CTRL 0x0228
+#define GPIO_CTRL_VAL0 FIELD32(0x00000001)
+#define GPIO_CTRL_VAL1 FIELD32(0x00000002)
+#define GPIO_CTRL_VAL2 FIELD32(0x00000004)
+#define GPIO_CTRL_VAL3 FIELD32(0x00000008)
+#define GPIO_CTRL_VAL4 FIELD32(0x00000010)
+#define GPIO_CTRL_VAL5 FIELD32(0x00000020)
+#define GPIO_CTRL_VAL6 FIELD32(0x00000040)
+#define GPIO_CTRL_VAL7 FIELD32(0x00000080)
+#define GPIO_CTRL_DIR0 FIELD32(0x00000100)
+#define GPIO_CTRL_DIR1 FIELD32(0x00000200)
+#define GPIO_CTRL_DIR2 FIELD32(0x00000400)
+#define GPIO_CTRL_DIR3 FIELD32(0x00000800)
+#define GPIO_CTRL_DIR4 FIELD32(0x00001000)
+#define GPIO_CTRL_DIR5 FIELD32(0x00002000)
+#define GPIO_CTRL_DIR6 FIELD32(0x00004000)
+#define GPIO_CTRL_DIR7 FIELD32(0x00008000)
+#define GPIO_CTRL_VAL8 FIELD32(0x00010000)
+#define GPIO_CTRL_VAL9 FIELD32(0x00020000)
+#define GPIO_CTRL_VAL10 FIELD32(0x00040000)
+#define GPIO_CTRL_DIR8 FIELD32(0x01000000)
+#define GPIO_CTRL_DIR9 FIELD32(0x02000000)
+#define GPIO_CTRL_DIR10 FIELD32(0x04000000)
+
+/*
+ * MCU_CMD_CFG
+ */
+#define MCU_CMD_CFG 0x022c
+
+/*
+ * AC_VO register offsets
+ */
+#define TX_BASE_PTR0 0x0230
+#define TX_MAX_CNT0 0x0234
+#define TX_CTX_IDX0 0x0238
+#define TX_DTX_IDX0 0x023c
+
+/*
+ * AC_VI register offsets
+ */
+#define TX_BASE_PTR1 0x0240
+#define TX_MAX_CNT1 0x0244
+#define TX_CTX_IDX1 0x0248
+#define TX_DTX_IDX1 0x024c
+
+/*
+ * AC_BE register offsets
+ */
+#define TX_BASE_PTR2 0x0250
+#define TX_MAX_CNT2 0x0254
+#define TX_CTX_IDX2 0x0258
+#define TX_DTX_IDX2 0x025c
+
+/*
+ * AC_BK register offsets
+ */
+#define TX_BASE_PTR3 0x0260
+#define TX_MAX_CNT3 0x0264
+#define TX_CTX_IDX3 0x0268
+#define TX_DTX_IDX3 0x026c
+
+/*
+ * HCCA register offsets
+ */
+#define TX_BASE_PTR4 0x0270
+#define TX_MAX_CNT4 0x0274
+#define TX_CTX_IDX4 0x0278
+#define TX_DTX_IDX4 0x027c
+
+/*
+ * MGMT register offsets
+ */
+#define TX_BASE_PTR5 0x0280
+#define TX_MAX_CNT5 0x0284
+#define TX_CTX_IDX5 0x0288
+#define TX_DTX_IDX5 0x028c
+
+/*
+ * RX register offsets
+ */
+#define RX_BASE_PTR 0x0290
+#define RX_MAX_CNT 0x0294
+#define RX_CRX_IDX 0x0298
+#define RX_DRX_IDX 0x029c
+
+/*
+ * USB_DMA_CFG
+ * RX_BULK_AGG_TIMEOUT: Rx Bulk Aggregation TimeOut in unit of 33ns.
+ * RX_BULK_AGG_LIMIT: Rx Bulk Aggregation Limit in unit of 256 bytes.
+ * PHY_CLEAR: phy watch dog enable.
+ * TX_CLEAR: Clear USB DMA TX path.
+ * TXOP_HALT: Halt TXOP count down when TX buffer is full.
+ * RX_BULK_AGG_EN: Enable Rx Bulk Aggregation.
+ * RX_BULK_EN: Enable USB DMA Rx.
+ * TX_BULK_EN: Enable USB DMA Tx.
+ * EP_OUT_VALID: OUT endpoint data valid.
+ * RX_BUSY: USB DMA RX FSM busy.
+ * TX_BUSY: USB DMA TX FSM busy.
+ */
+#define USB_DMA_CFG 0x02a0
+#define USB_DMA_CFG_RX_BULK_AGG_TIMEOUT FIELD32(0x000000ff)
+#define USB_DMA_CFG_RX_BULK_AGG_LIMIT FIELD32(0x0000ff00)
+#define USB_DMA_CFG_PHY_CLEAR FIELD32(0x00010000)
+#define USB_DMA_CFG_TX_CLEAR FIELD32(0x00080000)
+#define USB_DMA_CFG_TXOP_HALT FIELD32(0x00100000)
+#define USB_DMA_CFG_RX_BULK_AGG_EN FIELD32(0x00200000)
+#define USB_DMA_CFG_RX_BULK_EN FIELD32(0x00400000)
+#define USB_DMA_CFG_TX_BULK_EN FIELD32(0x00800000)
+#define USB_DMA_CFG_EP_OUT_VALID FIELD32(0x3f000000)
+#define USB_DMA_CFG_RX_BUSY FIELD32(0x40000000)
+#define USB_DMA_CFG_TX_BUSY FIELD32(0x80000000)
+
+/*
+ * US_CYC_CNT
+ * BT_MODE_EN: Bluetooth mode enable
+ * CLOCK CYCLE: Clock cycle count in 1us.
+ * PCI:0x21, PCIE:0x7d, USB:0x1e
+ */
+#define US_CYC_CNT 0x02a4
+#define US_CYC_CNT_BT_MODE_EN FIELD32(0x00000100)
+#define US_CYC_CNT_CLOCK_CYCLE FIELD32(0x000000ff)
+
+/*
+ * PBF_SYS_CTRL
+ * HOST_RAM_WRITE: enable Host program ram write selection
+ */
+#define PBF_SYS_CTRL 0x0400
+#define PBF_SYS_CTRL_READY FIELD32(0x00000080)
+#define PBF_SYS_CTRL_HOST_RAM_WRITE FIELD32(0x00010000)
+
+/*
+ * HOST-MCU shared memory
+ */
+#define HOST_CMD_CSR 0x0404
+#define HOST_CMD_CSR_HOST_COMMAND FIELD32(0x000000ff)
+
+/*
+ * PBF registers
+ * Most are for debug. Driver doesn't touch PBF register.
+ */
+#define PBF_CFG 0x0408
+#define PBF_MAX_PCNT 0x040c
+#define PBF_CTRL 0x0410
+#define PBF_INT_STA 0x0414
+#define PBF_INT_ENA 0x0418
+
+/*
+ * BCN_OFFSET0:
+ */
+#define BCN_OFFSET0 0x042c
+#define BCN_OFFSET0_BCN0 FIELD32(0x000000ff)
+#define BCN_OFFSET0_BCN1 FIELD32(0x0000ff00)
+#define BCN_OFFSET0_BCN2 FIELD32(0x00ff0000)
+#define BCN_OFFSET0_BCN3 FIELD32(0xff000000)
+
+/*
+ * BCN_OFFSET1:
+ */
+#define BCN_OFFSET1 0x0430
+#define BCN_OFFSET1_BCN4 FIELD32(0x000000ff)
+#define BCN_OFFSET1_BCN5 FIELD32(0x0000ff00)
+#define BCN_OFFSET1_BCN6 FIELD32(0x00ff0000)
+#define BCN_OFFSET1_BCN7 FIELD32(0xff000000)
+
+/*
+ * TXRXQ_PCNT: PBF register
+ * PCNT_TX0Q: Page count for TX hardware queue 0
+ * PCNT_TX1Q: Page count for TX hardware queue 1
+ * PCNT_TX2Q: Page count for TX hardware queue 2
+ * PCNT_RX0Q: Page count for RX hardware queue
+ */
+#define TXRXQ_PCNT 0x0438
+#define TXRXQ_PCNT_TX0Q FIELD32(0x000000ff)
+#define TXRXQ_PCNT_TX1Q FIELD32(0x0000ff00)
+#define TXRXQ_PCNT_TX2Q FIELD32(0x00ff0000)
+#define TXRXQ_PCNT_RX0Q FIELD32(0xff000000)
+
+/*
+ * PBF register
+ * Debug. Driver doesn't touch PBF register.
+ */
+#define PBF_DBG 0x043c
+
+/*
+ * RF registers
+ */
+#define RF_CSR_CFG 0x0500
+#define RF_CSR_CFG_DATA FIELD32(0x000000ff)
+#define RF_CSR_CFG_REGNUM FIELD32(0x00003f00)
+#define RF_CSR_CFG_WRITE FIELD32(0x00010000)
+#define RF_CSR_CFG_BUSY FIELD32(0x00020000)
+
+/*
+ * MT7620 RF registers (reversed order)
+ */
+#define RF_CSR_CFG_DATA_MT7620 FIELD32(0x0000ff00)
+#define RF_CSR_CFG_REGNUM_MT7620 FIELD32(0x03ff0000)
+#define RF_CSR_CFG_WRITE_MT7620 FIELD32(0x00000010)
+#define RF_CSR_CFG_BUSY_MT7620 FIELD32(0x00000001)
+
+/* undocumented registers for calibration of new MAC */
+#define RF_CONTROL0 0x0518
+#define RF_BYPASS0 0x051c
+#define RF_CONTROL1 0x0520
+#define RF_BYPASS1 0x0524
+#define RF_CONTROL2 0x0528
+#define RF_BYPASS2 0x052c
+#define RF_CONTROL3 0x0530
+#define RF_BYPASS3 0x0534
+
+/*
+ * EFUSE_CSR: RT30x0 EEPROM
+ */
+#define EFUSE_CTRL 0x0580
+#define EFUSE_CTRL_ADDRESS_IN FIELD32(0x03fe0000)
+#define EFUSE_CTRL_MODE FIELD32(0x000000c0)
+#define EFUSE_CTRL_KICK FIELD32(0x40000000)
+#define EFUSE_CTRL_PRESENT FIELD32(0x80000000)
+
+/*
+ * EFUSE_DATA0
+ */
+#define EFUSE_DATA0 0x0590
+
+/*
+ * EFUSE_DATA1
+ */
+#define EFUSE_DATA1 0x0594
+
+/*
+ * EFUSE_DATA2
+ */
+#define EFUSE_DATA2 0x0598
+
+/*
+ * EFUSE_DATA3
+ */
+#define EFUSE_DATA3 0x059c
+
+/*
+ * LDO_CFG0
+ */
+#define LDO_CFG0 0x05d4
+#define LDO_CFG0_DELAY3 FIELD32(0x000000ff)
+#define LDO_CFG0_DELAY2 FIELD32(0x0000ff00)
+#define LDO_CFG0_DELAY1 FIELD32(0x00ff0000)
+#define LDO_CFG0_BGSEL FIELD32(0x03000000)
+#define LDO_CFG0_LDO_CORE_VLEVEL FIELD32(0x1c000000)
+#define LD0_CFG0_LDO25_LEVEL FIELD32(0x60000000)
+#define LDO_CFG0_LDO25_LARGEA FIELD32(0x80000000)
+
+/*
+ * GPIO_SWITCH
+ */
+#define GPIO_SWITCH 0x05dc
+#define GPIO_SWITCH_0 FIELD32(0x00000001)
+#define GPIO_SWITCH_1 FIELD32(0x00000002)
+#define GPIO_SWITCH_2 FIELD32(0x00000004)
+#define GPIO_SWITCH_3 FIELD32(0x00000008)
+#define GPIO_SWITCH_4 FIELD32(0x00000010)
+#define GPIO_SWITCH_5 FIELD32(0x00000020)
+#define GPIO_SWITCH_6 FIELD32(0x00000040)
+#define GPIO_SWITCH_7 FIELD32(0x00000080)
+
+/*
+ * FIXME: where the DEBUG_INDEX name come from?
+ */
+#define MAC_DEBUG_INDEX 0x05e8
+#define MAC_DEBUG_INDEX_XTAL FIELD32(0x80000000)
+
+/*
+ * MAC Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * MAC_CSR0: ASIC revision number.
+ * ASIC_REV: 0
+ * ASIC_VER: 2860 or 2870
+ */
+#define MAC_CSR0 0x1000
+#define MAC_CSR0_REVISION FIELD32(0x0000ffff)
+#define MAC_CSR0_CHIPSET FIELD32(0xffff0000)
+
+/*
+ * MAC_SYS_CTRL:
+ */
+#define MAC_SYS_CTRL 0x1004
+#define MAC_SYS_CTRL_RESET_CSR FIELD32(0x00000001)
+#define MAC_SYS_CTRL_RESET_BBP FIELD32(0x00000002)
+#define MAC_SYS_CTRL_ENABLE_TX FIELD32(0x00000004)
+#define MAC_SYS_CTRL_ENABLE_RX FIELD32(0x00000008)
+#define MAC_SYS_CTRL_CONTINUOUS_TX FIELD32(0x00000010)
+#define MAC_SYS_CTRL_LOOPBACK FIELD32(0x00000020)
+#define MAC_SYS_CTRL_WLAN_HALT FIELD32(0x00000040)
+#define MAC_SYS_CTRL_RX_TIMESTAMP FIELD32(0x00000080)
+
+/*
+ * MAC_ADDR_DW0: STA MAC register 0
+ */
+#define MAC_ADDR_DW0 0x1008
+#define MAC_ADDR_DW0_BYTE0 FIELD32(0x000000ff)
+#define MAC_ADDR_DW0_BYTE1 FIELD32(0x0000ff00)
+#define MAC_ADDR_DW0_BYTE2 FIELD32(0x00ff0000)
+#define MAC_ADDR_DW0_BYTE3 FIELD32(0xff000000)
+
+/*
+ * MAC_ADDR_DW1: STA MAC register 1
+ * UNICAST_TO_ME_MASK:
+ * Used to mask off bits from byte 5 of the MAC address
+ * to determine the UNICAST_TO_ME bit for RX frames.
+ * The full mask is complemented by BSS_ID_MASK:
+ * MASK = BSS_ID_MASK & UNICAST_TO_ME_MASK
+ */
+#define MAC_ADDR_DW1 0x100c
+#define MAC_ADDR_DW1_BYTE4 FIELD32(0x000000ff)
+#define MAC_ADDR_DW1_BYTE5 FIELD32(0x0000ff00)
+#define MAC_ADDR_DW1_UNICAST_TO_ME_MASK FIELD32(0x00ff0000)
+
+/*
+ * MAC_BSSID_DW0: BSSID register 0
+ */
+#define MAC_BSSID_DW0 0x1010
+#define MAC_BSSID_DW0_BYTE0 FIELD32(0x000000ff)
+#define MAC_BSSID_DW0_BYTE1 FIELD32(0x0000ff00)
+#define MAC_BSSID_DW0_BYTE2 FIELD32(0x00ff0000)
+#define MAC_BSSID_DW0_BYTE3 FIELD32(0xff000000)
+
+/*
+ * MAC_BSSID_DW1: BSSID register 1
+ * BSS_ID_MASK:
+ * 0: 1-BSSID mode (BSS index = 0)
+ * 1: 2-BSSID mode (BSS index: Byte5, bit 0)
+ * 2: 4-BSSID mode (BSS index: byte5, bit 0 - 1)
+ * 3: 8-BSSID mode (BSS index: byte5, bit 0 - 2)
+ * This mask is used to mask off bits 0, 1 and 2 of byte 5 of the
+ * BSSID. This will make sure that those bits will be ignored
+ * when determining the MY_BSS of RX frames.
+ */
+#define MAC_BSSID_DW1 0x1014
+#define MAC_BSSID_DW1_BYTE4 FIELD32(0x000000ff)
+#define MAC_BSSID_DW1_BYTE5 FIELD32(0x0000ff00)
+#define MAC_BSSID_DW1_BSS_ID_MASK FIELD32(0x00030000)
+#define MAC_BSSID_DW1_BSS_BCN_NUM FIELD32(0x001c0000)
+
+/*
+ * MAX_LEN_CFG: Maximum frame length register.
+ * MAX_MPDU: rt2860b max 16k bytes
+ * MAX_PSDU: Maximum PSDU length
+ * (power factor) 0:2^13, 1:2^14, 2:2^15, 3:2^16
+ */
+#define MAX_LEN_CFG 0x1018
+#define MAX_LEN_CFG_MAX_MPDU FIELD32(0x00000fff)
+#define MAX_LEN_CFG_MAX_PSDU FIELD32(0x00003000)
+#define MAX_LEN_CFG_MIN_PSDU FIELD32(0x0000c000)
+#define MAX_LEN_CFG_MIN_MPDU FIELD32(0x000f0000)
+
+/*
+ * BBP_CSR_CFG: BBP serial control register
+ * VALUE: Register value to program into BBP
+ * REG_NUM: Selected BBP register
+ * READ_CONTROL: 0 write BBP, 1 read BBP
+ * BUSY: ASIC is busy executing BBP commands
+ * BBP_PAR_DUR: 0 4 MAC clocks, 1 8 MAC clocks
+ * BBP_RW_MODE: 0 serial, 1 parallel
+ */
+#define BBP_CSR_CFG 0x101c
+#define BBP_CSR_CFG_VALUE FIELD32(0x000000ff)
+#define BBP_CSR_CFG_REGNUM FIELD32(0x0000ff00)
+#define BBP_CSR_CFG_READ_CONTROL FIELD32(0x00010000)
+#define BBP_CSR_CFG_BUSY FIELD32(0x00020000)
+#define BBP_CSR_CFG_BBP_PAR_DUR FIELD32(0x00040000)
+#define BBP_CSR_CFG_BBP_RW_MODE FIELD32(0x00080000)
+
+/*
+ * RF_CSR_CFG0: RF control register
+ * REGID_AND_VALUE: Register value to program into RF
+ * BITWIDTH: Selected RF register
+ * STANDBYMODE: 0 high when standby, 1 low when standby
+ * SEL: 0 RF_LE0 activate, 1 RF_LE1 activate
+ * BUSY: ASIC is busy executing RF commands
+ */
+#define RF_CSR_CFG0 0x1020
+#define RF_CSR_CFG0_REGID_AND_VALUE FIELD32(0x00ffffff)
+#define RF_CSR_CFG0_BITWIDTH FIELD32(0x1f000000)
+#define RF_CSR_CFG0_REG_VALUE_BW FIELD32(0x1fffffff)
+#define RF_CSR_CFG0_STANDBYMODE FIELD32(0x20000000)
+#define RF_CSR_CFG0_SEL FIELD32(0x40000000)
+#define RF_CSR_CFG0_BUSY FIELD32(0x80000000)
+
+/*
+ * RF_CSR_CFG1: RF control register
+ * REGID_AND_VALUE: Register value to program into RF
+ * RFGAP: Gap between BB_CONTROL_RF and RF_LE
+ * 0: 3 system clock cycle (37.5usec)
+ * 1: 5 system clock cycle (62.5usec)
+ */
+#define RF_CSR_CFG1 0x1024
+#define RF_CSR_CFG1_REGID_AND_VALUE FIELD32(0x00ffffff)
+#define RF_CSR_CFG1_RFGAP FIELD32(0x1f000000)
+
+/*
+ * RF_CSR_CFG2: RF control register
+ * VALUE: Register value to program into RF
+ */
+#define RF_CSR_CFG2 0x1028
+#define RF_CSR_CFG2_VALUE FIELD32(0x00ffffff)
+
+/*
+ * LED_CFG: LED control
+ * ON_PERIOD: LED active time (ms) during TX (only used for LED mode 1)
+ * OFF_PERIOD: LED inactive time (ms) during TX (only used for LED mode 1)
+ * SLOW_BLINK_PERIOD: LED blink interval in seconds (only used for LED mode 2)
+ * color LED's:
+ * 0: off
+ * 1: blinking upon TX2
+ * 2: periodic slow blinking
+ * 3: always on
+ * LED polarity:
+ * 0: active low
+ * 1: active high
+ */
+#define LED_CFG 0x102c
+#define LED_CFG_ON_PERIOD FIELD32(0x000000ff)
+#define LED_CFG_OFF_PERIOD FIELD32(0x0000ff00)
+#define LED_CFG_SLOW_BLINK_PERIOD FIELD32(0x003f0000)
+#define LED_CFG_R_LED_MODE FIELD32(0x03000000)
+#define LED_CFG_G_LED_MODE FIELD32(0x0c000000)
+#define LED_CFG_Y_LED_MODE FIELD32(0x30000000)
+#define LED_CFG_LED_POLAR FIELD32(0x40000000)
+
+/*
+ * AMPDU_BA_WINSIZE: Force BlockAck window size
+ * FORCE_WINSIZE_ENABLE:
+ * 0: Disable forcing of BlockAck window size
+ * 1: Enable forcing of BlockAck window size, overwrites values BlockAck
+ * window size values in the TXWI
+ * FORCE_WINSIZE: BlockAck window size
+ */
+#define AMPDU_BA_WINSIZE 0x1040
+#define AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE FIELD32(0x00000020)
+#define AMPDU_BA_WINSIZE_FORCE_WINSIZE FIELD32(0x0000001f)
+
+/*
+ * XIFS_TIME_CFG: MAC timing
+ * CCKM_SIFS_TIME: unit 1us. Applied after CCK RX/TX
+ * OFDM_SIFS_TIME: unit 1us. Applied after OFDM RX/TX
+ * OFDM_XIFS_TIME: unit 1us. Applied after OFDM RX
+ * when MAC doesn't reference BBP signal BBRXEND
+ * EIFS: unit 1us
+ * BB_RXEND_ENABLE: reference RXEND signal to begin XIFS defer
+ *
+ */
+#define XIFS_TIME_CFG 0x1100
+#define XIFS_TIME_CFG_CCKM_SIFS_TIME FIELD32(0x000000ff)
+#define XIFS_TIME_CFG_OFDM_SIFS_TIME FIELD32(0x0000ff00)
+#define XIFS_TIME_CFG_OFDM_XIFS_TIME FIELD32(0x000f0000)
+#define XIFS_TIME_CFG_EIFS FIELD32(0x1ff00000)
+#define XIFS_TIME_CFG_BB_RXEND_ENABLE FIELD32(0x20000000)
+
+/*
+ * BKOFF_SLOT_CFG:
+ */
+#define BKOFF_SLOT_CFG 0x1104
+#define BKOFF_SLOT_CFG_SLOT_TIME FIELD32(0x000000ff)
+#define BKOFF_SLOT_CFG_CC_DELAY_TIME FIELD32(0x0000ff00)
+
+/*
+ * NAV_TIME_CFG:
+ */
+#define NAV_TIME_CFG 0x1108
+#define NAV_TIME_CFG_SIFS FIELD32(0x000000ff)
+#define NAV_TIME_CFG_SLOT_TIME FIELD32(0x0000ff00)
+#define NAV_TIME_CFG_EIFS FIELD32(0x01ff0000)
+#define NAV_TIME_ZERO_SIFS FIELD32(0x02000000)
+
+/*
+ * CH_TIME_CFG: count as channel busy
+ * EIFS_BUSY: Count EIFS as channel busy
+ * NAV_BUSY: Count NAS as channel busy
+ * RX_BUSY: Count RX as channel busy
+ * TX_BUSY: Count TX as channel busy
+ * TMR_EN: Enable channel statistics timer
+ */
+#define CH_TIME_CFG 0x110c
+#define CH_TIME_CFG_EIFS_BUSY FIELD32(0x00000010)
+#define CH_TIME_CFG_NAV_BUSY FIELD32(0x00000008)
+#define CH_TIME_CFG_RX_BUSY FIELD32(0x00000004)
+#define CH_TIME_CFG_TX_BUSY FIELD32(0x00000002)
+#define CH_TIME_CFG_TMR_EN FIELD32(0x00000001)
+
+/*
+ * PBF_LIFE_TIMER: TX/RX MPDU timestamp timer (free run) Unit: 1us
+ */
+#define PBF_LIFE_TIMER 0x1110
+
+/*
+ * BCN_TIME_CFG:
+ * BEACON_INTERVAL: in unit of 1/16 TU
+ * TSF_TICKING: Enable TSF auto counting
+ * TSF_SYNC: Enable TSF sync, 00: disable, 01: infra mode, 10: ad-hoc mode
+ * BEACON_GEN: Enable beacon generator
+ */
+#define BCN_TIME_CFG 0x1114
+#define BCN_TIME_CFG_BEACON_INTERVAL FIELD32(0x0000ffff)
+#define BCN_TIME_CFG_TSF_TICKING FIELD32(0x00010000)
+#define BCN_TIME_CFG_TSF_SYNC FIELD32(0x00060000)
+#define BCN_TIME_CFG_TBTT_ENABLE FIELD32(0x00080000)
+#define BCN_TIME_CFG_BEACON_GEN FIELD32(0x00100000)
+#define BCN_TIME_CFG_TX_TIME_COMPENSATE FIELD32(0xf0000000)
+
+/*
+ * TBTT_SYNC_CFG:
+ * BCN_AIFSN: Beacon AIFSN after TBTT interrupt in slots
+ * BCN_CWMIN: Beacon CWMin after TBTT interrupt in slots
+ */
+#define TBTT_SYNC_CFG 0x1118
+#define TBTT_SYNC_CFG_TBTT_ADJUST FIELD32(0x000000ff)
+#define TBTT_SYNC_CFG_BCN_EXP_WIN FIELD32(0x0000ff00)
+#define TBTT_SYNC_CFG_BCN_AIFSN FIELD32(0x000f0000)
+#define TBTT_SYNC_CFG_BCN_CWMIN FIELD32(0x00f00000)
+
+/*
+ * TSF_TIMER_DW0: Local lsb TSF timer, read-only
+ */
+#define TSF_TIMER_DW0 0x111c
+#define TSF_TIMER_DW0_LOW_WORD FIELD32(0xffffffff)
+
+/*
+ * TSF_TIMER_DW1: Local msb TSF timer, read-only
+ */
+#define TSF_TIMER_DW1 0x1120
+#define TSF_TIMER_DW1_HIGH_WORD FIELD32(0xffffffff)
+
+/*
+ * TBTT_TIMER: TImer remains till next TBTT, read-only
+ */
+#define TBTT_TIMER 0x1124
+
+/*
+ * INT_TIMER_CFG: timer configuration
+ * PRE_TBTT_TIMER: leadtime to tbtt for pretbtt interrupt in units of 1/16 TU
+ * GP_TIMER: period of general purpose timer in units of 1/16 TU
+ */
+#define INT_TIMER_CFG 0x1128
+#define INT_TIMER_CFG_PRE_TBTT_TIMER FIELD32(0x0000ffff)
+#define INT_TIMER_CFG_GP_TIMER FIELD32(0xffff0000)
+
+/*
+ * INT_TIMER_EN: GP-timer and pre-tbtt Int enable
+ */
+#define INT_TIMER_EN 0x112c
+#define INT_TIMER_EN_PRE_TBTT_TIMER FIELD32(0x00000001)
+#define INT_TIMER_EN_GP_TIMER FIELD32(0x00000002)
+
+/*
+ * CH_IDLE_STA: channel idle time (in us)
+ */
+#define CH_IDLE_STA 0x1130
+
+/*
+ * CH_BUSY_STA: channel busy time on primary channel (in us)
+ */
+#define CH_BUSY_STA 0x1134
+
+/*
+ * CH_BUSY_STA_SEC: channel busy time on secondary channel in HT40 mode (in us)
+ */
+#define CH_BUSY_STA_SEC 0x1138
+
+/*
+ * MAC_STATUS_CFG:
+ * BBP_RF_BUSY: When set to 0, BBP and RF are stable.
+ * if 1 or higher one of the 2 registers is busy.
+ */
+#define MAC_STATUS_CFG 0x1200
+#define MAC_STATUS_CFG_BBP_RF_BUSY FIELD32(0x00000003)
+#define MAC_STATUS_CFG_BBP_RF_BUSY_TX FIELD32(0x00000001)
+#define MAC_STATUS_CFG_BBP_RF_BUSY_RX FIELD32(0x00000002)
+
+/*
+ * PWR_PIN_CFG:
+ */
+#define PWR_PIN_CFG 0x1204
+
+/*
+ * AUTOWAKEUP_CFG: Manual power control / status register
+ * TBCN_BEFORE_WAKE: ForceWake has high privilege than PutToSleep when both set
+ * AUTOWAKE: 0:sleep, 1:awake
+ */
+#define AUTOWAKEUP_CFG 0x1208
+#define AUTOWAKEUP_CFG_AUTO_LEAD_TIME FIELD32(0x000000ff)
+#define AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE FIELD32(0x00007f00)
+#define AUTOWAKEUP_CFG_AUTOWAKE FIELD32(0x00008000)
+
+/*
+ * MIMO_PS_CFG: MIMO Power-save Configuration
+ */
+#define MIMO_PS_CFG 0x1210
+#define MIMO_PS_CFG_MMPS_BB_EN FIELD32(0x00000001)
+#define MIMO_PS_CFG_MMPS_RX_ANT_NUM FIELD32(0x00000006)
+#define MIMO_PS_CFG_MMPS_RF_EN FIELD32(0x00000008)
+#define MIMO_PS_CFG_RX_STBY_POL FIELD32(0x00000010)
+#define MIMO_PS_CFG_RX_RX_STBY0 FIELD32(0x00000020)
+
+/*
+ * EDCA_AC0_CFG:
+ */
+#define EDCA_AC0_CFG 0x1300
+#define EDCA_AC0_CFG_TX_OP FIELD32(0x000000ff)
+#define EDCA_AC0_CFG_AIFSN FIELD32(0x00000f00)
+#define EDCA_AC0_CFG_CWMIN FIELD32(0x0000f000)
+#define EDCA_AC0_CFG_CWMAX FIELD32(0x000f0000)
+
+/*
+ * EDCA_AC1_CFG:
+ */
+#define EDCA_AC1_CFG 0x1304
+#define EDCA_AC1_CFG_TX_OP FIELD32(0x000000ff)
+#define EDCA_AC1_CFG_AIFSN FIELD32(0x00000f00)
+#define EDCA_AC1_CFG_CWMIN FIELD32(0x0000f000)
+#define EDCA_AC1_CFG_CWMAX FIELD32(0x000f0000)
+
+/*
+ * EDCA_AC2_CFG:
+ */
+#define EDCA_AC2_CFG 0x1308
+#define EDCA_AC2_CFG_TX_OP FIELD32(0x000000ff)
+#define EDCA_AC2_CFG_AIFSN FIELD32(0x00000f00)
+#define EDCA_AC2_CFG_CWMIN FIELD32(0x0000f000)
+#define EDCA_AC2_CFG_CWMAX FIELD32(0x000f0000)
+
+/*
+ * EDCA_AC3_CFG:
+ */
+#define EDCA_AC3_CFG 0x130c
+#define EDCA_AC3_CFG_TX_OP FIELD32(0x000000ff)
+#define EDCA_AC3_CFG_AIFSN FIELD32(0x00000f00)
+#define EDCA_AC3_CFG_CWMIN FIELD32(0x0000f000)
+#define EDCA_AC3_CFG_CWMAX FIELD32(0x000f0000)
+
+/*
+ * EDCA_TID_AC_MAP:
+ */
+#define EDCA_TID_AC_MAP 0x1310
+
+/*
+ * TX_PWR_CFG:
+ */
+#define TX_PWR_CFG_RATE0 FIELD32(0x0000000f)
+#define TX_PWR_CFG_RATE1 FIELD32(0x000000f0)
+#define TX_PWR_CFG_RATE2 FIELD32(0x00000f00)
+#define TX_PWR_CFG_RATE3 FIELD32(0x0000f000)
+#define TX_PWR_CFG_RATE4 FIELD32(0x000f0000)
+#define TX_PWR_CFG_RATE5 FIELD32(0x00f00000)
+#define TX_PWR_CFG_RATE6 FIELD32(0x0f000000)
+#define TX_PWR_CFG_RATE7 FIELD32(0xf0000000)
+
+/*
+ * TX_PWR_CFG_0:
+ */
+#define TX_PWR_CFG_0 0x1314
+#define TX_PWR_CFG_0_1MBS FIELD32(0x0000000f)
+#define TX_PWR_CFG_0_2MBS FIELD32(0x000000f0)
+#define TX_PWR_CFG_0_55MBS FIELD32(0x00000f00)
+#define TX_PWR_CFG_0_11MBS FIELD32(0x0000f000)
+#define TX_PWR_CFG_0_6MBS FIELD32(0x000f0000)
+#define TX_PWR_CFG_0_9MBS FIELD32(0x00f00000)
+#define TX_PWR_CFG_0_12MBS FIELD32(0x0f000000)
+#define TX_PWR_CFG_0_18MBS FIELD32(0xf0000000)
+/* bits for 3T devices */
+#define TX_PWR_CFG_0_CCK1_CH0 FIELD32(0x0000000f)
+#define TX_PWR_CFG_0_CCK1_CH1 FIELD32(0x000000f0)
+#define TX_PWR_CFG_0_CCK5_CH0 FIELD32(0x00000f00)
+#define TX_PWR_CFG_0_CCK5_CH1 FIELD32(0x0000f000)
+#define TX_PWR_CFG_0_OFDM6_CH0 FIELD32(0x000f0000)
+#define TX_PWR_CFG_0_OFDM6_CH1 FIELD32(0x00f00000)
+#define TX_PWR_CFG_0_OFDM12_CH0 FIELD32(0x0f000000)
+#define TX_PWR_CFG_0_OFDM12_CH1 FIELD32(0xf0000000)
+/* bits for new 2T devices */
+#define TX_PWR_CFG_0B_1MBS_2MBS FIELD32(0x000000ff)
+#define TX_PWR_CFG_0B_5MBS_11MBS FIELD32(0x0000ff00)
+#define TX_PWR_CFG_0B_6MBS_9MBS FIELD32(0x00ff0000)
+#define TX_PWR_CFG_0B_12MBS_18MBS FIELD32(0xff000000)
+
+
+/*
+ * TX_PWR_CFG_1:
+ */
+#define TX_PWR_CFG_1 0x1318
+#define TX_PWR_CFG_1_24MBS FIELD32(0x0000000f)
+#define TX_PWR_CFG_1_36MBS FIELD32(0x000000f0)
+#define TX_PWR_CFG_1_48MBS FIELD32(0x00000f00)
+#define TX_PWR_CFG_1_54MBS FIELD32(0x0000f000)
+#define TX_PWR_CFG_1_MCS0 FIELD32(0x000f0000)
+#define TX_PWR_CFG_1_MCS1 FIELD32(0x00f00000)
+#define TX_PWR_CFG_1_MCS2 FIELD32(0x0f000000)
+#define TX_PWR_CFG_1_MCS3 FIELD32(0xf0000000)
+/* bits for 3T devices */
+#define TX_PWR_CFG_1_OFDM24_CH0 FIELD32(0x0000000f)
+#define TX_PWR_CFG_1_OFDM24_CH1 FIELD32(0x000000f0)
+#define TX_PWR_CFG_1_OFDM48_CH0 FIELD32(0x00000f00)
+#define TX_PWR_CFG_1_OFDM48_CH1 FIELD32(0x0000f000)
+#define TX_PWR_CFG_1_MCS0_CH0 FIELD32(0x000f0000)
+#define TX_PWR_CFG_1_MCS0_CH1 FIELD32(0x00f00000)
+#define TX_PWR_CFG_1_MCS2_CH0 FIELD32(0x0f000000)
+#define TX_PWR_CFG_1_MCS2_CH1 FIELD32(0xf0000000)
+/* bits for new 2T devices */
+#define TX_PWR_CFG_1B_24MBS_36MBS FIELD32(0x000000ff)
+#define TX_PWR_CFG_1B_48MBS FIELD32(0x0000ff00)
+#define TX_PWR_CFG_1B_MCS0_MCS1 FIELD32(0x00ff0000)
+#define TX_PWR_CFG_1B_MCS2_MCS3 FIELD32(0xff000000)
+
+/*
+ * TX_PWR_CFG_2:
+ */
+#define TX_PWR_CFG_2 0x131c
+#define TX_PWR_CFG_2_MCS4 FIELD32(0x0000000f)
+#define TX_PWR_CFG_2_MCS5 FIELD32(0x000000f0)
+#define TX_PWR_CFG_2_MCS6 FIELD32(0x00000f00)
+#define TX_PWR_CFG_2_MCS7 FIELD32(0x0000f000)
+#define TX_PWR_CFG_2_MCS8 FIELD32(0x000f0000)
+#define TX_PWR_CFG_2_MCS9 FIELD32(0x00f00000)
+#define TX_PWR_CFG_2_MCS10 FIELD32(0x0f000000)
+#define TX_PWR_CFG_2_MCS11 FIELD32(0xf0000000)
+/* bits for 3T devices */
+#define TX_PWR_CFG_2_MCS4_CH0 FIELD32(0x0000000f)
+#define TX_PWR_CFG_2_MCS4_CH1 FIELD32(0x000000f0)
+#define TX_PWR_CFG_2_MCS6_CH0 FIELD32(0x00000f00)
+#define TX_PWR_CFG_2_MCS6_CH1 FIELD32(0x0000f000)
+#define TX_PWR_CFG_2_MCS8_CH0 FIELD32(0x000f0000)
+#define TX_PWR_CFG_2_MCS8_CH1 FIELD32(0x00f00000)
+#define TX_PWR_CFG_2_MCS10_CH0 FIELD32(0x0f000000)
+#define TX_PWR_CFG_2_MCS10_CH1 FIELD32(0xf0000000)
+/* bits for new 2T devices */
+#define TX_PWR_CFG_2B_MCS4_MCS5 FIELD32(0x000000ff)
+#define TX_PWR_CFG_2B_MCS6_MCS7 FIELD32(0x0000ff00)
+#define TX_PWR_CFG_2B_MCS8_MCS9 FIELD32(0x00ff0000)
+#define TX_PWR_CFG_2B_MCS10_MCS11 FIELD32(0xff000000)
+
+/*
+ * TX_PWR_CFG_3:
+ */
+#define TX_PWR_CFG_3 0x1320
+#define TX_PWR_CFG_3_MCS12 FIELD32(0x0000000f)
+#define TX_PWR_CFG_3_MCS13 FIELD32(0x000000f0)
+#define TX_PWR_CFG_3_MCS14 FIELD32(0x00000f00)
+#define TX_PWR_CFG_3_MCS15 FIELD32(0x0000f000)
+#define TX_PWR_CFG_3_UNKNOWN1 FIELD32(0x000f0000)
+#define TX_PWR_CFG_3_UNKNOWN2 FIELD32(0x00f00000)
+#define TX_PWR_CFG_3_UNKNOWN3 FIELD32(0x0f000000)
+#define TX_PWR_CFG_3_UNKNOWN4 FIELD32(0xf0000000)
+/* bits for 3T devices */
+#define TX_PWR_CFG_3_MCS12_CH0 FIELD32(0x0000000f)
+#define TX_PWR_CFG_3_MCS12_CH1 FIELD32(0x000000f0)
+#define TX_PWR_CFG_3_MCS14_CH0 FIELD32(0x00000f00)
+#define TX_PWR_CFG_3_MCS14_CH1 FIELD32(0x0000f000)
+#define TX_PWR_CFG_3_STBC0_CH0 FIELD32(0x000f0000)
+#define TX_PWR_CFG_3_STBC0_CH1 FIELD32(0x00f00000)
+#define TX_PWR_CFG_3_STBC2_CH0 FIELD32(0x0f000000)
+#define TX_PWR_CFG_3_STBC2_CH1 FIELD32(0xf0000000)
+/* bits for new 2T devices */
+#define TX_PWR_CFG_3B_MCS12_MCS13 FIELD32(0x000000ff)
+#define TX_PWR_CFG_3B_MCS14 FIELD32(0x0000ff00)
+#define TX_PWR_CFG_3B_STBC_MCS0_MCS1 FIELD32(0x00ff0000)
+#define TX_PWR_CFG_3B_STBC_MCS2_MSC3 FIELD32(0xff000000)
+
+/*
+ * TX_PWR_CFG_4:
+ */
+#define TX_PWR_CFG_4 0x1324
+#define TX_PWR_CFG_4_UNKNOWN5 FIELD32(0x0000000f)
+#define TX_PWR_CFG_4_UNKNOWN6 FIELD32(0x000000f0)
+#define TX_PWR_CFG_4_UNKNOWN7 FIELD32(0x00000f00)
+#define TX_PWR_CFG_4_UNKNOWN8 FIELD32(0x0000f000)
+/* bits for 3T devices */
+#define TX_PWR_CFG_4_STBC4_CH0 FIELD32(0x0000000f)
+#define TX_PWR_CFG_4_STBC4_CH1 FIELD32(0x000000f0)
+#define TX_PWR_CFG_4_STBC6_CH0 FIELD32(0x00000f00)
+#define TX_PWR_CFG_4_STBC6_CH1 FIELD32(0x0000f000)
+/* bits for new 2T devices */
+#define TX_PWR_CFG_4B_STBC_MCS4_MCS5 FIELD32(0x000000ff)
+#define TX_PWR_CFG_4B_STBC_MCS6 FIELD32(0x0000ff00)
+
+/*
+ * TX_PIN_CFG:
+ */
+#define TX_PIN_CFG 0x1328
+#define TX_PIN_CFG_PA_PE_DISABLE 0xfcfffff0
+#define TX_PIN_CFG_PA_PE_A0_EN FIELD32(0x00000001)
+#define TX_PIN_CFG_PA_PE_G0_EN FIELD32(0x00000002)
+#define TX_PIN_CFG_PA_PE_A1_EN FIELD32(0x00000004)
+#define TX_PIN_CFG_PA_PE_G1_EN FIELD32(0x00000008)
+#define TX_PIN_CFG_PA_PE_A0_POL FIELD32(0x00000010)
+#define TX_PIN_CFG_PA_PE_G0_POL FIELD32(0x00000020)
+#define TX_PIN_CFG_PA_PE_A1_POL FIELD32(0x00000040)
+#define TX_PIN_CFG_PA_PE_G1_POL FIELD32(0x00000080)
+#define TX_PIN_CFG_LNA_PE_A0_EN FIELD32(0x00000100)
+#define TX_PIN_CFG_LNA_PE_G0_EN FIELD32(0x00000200)
+#define TX_PIN_CFG_LNA_PE_A1_EN FIELD32(0x00000400)
+#define TX_PIN_CFG_LNA_PE_G1_EN FIELD32(0x00000800)
+#define TX_PIN_CFG_LNA_PE_A0_POL FIELD32(0x00001000)
+#define TX_PIN_CFG_LNA_PE_G0_POL FIELD32(0x00002000)
+#define TX_PIN_CFG_LNA_PE_A1_POL FIELD32(0x00004000)
+#define TX_PIN_CFG_LNA_PE_G1_POL FIELD32(0x00008000)
+#define TX_PIN_CFG_RFTR_EN FIELD32(0x00010000)
+#define TX_PIN_CFG_RFTR_POL FIELD32(0x00020000)
+#define TX_PIN_CFG_TRSW_EN FIELD32(0x00040000)
+#define TX_PIN_CFG_TRSW_POL FIELD32(0x00080000)
+#define TX_PIN_CFG_RFRX_EN FIELD32(0x00100000)
+#define TX_PIN_CFG_RFRX_POL FIELD32(0x00200000)
+#define TX_PIN_CFG_PA_PE_A2_EN FIELD32(0x01000000)
+#define TX_PIN_CFG_PA_PE_G2_EN FIELD32(0x02000000)
+#define TX_PIN_CFG_PA_PE_A2_POL FIELD32(0x04000000)
+#define TX_PIN_CFG_PA_PE_G2_POL FIELD32(0x08000000)
+#define TX_PIN_CFG_LNA_PE_A2_EN FIELD32(0x10000000)
+#define TX_PIN_CFG_LNA_PE_G2_EN FIELD32(0x20000000)
+#define TX_PIN_CFG_LNA_PE_A2_POL FIELD32(0x40000000)
+#define TX_PIN_CFG_LNA_PE_G2_POL FIELD32(0x80000000)
+
+/*
+ * TX_BAND_CFG: 0x1 use upper 20MHz, 0x0 use lower 20MHz
+ */
+#define TX_BAND_CFG 0x132c
+#define TX_BAND_CFG_HT40_MINUS FIELD32(0x00000001)
+#define TX_BAND_CFG_A FIELD32(0x00000002)
+#define TX_BAND_CFG_BG FIELD32(0x00000004)
+
+/*
+ * TX_SW_CFG0:
+ */
+#define TX_SW_CFG0 0x1330
+
+/*
+ * TX_SW_CFG1:
+ */
+#define TX_SW_CFG1 0x1334
+
+/*
+ * TX_SW_CFG2:
+ */
+#define TX_SW_CFG2 0x1338
+
+/*
+ * TXOP_THRES_CFG:
+ */
+#define TXOP_THRES_CFG 0x133c
+
+/*
+ * TXOP_CTRL_CFG:
+ * TIMEOUT_TRUN_EN: Enable/Disable TXOP timeout truncation
+ * AC_TRUN_EN: Enable/Disable truncation for AC change
+ * TXRATEGRP_TRUN_EN: Enable/Disable truncation for TX rate group change
+ * USER_MODE_TRUN_EN: Enable/Disable truncation for user TXOP mode
+ * MIMO_PS_TRUN_EN: Enable/Disable truncation for MIMO PS RTS/CTS
+ * RESERVED_TRUN_EN: Reserved
+ * LSIG_TXOP_EN: Enable/Disable L-SIG TXOP protection
+ * EXT_CCA_EN: Enable/Disable extension channel CCA reference (Defer 40Mhz
+ * transmissions if extension CCA is clear).
+ * EXT_CCA_DLY: Extension CCA signal delay time (unit: us)
+ * EXT_CWMIN: CwMin for extension channel backoff
+ * 0: Disabled
+ *
+ */
+#define TXOP_CTRL_CFG 0x1340
+#define TXOP_CTRL_CFG_TIMEOUT_TRUN_EN FIELD32(0x00000001)
+#define TXOP_CTRL_CFG_AC_TRUN_EN FIELD32(0x00000002)
+#define TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN FIELD32(0x00000004)
+#define TXOP_CTRL_CFG_USER_MODE_TRUN_EN FIELD32(0x00000008)
+#define TXOP_CTRL_CFG_MIMO_PS_TRUN_EN FIELD32(0x00000010)
+#define TXOP_CTRL_CFG_RESERVED_TRUN_EN FIELD32(0x00000020)
+#define TXOP_CTRL_CFG_LSIG_TXOP_EN FIELD32(0x00000040)
+#define TXOP_CTRL_CFG_EXT_CCA_EN FIELD32(0x00000080)
+#define TXOP_CTRL_CFG_EXT_CCA_DLY FIELD32(0x0000ff00)
+#define TXOP_CTRL_CFG_EXT_CWMIN FIELD32(0x000f0000)
+
+/*
+ * TX_RTS_CFG:
+ * RTS_THRES: unit:byte
+ * RTS_FBK_EN: enable rts rate fallback
+ */
+#define TX_RTS_CFG 0x1344
+#define TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT FIELD32(0x000000ff)
+#define TX_RTS_CFG_RTS_THRES FIELD32(0x00ffff00)
+#define TX_RTS_CFG_RTS_FBK_EN FIELD32(0x01000000)
+
+/*
+ * TX_TIMEOUT_CFG:
+ * MPDU_LIFETIME: expiration time = 2^(9+MPDU LIFE TIME) us
+ * RX_ACK_TIMEOUT: unit:slot. Used for TX procedure
+ * TX_OP_TIMEOUT: TXOP timeout value for TXOP truncation.
+ * it is recommended that:
+ * (SLOT_TIME) > (TX_OP_TIMEOUT) > (RX_ACK_TIMEOUT)
+ */
+#define TX_TIMEOUT_CFG 0x1348
+#define TX_TIMEOUT_CFG_MPDU_LIFETIME FIELD32(0x000000f0)
+#define TX_TIMEOUT_CFG_RX_ACK_TIMEOUT FIELD32(0x0000ff00)
+#define TX_TIMEOUT_CFG_TX_OP_TIMEOUT FIELD32(0x00ff0000)
+
+/*
+ * TX_RTY_CFG:
+ * SHORT_RTY_LIMIT: short retry limit
+ * LONG_RTY_LIMIT: long retry limit
+ * LONG_RTY_THRE: Long retry threshoold
+ * NON_AGG_RTY_MODE: Non-Aggregate MPDU retry mode
+ * 0:expired by retry limit, 1: expired by mpdu life timer
+ * AGG_RTY_MODE: Aggregate MPDU retry mode
+ * 0:expired by retry limit, 1: expired by mpdu life timer
+ * TX_AUTO_FB_ENABLE: Tx retry PHY rate auto fallback enable
+ */
+#define TX_RTY_CFG 0x134c
+#define TX_RTY_CFG_SHORT_RTY_LIMIT FIELD32(0x000000ff)
+#define TX_RTY_CFG_LONG_RTY_LIMIT FIELD32(0x0000ff00)
+#define TX_RTY_CFG_LONG_RTY_THRE FIELD32(0x0fff0000)
+#define TX_RTY_CFG_NON_AGG_RTY_MODE FIELD32(0x10000000)
+#define TX_RTY_CFG_AGG_RTY_MODE FIELD32(0x20000000)
+#define TX_RTY_CFG_TX_AUTO_FB_ENABLE FIELD32(0x40000000)
+
+/*
+ * TX_LINK_CFG:
+ * REMOTE_MFB_LIFETIME: remote MFB life time. unit: 32us
+ * MFB_ENABLE: TX apply remote MFB 1:enable
+ * REMOTE_UMFS_ENABLE: remote unsolicit MFB enable
+ * 0: not apply remote remote unsolicit (MFS=7)
+ * TX_MRQ_EN: MCS request TX enable
+ * TX_RDG_EN: RDG TX enable
+ * TX_CF_ACK_EN: Piggyback CF-ACK enable
+ * REMOTE_MFB: remote MCS feedback
+ * REMOTE_MFS: remote MCS feedback sequence number
+ */
+#define TX_LINK_CFG 0x1350
+#define TX_LINK_CFG_REMOTE_MFB_LIFETIME FIELD32(0x000000ff)
+#define TX_LINK_CFG_MFB_ENABLE FIELD32(0x00000100)
+#define TX_LINK_CFG_REMOTE_UMFS_ENABLE FIELD32(0x00000200)
+#define TX_LINK_CFG_TX_MRQ_EN FIELD32(0x00000400)
+#define TX_LINK_CFG_TX_RDG_EN FIELD32(0x00000800)
+#define TX_LINK_CFG_TX_CF_ACK_EN FIELD32(0x00001000)
+#define TX_LINK_CFG_REMOTE_MFB FIELD32(0x00ff0000)
+#define TX_LINK_CFG_REMOTE_MFS FIELD32(0xff000000)
+
+/*
+ * HT_FBK_CFG0:
+ */
+#define HT_FBK_CFG0 0x1354
+#define HT_FBK_CFG0_HTMCS0FBK FIELD32(0x0000000f)
+#define HT_FBK_CFG0_HTMCS1FBK FIELD32(0x000000f0)
+#define HT_FBK_CFG0_HTMCS2FBK FIELD32(0x00000f00)
+#define HT_FBK_CFG0_HTMCS3FBK FIELD32(0x0000f000)
+#define HT_FBK_CFG0_HTMCS4FBK FIELD32(0x000f0000)
+#define HT_FBK_CFG0_HTMCS5FBK FIELD32(0x00f00000)
+#define HT_FBK_CFG0_HTMCS6FBK FIELD32(0x0f000000)
+#define HT_FBK_CFG0_HTMCS7FBK FIELD32(0xf0000000)
+
+/*
+ * HT_FBK_CFG1:
+ */
+#define HT_FBK_CFG1 0x1358
+#define HT_FBK_CFG1_HTMCS8FBK FIELD32(0x0000000f)
+#define HT_FBK_CFG1_HTMCS9FBK FIELD32(0x000000f0)
+#define HT_FBK_CFG1_HTMCS10FBK FIELD32(0x00000f00)
+#define HT_FBK_CFG1_HTMCS11FBK FIELD32(0x0000f000)
+#define HT_FBK_CFG1_HTMCS12FBK FIELD32(0x000f0000)
+#define HT_FBK_CFG1_HTMCS13FBK FIELD32(0x00f00000)
+#define HT_FBK_CFG1_HTMCS14FBK FIELD32(0x0f000000)
+#define HT_FBK_CFG1_HTMCS15FBK FIELD32(0xf0000000)
+
+/*
+ * LG_FBK_CFG0:
+ */
+#define LG_FBK_CFG0 0x135c
+#define LG_FBK_CFG0_OFDMMCS0FBK FIELD32(0x0000000f)
+#define LG_FBK_CFG0_OFDMMCS1FBK FIELD32(0x000000f0)
+#define LG_FBK_CFG0_OFDMMCS2FBK FIELD32(0x00000f00)
+#define LG_FBK_CFG0_OFDMMCS3FBK FIELD32(0x0000f000)
+#define LG_FBK_CFG0_OFDMMCS4FBK FIELD32(0x000f0000)
+#define LG_FBK_CFG0_OFDMMCS5FBK FIELD32(0x00f00000)
+#define LG_FBK_CFG0_OFDMMCS6FBK FIELD32(0x0f000000)
+#define LG_FBK_CFG0_OFDMMCS7FBK FIELD32(0xf0000000)
+
+/*
+ * LG_FBK_CFG1:
+ */
+#define LG_FBK_CFG1 0x1360
+#define LG_FBK_CFG0_CCKMCS0FBK FIELD32(0x0000000f)
+#define LG_FBK_CFG0_CCKMCS1FBK FIELD32(0x000000f0)
+#define LG_FBK_CFG0_CCKMCS2FBK FIELD32(0x00000f00)
+#define LG_FBK_CFG0_CCKMCS3FBK FIELD32(0x0000f000)
+
+/*
+ * CCK_PROT_CFG: CCK Protection
+ * PROTECT_RATE: Protection control frame rate for CCK TX(RTS/CTS/CFEnd)
+ * PROTECT_CTRL: Protection control frame type for CCK TX
+ * 0:none, 1:RTS/CTS, 2:CTS-to-self
+ * PROTECT_NAV_SHORT: TXOP protection type for CCK TX with short NAV
+ * PROTECT_NAV_LONG: TXOP protection type for CCK TX with long NAV
+ * TX_OP_ALLOW_CCK: CCK TXOP allowance, 0:disallow
+ * TX_OP_ALLOW_OFDM: CCK TXOP allowance, 0:disallow
+ * TX_OP_ALLOW_MM20: CCK TXOP allowance, 0:disallow
+ * TX_OP_ALLOW_MM40: CCK TXOP allowance, 0:disallow
+ * TX_OP_ALLOW_GF20: CCK TXOP allowance, 0:disallow
+ * TX_OP_ALLOW_GF40: CCK TXOP allowance, 0:disallow
+ * RTS_TH_EN: RTS threshold enable on CCK TX
+ */
+#define CCK_PROT_CFG 0x1364
+#define CCK_PROT_CFG_PROTECT_RATE FIELD32(0x0000ffff)
+#define CCK_PROT_CFG_PROTECT_CTRL FIELD32(0x00030000)
+#define CCK_PROT_CFG_PROTECT_NAV_SHORT FIELD32(0x00040000)
+#define CCK_PROT_CFG_PROTECT_NAV_LONG FIELD32(0x00080000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_CCK FIELD32(0x00100000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_OFDM FIELD32(0x00200000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_MM20 FIELD32(0x00400000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_MM40 FIELD32(0x00800000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_GF20 FIELD32(0x01000000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_GF40 FIELD32(0x02000000)
+#define CCK_PROT_CFG_RTS_TH_EN FIELD32(0x04000000)
+
+/*
+ * OFDM_PROT_CFG: OFDM Protection
+ */
+#define OFDM_PROT_CFG 0x1368
+#define OFDM_PROT_CFG_PROTECT_RATE FIELD32(0x0000ffff)
+#define OFDM_PROT_CFG_PROTECT_CTRL FIELD32(0x00030000)
+#define OFDM_PROT_CFG_PROTECT_NAV_SHORT FIELD32(0x00040000)
+#define OFDM_PROT_CFG_PROTECT_NAV_LONG FIELD32(0x00080000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_CCK FIELD32(0x00100000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_OFDM FIELD32(0x00200000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_MM20 FIELD32(0x00400000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_MM40 FIELD32(0x00800000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_GF20 FIELD32(0x01000000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_GF40 FIELD32(0x02000000)
+#define OFDM_PROT_CFG_RTS_TH_EN FIELD32(0x04000000)
+
+/*
+ * MM20_PROT_CFG: MM20 Protection
+ */
+#define MM20_PROT_CFG 0x136c
+#define MM20_PROT_CFG_PROTECT_RATE FIELD32(0x0000ffff)
+#define MM20_PROT_CFG_PROTECT_CTRL FIELD32(0x00030000)
+#define MM20_PROT_CFG_PROTECT_NAV_SHORT FIELD32(0x00040000)
+#define MM20_PROT_CFG_PROTECT_NAV_LONG FIELD32(0x00080000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_CCK FIELD32(0x00100000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_OFDM FIELD32(0x00200000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_MM20 FIELD32(0x00400000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_MM40 FIELD32(0x00800000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_GF20 FIELD32(0x01000000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_GF40 FIELD32(0x02000000)
+#define MM20_PROT_CFG_RTS_TH_EN FIELD32(0x04000000)
+
+/*
+ * MM40_PROT_CFG: MM40 Protection
+ */
+#define MM40_PROT_CFG 0x1370
+#define MM40_PROT_CFG_PROTECT_RATE FIELD32(0x0000ffff)
+#define MM40_PROT_CFG_PROTECT_CTRL FIELD32(0x00030000)
+#define MM40_PROT_CFG_PROTECT_NAV_SHORT FIELD32(0x00040000)
+#define MM40_PROT_CFG_PROTECT_NAV_LONG FIELD32(0x00080000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_CCK FIELD32(0x00100000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_OFDM FIELD32(0x00200000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_MM20 FIELD32(0x00400000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_MM40 FIELD32(0x00800000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_GF20 FIELD32(0x01000000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_GF40 FIELD32(0x02000000)
+#define MM40_PROT_CFG_RTS_TH_EN FIELD32(0x04000000)
+
+/*
+ * GF20_PROT_CFG: GF20 Protection
+ */
+#define GF20_PROT_CFG 0x1374
+#define GF20_PROT_CFG_PROTECT_RATE FIELD32(0x0000ffff)
+#define GF20_PROT_CFG_PROTECT_CTRL FIELD32(0x00030000)
+#define GF20_PROT_CFG_PROTECT_NAV_SHORT FIELD32(0x00040000)
+#define GF20_PROT_CFG_PROTECT_NAV_LONG FIELD32(0x00080000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_CCK FIELD32(0x00100000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_OFDM FIELD32(0x00200000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_MM20 FIELD32(0x00400000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_MM40 FIELD32(0x00800000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_GF20 FIELD32(0x01000000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_GF40 FIELD32(0x02000000)
+#define GF20_PROT_CFG_RTS_TH_EN FIELD32(0x04000000)
+
+/*
+ * GF40_PROT_CFG: GF40 Protection
+ */
+#define GF40_PROT_CFG 0x1378
+#define GF40_PROT_CFG_PROTECT_RATE FIELD32(0x0000ffff)
+#define GF40_PROT_CFG_PROTECT_CTRL FIELD32(0x00030000)
+#define GF40_PROT_CFG_PROTECT_NAV_SHORT FIELD32(0x00040000)
+#define GF40_PROT_CFG_PROTECT_NAV_LONG FIELD32(0x00080000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_CCK FIELD32(0x00100000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_OFDM FIELD32(0x00200000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_MM20 FIELD32(0x00400000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_MM40 FIELD32(0x00800000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_GF20 FIELD32(0x01000000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_GF40 FIELD32(0x02000000)
+#define GF40_PROT_CFG_RTS_TH_EN FIELD32(0x04000000)
+
+/*
+ * EXP_CTS_TIME:
+ */
+#define EXP_CTS_TIME 0x137c
+
+/*
+ * EXP_ACK_TIME:
+ */
+#define EXP_ACK_TIME 0x1380
+
+/* TX_PWR_CFG_5 */
+#define TX_PWR_CFG_5 0x1384
+#define TX_PWR_CFG_5_MCS16_CH0 FIELD32(0x0000000f)
+#define TX_PWR_CFG_5_MCS16_CH1 FIELD32(0x000000f0)
+#define TX_PWR_CFG_5_MCS16_CH2 FIELD32(0x00000f00)
+#define TX_PWR_CFG_5_MCS18_CH0 FIELD32(0x000f0000)
+#define TX_PWR_CFG_5_MCS18_CH1 FIELD32(0x00f00000)
+#define TX_PWR_CFG_5_MCS18_CH2 FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_6 */
+#define TX_PWR_CFG_6 0x1388
+#define TX_PWR_CFG_6_MCS20_CH0 FIELD32(0x0000000f)
+#define TX_PWR_CFG_6_MCS20_CH1 FIELD32(0x000000f0)
+#define TX_PWR_CFG_6_MCS20_CH2 FIELD32(0x00000f00)
+#define TX_PWR_CFG_6_MCS22_CH0 FIELD32(0x000f0000)
+#define TX_PWR_CFG_6_MCS22_CH1 FIELD32(0x00f00000)
+#define TX_PWR_CFG_6_MCS22_CH2 FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_0_EXT */
+#define TX_PWR_CFG_0_EXT 0x1390
+#define TX_PWR_CFG_0_EXT_CCK1_CH2 FIELD32(0x0000000f)
+#define TX_PWR_CFG_0_EXT_CCK5_CH2 FIELD32(0x00000f00)
+#define TX_PWR_CFG_0_EXT_OFDM6_CH2 FIELD32(0x000f0000)
+#define TX_PWR_CFG_0_EXT_OFDM12_CH2 FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_1_EXT */
+#define TX_PWR_CFG_1_EXT 0x1394
+#define TX_PWR_CFG_1_EXT_OFDM24_CH2 FIELD32(0x0000000f)
+#define TX_PWR_CFG_1_EXT_OFDM48_CH2 FIELD32(0x00000f00)
+#define TX_PWR_CFG_1_EXT_MCS0_CH2 FIELD32(0x000f0000)
+#define TX_PWR_CFG_1_EXT_MCS2_CH2 FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_2_EXT */
+#define TX_PWR_CFG_2_EXT 0x1398
+#define TX_PWR_CFG_2_EXT_MCS4_CH2 FIELD32(0x0000000f)
+#define TX_PWR_CFG_2_EXT_MCS6_CH2 FIELD32(0x00000f00)
+#define TX_PWR_CFG_2_EXT_MCS8_CH2 FIELD32(0x000f0000)
+#define TX_PWR_CFG_2_EXT_MCS10_CH2 FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_3_EXT */
+#define TX_PWR_CFG_3_EXT 0x139c
+#define TX_PWR_CFG_3_EXT_MCS12_CH2 FIELD32(0x0000000f)
+#define TX_PWR_CFG_3_EXT_MCS14_CH2 FIELD32(0x00000f00)
+#define TX_PWR_CFG_3_EXT_STBC0_CH2 FIELD32(0x000f0000)
+#define TX_PWR_CFG_3_EXT_STBC2_CH2 FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_4_EXT */
+#define TX_PWR_CFG_4_EXT 0x13a0
+#define TX_PWR_CFG_4_EXT_STBC4_CH2 FIELD32(0x0000000f)
+#define TX_PWR_CFG_4_EXT_STBC6_CH2 FIELD32(0x00000f00)
+
+/* TXn_RF_GAIN_CORRECT: RF Gain Correction for each RF_ALC[3:2]
+ * Unit: 0.1 dB, Range: -3.2 dB to 3.1 dB
+ */
+#define TX0_RF_GAIN_CORRECT 0x13a0
+#define TX0_RF_GAIN_CORRECT_GAIN_CORR_0 FIELD32(0x0000003f)
+#define TX0_RF_GAIN_CORRECT_GAIN_CORR_1 FIELD32(0x00003f00)
+#define TX0_RF_GAIN_CORRECT_GAIN_CORR_2 FIELD32(0x003f0000)
+#define TX0_RF_GAIN_CORRECT_GAIN_CORR_3 FIELD32(0x3f000000)
+
+#define TX1_RF_GAIN_CORRECT 0x13a4
+#define TX1_RF_GAIN_CORRECT_GAIN_CORR_0 FIELD32(0x0000003f)
+#define TX1_RF_GAIN_CORRECT_GAIN_CORR_1 FIELD32(0x00003f00)
+#define TX1_RF_GAIN_CORRECT_GAIN_CORR_2 FIELD32(0x003f0000)
+#define TX1_RF_GAIN_CORRECT_GAIN_CORR_3 FIELD32(0x3f000000)
+
+/* TXn_RF_GAIN_ATTEN: TXn RF Gain Attenuation Level
+ * Format: 7-bit, signed value
+ * Unit: 0.5 dB, Range: -20 dB to -5 dB
+ */
+#define TX0_RF_GAIN_ATTEN 0x13a8
+#define TX0_RF_GAIN_ATTEN_LEVEL_0 FIELD32(0x0000007f)
+#define TX0_RF_GAIN_ATTEN_LEVEL_1 FIELD32(0x00007f00)
+#define TX0_RF_GAIN_ATTEN_LEVEL_2 FIELD32(0x007f0000)
+#define TX0_RF_GAIN_ATTEN_LEVEL_3 FIELD32(0x7f000000)
+#define TX1_RF_GAIN_ATTEN 0x13ac
+#define TX1_RF_GAIN_ATTEN_LEVEL_0 FIELD32(0x0000007f)
+#define TX1_RF_GAIN_ATTEN_LEVEL_1 FIELD32(0x00007f00)
+#define TX1_RF_GAIN_ATTEN_LEVEL_2 FIELD32(0x007f0000)
+#define TX1_RF_GAIN_ATTEN_LEVEL_3 FIELD32(0x7f000000)
+
+/* TX_ALC_CFG_0: TX Automatic Level Control Configuration 0
+ * TX_ALC_LIMIT_n: TXn upper limit
+ * TX_ALC_CH_INIT_n: TXn channel initial transmission gain
+ * Unit: 0.5 dB, Range: 0 to 23.5 dB
+ */
+#define TX_ALC_CFG_0 0x13b0
+#define TX_ALC_CFG_0_CH_INIT_0 FIELD32(0x0000003f)
+#define TX_ALC_CFG_0_CH_INIT_1 FIELD32(0x00003f00)
+#define TX_ALC_CFG_0_LIMIT_0 FIELD32(0x003f0000)
+#define TX_ALC_CFG_0_LIMIT_1 FIELD32(0x3f000000)
+
+/* TX_ALC_CFG_1: TX Automatic Level Control Configuration 1
+ * TX_TEMP_COMP: TX Power Temperature Compensation
+ * Unit: 0.5 dB, Range: -10 dB to 10 dB
+ * TXn_GAIN_FINE: TXn Gain Fine Adjustment
+ * Unit: 0.1 dB, Range: -0.8 dB to 0.7 dB
+ * RF_TOS_DLY: Sets the RF_TOS_EN assertion delay after
+ * deassertion of PA_PE.
+ * Unit: 0.25 usec
+ * TXn_RF_GAIN_ATTEN: TXn RF gain attentuation selector
+ * RF_TOS_TIMEOUT: time-out value for RF_TOS_ENABLE
+ * deassertion if RF_TOS_DONE is missing.
+ * Unit: 0.25 usec
+ * RF_TOS_ENABLE: TX offset calibration enable
+ * ROS_BUSY_EN: RX offset calibration busy enable
+ */
+#define TX_ALC_CFG_1 0x13b4
+#define TX_ALC_CFG_1_TX_TEMP_COMP FIELD32(0x0000003f)
+#define TX_ALC_CFG_1_TX0_GAIN_FINE FIELD32(0x00000f00)
+#define TX_ALC_CFG_1_TX1_GAIN_FINE FIELD32(0x0000f000)
+#define TX_ALC_CFG_1_RF_TOS_DLY FIELD32(0x00070000)
+#define TX_ALC_CFG_1_TX0_RF_GAIN_ATTEN FIELD32(0x00300000)
+#define TX_ALC_CFG_1_TX1_RF_GAIN_ATTEN FIELD32(0x00c00000)
+#define TX_ALC_CFG_1_RF_TOS_TIMEOUT FIELD32(0x3f000000)
+#define TX_ALC_CFG_1_RF_TOS_ENABLE FIELD32(0x40000000)
+#define TX_ALC_CFG_1_ROS_BUSY_EN FIELD32(0x80000000)
+
+/* TXn_BB_GAIN_ATTEN: TXn RF Gain Attenuation Level
+ * Format: 5-bit signed values
+ * Unit: 0.5 dB, Range: -8 dB to 7 dB
+ */
+#define TX0_BB_GAIN_ATTEN 0x13c0
+#define TX0_BB_GAIN_ATTEN_LEVEL_0 FIELD32(0x0000001f)
+#define TX0_BB_GAIN_ATTEN_LEVEL_1 FIELD32(0x00001f00)
+#define TX0_BB_GAIN_ATTEN_LEVEL_2 FIELD32(0x001f0000)
+#define TX0_BB_GAIN_ATTEN_LEVEL_3 FIELD32(0x1f000000)
+#define TX1_BB_GAIN_ATTEN 0x13c4
+#define TX1_BB_GAIN_ATTEN_LEVEL_0 FIELD32(0x0000001f)
+#define TX1_BB_GAIN_ATTEN_LEVEL_1 FIELD32(0x00001f00)
+#define TX1_BB_GAIN_ATTEN_LEVEL_2 FIELD32(0x001f0000)
+#define TX1_BB_GAIN_ATTEN_LEVEL_3 FIELD32(0x1f000000)
+
+/* TX_ALC_VGA3: TX Automatic Level Correction Variable Gain Amplifier 3 */
+#define TX_ALC_VGA3 0x13c8
+#define TX_ALC_VGA3_TX0_ALC_VGA3 FIELD32(0x0000001f)
+#define TX_ALC_VGA3_TX1_ALC_VGA3 FIELD32(0x00001f00)
+#define TX_ALC_VGA3_TX0_ALC_VGA2 FIELD32(0x001f0000)
+#define TX_ALC_VGA3_TX1_ALC_VGA2 FIELD32(0x1f000000)
+
+/* TX_PWR_CFG_7 */
+#define TX_PWR_CFG_7 0x13d4
+#define TX_PWR_CFG_7_OFDM54_CH0 FIELD32(0x0000000f)
+#define TX_PWR_CFG_7_OFDM54_CH1 FIELD32(0x000000f0)
+#define TX_PWR_CFG_7_OFDM54_CH2 FIELD32(0x00000f00)
+#define TX_PWR_CFG_7_MCS7_CH0 FIELD32(0x000f0000)
+#define TX_PWR_CFG_7_MCS7_CH1 FIELD32(0x00f00000)
+#define TX_PWR_CFG_7_MCS7_CH2 FIELD32(0x0f000000)
+/* bits for new 2T devices */
+#define TX_PWR_CFG_7B_54MBS FIELD32(0x000000ff)
+#define TX_PWR_CFG_7B_MCS7 FIELD32(0x00ff0000)
+
+
+/* TX_PWR_CFG_8 */
+#define TX_PWR_CFG_8 0x13d8
+#define TX_PWR_CFG_8_MCS15_CH0 FIELD32(0x0000000f)
+#define TX_PWR_CFG_8_MCS15_CH1 FIELD32(0x000000f0)
+#define TX_PWR_CFG_8_MCS15_CH2 FIELD32(0x00000f00)
+#define TX_PWR_CFG_8_MCS23_CH0 FIELD32(0x000f0000)
+#define TX_PWR_CFG_8_MCS23_CH1 FIELD32(0x00f00000)
+#define TX_PWR_CFG_8_MCS23_CH2 FIELD32(0x0f000000)
+/* bits for new 2T devices */
+#define TX_PWR_CFG_8B_MCS15 FIELD32(0x000000ff)
+
+
+/* TX_PWR_CFG_9 */
+#define TX_PWR_CFG_9 0x13dc
+#define TX_PWR_CFG_9_STBC7_CH0 FIELD32(0x0000000f)
+#define TX_PWR_CFG_9_STBC7_CH1 FIELD32(0x000000f0)
+#define TX_PWR_CFG_9_STBC7_CH2 FIELD32(0x00000f00)
+/* bits for new 2T devices */
+#define TX_PWR_CFG_9B_STBC_MCS7 FIELD32(0x000000ff)
+
+/*
+ * TX_TXBF_CFG:
+ */
+#define TX_TXBF_CFG_0 0x138c
+#define TX_TXBF_CFG_1 0x13a4
+#define TX_TXBF_CFG_2 0x13a8
+#define TX_TXBF_CFG_3 0x13ac
+
+/*
+ * TX_FBK_CFG_3S:
+ */
+#define TX_FBK_CFG_3S_0 0x13c4
+#define TX_FBK_CFG_3S_1 0x13c8
+
+/*
+ * RX_FILTER_CFG: RX configuration register.
+ */
+#define RX_FILTER_CFG 0x1400
+#define RX_FILTER_CFG_DROP_CRC_ERROR FIELD32(0x00000001)
+#define RX_FILTER_CFG_DROP_PHY_ERROR FIELD32(0x00000002)
+#define RX_FILTER_CFG_DROP_NOT_TO_ME FIELD32(0x00000004)
+#define RX_FILTER_CFG_DROP_NOT_MY_BSSD FIELD32(0x00000008)
+#define RX_FILTER_CFG_DROP_VER_ERROR FIELD32(0x00000010)
+#define RX_FILTER_CFG_DROP_MULTICAST FIELD32(0x00000020)
+#define RX_FILTER_CFG_DROP_BROADCAST FIELD32(0x00000040)
+#define RX_FILTER_CFG_DROP_DUPLICATE FIELD32(0x00000080)
+#define RX_FILTER_CFG_DROP_CF_END_ACK FIELD32(0x00000100)
+#define RX_FILTER_CFG_DROP_CF_END FIELD32(0x00000200)
+#define RX_FILTER_CFG_DROP_ACK FIELD32(0x00000400)
+#define RX_FILTER_CFG_DROP_CTS FIELD32(0x00000800)
+#define RX_FILTER_CFG_DROP_RTS FIELD32(0x00001000)
+#define RX_FILTER_CFG_DROP_PSPOLL FIELD32(0x00002000)
+#define RX_FILTER_CFG_DROP_BA FIELD32(0x00004000)
+#define RX_FILTER_CFG_DROP_BAR FIELD32(0x00008000)
+#define RX_FILTER_CFG_DROP_CNTL FIELD32(0x00010000)
+
+/*
+ * AUTO_RSP_CFG:
+ * AUTORESPONDER: 0: disable, 1: enable
+ * BAC_ACK_POLICY: 0:long, 1:short preamble
+ * CTS_40_MMODE: Response CTS 40MHz duplicate mode
+ * CTS_40_MREF: Response CTS 40MHz duplicate mode
+ * AR_PREAMBLE: Auto responder preamble 0:long, 1:short preamble
+ * DUAL_CTS_EN: Power bit value in control frame
+ * ACK_CTS_PSM_BIT:Power bit value in control frame
+ */
+#define AUTO_RSP_CFG 0x1404
+#define AUTO_RSP_CFG_AUTORESPONDER FIELD32(0x00000001)
+#define AUTO_RSP_CFG_BAC_ACK_POLICY FIELD32(0x00000002)
+#define AUTO_RSP_CFG_CTS_40_MMODE FIELD32(0x00000004)
+#define AUTO_RSP_CFG_CTS_40_MREF FIELD32(0x00000008)
+#define AUTO_RSP_CFG_AR_PREAMBLE FIELD32(0x00000010)
+#define AUTO_RSP_CFG_DUAL_CTS_EN FIELD32(0x00000040)
+#define AUTO_RSP_CFG_ACK_CTS_PSM_BIT FIELD32(0x00000080)
+
+/*
+ * LEGACY_BASIC_RATE:
+ */
+#define LEGACY_BASIC_RATE 0x1408
+
+/*
+ * HT_BASIC_RATE:
+ */
+#define HT_BASIC_RATE 0x140c
+
+/*
+ * HT_CTRL_CFG:
+ */
+#define HT_CTRL_CFG 0x1410
+
+/*
+ * SIFS_COST_CFG:
+ */
+#define SIFS_COST_CFG 0x1414
+
+/*
+ * RX_PARSER_CFG:
+ * Set NAV for all received frames
+ */
+#define RX_PARSER_CFG 0x1418
+
+/*
+ * TX_SEC_CNT0:
+ */
+#define TX_SEC_CNT0 0x1500
+
+/*
+ * RX_SEC_CNT0:
+ */
+#define RX_SEC_CNT0 0x1504
+
+/*
+ * CCMP_FC_MUTE:
+ */
+#define CCMP_FC_MUTE 0x1508
+
+/*
+ * TXOP_HLDR_ADDR0:
+ */
+#define TXOP_HLDR_ADDR0 0x1600
+
+/*
+ * TXOP_HLDR_ADDR1:
+ */
+#define TXOP_HLDR_ADDR1 0x1604
+
+/*
+ * TXOP_HLDR_ET:
+ */
+#define TXOP_HLDR_ET 0x1608
+
+/*
+ * QOS_CFPOLL_RA_DW0:
+ */
+#define QOS_CFPOLL_RA_DW0 0x160c
+
+/*
+ * QOS_CFPOLL_RA_DW1:
+ */
+#define QOS_CFPOLL_RA_DW1 0x1610
+
+/*
+ * QOS_CFPOLL_QC:
+ */
+#define QOS_CFPOLL_QC 0x1614
+
+/*
+ * RX_STA_CNT0: RX PLCP error count & RX CRC error count
+ */
+#define RX_STA_CNT0 0x1700
+#define RX_STA_CNT0_CRC_ERR FIELD32(0x0000ffff)
+#define RX_STA_CNT0_PHY_ERR FIELD32(0xffff0000)
+
+/*
+ * RX_STA_CNT1: RX False CCA count & RX LONG frame count
+ */
+#define RX_STA_CNT1 0x1704
+#define RX_STA_CNT1_FALSE_CCA FIELD32(0x0000ffff)
+#define RX_STA_CNT1_PLCP_ERR FIELD32(0xffff0000)
+
+/*
+ * RX_STA_CNT2:
+ */
+#define RX_STA_CNT2 0x1708
+#define RX_STA_CNT2_RX_DUPLI_COUNT FIELD32(0x0000ffff)
+#define RX_STA_CNT2_RX_FIFO_OVERFLOW FIELD32(0xffff0000)
+
+/*
+ * TX_STA_CNT0: TX Beacon count
+ */
+#define TX_STA_CNT0 0x170c
+#define TX_STA_CNT0_TX_FAIL_COUNT FIELD32(0x0000ffff)
+#define TX_STA_CNT0_TX_BEACON_COUNT FIELD32(0xffff0000)
+
+/*
+ * TX_STA_CNT1: TX tx count
+ */
+#define TX_STA_CNT1 0x1710
+#define TX_STA_CNT1_TX_SUCCESS FIELD32(0x0000ffff)
+#define TX_STA_CNT1_TX_RETRANSMIT FIELD32(0xffff0000)
+
+/*
+ * TX_STA_CNT2: TX tx count
+ */
+#define TX_STA_CNT2 0x1714
+#define TX_STA_CNT2_TX_ZERO_LEN_COUNT FIELD32(0x0000ffff)
+#define TX_STA_CNT2_TX_UNDER_FLOW_COUNT FIELD32(0xffff0000)
+
+/*
+ * TX_STA_FIFO: TX Result for specific PID status fifo register.
+ *
+ * This register is implemented as FIFO with 16 entries in the HW. Each
+ * register read fetches the next tx result. If the FIFO is full because
+ * it wasn't read fast enough after the according interrupt (TX_FIFO_STATUS)
+ * triggered, the hw seems to simply drop further tx results.
+ *
+ * VALID: 1: this tx result is valid
+ * 0: no valid tx result -> driver should stop reading
+ * PID_TYPE: The PID latched from the PID field in the TXWI, can be used
+ * to match a frame with its tx result (even though the PID is
+ * only 4 bits wide).
+ * PID_QUEUE: Part of PID_TYPE, this is the queue index number (0-3)
+ * PID_ENTRY: Part of PID_TYPE, this is the queue entry index number (1-3)
+ * This identification number is calculated by ((idx % 3) + 1).
+ * TX_SUCCESS: Indicates tx success (1) or failure (0)
+ * TX_AGGRE: Indicates if the frame was part of an aggregate (1) or not (0)
+ * TX_ACK_REQUIRED: Indicates if the frame needed to get ack'ed (1) or not (0)
+ * WCID: The wireless client ID.
+ * MCS: The tx rate used during the last transmission of this frame, be it
+ * successful or not.
+ * PHYMODE: The phymode used for the transmission.
+ */
+#define TX_STA_FIFO 0x1718
+#define TX_STA_FIFO_VALID FIELD32(0x00000001)
+#define TX_STA_FIFO_PID_TYPE FIELD32(0x0000001e)
+#define TX_STA_FIFO_PID_QUEUE FIELD32(0x00000006)
+#define TX_STA_FIFO_PID_ENTRY FIELD32(0x00000018)
+#define TX_STA_FIFO_TX_SUCCESS FIELD32(0x00000020)
+#define TX_STA_FIFO_TX_AGGRE FIELD32(0x00000040)
+#define TX_STA_FIFO_TX_ACK_REQUIRED FIELD32(0x00000080)
+#define TX_STA_FIFO_WCID FIELD32(0x0000ff00)
+#define TX_STA_FIFO_SUCCESS_RATE FIELD32(0xffff0000)
+#define TX_STA_FIFO_MCS FIELD32(0x007f0000)
+#define TX_STA_FIFO_BW FIELD32(0x00800000)
+#define TX_STA_FIFO_SGI FIELD32(0x01000000)
+#define TX_STA_FIFO_PHYMODE FIELD32(0xc0000000)
+
+/*
+ * TX_AGG_CNT: Debug counter
+ */
+#define TX_AGG_CNT 0x171c
+#define TX_AGG_CNT_NON_AGG_TX_COUNT FIELD32(0x0000ffff)
+#define TX_AGG_CNT_AGG_TX_COUNT FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT0:
+ */
+#define TX_AGG_CNT0 0x1720
+#define TX_AGG_CNT0_AGG_SIZE_1_COUNT FIELD32(0x0000ffff)
+#define TX_AGG_CNT0_AGG_SIZE_2_COUNT FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT1:
+ */
+#define TX_AGG_CNT1 0x1724
+#define TX_AGG_CNT1_AGG_SIZE_3_COUNT FIELD32(0x0000ffff)
+#define TX_AGG_CNT1_AGG_SIZE_4_COUNT FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT2:
+ */
+#define TX_AGG_CNT2 0x1728
+#define TX_AGG_CNT2_AGG_SIZE_5_COUNT FIELD32(0x0000ffff)
+#define TX_AGG_CNT2_AGG_SIZE_6_COUNT FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT3:
+ */
+#define TX_AGG_CNT3 0x172c
+#define TX_AGG_CNT3_AGG_SIZE_7_COUNT FIELD32(0x0000ffff)
+#define TX_AGG_CNT3_AGG_SIZE_8_COUNT FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT4:
+ */
+#define TX_AGG_CNT4 0x1730
+#define TX_AGG_CNT4_AGG_SIZE_9_COUNT FIELD32(0x0000ffff)
+#define TX_AGG_CNT4_AGG_SIZE_10_COUNT FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT5:
+ */
+#define TX_AGG_CNT5 0x1734
+#define TX_AGG_CNT5_AGG_SIZE_11_COUNT FIELD32(0x0000ffff)
+#define TX_AGG_CNT5_AGG_SIZE_12_COUNT FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT6:
+ */
+#define TX_AGG_CNT6 0x1738
+#define TX_AGG_CNT6_AGG_SIZE_13_COUNT FIELD32(0x0000ffff)
+#define TX_AGG_CNT6_AGG_SIZE_14_COUNT FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT7:
+ */
+#define TX_AGG_CNT7 0x173c
+#define TX_AGG_CNT7_AGG_SIZE_15_COUNT FIELD32(0x0000ffff)
+#define TX_AGG_CNT7_AGG_SIZE_16_COUNT FIELD32(0xffff0000)
+
+/*
+ * MPDU_DENSITY_CNT:
+ * TX_ZERO_DEL: TX zero length delimiter count
+ * RX_ZERO_DEL: RX zero length delimiter count
+ */
+#define MPDU_DENSITY_CNT 0x1740
+#define MPDU_DENSITY_CNT_TX_ZERO_DEL FIELD32(0x0000ffff)
+#define MPDU_DENSITY_CNT_RX_ZERO_DEL FIELD32(0xffff0000)
+
+/*
+ * Security key table memory.
+ *
+ * The pairwise key table shares some memory with the beacon frame
+ * buffers 6 and 7. That basically means that when beacon 6 & 7
+ * are used we should only use the reduced pairwise key table which
+ * has a maximum of 222 entries.
+ *
+ * ---------------------------------------------
+ * |0x4000 | Pairwise Key | Reduced Pairwise |
+ * | | Table | Key Table |
+ * | | Size: 256 * 32 | Size: 222 * 32 |
+ * |0x5BC0 | |-------------------
+ * | | | Beacon 6 |
+ * |0x5DC0 | |-------------------
+ * | | | Beacon 7 |
+ * |0x5FC0 | |-------------------
+ * |0x5FFF | |
+ * --------------------------
+ *
+ * MAC_WCID_BASE: 8-bytes (use only 6 bytes) * 256 entry
+ * PAIRWISE_KEY_TABLE_BASE: 32-byte * 256 entry
+ * MAC_IVEIV_TABLE_BASE: 8-byte * 256-entry
+ * MAC_WCID_ATTRIBUTE_BASE: 4-byte * 256-entry
+ * SHARED_KEY_TABLE_BASE: 32-byte * 16-entry
+ * SHARED_KEY_MODE_BASE: 4-byte * 16-entry
+ */
+#define MAC_WCID_BASE 0x1800
+#define PAIRWISE_KEY_TABLE_BASE 0x4000
+#define MAC_IVEIV_TABLE_BASE 0x6000
+#define MAC_WCID_ATTRIBUTE_BASE 0x6800
+#define SHARED_KEY_TABLE_BASE 0x6c00
+#define SHARED_KEY_MODE_BASE 0x7000
+
+#define MAC_WCID_ENTRY(__idx) \
+ (MAC_WCID_BASE + ((__idx) * sizeof(struct mac_wcid_entry)))
+#define PAIRWISE_KEY_ENTRY(__idx) \
+ (PAIRWISE_KEY_TABLE_BASE + ((__idx) * sizeof(struct hw_key_entry)))
+#define MAC_IVEIV_ENTRY(__idx) \
+ (MAC_IVEIV_TABLE_BASE + ((__idx) * sizeof(struct mac_iveiv_entry)))
+#define MAC_WCID_ATTR_ENTRY(__idx) \
+ (MAC_WCID_ATTRIBUTE_BASE + ((__idx) * sizeof(u32)))
+#define SHARED_KEY_ENTRY(__idx) \
+ (SHARED_KEY_TABLE_BASE + ((__idx) * sizeof(struct hw_key_entry)))
+#define SHARED_KEY_MODE_ENTRY(__idx) \
+ (SHARED_KEY_MODE_BASE + ((__idx) * sizeof(u32)))
+
+struct mac_wcid_entry {
+ u8 mac[6];
+ u8 reserved[2];
+} __packed;
+
+struct hw_key_entry {
+ u8 key[16];
+ u8 tx_mic[8];
+ u8 rx_mic[8];
+} __packed;
+
+struct mac_iveiv_entry {
+ u8 iv[8];
+} __packed;
+
+/*
+ * MAC_WCID_ATTRIBUTE:
+ */
+#define MAC_WCID_ATTRIBUTE_KEYTAB FIELD32(0x00000001)
+#define MAC_WCID_ATTRIBUTE_CIPHER FIELD32(0x0000000e)
+#define MAC_WCID_ATTRIBUTE_BSS_IDX FIELD32(0x00000070)
+#define MAC_WCID_ATTRIBUTE_RX_WIUDF FIELD32(0x00000380)
+#define MAC_WCID_ATTRIBUTE_CIPHER_EXT FIELD32(0x00000400)
+#define MAC_WCID_ATTRIBUTE_BSS_IDX_EXT FIELD32(0x00000800)
+#define MAC_WCID_ATTRIBUTE_WAPI_MCBC FIELD32(0x00008000)
+#define MAC_WCID_ATTRIBUTE_WAPI_KEY_IDX FIELD32(0xff000000)
+
+/*
+ * SHARED_KEY_MODE:
+ */
+#define SHARED_KEY_MODE_BSS0_KEY0 FIELD32(0x00000007)
+#define SHARED_KEY_MODE_BSS0_KEY1 FIELD32(0x00000070)
+#define SHARED_KEY_MODE_BSS0_KEY2 FIELD32(0x00000700)
+#define SHARED_KEY_MODE_BSS0_KEY3 FIELD32(0x00007000)
+#define SHARED_KEY_MODE_BSS1_KEY0 FIELD32(0x00070000)
+#define SHARED_KEY_MODE_BSS1_KEY1 FIELD32(0x00700000)
+#define SHARED_KEY_MODE_BSS1_KEY2 FIELD32(0x07000000)
+#define SHARED_KEY_MODE_BSS1_KEY3 FIELD32(0x70000000)
+
+/*
+ * HOST-MCU communication
+ */
+
+/*
+ * H2M_MAILBOX_CSR: Host-to-MCU Mailbox.
+ * CMD_TOKEN: Command id, 0xff disable status reporting.
+ */
+#define H2M_MAILBOX_CSR 0x7010
+#define H2M_MAILBOX_CSR_ARG0 FIELD32(0x000000ff)
+#define H2M_MAILBOX_CSR_ARG1 FIELD32(0x0000ff00)
+#define H2M_MAILBOX_CSR_CMD_TOKEN FIELD32(0x00ff0000)
+#define H2M_MAILBOX_CSR_OWNER FIELD32(0xff000000)
+
+/*
+ * H2M_MAILBOX_CID:
+ * Free slots contain 0xff. MCU will store command's token to lowest free slot.
+ * If all slots are occupied status will be dropped.
+ */
+#define H2M_MAILBOX_CID 0x7014
+#define H2M_MAILBOX_CID_CMD0 FIELD32(0x000000ff)
+#define H2M_MAILBOX_CID_CMD1 FIELD32(0x0000ff00)
+#define H2M_MAILBOX_CID_CMD2 FIELD32(0x00ff0000)
+#define H2M_MAILBOX_CID_CMD3 FIELD32(0xff000000)
+
+/*
+ * H2M_MAILBOX_STATUS:
+ * Command status will be saved to same slot as command id.
+ */
+#define H2M_MAILBOX_STATUS 0x701c
+
+/*
+ * H2M_INT_SRC:
+ */
+#define H2M_INT_SRC 0x7024
+
+/*
+ * H2M_BBP_AGENT:
+ */
+#define H2M_BBP_AGENT 0x7028
+
+/*
+ * MCU_LEDCS: LED control for MCU Mailbox.
+ */
+#define MCU_LEDCS_LED_MODE FIELD8(0x1f)
+#define MCU_LEDCS_POLARITY FIELD8(0x01)
+
+/*
+ * HW_CS_CTS_BASE:
+ * Carrier-sense CTS frame base address.
+ * It's where mac stores carrier-sense frame for carrier-sense function.
+ */
+#define HW_CS_CTS_BASE 0x7700
+
+/*
+ * HW_DFS_CTS_BASE:
+ * DFS CTS frame base address. It's where mac stores CTS frame for DFS.
+ */
+#define HW_DFS_CTS_BASE 0x7780
+
+/*
+ * TXRX control registers - base address 0x3000
+ */
+
+/*
+ * TXRX_CSR1:
+ * rt2860b UNKNOWN reg use R/O Reg Addr 0x77d0 first..
+ */
+#define TXRX_CSR1 0x77d0
+
+/*
+ * HW_DEBUG_SETTING_BASE:
+ * since NULL frame won't be that long (256 byte)
+ * We steal 16 tail bytes to save debugging settings
+ */
+#define HW_DEBUG_SETTING_BASE 0x77f0
+#define HW_DEBUG_SETTING_BASE2 0x7770
+
+/*
+ * HW_BEACON_BASE
+ * In order to support maximum 8 MBSS and its maximum length
+ * is 512 bytes for each beacon
+ * Three section discontinue memory segments will be used.
+ * 1. The original region for BCN 0~3
+ * 2. Extract memory from FCE table for BCN 4~5
+ * 3. Extract memory from Pair-wise key table for BCN 6~7
+ * It occupied those memory of wcid 238~253 for BCN 6
+ * and wcid 222~237 for BCN 7 (see Security key table memory
+ * for more info).
+ *
+ * IMPORTANT NOTE: Not sure why legacy driver does this,
+ * but HW_BEACON_BASE7 is 0x0200 bytes below HW_BEACON_BASE6.
+ */
+#define HW_BEACON_BASE0 0x7800
+#define HW_BEACON_BASE1 0x7a00
+#define HW_BEACON_BASE2 0x7c00
+#define HW_BEACON_BASE3 0x7e00
+#define HW_BEACON_BASE4 0x7200
+#define HW_BEACON_BASE5 0x7400
+#define HW_BEACON_BASE6 0x5dc0
+#define HW_BEACON_BASE7 0x5bc0
+
+#define HW_BEACON_BASE(__index) \
+ (((__index) < 4) ? (HW_BEACON_BASE0 + (__index * 0x0200)) : \
+ (((__index) < 6) ? (HW_BEACON_BASE4 + ((__index - 4) * 0x0200)) : \
+ (HW_BEACON_BASE6 - ((__index - 6) * 0x0200))))
+
+#define BEACON_BASE_TO_OFFSET(_base) (((_base) - 0x4000) / 64)
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * BBP 1: TX Antenna & Power Control
+ * POWER_CTRL:
+ * 0 - normal,
+ * 1 - drop tx power by 6dBm,
+ * 2 - drop tx power by 12dBm,
+ * 3 - increase tx power by 6dBm
+ */
+#define BBP1_TX_POWER_CTRL FIELD8(0x03)
+#define BBP1_TX_ANTENNA FIELD8(0x18)
+
+/*
+ * BBP 3: RX Antenna
+ */
+#define BBP3_RX_ADC FIELD8(0x03)
+#define BBP3_RX_ANTENNA FIELD8(0x18)
+#define BBP3_HT40_MINUS FIELD8(0x20)
+#define BBP3_ADC_MODE_SWITCH FIELD8(0x40)
+#define BBP3_ADC_INIT_MODE FIELD8(0x80)
+
+/*
+ * BBP 4: Bandwidth
+ */
+#define BBP4_TX_BF FIELD8(0x01)
+#define BBP4_BANDWIDTH FIELD8(0x18)
+#define BBP4_MAC_IF_CTRL FIELD8(0x40)
+
+/* BBP27 */
+#define BBP27_RX_CHAIN_SEL FIELD8(0x60)
+
+/*
+ * BBP 47: Bandwidth
+ */
+#define BBP47_TSSI_REPORT_SEL FIELD8(0x03)
+#define BBP47_TSSI_UPDATE_REQ FIELD8(0x04)
+#define BBP47_TSSI_TSSI_MODE FIELD8(0x18)
+#define BBP47_TSSI_ADC6 FIELD8(0x80)
+
+/*
+ * BBP 49
+ */
+#define BBP49_UPDATE_FLAG FIELD8(0x01)
+
+/*
+ * BBP 105:
+ * - bit0: detect SIG on primary channel only (on 40MHz bandwidth)
+ * - bit1: FEQ (Feed Forward Compensation) for independend streams
+ * - bit2: MLD (Maximum Likehood Detection) for 2 streams (reserved on single
+ * stream)
+ * - bit4: channel estimation updates based on remodulation of
+ * L-SIG and HT-SIG symbols
+ */
+#define BBP105_DETECT_SIG_ON_PRIMARY FIELD8(0x01)
+#define BBP105_FEQ FIELD8(0x02)
+#define BBP105_MLD FIELD8(0x04)
+#define BBP105_SIG_REMODULATION FIELD8(0x08)
+
+/*
+ * BBP 109
+ */
+#define BBP109_TX0_POWER FIELD8(0x0f)
+#define BBP109_TX1_POWER FIELD8(0xf0)
+
+/* BBP 110 */
+#define BBP110_TX2_POWER FIELD8(0x0f)
+
+
+/*
+ * BBP 138: Unknown
+ */
+#define BBP138_RX_ADC1 FIELD8(0x02)
+#define BBP138_RX_ADC2 FIELD8(0x04)
+#define BBP138_TX_DAC1 FIELD8(0x20)
+#define BBP138_TX_DAC2 FIELD8(0x40)
+
+/*
+ * BBP 152: Rx Ant
+ */
+#define BBP152_RX_DEFAULT_ANT FIELD8(0x80)
+
+/*
+ * BBP 254: unknown
+ */
+#define BBP254_BIT7 FIELD8(0x80)
+
+/*
+ * RFCSR registers
+ * The wordsize of the RFCSR is 8 bits.
+ */
+
+/*
+ * RFCSR 1:
+ */
+#define RFCSR1_RF_BLOCK_EN FIELD8(0x01)
+#define RFCSR1_PLL_PD FIELD8(0x02)
+#define RFCSR1_RX0_PD FIELD8(0x04)
+#define RFCSR1_TX0_PD FIELD8(0x08)
+#define RFCSR1_RX1_PD FIELD8(0x10)
+#define RFCSR1_TX1_PD FIELD8(0x20)
+#define RFCSR1_RX2_PD FIELD8(0x40)
+#define RFCSR1_TX2_PD FIELD8(0x80)
+#define RFCSR1_TX2_EN_MT7620 FIELD8(0x02)
+
+/*
+ * RFCSR 2:
+ */
+#define RFCSR2_RESCAL_BP FIELD8(0x40)
+#define RFCSR2_RESCAL_EN FIELD8(0x80)
+#define RFCSR2_RX2_EN_MT7620 FIELD8(0x02)
+#define RFCSR2_TX2_EN_MT7620 FIELD8(0x20)
+
+/*
+ * RFCSR 3:
+ */
+#define RFCSR3_K FIELD8(0x0f)
+/* Bits [7-4] for RF3320 (RT3370/RT3390), on other chipsets reserved */
+#define RFCSR3_PA1_BIAS_CCK FIELD8(0x70)
+#define RFCSR3_PA2_CASCODE_BIAS_CCKK FIELD8(0x80)
+/* Bits for RF3290/RF5360/RF5362/RF5370/RF5372/RF5390/RF5392 */
+#define RFCSR3_VCOCAL_EN FIELD8(0x80)
+/* Bits for RF3050 */
+#define RFCSR3_BIT1 FIELD8(0x02)
+#define RFCSR3_BIT2 FIELD8(0x04)
+#define RFCSR3_BIT3 FIELD8(0x08)
+#define RFCSR3_BIT4 FIELD8(0x10)
+#define RFCSR3_BIT5 FIELD8(0x20)
+
+/*
+ * RFCSR 4:
+ * VCOCAL_EN used by MT7620
+ */
+#define RFCSR4_VCOCAL_EN FIELD8(0x80)
+
+/*
+ * FRCSR 5:
+ */
+#define RFCSR5_R1 FIELD8(0x0c)
+
+/*
+ * RFCSR 6:
+ */
+#define RFCSR6_R1 FIELD8(0x03)
+#define RFCSR6_R2 FIELD8(0x40)
+#define RFCSR6_TXDIV FIELD8(0x0c)
+/* bits for RF3053 */
+#define RFCSR6_VCO_IC FIELD8(0xc0)
+
+/*
+ * RFCSR 7:
+ */
+#define RFCSR7_RF_TUNING FIELD8(0x01)
+#define RFCSR7_BIT1 FIELD8(0x02)
+#define RFCSR7_BIT2 FIELD8(0x04)
+#define RFCSR7_BIT3 FIELD8(0x08)
+#define RFCSR7_BIT4 FIELD8(0x10)
+#define RFCSR7_BIT5 FIELD8(0x20)
+#define RFCSR7_BITS67 FIELD8(0xc0)
+
+/*
+ * RFCSR 9:
+ */
+#define RFCSR9_K FIELD8(0x0f)
+#define RFCSR9_N FIELD8(0x10)
+#define RFCSR9_UNKNOWN FIELD8(0x60)
+#define RFCSR9_MOD FIELD8(0x80)
+
+/*
+ * RFCSR 11:
+ */
+#define RFCSR11_R FIELD8(0x03)
+#define RFCSR11_PLL_MOD FIELD8(0x0c)
+#define RFCSR11_MOD FIELD8(0xc0)
+/* bits for RF3053 */
+/* TODO: verify RFCSR11_MOD usage on other chips */
+#define RFCSR11_PLL_IDOH FIELD8(0x40)
+
+
+/*
+ * RFCSR 12:
+ */
+#define RFCSR12_TX_POWER FIELD8(0x1f)
+#define RFCSR12_DR0 FIELD8(0xe0)
+
+/*
+ * RFCSR 13:
+ */
+#define RFCSR13_TX_POWER FIELD8(0x1f)
+#define RFCSR13_DR0 FIELD8(0xe0)
+#define RFCSR13_RDIV_MT7620 FIELD8(0x03)
+
+/*
+ * RFCSR 15:
+ */
+#define RFCSR15_TX_LO2_EN FIELD8(0x08)
+
+/*
+ * RFCSR 16:
+ */
+#define RFCSR16_TXMIXER_GAIN FIELD8(0x07)
+#define RFCSR16_RF_PLL_FREQ_SEL_MT7620 FIELD8(0x0F)
+#define RFCSR16_SDM_MODE_MT7620 FIELD8(0xE0)
+
+/*
+ * RFCSR 17:
+ */
+#define RFCSR17_TXMIXER_GAIN FIELD8(0x07)
+#define RFCSR17_TX_LO1_EN FIELD8(0x08)
+#define RFCSR17_R FIELD8(0x20)
+#define RFCSR17_CODE FIELD8(0x7f)
+
+/* RFCSR 18 */
+#define RFCSR18_XO_TUNE_BYPASS FIELD8(0x40)
+
+/* RFCSR 19 */
+#define RFCSR19_K FIELD8(0x03)
+
+/*
+ * RFCSR 20:
+ */
+#define RFCSR20_RX_LO1_EN FIELD8(0x08)
+
+/*
+ * RFCSR 21:
+ */
+#define RFCSR21_RX_LO2_EN FIELD8(0x08)
+#define RFCSR21_BIT1 FIELD8(0x01)
+#define RFCSR21_BIT8 FIELD8(0x80)
+
+/*
+ * RFCSR 22:
+ */
+#define RFCSR22_BASEBAND_LOOPBACK FIELD8(0x01)
+#define RFCSR22_FREQPLAN_D_MT7620 FIELD8(0x07)
+
+/*
+ * RFCSR 23:
+ */
+#define RFCSR23_FREQ_OFFSET FIELD8(0x7f)
+
+/*
+ * RFCSR 24:
+ */
+#define RFCSR24_TX_AGC_FC FIELD8(0x1f)
+#define RFCSR24_TX_H20M FIELD8(0x20)
+#define RFCSR24_TX_CALIB FIELD8(0x7f)
+
+/*
+ * RFCSR 27:
+ */
+#define RFCSR27_R1 FIELD8(0x03)
+#define RFCSR27_R2 FIELD8(0x04)
+#define RFCSR27_R3 FIELD8(0x30)
+#define RFCSR27_R4 FIELD8(0x40)
+
+/*
+ * RFCSR 28:
+ */
+#define RFCSR28_CH11_HT40 FIELD8(0x04)
+
+/*
+ * RFCSR 29:
+ */
+#define RFCSR29_ADC6_TEST FIELD8(0x01)
+#define RFCSR29_ADC6_INT_TEST FIELD8(0x02)
+#define RFCSR29_RSSI_RESET FIELD8(0x04)
+#define RFCSR29_RSSI_ON FIELD8(0x08)
+#define RFCSR29_RSSI_RIP_CTRL FIELD8(0x30)
+#define RFCSR29_RSSI_GAIN FIELD8(0xc0)
+
+/*
+ * RFCSR 30:
+ */
+#define RFCSR30_TX_H20M FIELD8(0x02)
+#define RFCSR30_RX_H20M FIELD8(0x04)
+#define RFCSR30_RX_VCM FIELD8(0x18)
+#define RFCSR30_RF_CALIBRATION FIELD8(0x80)
+#define RF3322_RFCSR30_TX_H20M FIELD8(0x01)
+#define RF3322_RFCSR30_RX_H20M FIELD8(0x02)
+
+/*
+ * RFCSR 31:
+ */
+#define RFCSR31_RX_AGC_FC FIELD8(0x1f)
+#define RFCSR31_RX_H20M FIELD8(0x20)
+#define RFCSR31_RX_CALIB FIELD8(0x7f)
+
+/* RFCSR 32 bits for RF3053 */
+#define RFCSR32_TX_AGC_FC FIELD8(0xf8)
+
+/* RFCSR 36 bits for RF3053 */
+#define RFCSR36_RF_BS FIELD8(0x80)
+
+/*
+ * RFCSR 34:
+ */
+#define RFCSR34_TX0_EXT_PA FIELD8(0x04)
+#define RFCSR34_TX1_EXT_PA FIELD8(0x08)
+
+/*
+ * RFCSR 38:
+ */
+#define RFCSR38_RX_LO1_EN FIELD8(0x20)
+
+/*
+ * RFCSR 39:
+ */
+#define RFCSR39_RX_DIV FIELD8(0x40)
+#define RFCSR39_RX_LO2_EN FIELD8(0x80)
+
+/*
+ * RFCSR 41:
+ */
+#define RFCSR41_BIT1 FIELD8(0x01)
+#define RFCSR41_BIT4 FIELD8(0x08)
+
+/*
+ * RFCSR 42:
+ */
+#define RFCSR42_BIT1 FIELD8(0x01)
+#define RFCSR42_BIT4 FIELD8(0x08)
+#define RFCSR42_TX2_EN_MT7620 FIELD8(0x40)
+
+/*
+ * RFCSR 49:
+ */
+#define RFCSR49_TX FIELD8(0x3f)
+#define RFCSR49_EP FIELD8(0xc0)
+/* bits for RT3593 */
+#define RFCSR49_TX_LO1_IC FIELD8(0x1c)
+#define RFCSR49_TX_DIV FIELD8(0x20)
+
+/*
+ * RFCSR 50:
+ */
+#define RFCSR50_TX FIELD8(0x3f)
+#define RFCSR50_TX0_EXT_PA FIELD8(0x02)
+#define RFCSR50_TX1_EXT_PA FIELD8(0x10)
+#define RFCSR50_EP FIELD8(0xc0)
+/* bits for RT3593 */
+#define RFCSR50_TX_LO1_EN FIELD8(0x20)
+#define RFCSR50_TX_LO2_EN FIELD8(0x10)
+
+/* RFCSR 51 */
+/* bits for RT3593 */
+#define RFCSR51_BITS01 FIELD8(0x03)
+#define RFCSR51_BITS24 FIELD8(0x1c)
+#define RFCSR51_BITS57 FIELD8(0xe0)
+
+#define RFCSR53_TX_POWER FIELD8(0x3f)
+#define RFCSR53_UNKNOWN FIELD8(0xc0)
+
+#define RFCSR54_TX_POWER FIELD8(0x3f)
+#define RFCSR54_UNKNOWN FIELD8(0xc0)
+
+#define RFCSR55_TX_POWER FIELD8(0x3f)
+#define RFCSR55_UNKNOWN FIELD8(0xc0)
+
+#define RFCSR57_DRV_CC FIELD8(0xfc)
+
+
+/*
+ * RF registers
+ */
+
+/*
+ * RF 2
+ */
+#define RF2_ANTENNA_RX2 FIELD32(0x00000040)
+#define RF2_ANTENNA_TX1 FIELD32(0x00004000)
+#define RF2_ANTENNA_RX1 FIELD32(0x00020000)
+
+/*
+ * RF 3
+ */
+#define RF3_TXPOWER_G FIELD32(0x00003e00)
+#define RF3_TXPOWER_A_7DBM_BOOST FIELD32(0x00000200)
+#define RF3_TXPOWER_A FIELD32(0x00003c00)
+
+/*
+ * RF 4
+ */
+#define RF4_TXPOWER_G FIELD32(0x000007c0)
+#define RF4_TXPOWER_A_7DBM_BOOST FIELD32(0x00000040)
+#define RF4_TXPOWER_A FIELD32(0x00000780)
+#define RF4_FREQ_OFFSET FIELD32(0x001f8000)
+#define RF4_HT40 FIELD32(0x00200000)
+
+/*
+ * EEPROM content.
+ * The wordsize of the EEPROM is 16 bits.
+ */
+
+enum rt2800_eeprom_word {
+ EEPROM_CHIP_ID = 0,
+ EEPROM_VERSION,
+ EEPROM_MAC_ADDR_0,
+ EEPROM_MAC_ADDR_1,
+ EEPROM_MAC_ADDR_2,
+ EEPROM_NIC_CONF0,
+ EEPROM_NIC_CONF1,
+ EEPROM_FREQ,
+ EEPROM_LED_AG_CONF,
+ EEPROM_LED_ACT_CONF,
+ EEPROM_LED_POLARITY,
+ EEPROM_NIC_CONF2,
+ EEPROM_LNA,
+ EEPROM_RSSI_BG,
+ EEPROM_RSSI_BG2,
+ EEPROM_TXMIXER_GAIN_BG,
+ EEPROM_RSSI_A,
+ EEPROM_RSSI_A2,
+ EEPROM_TXMIXER_GAIN_A,
+ EEPROM_EIRP_MAX_TX_POWER,
+ EEPROM_TXPOWER_DELTA,
+ EEPROM_TXPOWER_BG1,
+ EEPROM_TXPOWER_BG2,
+ EEPROM_TSSI_BOUND_BG1,
+ EEPROM_TSSI_BOUND_BG2,
+ EEPROM_TSSI_BOUND_BG3,
+ EEPROM_TSSI_BOUND_BG4,
+ EEPROM_TSSI_BOUND_BG5,
+ EEPROM_TXPOWER_A1,
+ EEPROM_TXPOWER_A2,
+ EEPROM_TXPOWER_INIT,
+ EEPROM_TSSI_BOUND_A1,
+ EEPROM_TSSI_BOUND_A2,
+ EEPROM_TSSI_BOUND_A3,
+ EEPROM_TSSI_BOUND_A4,
+ EEPROM_TSSI_BOUND_A5,
+ EEPROM_TXPOWER_BYRATE,
+ EEPROM_BBP_START,
+
+ /* IDs for extended EEPROM format used by three-chain devices */
+ EEPROM_EXT_LNA2,
+ EEPROM_EXT_TXPOWER_BG3,
+ EEPROM_EXT_TXPOWER_A3,
+
+ /* New values must be added before this */
+ EEPROM_WORD_COUNT
+};
+
+/*
+ * EEPROM Version
+ */
+#define EEPROM_VERSION_FAE FIELD16(0x00ff)
+#define EEPROM_VERSION_VERSION FIELD16(0xff00)
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_BYTE0 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_BYTE2 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_BYTE4 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5 FIELD16(0xff00)
+
+/*
+ * EEPROM NIC Configuration 0
+ * RXPATH: 1: 1R, 2: 2R, 3: 3R
+ * TXPATH: 1: 1T, 2: 2T, 3: 3T
+ * RF_TYPE: RFIC type
+ */
+#define EEPROM_NIC_CONF0_RXPATH FIELD16(0x000f)
+#define EEPROM_NIC_CONF0_TXPATH FIELD16(0x00f0)
+#define EEPROM_NIC_CONF0_RF_TYPE FIELD16(0x0f00)
+
+/*
+ * EEPROM NIC Configuration 1
+ * HW_RADIO: 0: disable, 1: enable
+ * EXTERNAL_TX_ALC: 0: disable, 1: enable
+ * EXTERNAL_LNA_2G: 0: disable, 1: enable
+ * EXTERNAL_LNA_5G: 0: disable, 1: enable
+ * CARDBUS_ACCEL: 0: enable, 1: disable
+ * BW40M_SB_2G: 0: disable, 1: enable
+ * BW40M_SB_5G: 0: disable, 1: enable
+ * WPS_PBC: 0: disable, 1: enable
+ * BW40M_2G: 0: enable, 1: disable
+ * BW40M_5G: 0: enable, 1: disable
+ * BROADBAND_EXT_LNA: 0: disable, 1: enable
+ * ANT_DIVERSITY: 00: Disable, 01: Diversity,
+ * 10: Main antenna, 11: Aux antenna
+ * INTERNAL_TX_ALC: 0: disable, 1: enable
+ * BT_COEXIST: 0: disable, 1: enable
+ * DAC_TEST: 0: disable, 1: enable
+ * EXTERNAL_TX0_PA: 0: disable, 1: enable (only on RT3352)
+ * EXTERNAL_TX1_PA: 0: disable, 1: enable (only on RT3352)
+ */
+#define EEPROM_NIC_CONF1_HW_RADIO FIELD16(0x0001)
+#define EEPROM_NIC_CONF1_EXTERNAL_TX_ALC FIELD16(0x0002)
+#define EEPROM_NIC_CONF1_EXTERNAL_LNA_2G FIELD16(0x0004)
+#define EEPROM_NIC_CONF1_EXTERNAL_LNA_5G FIELD16(0x0008)
+#define EEPROM_NIC_CONF1_CARDBUS_ACCEL FIELD16(0x0010)
+#define EEPROM_NIC_CONF1_BW40M_SB_2G FIELD16(0x0020)
+#define EEPROM_NIC_CONF1_BW40M_SB_5G FIELD16(0x0040)
+#define EEPROM_NIC_CONF1_WPS_PBC FIELD16(0x0080)
+#define EEPROM_NIC_CONF1_BW40M_2G FIELD16(0x0100)
+#define EEPROM_NIC_CONF1_BW40M_5G FIELD16(0x0200)
+#define EEPROM_NIC_CONF1_BROADBAND_EXT_LNA FIELD16(0x400)
+#define EEPROM_NIC_CONF1_ANT_DIVERSITY FIELD16(0x1800)
+#define EEPROM_NIC_CONF1_INTERNAL_TX_ALC FIELD16(0x2000)
+#define EEPROM_NIC_CONF1_BT_COEXIST FIELD16(0x4000)
+#define EEPROM_NIC_CONF1_DAC_TEST FIELD16(0x8000)
+#define EEPROM_NIC_CONF1_EXTERNAL_TX0_PA_3352 FIELD16(0x4000)
+#define EEPROM_NIC_CONF1_EXTERNAL_TX1_PA_3352 FIELD16(0x8000)
+
+/*
+ * EEPROM frequency
+ */
+#define EEPROM_FREQ_OFFSET FIELD16(0x00ff)
+#define EEPROM_FREQ_LED_MODE FIELD16(0x7f00)
+#define EEPROM_FREQ_LED_POLARITY FIELD16(0x1000)
+
+/*
+ * EEPROM LED
+ * POLARITY_RDY_G: Polarity RDY_G setting.
+ * POLARITY_RDY_A: Polarity RDY_A setting.
+ * POLARITY_ACT: Polarity ACT setting.
+ * POLARITY_GPIO_0: Polarity GPIO0 setting.
+ * POLARITY_GPIO_1: Polarity GPIO1 setting.
+ * POLARITY_GPIO_2: Polarity GPIO2 setting.
+ * POLARITY_GPIO_3: Polarity GPIO3 setting.
+ * POLARITY_GPIO_4: Polarity GPIO4 setting.
+ * LED_MODE: Led mode.
+ */
+#define EEPROM_LED_POLARITY_RDY_BG FIELD16(0x0001)
+#define EEPROM_LED_POLARITY_RDY_A FIELD16(0x0002)
+#define EEPROM_LED_POLARITY_ACT FIELD16(0x0004)
+#define EEPROM_LED_POLARITY_GPIO_0 FIELD16(0x0008)
+#define EEPROM_LED_POLARITY_GPIO_1 FIELD16(0x0010)
+#define EEPROM_LED_POLARITY_GPIO_2 FIELD16(0x0020)
+#define EEPROM_LED_POLARITY_GPIO_3 FIELD16(0x0040)
+#define EEPROM_LED_POLARITY_GPIO_4 FIELD16(0x0080)
+#define EEPROM_LED_LED_MODE FIELD16(0x1f00)
+
+/*
+ * EEPROM NIC Configuration 2
+ * RX_STREAM: 0: Reserved, 1: 1 Stream, 2: 2 Stream
+ * TX_STREAM: 0: Reserved, 1: 1 Stream, 2: 2 Stream
+ * CRYSTAL: 00: Reserved, 01: One crystal, 10: Two crystal, 11: Reserved
+ */
+#define EEPROM_NIC_CONF2_RX_STREAM FIELD16(0x000f)
+#define EEPROM_NIC_CONF2_TX_STREAM FIELD16(0x00f0)
+#define EEPROM_NIC_CONF2_CRYSTAL FIELD16(0x0600)
+#define EEPROM_NIC_CONF2_EXTERNAL_PA FIELD16(0x8000)
+
+/*
+ * EEPROM LNA
+ */
+#define EEPROM_LNA_BG FIELD16(0x00ff)
+#define EEPROM_LNA_A0 FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI BG offset
+ */
+#define EEPROM_RSSI_BG_OFFSET0 FIELD16(0x00ff)
+#define EEPROM_RSSI_BG_OFFSET1 FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI BG2 offset
+ */
+#define EEPROM_RSSI_BG2_OFFSET2 FIELD16(0x00ff)
+#define EEPROM_RSSI_BG2_LNA_A1 FIELD16(0xff00)
+
+/*
+ * EEPROM TXMIXER GAIN BG offset (note overlaps with EEPROM RSSI BG2).
+ */
+#define EEPROM_TXMIXER_GAIN_BG_VAL FIELD16(0x0007)
+
+/*
+ * EEPROM RSSI A offset
+ */
+#define EEPROM_RSSI_A_OFFSET0 FIELD16(0x00ff)
+#define EEPROM_RSSI_A_OFFSET1 FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI A2 offset
+ */
+#define EEPROM_RSSI_A2_OFFSET2 FIELD16(0x00ff)
+#define EEPROM_RSSI_A2_LNA_A2 FIELD16(0xff00)
+
+/*
+ * EEPROM TXMIXER GAIN A offset (note overlaps with EEPROM RSSI A2).
+ */
+#define EEPROM_TXMIXER_GAIN_A_VAL FIELD16(0x0007)
+
+/*
+ * EEPROM EIRP Maximum TX power values(unit: dbm)
+ */
+#define EEPROM_EIRP_MAX_TX_POWER_2GHZ FIELD16(0x00ff)
+#define EEPROM_EIRP_MAX_TX_POWER_5GHZ FIELD16(0xff00)
+
+/*
+ * EEPROM TXpower delta: 20MHZ AND 40 MHZ use different power.
+ * This is delta in 40MHZ.
+ * VALUE: Tx Power dalta value, MAX=4(unit: dbm)
+ * TYPE: 1: Plus the delta value, 0: minus the delta value
+ * ENABLE: enable tx power compensation for 40BW
+ */
+#define EEPROM_TXPOWER_DELTA_VALUE_2G FIELD16(0x003f)
+#define EEPROM_TXPOWER_DELTA_TYPE_2G FIELD16(0x0040)
+#define EEPROM_TXPOWER_DELTA_ENABLE_2G FIELD16(0x0080)
+#define EEPROM_TXPOWER_DELTA_VALUE_5G FIELD16(0x3f00)
+#define EEPROM_TXPOWER_DELTA_TYPE_5G FIELD16(0x4000)
+#define EEPROM_TXPOWER_DELTA_ENABLE_5G FIELD16(0x8000)
+
+/*
+ * EEPROM TXPOWER 802.11BG
+ */
+#define EEPROM_TXPOWER_BG_SIZE 7
+#define EEPROM_TXPOWER_BG_1 FIELD16(0x00ff)
+#define EEPROM_TXPOWER_BG_2 FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11BG
+ * MINUS4: If the actual TSSI is below this boundary, tx power needs to be
+ * reduced by (agc_step * -4)
+ * MINUS3: If the actual TSSI is below this boundary, tx power needs to be
+ * reduced by (agc_step * -3)
+ */
+#define EEPROM_TSSI_BOUND_BG1_MINUS4 FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_BG1_MINUS3 FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11BG
+ * MINUS2: If the actual TSSI is below this boundary, tx power needs to be
+ * reduced by (agc_step * -2)
+ * MINUS1: If the actual TSSI is below this boundary, tx power needs to be
+ * reduced by (agc_step * -1)
+ */
+#define EEPROM_TSSI_BOUND_BG2_MINUS2 FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_BG2_MINUS1 FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11BG
+ * REF: Reference TSSI value, no tx power changes needed
+ * PLUS1: If the actual TSSI is above this boundary, tx power needs to be
+ * increased by (agc_step * 1)
+ */
+#define EEPROM_TSSI_BOUND_BG3_REF FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_BG3_PLUS1 FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11BG
+ * PLUS2: If the actual TSSI is above this boundary, tx power needs to be
+ * increased by (agc_step * 2)
+ * PLUS3: If the actual TSSI is above this boundary, tx power needs to be
+ * increased by (agc_step * 3)
+ */
+#define EEPROM_TSSI_BOUND_BG4_PLUS2 FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_BG4_PLUS3 FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11BG
+ * PLUS4: If the actual TSSI is above this boundary, tx power needs to be
+ * increased by (agc_step * 4)
+ * AGC_STEP: Temperature compensation step.
+ */
+#define EEPROM_TSSI_BOUND_BG5_PLUS4 FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_BG5_AGC_STEP FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER 802.11A
+ */
+#define EEPROM_TXPOWER_A_SIZE 6
+#define EEPROM_TXPOWER_A_1 FIELD16(0x00ff)
+#define EEPROM_TXPOWER_A_2 FIELD16(0xff00)
+
+/* EEPROM_TXPOWER_{A,G} fields for RT3593 */
+#define EEPROM_TXPOWER_ALC FIELD8(0x1f)
+#define EEPROM_TXPOWER_FINE_CTRL FIELD8(0xe0)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11A
+ * MINUS4: If the actual TSSI is below this boundary, tx power needs to be
+ * reduced by (agc_step * -4)
+ * MINUS3: If the actual TSSI is below this boundary, tx power needs to be
+ * reduced by (agc_step * -3)
+ */
+#define EEPROM_TSSI_BOUND_A1_MINUS4 FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_A1_MINUS3 FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11A
+ * MINUS2: If the actual TSSI is below this boundary, tx power needs to be
+ * reduced by (agc_step * -2)
+ * MINUS1: If the actual TSSI is below this boundary, tx power needs to be
+ * reduced by (agc_step * -1)
+ */
+#define EEPROM_TSSI_BOUND_A2_MINUS2 FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_A2_MINUS1 FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11A
+ * REF: Reference TSSI value, no tx power changes needed
+ * PLUS1: If the actual TSSI is above this boundary, tx power needs to be
+ * increased by (agc_step * 1)
+ */
+#define EEPROM_TSSI_BOUND_A3_REF FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_A3_PLUS1 FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11A
+ * PLUS2: If the actual TSSI is above this boundary, tx power needs to be
+ * increased by (agc_step * 2)
+ * PLUS3: If the actual TSSI is above this boundary, tx power needs to be
+ * increased by (agc_step * 3)
+ */
+#define EEPROM_TSSI_BOUND_A4_PLUS2 FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_A4_PLUS3 FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11A
+ * PLUS4: If the actual TSSI is above this boundary, tx power needs to be
+ * increased by (agc_step * 4)
+ * AGC_STEP: Temperature compensation step.
+ */
+#define EEPROM_TSSI_BOUND_A5_PLUS4 FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_A5_AGC_STEP FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER by rate: tx power per tx rate for HT20 mode
+ */
+#define EEPROM_TXPOWER_BYRATE_SIZE 9
+
+#define EEPROM_TXPOWER_BYRATE_RATE0 FIELD16(0x000f)
+#define EEPROM_TXPOWER_BYRATE_RATE1 FIELD16(0x00f0)
+#define EEPROM_TXPOWER_BYRATE_RATE2 FIELD16(0x0f00)
+#define EEPROM_TXPOWER_BYRATE_RATE3 FIELD16(0xf000)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_SIZE 16
+#define EEPROM_BBP_VALUE FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID FIELD16(0xff00)
+
+/* EEPROM_EXT_LNA2 */
+#define EEPROM_EXT_LNA2_A1 FIELD16(0x00ff)
+#define EEPROM_EXT_LNA2_A2 FIELD16(0xff00)
+
+/*
+ * EEPROM IQ Calibration, unlike other entries those are byte addresses.
+ */
+
+#define EEPROM_IQ_GAIN_CAL_TX0_2G 0x130
+#define EEPROM_IQ_PHASE_CAL_TX0_2G 0x131
+#define EEPROM_IQ_GROUPDELAY_CAL_TX0_2G 0x132
+#define EEPROM_IQ_GAIN_CAL_TX1_2G 0x133
+#define EEPROM_IQ_PHASE_CAL_TX1_2G 0x134
+#define EEPROM_IQ_GROUPDELAY_CAL_TX1_2G 0x135
+#define EEPROM_IQ_GAIN_CAL_RX0_2G 0x136
+#define EEPROM_IQ_PHASE_CAL_RX0_2G 0x137
+#define EEPROM_IQ_GROUPDELAY_CAL_RX0_2G 0x138
+#define EEPROM_IQ_GAIN_CAL_RX1_2G 0x139
+#define EEPROM_IQ_PHASE_CAL_RX1_2G 0x13A
+#define EEPROM_IQ_GROUPDELAY_CAL_RX1_2G 0x13B
+#define EEPROM_RF_IQ_COMPENSATION_CONTROL 0x13C
+#define EEPROM_RF_IQ_IMBALANCE_COMPENSATION_CONTROL 0x13D
+#define EEPROM_IQ_GAIN_CAL_TX0_CH36_TO_CH64_5G 0x144
+#define EEPROM_IQ_PHASE_CAL_TX0_CH36_TO_CH64_5G 0x145
+#define EEPROM_IQ_GAIN_CAL_TX0_CH100_TO_CH138_5G 0X146
+#define EEPROM_IQ_PHASE_CAL_TX0_CH100_TO_CH138_5G 0x147
+#define EEPROM_IQ_GAIN_CAL_TX0_CH140_TO_CH165_5G 0x148
+#define EEPROM_IQ_PHASE_CAL_TX0_CH140_TO_CH165_5G 0x149
+#define EEPROM_IQ_GAIN_CAL_TX1_CH36_TO_CH64_5G 0x14A
+#define EEPROM_IQ_PHASE_CAL_TX1_CH36_TO_CH64_5G 0x14B
+#define EEPROM_IQ_GAIN_CAL_TX1_CH100_TO_CH138_5G 0X14C
+#define EEPROM_IQ_PHASE_CAL_TX1_CH100_TO_CH138_5G 0x14D
+#define EEPROM_IQ_GAIN_CAL_TX1_CH140_TO_CH165_5G 0x14E
+#define EEPROM_IQ_PHASE_CAL_TX1_CH140_TO_CH165_5G 0x14F
+#define EEPROM_IQ_GROUPDELAY_CAL_TX0_CH36_TO_CH64_5G 0x150
+#define EEPROM_IQ_GROUPDELAY_CAL_TX1_CH36_TO_CH64_5G 0x151
+#define EEPROM_IQ_GROUPDELAY_CAL_TX0_CH100_TO_CH138_5G 0x152
+#define EEPROM_IQ_GROUPDELAY_CAL_TX1_CH100_TO_CH138_5G 0x153
+#define EEPROM_IQ_GROUPDELAY_CAL_TX0_CH140_TO_CH165_5G 0x154
+#define EEPROM_IQ_GROUPDELAY_CAL_TX1_CH140_TO_CH165_5G 0x155
+#define EEPROM_IQ_GAIN_CAL_RX0_CH36_TO_CH64_5G 0x156
+#define EEPROM_IQ_PHASE_CAL_RX0_CH36_TO_CH64_5G 0x157
+#define EEPROM_IQ_GAIN_CAL_RX0_CH100_TO_CH138_5G 0X158
+#define EEPROM_IQ_PHASE_CAL_RX0_CH100_TO_CH138_5G 0x159
+#define EEPROM_IQ_GAIN_CAL_RX0_CH140_TO_CH165_5G 0x15A
+#define EEPROM_IQ_PHASE_CAL_RX0_CH140_TO_CH165_5G 0x15B
+#define EEPROM_IQ_GAIN_CAL_RX1_CH36_TO_CH64_5G 0x15C
+#define EEPROM_IQ_PHASE_CAL_RX1_CH36_TO_CH64_5G 0x15D
+#define EEPROM_IQ_GAIN_CAL_RX1_CH100_TO_CH138_5G 0X15E
+#define EEPROM_IQ_PHASE_CAL_RX1_CH100_TO_CH138_5G 0x15F
+#define EEPROM_IQ_GAIN_CAL_RX1_CH140_TO_CH165_5G 0x160
+#define EEPROM_IQ_PHASE_CAL_RX1_CH140_TO_CH165_5G 0x161
+#define EEPROM_IQ_GROUPDELAY_CAL_RX0_CH36_TO_CH64_5G 0x162
+#define EEPROM_IQ_GROUPDELAY_CAL_RX1_CH36_TO_CH64_5G 0x163
+#define EEPROM_IQ_GROUPDELAY_CAL_RX0_CH100_TO_CH138_5G 0x164
+#define EEPROM_IQ_GROUPDELAY_CAL_RX1_CH100_TO_CH138_5G 0x165
+#define EEPROM_IQ_GROUPDELAY_CAL_RX0_CH140_TO_CH165_5G 0x166
+#define EEPROM_IQ_GROUPDELAY_CAL_RX1_CH140_TO_CH165_5G 0x167
+
+/*
+ * MCU mailbox commands.
+ * MCU_SLEEP - go to power-save mode.
+ * arg1: 1: save as much power as possible, 0: save less power.
+ * status: 1: success, 2: already asleep,
+ * 3: maybe MAC is busy so can't finish this task.
+ * MCU_RADIO_OFF
+ * arg0: 0: do power-saving, NOT turn off radio.
+ */
+#define MCU_SLEEP 0x30
+#define MCU_WAKEUP 0x31
+#define MCU_RADIO_OFF 0x35
+#define MCU_CURRENT 0x36
+#define MCU_LED 0x50
+#define MCU_LED_STRENGTH 0x51
+#define MCU_LED_AG_CONF 0x52
+#define MCU_LED_ACT_CONF 0x53
+#define MCU_LED_LED_POLARITY 0x54
+#define MCU_RADAR 0x60
+#define MCU_BOOT_SIGNAL 0x72
+#define MCU_ANT_SELECT 0X73
+#define MCU_FREQ_OFFSET 0x74
+#define MCU_BBP_SIGNAL 0x80
+#define MCU_POWER_SAVE 0x83
+#define MCU_BAND_SELECT 0x91
+
+/*
+ * MCU mailbox tokens
+ */
+#define TOKEN_SLEEP 1
+#define TOKEN_RADIO_OFF 2
+#define TOKEN_WAKEUP 3
+
+
+/*
+ * DMA descriptor defines.
+ */
+
+#define TXWI_DESC_SIZE_4WORDS (4 * sizeof(__le32))
+#define TXWI_DESC_SIZE_5WORDS (5 * sizeof(__le32))
+
+#define RXWI_DESC_SIZE_4WORDS (4 * sizeof(__le32))
+#define RXWI_DESC_SIZE_5WORDS (5 * sizeof(__le32))
+#define RXWI_DESC_SIZE_6WORDS (6 * sizeof(__le32))
+
+/*
+ * TX WI structure
+ */
+
+/*
+ * Word0
+ * FRAG: 1 To inform TKIP engine this is a fragment.
+ * MIMO_PS: The remote peer is in dynamic MIMO-PS mode
+ * TX_OP: 0:HT TXOP rule , 1:PIFS TX ,2:Backoff, 3:sifs
+ * BW: Channel bandwidth 0:20MHz, 1:40 MHz (for legacy rates this will
+ * duplicate the frame to both channels).
+ * STBC: 1: STBC support MCS =0-7, 2,3 : RESERVED
+ * AMPDU: 1: this frame is eligible for AMPDU aggregation, the hw will
+ * aggregate consecutive frames with the same RA and QoS TID. If
+ * a frame A with the same RA and QoS TID but AMPDU=0 is queued
+ * directly after a frame B with AMPDU=1, frame A might still
+ * get aggregated into the AMPDU started by frame B. So, setting
+ * AMPDU to 0 does _not_ necessarily mean the frame is sent as
+ * MPDU, it can still end up in an AMPDU if the previous frame
+ * was tagged as AMPDU.
+ */
+#define TXWI_W0_FRAG FIELD32(0x00000001)
+#define TXWI_W0_MIMO_PS FIELD32(0x00000002)
+#define TXWI_W0_CF_ACK FIELD32(0x00000004)
+#define TXWI_W0_TS FIELD32(0x00000008)
+#define TXWI_W0_AMPDU FIELD32(0x00000010)
+#define TXWI_W0_MPDU_DENSITY FIELD32(0x000000e0)
+#define TXWI_W0_TX_OP FIELD32(0x00000300)
+#define TXWI_W0_MCS FIELD32(0x007f0000)
+#define TXWI_W0_BW FIELD32(0x00800000)
+#define TXWI_W0_SHORT_GI FIELD32(0x01000000)
+#define TXWI_W0_STBC FIELD32(0x06000000)
+#define TXWI_W0_IFS FIELD32(0x08000000)
+#define TXWI_W0_PHYMODE FIELD32(0xc0000000)
+
+/*
+ * Word1
+ * ACK: 0: No Ack needed, 1: Ack needed
+ * NSEQ: 0: Don't assign hw sequence number, 1: Assign hw sequence number
+ * BW_WIN_SIZE: BA windows size of the recipient
+ * WIRELESS_CLI_ID: Client ID for WCID table access
+ * MPDU_TOTAL_BYTE_COUNT: Length of 802.11 frame
+ * PACKETID: Will be latched into the TX_STA_FIFO register once the according
+ * frame was processed. If multiple frames are aggregated together
+ * (AMPDU==1) the reported tx status will always contain the packet
+ * id of the first frame. 0: Don't report tx status for this frame.
+ * PACKETID_QUEUE: Part of PACKETID, This is the queue index (0-3)
+ * PACKETID_ENTRY: Part of PACKETID, THis is the queue entry index (1-3)
+ * This identification number is calculated by ((idx % 3) + 1).
+ * The (+1) is required to prevent PACKETID to become 0.
+ */
+#define TXWI_W1_ACK FIELD32(0x00000001)
+#define TXWI_W1_NSEQ FIELD32(0x00000002)
+#define TXWI_W1_BW_WIN_SIZE FIELD32(0x000000fc)
+#define TXWI_W1_WIRELESS_CLI_ID FIELD32(0x0000ff00)
+#define TXWI_W1_MPDU_TOTAL_BYTE_COUNT FIELD32(0x0fff0000)
+#define TXWI_W1_PACKETID FIELD32(0xf0000000)
+#define TXWI_W1_PACKETID_QUEUE FIELD32(0x30000000)
+#define TXWI_W1_PACKETID_ENTRY FIELD32(0xc0000000)
+
+/*
+ * Word2
+ */
+#define TXWI_W2_IV FIELD32(0xffffffff)
+
+/*
+ * Word3
+ */
+#define TXWI_W3_EIV FIELD32(0xffffffff)
+
+/*
+ * RX WI structure
+ */
+
+/*
+ * Word0
+ */
+#define RXWI_W0_WIRELESS_CLI_ID FIELD32(0x000000ff)
+#define RXWI_W0_KEY_INDEX FIELD32(0x00000300)
+#define RXWI_W0_BSSID FIELD32(0x00001c00)
+#define RXWI_W0_UDF FIELD32(0x0000e000)
+#define RXWI_W0_MPDU_TOTAL_BYTE_COUNT FIELD32(0x0fff0000)
+#define RXWI_W0_TID FIELD32(0xf0000000)
+
+/*
+ * Word1
+ */
+#define RXWI_W1_FRAG FIELD32(0x0000000f)
+#define RXWI_W1_SEQUENCE FIELD32(0x0000fff0)
+#define RXWI_W1_MCS FIELD32(0x007f0000)
+#define RXWI_W1_BW FIELD32(0x00800000)
+#define RXWI_W1_SHORT_GI FIELD32(0x01000000)
+#define RXWI_W1_STBC FIELD32(0x06000000)
+#define RXWI_W1_PHYMODE FIELD32(0xc0000000)
+
+/*
+ * Word2
+ */
+#define RXWI_W2_RSSI0 FIELD32(0x000000ff)
+#define RXWI_W2_RSSI1 FIELD32(0x0000ff00)
+#define RXWI_W2_RSSI2 FIELD32(0x00ff0000)
+
+/*
+ * Word3
+ */
+#define RXWI_W3_SNR0 FIELD32(0x000000ff)
+#define RXWI_W3_SNR1 FIELD32(0x0000ff00)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ */
+#define MIN_G_TXPOWER 0
+#define MIN_A_TXPOWER -7
+#define MAX_G_TXPOWER 31
+#define MAX_A_TXPOWER 15
+#define DEFAULT_TXPOWER 5
+
+#define MIN_A_TXPOWER_3593 0
+#define MAX_A_TXPOWER_3593 31
+
+#define TXPOWER_G_FROM_DEV(__txpower) \
+ ((__txpower) > MAX_G_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+#define TXPOWER_A_FROM_DEV(__txpower) \
+ ((__txpower) > MAX_A_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+/*
+ * Board's maximun TX power limitation
+ */
+#define EIRP_MAX_TX_POWER_LIMIT 0x50
+
+/*
+ * Number of TBTT intervals after which we have to adjust
+ * the hw beacon timer.
+ */
+#define BCN_TBTT_OFFSET 64
+
+#endif /* RT2800_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2800lib.c b/drivers/net/wireless/ralink/rt2x00/rt2800lib.c
new file mode 100644
index 0000000000..e65cc00fa1
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2800lib.c
@@ -0,0 +1,12188 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+ Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
+ Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
+
+ Based on the original rt2800pci.c and rt2800usb.c.
+ Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+ Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+ Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+ Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2800lib
+ Abstract: rt2800 generic device routines.
+ */
+
+#include <linux/crc-ccitt.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2800lib.h"
+#include "rt2800.h"
+
+static bool modparam_watchdog;
+module_param_named(watchdog, modparam_watchdog, bool, S_IRUGO);
+MODULE_PARM_DESC(watchdog, "Enable watchdog to detect tx/rx hangs and reset hardware if detected");
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2800_register_read and rt2800_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attampt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ * The _lock versions must be used if you already hold the csr_mutex
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+ rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
+#define WAIT_FOR_RFCSR(__dev, __reg) \
+ rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
+#define WAIT_FOR_RFCSR_MT7620(__dev, __reg) \
+ rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY_MT7620, \
+ (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+ rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
+#define WAIT_FOR_MCU(__dev, __reg) \
+ rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
+ H2M_MAILBOX_CSR_OWNER, (__reg))
+
+static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
+{
+ /* check for rt2872 on SoC */
+ if (!rt2x00_is_soc(rt2x00dev) ||
+ !rt2x00_rt(rt2x00dev, RT2872))
+ return false;
+
+ /* we know for sure that these rf chipsets are used on rt305x boards */
+ if (rt2x00_rf(rt2x00dev, RF3020) ||
+ rt2x00_rf(rt2x00dev, RF3021) ||
+ rt2x00_rf(rt2x00dev, RF3022))
+ return true;
+
+ rt2x00_warn(rt2x00dev, "Unknown RF chipset on rt305x\n");
+ return false;
+}
+
+static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u8 value)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
+ rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
+ rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
+ rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
+ rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
+
+ rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static u8 rt2800_bbp_read(struct rt2x00_dev *rt2x00dev, const unsigned int word)
+{
+ u32 reg;
+ u8 value;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the read request into the register.
+ * After the data has been written, we wait until hardware
+ * returns the correct value, if at any time the register
+ * doesn't become available in time, reg will be 0xffffffff
+ * which means we return 0xff to the caller.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
+ rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
+ rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
+ rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
+
+ rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
+
+ WAIT_FOR_BBP(rt2x00dev, &reg);
+ }
+
+ value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+
+ return value;
+}
+
+static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u8 value)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the RFCSR becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ switch (rt2x00dev->chip.rt) {
+ case RT6352:
+ if (WAIT_FOR_RFCSR_MT7620(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, RF_CSR_CFG_DATA_MT7620, value);
+ rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM_MT7620,
+ word);
+ rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE_MT7620, 1);
+ rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY_MT7620, 1);
+
+ rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
+ }
+ break;
+
+ default:
+ if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
+ rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
+ rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
+ rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
+
+ rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
+ }
+ break;
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2800_rfcsr_write_bank(struct rt2x00_dev *rt2x00dev, const u8 bank,
+ const unsigned int reg, const u8 value)
+{
+ rt2800_rfcsr_write(rt2x00dev, (reg | (bank << 6)), value);
+}
+
+static void rt2800_rfcsr_write_chanreg(struct rt2x00_dev *rt2x00dev,
+ const unsigned int reg, const u8 value)
+{
+ rt2800_rfcsr_write_bank(rt2x00dev, 4, reg, value);
+ rt2800_rfcsr_write_bank(rt2x00dev, 6, reg, value);
+}
+
+static void rt2800_rfcsr_write_dccal(struct rt2x00_dev *rt2x00dev,
+ const unsigned int reg, const u8 value)
+{
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, reg, value);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, reg, value);
+}
+
+static void rt2800_bbp_dcoc_write(struct rt2x00_dev *rt2x00dev,
+ const u8 reg, const u8 value)
+{
+ rt2800_bbp_write(rt2x00dev, 158, reg);
+ rt2800_bbp_write(rt2x00dev, 159, value);
+}
+
+static u8 rt2800_bbp_dcoc_read(struct rt2x00_dev *rt2x00dev, const u8 reg)
+{
+ rt2800_bbp_write(rt2x00dev, 158, reg);
+ return rt2800_bbp_read(rt2x00dev, 159);
+}
+
+static void rt2800_bbp_glrt_write(struct rt2x00_dev *rt2x00dev,
+ const u8 reg, const u8 value)
+{
+ rt2800_bbp_write(rt2x00dev, 195, reg);
+ rt2800_bbp_write(rt2x00dev, 196, value);
+}
+
+static u8 rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word)
+{
+ u32 reg;
+ u8 value;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the RFCSR becomes available, afterwards we
+ * can safely write the read request into the register.
+ * After the data has been written, we wait until hardware
+ * returns the correct value, if at any time the register
+ * doesn't become available in time, reg will be 0xffffffff
+ * which means we return 0xff to the caller.
+ */
+ switch (rt2x00dev->chip.rt) {
+ case RT6352:
+ if (WAIT_FOR_RFCSR_MT7620(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM_MT7620,
+ word);
+ rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE_MT7620, 0);
+ rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY_MT7620, 1);
+
+ rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
+
+ WAIT_FOR_RFCSR_MT7620(rt2x00dev, &reg);
+ }
+
+ value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA_MT7620);
+ break;
+
+ default:
+ if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
+ rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
+ rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
+
+ rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
+
+ WAIT_FOR_RFCSR(rt2x00dev, &reg);
+ }
+
+ value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
+ break;
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+
+ return value;
+}
+
+static u8 rt2800_rfcsr_read_bank(struct rt2x00_dev *rt2x00dev, const u8 bank,
+ const unsigned int reg)
+{
+ return rt2800_rfcsr_read(rt2x00dev, (reg | (bank << 6)));
+}
+
+static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u32 value)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the RF becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
+ rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
+ rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
+ rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
+
+ rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
+ rt2x00_rf_write(rt2x00dev, word, value);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static const unsigned int rt2800_eeprom_map[EEPROM_WORD_COUNT] = {
+ [EEPROM_CHIP_ID] = 0x0000,
+ [EEPROM_VERSION] = 0x0001,
+ [EEPROM_MAC_ADDR_0] = 0x0002,
+ [EEPROM_MAC_ADDR_1] = 0x0003,
+ [EEPROM_MAC_ADDR_2] = 0x0004,
+ [EEPROM_NIC_CONF0] = 0x001a,
+ [EEPROM_NIC_CONF1] = 0x001b,
+ [EEPROM_FREQ] = 0x001d,
+ [EEPROM_LED_AG_CONF] = 0x001e,
+ [EEPROM_LED_ACT_CONF] = 0x001f,
+ [EEPROM_LED_POLARITY] = 0x0020,
+ [EEPROM_NIC_CONF2] = 0x0021,
+ [EEPROM_LNA] = 0x0022,
+ [EEPROM_RSSI_BG] = 0x0023,
+ [EEPROM_RSSI_BG2] = 0x0024,
+ [EEPROM_TXMIXER_GAIN_BG] = 0x0024, /* overlaps with RSSI_BG2 */
+ [EEPROM_RSSI_A] = 0x0025,
+ [EEPROM_RSSI_A2] = 0x0026,
+ [EEPROM_TXMIXER_GAIN_A] = 0x0026, /* overlaps with RSSI_A2 */
+ [EEPROM_EIRP_MAX_TX_POWER] = 0x0027,
+ [EEPROM_TXPOWER_DELTA] = 0x0028,
+ [EEPROM_TXPOWER_BG1] = 0x0029,
+ [EEPROM_TXPOWER_BG2] = 0x0030,
+ [EEPROM_TSSI_BOUND_BG1] = 0x0037,
+ [EEPROM_TSSI_BOUND_BG2] = 0x0038,
+ [EEPROM_TSSI_BOUND_BG3] = 0x0039,
+ [EEPROM_TSSI_BOUND_BG4] = 0x003a,
+ [EEPROM_TSSI_BOUND_BG5] = 0x003b,
+ [EEPROM_TXPOWER_A1] = 0x003c,
+ [EEPROM_TXPOWER_A2] = 0x0053,
+ [EEPROM_TXPOWER_INIT] = 0x0068,
+ [EEPROM_TSSI_BOUND_A1] = 0x006a,
+ [EEPROM_TSSI_BOUND_A2] = 0x006b,
+ [EEPROM_TSSI_BOUND_A3] = 0x006c,
+ [EEPROM_TSSI_BOUND_A4] = 0x006d,
+ [EEPROM_TSSI_BOUND_A5] = 0x006e,
+ [EEPROM_TXPOWER_BYRATE] = 0x006f,
+ [EEPROM_BBP_START] = 0x0078,
+};
+
+static const unsigned int rt2800_eeprom_map_ext[EEPROM_WORD_COUNT] = {
+ [EEPROM_CHIP_ID] = 0x0000,
+ [EEPROM_VERSION] = 0x0001,
+ [EEPROM_MAC_ADDR_0] = 0x0002,
+ [EEPROM_MAC_ADDR_1] = 0x0003,
+ [EEPROM_MAC_ADDR_2] = 0x0004,
+ [EEPROM_NIC_CONF0] = 0x001a,
+ [EEPROM_NIC_CONF1] = 0x001b,
+ [EEPROM_NIC_CONF2] = 0x001c,
+ [EEPROM_EIRP_MAX_TX_POWER] = 0x0020,
+ [EEPROM_FREQ] = 0x0022,
+ [EEPROM_LED_AG_CONF] = 0x0023,
+ [EEPROM_LED_ACT_CONF] = 0x0024,
+ [EEPROM_LED_POLARITY] = 0x0025,
+ [EEPROM_LNA] = 0x0026,
+ [EEPROM_EXT_LNA2] = 0x0027,
+ [EEPROM_RSSI_BG] = 0x0028,
+ [EEPROM_RSSI_BG2] = 0x0029,
+ [EEPROM_RSSI_A] = 0x002a,
+ [EEPROM_RSSI_A2] = 0x002b,
+ [EEPROM_TXPOWER_BG1] = 0x0030,
+ [EEPROM_TXPOWER_BG2] = 0x0037,
+ [EEPROM_EXT_TXPOWER_BG3] = 0x003e,
+ [EEPROM_TSSI_BOUND_BG1] = 0x0045,
+ [EEPROM_TSSI_BOUND_BG2] = 0x0046,
+ [EEPROM_TSSI_BOUND_BG3] = 0x0047,
+ [EEPROM_TSSI_BOUND_BG4] = 0x0048,
+ [EEPROM_TSSI_BOUND_BG5] = 0x0049,
+ [EEPROM_TXPOWER_A1] = 0x004b,
+ [EEPROM_TXPOWER_A2] = 0x0065,
+ [EEPROM_EXT_TXPOWER_A3] = 0x007f,
+ [EEPROM_TSSI_BOUND_A1] = 0x009a,
+ [EEPROM_TSSI_BOUND_A2] = 0x009b,
+ [EEPROM_TSSI_BOUND_A3] = 0x009c,
+ [EEPROM_TSSI_BOUND_A4] = 0x009d,
+ [EEPROM_TSSI_BOUND_A5] = 0x009e,
+ [EEPROM_TXPOWER_BYRATE] = 0x00a0,
+};
+
+static unsigned int rt2800_eeprom_word_index(struct rt2x00_dev *rt2x00dev,
+ const enum rt2800_eeprom_word word)
+{
+ const unsigned int *map;
+ unsigned int index;
+
+ if (WARN_ONCE(word >= EEPROM_WORD_COUNT,
+ "%s: invalid EEPROM word %d\n",
+ wiphy_name(rt2x00dev->hw->wiphy), word))
+ return 0;
+
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883))
+ map = rt2800_eeprom_map_ext;
+ else
+ map = rt2800_eeprom_map;
+
+ index = map[word];
+
+ /* Index 0 is valid only for EEPROM_CHIP_ID.
+ * Otherwise it means that the offset of the
+ * given word is not initialized in the map,
+ * or that the field is not usable on the
+ * actual chipset.
+ */
+ WARN_ONCE(word != EEPROM_CHIP_ID && index == 0,
+ "%s: invalid access of EEPROM word %d\n",
+ wiphy_name(rt2x00dev->hw->wiphy), word);
+
+ return index;
+}
+
+static void *rt2800_eeprom_addr(struct rt2x00_dev *rt2x00dev,
+ const enum rt2800_eeprom_word word)
+{
+ unsigned int index;
+
+ index = rt2800_eeprom_word_index(rt2x00dev, word);
+ return rt2x00_eeprom_addr(rt2x00dev, index);
+}
+
+static u16 rt2800_eeprom_read(struct rt2x00_dev *rt2x00dev,
+ const enum rt2800_eeprom_word word)
+{
+ unsigned int index;
+
+ index = rt2800_eeprom_word_index(rt2x00dev, word);
+ return rt2x00_eeprom_read(rt2x00dev, index);
+}
+
+static void rt2800_eeprom_write(struct rt2x00_dev *rt2x00dev,
+ const enum rt2800_eeprom_word word, u16 data)
+{
+ unsigned int index;
+
+ index = rt2800_eeprom_word_index(rt2x00dev, word);
+ rt2x00_eeprom_write(rt2x00dev, index, data);
+}
+
+static u16 rt2800_eeprom_read_from_array(struct rt2x00_dev *rt2x00dev,
+ const enum rt2800_eeprom_word array,
+ unsigned int offset)
+{
+ unsigned int index;
+
+ index = rt2800_eeprom_word_index(rt2x00dev, array);
+ return rt2x00_eeprom_read(rt2x00dev, index + offset);
+}
+
+static int rt2800_enable_wlan_rt3290(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+ int i, count;
+
+ reg = rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL);
+ rt2x00_set_field32(&reg, WLAN_GPIO_OUT_OE_BIT_ALL, 0xff);
+ rt2x00_set_field32(&reg, FRC_WL_ANT_SET, 1);
+ rt2x00_set_field32(&reg, WLAN_CLK_EN, 0);
+ rt2x00_set_field32(&reg, WLAN_EN, 1);
+ rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
+
+ udelay(REGISTER_BUSY_DELAY);
+
+ count = 0;
+ do {
+ /*
+ * Check PLL_LD & XTAL_RDY.
+ */
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ reg = rt2800_register_read(rt2x00dev, CMB_CTRL);
+ if (rt2x00_get_field32(reg, PLL_LD) &&
+ rt2x00_get_field32(reg, XTAL_RDY))
+ break;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ if (i >= REGISTER_BUSY_COUNT) {
+
+ if (count >= 10)
+ return -EIO;
+
+ rt2800_register_write(rt2x00dev, 0x58, 0x018);
+ udelay(REGISTER_BUSY_DELAY);
+ rt2800_register_write(rt2x00dev, 0x58, 0x418);
+ udelay(REGISTER_BUSY_DELAY);
+ rt2800_register_write(rt2x00dev, 0x58, 0x618);
+ udelay(REGISTER_BUSY_DELAY);
+ count++;
+ } else {
+ count = 0;
+ }
+
+ reg = rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL);
+ rt2x00_set_field32(&reg, PCIE_APP0_CLK_REQ, 0);
+ rt2x00_set_field32(&reg, WLAN_CLK_EN, 1);
+ rt2x00_set_field32(&reg, WLAN_RESET, 1);
+ rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
+ udelay(10);
+ rt2x00_set_field32(&reg, WLAN_RESET, 0);
+ rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
+ udelay(10);
+ rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, 0x7fffffff);
+ } while (count != 0);
+
+ return 0;
+}
+
+void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
+ const u8 command, const u8 token,
+ const u8 arg0, const u8 arg1)
+{
+ u32 reg;
+
+ /*
+ * SOC devices don't support MCU requests.
+ */
+ if (rt2x00_is_soc(rt2x00dev))
+ return;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the MCU becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
+ rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
+ rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
+ rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
+ rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
+ rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
+
+ reg = 0;
+ rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
+ rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+EXPORT_SYMBOL_GPL(rt2800_mcu_request);
+
+int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i = 0;
+ u32 reg;
+
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ reg = rt2800_register_read(rt2x00dev, MAC_CSR0);
+ if (reg && reg != ~0)
+ return 0;
+ msleep(1);
+ }
+
+ rt2x00_err(rt2x00dev, "Unstable hardware\n");
+ return -EBUSY;
+}
+EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);
+
+int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u32 reg;
+
+ /*
+ * Some devices are really slow to respond here. Wait a whole second
+ * before timing out.
+ */
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ reg = rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG);
+ if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
+ !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
+ return 0;
+
+ msleep(10);
+ }
+
+ rt2x00_err(rt2x00dev, "WPDMA TX/RX busy [0x%08x]\n", reg);
+ return -EACCES;
+}
+EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
+
+void rt2800_disable_wpdma(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ reg = rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
+ rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
+}
+EXPORT_SYMBOL_GPL(rt2800_disable_wpdma);
+
+void rt2800_get_txwi_rxwi_size(struct rt2x00_dev *rt2x00dev,
+ unsigned short *txwi_size,
+ unsigned short *rxwi_size)
+{
+ switch (rt2x00dev->chip.rt) {
+ case RT3593:
+ case RT3883:
+ *txwi_size = TXWI_DESC_SIZE_4WORDS;
+ *rxwi_size = RXWI_DESC_SIZE_5WORDS;
+ break;
+
+ case RT5592:
+ case RT6352:
+ *txwi_size = TXWI_DESC_SIZE_5WORDS;
+ *rxwi_size = RXWI_DESC_SIZE_6WORDS;
+ break;
+
+ default:
+ *txwi_size = TXWI_DESC_SIZE_4WORDS;
+ *rxwi_size = RXWI_DESC_SIZE_4WORDS;
+ break;
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800_get_txwi_rxwi_size);
+
+static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
+{
+ u16 fw_crc;
+ u16 crc;
+
+ /*
+ * The last 2 bytes in the firmware array are the crc checksum itself,
+ * this means that we should never pass those 2 bytes to the crc
+ * algorithm.
+ */
+ fw_crc = (data[len - 2] << 8 | data[len - 1]);
+
+ /*
+ * Use the crc ccitt algorithm.
+ * This will return the same value as the legacy driver which
+ * used bit ordering reversion on the both the firmware bytes
+ * before input input as well as on the final output.
+ * Obviously using crc ccitt directly is much more efficient.
+ */
+ crc = crc_ccitt(~0, data, len - 2);
+
+ /*
+ * There is a small difference between the crc-itu-t + bitrev and
+ * the crc-ccitt crc calculation. In the latter method the 2 bytes
+ * will be swapped, use swab16 to convert the crc to the correct
+ * value.
+ */
+ crc = swab16(crc);
+
+ return fw_crc == crc;
+}
+
+int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ size_t offset = 0;
+ size_t fw_len;
+ bool multiple;
+
+ /*
+ * PCI(e) & SOC devices require firmware with a length
+ * of 8kb. USB devices require firmware files with a length
+ * of 4kb. Certain USB chipsets however require different firmware,
+ * which Ralink only provides attached to the original firmware
+ * file. Thus for USB devices, firmware files have a length
+ * which is a multiple of 4kb. The firmware for rt3290 chip also
+ * have a length which is a multiple of 4kb.
+ */
+ if (rt2x00_is_usb(rt2x00dev) || rt2x00_rt(rt2x00dev, RT3290))
+ fw_len = 4096;
+ else
+ fw_len = 8192;
+
+ multiple = true;
+ /*
+ * Validate the firmware length
+ */
+ if (len != fw_len && (!multiple || (len % fw_len) != 0))
+ return FW_BAD_LENGTH;
+
+ /*
+ * Check if the chipset requires one of the upper parts
+ * of the firmware.
+ */
+ if (rt2x00_is_usb(rt2x00dev) &&
+ !rt2x00_rt(rt2x00dev, RT2860) &&
+ !rt2x00_rt(rt2x00dev, RT2872) &&
+ !rt2x00_rt(rt2x00dev, RT3070) &&
+ ((len / fw_len) == 1))
+ return FW_BAD_VERSION;
+
+ /*
+ * 8kb firmware files must be checked as if it were
+ * 2 separate firmware files.
+ */
+ while (offset < len) {
+ if (!rt2800_check_firmware_crc(data + offset, fw_len))
+ return FW_BAD_CRC;
+
+ offset += fw_len;
+ }
+
+ return FW_OK;
+}
+EXPORT_SYMBOL_GPL(rt2800_check_firmware);
+
+int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ unsigned int i;
+ u32 reg;
+ int retval;
+
+ if (rt2x00_rt(rt2x00dev, RT3290)) {
+ retval = rt2800_enable_wlan_rt3290(rt2x00dev);
+ if (retval)
+ return -EBUSY;
+ }
+
+ /*
+ * If driver doesn't wake up firmware here,
+ * rt2800_load_firmware will hang forever when interface is up again.
+ */
+ rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
+
+ /*
+ * Wait for stable hardware.
+ */
+ if (rt2800_wait_csr_ready(rt2x00dev))
+ return -EBUSY;
+
+ if (rt2x00_is_pci(rt2x00dev)) {
+ if (rt2x00_rt(rt2x00dev, RT3290) ||
+ rt2x00_rt(rt2x00dev, RT3572) ||
+ rt2x00_rt(rt2x00dev, RT5390) ||
+ rt2x00_rt(rt2x00dev, RT5392)) {
+ reg = rt2800_register_read(rt2x00dev, AUX_CTRL);
+ rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
+ rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
+ rt2800_register_write(rt2x00dev, AUX_CTRL, reg);
+ }
+ rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
+ }
+
+ rt2800_disable_wpdma(rt2x00dev);
+
+ /*
+ * Write firmware to the device.
+ */
+ rt2800_drv_write_firmware(rt2x00dev, data, len);
+
+ /*
+ * Wait for device to stabilize.
+ */
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ reg = rt2800_register_read(rt2x00dev, PBF_SYS_CTRL);
+ if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
+ break;
+ msleep(1);
+ }
+
+ if (i == REGISTER_BUSY_COUNT) {
+ rt2x00_err(rt2x00dev, "PBF system register not ready\n");
+ return -EBUSY;
+ }
+
+ /*
+ * Disable DMA, will be reenabled later when enabling
+ * the radio.
+ */
+ rt2800_disable_wpdma(rt2x00dev);
+
+ /*
+ * Initialize firmware.
+ */
+ rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
+ rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+ if (rt2x00_is_usb(rt2x00dev)) {
+ rt2800_register_write(rt2x00dev, H2M_INT_SRC, 0);
+ rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
+ }
+ msleep(1);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_load_firmware);
+
+void rt2800_write_tx_data(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ __le32 *txwi = rt2800_drv_get_txwi(entry);
+ u32 word;
+ int i;
+
+ /*
+ * Initialize TX Info descriptor
+ */
+ word = rt2x00_desc_read(txwi, 0);
+ rt2x00_set_field32(&word, TXWI_W0_FRAG,
+ test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+ rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
+ test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
+ rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
+ rt2x00_set_field32(&word, TXWI_W0_TS,
+ test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+ rt2x00_set_field32(&word, TXWI_W0_AMPDU,
+ test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
+ rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY,
+ txdesc->u.ht.mpdu_density);
+ rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->u.ht.txop);
+ rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->u.ht.mcs);
+ rt2x00_set_field32(&word, TXWI_W0_BW,
+ test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
+ rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
+ test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
+ rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->u.ht.stbc);
+ rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
+ rt2x00_desc_write(txwi, 0, word);
+
+ word = rt2x00_desc_read(txwi, 1);
+ rt2x00_set_field32(&word, TXWI_W1_ACK,
+ test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+ rt2x00_set_field32(&word, TXWI_W1_NSEQ,
+ test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
+ rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->u.ht.ba_size);
+ rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
+ test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
+ txdesc->key_idx : txdesc->u.ht.wcid);
+ rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
+ txdesc->length);
+ rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid);
+ rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
+ rt2x00_desc_write(txwi, 1, word);
+
+ /*
+ * Always write 0 to IV/EIV fields (word 2 and 3), hardware will insert
+ * the IV from the IVEIV register when TXD_W3_WIV is set to 0.
+ * When TXD_W3_WIV is set to 1 it will use the IV data
+ * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
+ * crypto entry in the registers should be used to encrypt the frame.
+ *
+ * Nulify all remaining words as well, we don't know how to program them.
+ */
+ for (i = 2; i < entry->queue->winfo_size / sizeof(__le32); i++)
+ _rt2x00_desc_write(txwi, i, 0);
+}
+EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
+
+static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
+{
+ s8 rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
+ s8 rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
+ s8 rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
+ u16 eeprom;
+ u8 offset0;
+ u8 offset1;
+ u8 offset2;
+
+ if (rt2x00dev->curr_band == NL80211_BAND_2GHZ) {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG);
+ offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
+ offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2);
+ offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
+ } else {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A);
+ offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
+ offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2);
+ offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
+ }
+
+ /*
+ * Convert the value from the descriptor into the RSSI value
+ * If the value in the descriptor is 0, it is considered invalid
+ * and the default (extremely low) rssi value is assumed
+ */
+ rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
+ rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
+ rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
+
+ /*
+ * mac80211 only accepts a single RSSI value. Calculating the
+ * average doesn't deliver a fair answer either since -60:-60 would
+ * be considered equally good as -50:-70 while the second is the one
+ * which gives less energy...
+ */
+ rssi0 = max(rssi0, rssi1);
+ return (int)max(rssi0, rssi2);
+}
+
+void rt2800_process_rxwi(struct queue_entry *entry,
+ struct rxdone_entry_desc *rxdesc)
+{
+ __le32 *rxwi = (__le32 *) entry->skb->data;
+ u32 word;
+
+ word = rt2x00_desc_read(rxwi, 0);
+
+ rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
+ rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
+
+ word = rt2x00_desc_read(rxwi, 1);
+
+ if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
+ rxdesc->enc_flags |= RX_ENC_FLAG_SHORT_GI;
+
+ if (rt2x00_get_field32(word, RXWI_W1_BW))
+ rxdesc->bw = RATE_INFO_BW_40;
+
+ /*
+ * Detect RX rate, always use MCS as signal type.
+ */
+ rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
+ rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
+ rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
+
+ /*
+ * Mask of 0x8 bit to remove the short preamble flag.
+ */
+ if (rxdesc->rate_mode == RATE_MODE_CCK)
+ rxdesc->signal &= ~0x8;
+
+ word = rt2x00_desc_read(rxwi, 2);
+
+ /*
+ * Convert descriptor AGC value to RSSI value.
+ */
+ rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
+ /*
+ * Remove RXWI descriptor from start of the buffer.
+ */
+ skb_pull(entry->skb, entry->queue->winfo_size);
+}
+EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
+
+static void rt2800_rate_from_status(struct skb_frame_desc *skbdesc,
+ u32 status, enum nl80211_band band)
+{
+ u8 flags = 0;
+ u8 idx = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
+
+ switch (rt2x00_get_field32(status, TX_STA_FIFO_PHYMODE)) {
+ case RATE_MODE_HT_GREENFIELD:
+ flags |= IEEE80211_TX_RC_GREEN_FIELD;
+ fallthrough;
+ case RATE_MODE_HT_MIX:
+ flags |= IEEE80211_TX_RC_MCS;
+ break;
+ case RATE_MODE_OFDM:
+ if (band == NL80211_BAND_2GHZ)
+ idx += 4;
+ break;
+ case RATE_MODE_CCK:
+ if (idx >= 8)
+ idx -= 8;
+ break;
+ }
+
+ if (rt2x00_get_field32(status, TX_STA_FIFO_BW))
+ flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
+
+ if (rt2x00_get_field32(status, TX_STA_FIFO_SGI))
+ flags |= IEEE80211_TX_RC_SHORT_GI;
+
+ skbdesc->tx_rate_idx = idx;
+ skbdesc->tx_rate_flags = flags;
+}
+
+static bool rt2800_txdone_entry_check(struct queue_entry *entry, u32 reg)
+{
+ __le32 *txwi;
+ u32 word;
+ int wcid, ack, pid;
+ int tx_wcid, tx_ack, tx_pid, is_agg;
+
+ /*
+ * This frames has returned with an IO error,
+ * so the status report is not intended for this
+ * frame.
+ */
+ if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
+ return false;
+
+ wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
+ ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
+ pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
+ is_agg = rt2x00_get_field32(reg, TX_STA_FIFO_TX_AGGRE);
+
+ /*
+ * Validate if this TX status report is intended for
+ * this entry by comparing the WCID/ACK/PID fields.
+ */
+ txwi = rt2800_drv_get_txwi(entry);
+
+ word = rt2x00_desc_read(txwi, 1);
+ tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
+ tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
+ tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
+
+ if (wcid != tx_wcid || ack != tx_ack || (!is_agg && pid != tx_pid)) {
+ rt2x00_dbg(entry->queue->rt2x00dev,
+ "TX status report missed for queue %d entry %d\n",
+ entry->queue->qid, entry->entry_idx);
+ return false;
+ }
+
+ return true;
+}
+
+void rt2800_txdone_entry(struct queue_entry *entry, u32 status, __le32 *txwi,
+ bool match)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ struct txdone_entry_desc txdesc;
+ u32 word;
+ u16 mcs, real_mcs;
+ int aggr, ampdu, wcid, ack_req;
+
+ /*
+ * Obtain the status about this packet.
+ */
+ txdesc.flags = 0;
+ word = rt2x00_desc_read(txwi, 0);
+
+ mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
+ ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);
+
+ real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
+ aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
+ wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
+ ack_req = rt2x00_get_field32(status, TX_STA_FIFO_TX_ACK_REQUIRED);
+
+ /*
+ * If a frame was meant to be sent as a single non-aggregated MPDU
+ * but ended up in an aggregate the used tx rate doesn't correlate
+ * with the one specified in the TXWI as the whole aggregate is sent
+ * with the same rate.
+ *
+ * For example: two frames are sent to rt2x00, the first one sets
+ * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
+ * and requests MCS15. If the hw aggregates both frames into one
+ * AMDPU the tx status for both frames will contain MCS7 although
+ * the frame was sent successfully.
+ *
+ * Hence, replace the requested rate with the real tx rate to not
+ * confuse the rate control algortihm by providing clearly wrong
+ * data.
+ *
+ * FIXME: if we do not find matching entry, we tell that frame was
+ * posted without any retries. We need to find a way to fix that
+ * and provide retry count.
+ */
+ if (unlikely((aggr == 1 && ampdu == 0 && real_mcs != mcs)) || !match) {
+ rt2800_rate_from_status(skbdesc, status, rt2x00dev->curr_band);
+ mcs = real_mcs;
+ }
+
+ if (aggr == 1 || ampdu == 1)
+ __set_bit(TXDONE_AMPDU, &txdesc.flags);
+
+ if (!ack_req)
+ __set_bit(TXDONE_NO_ACK_REQ, &txdesc.flags);
+
+ /*
+ * Ralink has a retry mechanism using a global fallback
+ * table. We setup this fallback table to try the immediate
+ * lower rate for all rates. In the TX_STA_FIFO, the MCS field
+ * always contains the MCS used for the last transmission, be
+ * it successful or not.
+ */
+ if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
+ /*
+ * Transmission succeeded. The number of retries is
+ * mcs - real_mcs
+ */
+ __set_bit(TXDONE_SUCCESS, &txdesc.flags);
+ txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
+ } else {
+ /*
+ * Transmission failed. The number of retries is
+ * always 7 in this case (for a total number of 8
+ * frames sent).
+ */
+ __set_bit(TXDONE_FAILURE, &txdesc.flags);
+ txdesc.retry = rt2x00dev->long_retry;
+ }
+
+ /*
+ * the frame was retried at least once
+ * -> hw used fallback rates
+ */
+ if (txdesc.retry)
+ __set_bit(TXDONE_FALLBACK, &txdesc.flags);
+
+ if (!match) {
+ /* RCU assures non-null sta will not be freed by mac80211. */
+ rcu_read_lock();
+ if (likely(wcid >= WCID_START && wcid <= WCID_END))
+ skbdesc->sta = drv_data->wcid_to_sta[wcid - WCID_START];
+ else
+ skbdesc->sta = NULL;
+ rt2x00lib_txdone_nomatch(entry, &txdesc);
+ rcu_read_unlock();
+ } else {
+ rt2x00lib_txdone(entry, &txdesc);
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800_txdone_entry);
+
+void rt2800_txdone(struct rt2x00_dev *rt2x00dev, unsigned int quota)
+{
+ struct data_queue *queue;
+ struct queue_entry *entry;
+ u32 reg;
+ u8 qid;
+ bool match;
+
+ while (quota-- > 0 && kfifo_get(&rt2x00dev->txstatus_fifo, &reg)) {
+ /*
+ * TX_STA_FIFO_PID_QUEUE is a 2-bit field, thus qid is
+ * guaranteed to be one of the TX QIDs .
+ */
+ qid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_QUEUE);
+ queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
+
+ if (unlikely(rt2x00queue_empty(queue))) {
+ rt2x00_dbg(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
+ qid);
+ break;
+ }
+
+ entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+
+ if (unlikely(test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) ||
+ !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))) {
+ rt2x00_warn(rt2x00dev, "Data pending for entry %u in queue %u\n",
+ entry->entry_idx, qid);
+ break;
+ }
+
+ match = rt2800_txdone_entry_check(entry, reg);
+ rt2800_txdone_entry(entry, reg, rt2800_drv_get_txwi(entry), match);
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800_txdone);
+
+static inline bool rt2800_entry_txstatus_timeout(struct rt2x00_dev *rt2x00dev,
+ struct queue_entry *entry)
+{
+ bool ret;
+ unsigned long tout;
+
+ if (!test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
+ return false;
+
+ if (test_bit(DEVICE_STATE_FLUSHING, &rt2x00dev->flags))
+ tout = msecs_to_jiffies(50);
+ else
+ tout = msecs_to_jiffies(2000);
+
+ ret = time_after(jiffies, entry->last_action + tout);
+ if (unlikely(ret))
+ rt2x00_dbg(entry->queue->rt2x00dev,
+ "TX status timeout for entry %d in queue %d\n",
+ entry->entry_idx, entry->queue->qid);
+ return ret;
+}
+
+bool rt2800_txstatus_timeout(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+ struct queue_entry *entry;
+
+ tx_queue_for_each(rt2x00dev, queue) {
+ entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+ if (rt2800_entry_txstatus_timeout(rt2x00dev, entry))
+ return true;
+ }
+
+ return false;
+}
+EXPORT_SYMBOL_GPL(rt2800_txstatus_timeout);
+
+/*
+ * test if there is an entry in any TX queue for which DMA is done
+ * but the TX status has not been returned yet
+ */
+bool rt2800_txstatus_pending(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+
+ tx_queue_for_each(rt2x00dev, queue) {
+ if (rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE) !=
+ rt2x00queue_get_entry(queue, Q_INDEX_DONE))
+ return true;
+ }
+ return false;
+}
+EXPORT_SYMBOL_GPL(rt2800_txstatus_pending);
+
+void rt2800_txdone_nostatus(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+ struct queue_entry *entry;
+
+ /*
+ * Process any trailing TX status reports for IO failures,
+ * we loop until we find the first non-IO error entry. This
+ * can either be a frame which is free, is being uploaded,
+ * or has completed the upload but didn't have an entry
+ * in the TX_STAT_FIFO register yet.
+ */
+ tx_queue_for_each(rt2x00dev, queue) {
+ while (!rt2x00queue_empty(queue)) {
+ entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+
+ if (test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) ||
+ !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
+ break;
+
+ if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags) ||
+ rt2800_entry_txstatus_timeout(rt2x00dev, entry))
+ rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE);
+ else
+ break;
+ }
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800_txdone_nostatus);
+
+static int rt2800_check_hung(struct data_queue *queue)
+{
+ unsigned int cur_idx = rt2800_drv_get_dma_done(queue);
+
+ if (queue->wd_idx != cur_idx)
+ queue->wd_count = 0;
+ else
+ queue->wd_count++;
+
+ return queue->wd_count > 16;
+}
+
+static void rt2800_update_survey(struct rt2x00_dev *rt2x00dev)
+{
+ struct ieee80211_channel *chan = rt2x00dev->hw->conf.chandef.chan;
+ struct rt2x00_chan_survey *chan_survey =
+ &rt2x00dev->chan_survey[chan->hw_value];
+
+ chan_survey->time_idle += rt2800_register_read(rt2x00dev, CH_IDLE_STA);
+ chan_survey->time_busy += rt2800_register_read(rt2x00dev, CH_BUSY_STA);
+ chan_survey->time_ext_busy += rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC);
+}
+
+void rt2800_watchdog(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+ bool hung_tx = false;
+ bool hung_rx = false;
+
+ if (test_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags))
+ return;
+
+ rt2800_update_survey(rt2x00dev);
+
+ queue_for_each(rt2x00dev, queue) {
+ switch (queue->qid) {
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ case QID_MGMT:
+ if (rt2x00queue_empty(queue))
+ continue;
+ hung_tx = rt2800_check_hung(queue);
+ break;
+ case QID_RX:
+ /* For station mode we should reactive at least
+ * beacons. TODO: need to find good way detect
+ * RX hung for AP mode.
+ */
+ if (rt2x00dev->intf_sta_count == 0)
+ continue;
+ hung_rx = rt2800_check_hung(queue);
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (hung_tx)
+ rt2x00_warn(rt2x00dev, "Watchdog TX hung detected\n");
+
+ if (hung_rx)
+ rt2x00_warn(rt2x00dev, "Watchdog RX hung detected\n");
+
+ if (hung_tx || hung_rx)
+ ieee80211_restart_hw(rt2x00dev->hw);
+}
+EXPORT_SYMBOL_GPL(rt2800_watchdog);
+
+static unsigned int rt2800_hw_beacon_base(struct rt2x00_dev *rt2x00dev,
+ unsigned int index)
+{
+ return HW_BEACON_BASE(index);
+}
+
+static inline u8 rt2800_get_beacon_offset(struct rt2x00_dev *rt2x00dev,
+ unsigned int index)
+{
+ return BEACON_BASE_TO_OFFSET(rt2800_hw_beacon_base(rt2x00dev, index));
+}
+
+static void rt2800_update_beacons_setup(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue = rt2x00dev->bcn;
+ struct queue_entry *entry;
+ int i, bcn_num = 0;
+ u64 off, reg = 0;
+ u32 bssid_dw1;
+
+ /*
+ * Setup offsets of all active beacons in BCN_OFFSET{0,1} registers.
+ */
+ for (i = 0; i < queue->limit; i++) {
+ entry = &queue->entries[i];
+ if (!test_bit(ENTRY_BCN_ENABLED, &entry->flags))
+ continue;
+ off = rt2800_get_beacon_offset(rt2x00dev, entry->entry_idx);
+ reg |= off << (8 * bcn_num);
+ bcn_num++;
+ }
+
+ rt2800_register_write(rt2x00dev, BCN_OFFSET0, (u32) reg);
+ rt2800_register_write(rt2x00dev, BCN_OFFSET1, (u32) (reg >> 32));
+
+ /*
+ * H/W sends up to MAC_BSSID_DW1_BSS_BCN_NUM + 1 consecutive beacons.
+ */
+ bssid_dw1 = rt2800_register_read(rt2x00dev, MAC_BSSID_DW1);
+ rt2x00_set_field32(&bssid_dw1, MAC_BSSID_DW1_BSS_BCN_NUM,
+ bcn_num > 0 ? bcn_num - 1 : 0);
+ rt2800_register_write(rt2x00dev, MAC_BSSID_DW1, bssid_dw1);
+}
+
+void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ unsigned int beacon_base;
+ unsigned int padding_len;
+ u32 orig_reg, reg;
+ const int txwi_desc_size = entry->queue->winfo_size;
+
+ /*
+ * Disable beaconing while we are reloading the beacon data,
+ * otherwise we might be sending out invalid data.
+ */
+ reg = rt2800_register_read(rt2x00dev, BCN_TIME_CFG);
+ orig_reg = reg;
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
+ rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+ /*
+ * Add space for the TXWI in front of the skb.
+ */
+ memset(skb_push(entry->skb, txwi_desc_size), 0, txwi_desc_size);
+
+ /*
+ * Register descriptor details in skb frame descriptor.
+ */
+ skbdesc->flags |= SKBDESC_DESC_IN_SKB;
+ skbdesc->desc = entry->skb->data;
+ skbdesc->desc_len = txwi_desc_size;
+
+ /*
+ * Add the TXWI for the beacon to the skb.
+ */
+ rt2800_write_tx_data(entry, txdesc);
+
+ /*
+ * Dump beacon to userspace through debugfs.
+ */
+ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
+
+ /*
+ * Write entire beacon with TXWI and padding to register.
+ */
+ padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
+ if (padding_len && skb_pad(entry->skb, padding_len)) {
+ rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
+ /* skb freed by skb_pad() on failure */
+ entry->skb = NULL;
+ rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
+ return;
+ }
+
+ beacon_base = rt2800_hw_beacon_base(rt2x00dev, entry->entry_idx);
+
+ rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
+ entry->skb->len + padding_len);
+ __set_bit(ENTRY_BCN_ENABLED, &entry->flags);
+
+ /*
+ * Change global beacons settings.
+ */
+ rt2800_update_beacons_setup(rt2x00dev);
+
+ /*
+ * Restore beaconing state.
+ */
+ rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
+
+ /*
+ * Clean up beacon skb.
+ */
+ dev_kfree_skb_any(entry->skb);
+ entry->skb = NULL;
+}
+EXPORT_SYMBOL_GPL(rt2800_write_beacon);
+
+static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev,
+ unsigned int index)
+{
+ int i;
+ const int txwi_desc_size = rt2x00dev->bcn->winfo_size;
+ unsigned int beacon_base;
+
+ beacon_base = rt2800_hw_beacon_base(rt2x00dev, index);
+
+ /*
+ * For the Beacon base registers we only need to clear
+ * the whole TXWI which (when set to 0) will invalidate
+ * the entire beacon.
+ */
+ for (i = 0; i < txwi_desc_size; i += sizeof(__le32))
+ rt2800_register_write(rt2x00dev, beacon_base + i, 0);
+}
+
+void rt2800_clear_beacon(struct queue_entry *entry)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ u32 orig_reg, reg;
+
+ /*
+ * Disable beaconing while we are reloading the beacon data,
+ * otherwise we might be sending out invalid data.
+ */
+ orig_reg = rt2800_register_read(rt2x00dev, BCN_TIME_CFG);
+ reg = orig_reg;
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
+ rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+ /*
+ * Clear beacon.
+ */
+ rt2800_clear_beacon_register(rt2x00dev, entry->entry_idx);
+ __clear_bit(ENTRY_BCN_ENABLED, &entry->flags);
+
+ /*
+ * Change global beacons settings.
+ */
+ rt2800_update_beacons_setup(rt2x00dev);
+ /*
+ * Restore beaconing state.
+ */
+ rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
+}
+EXPORT_SYMBOL_GPL(rt2800_clear_beacon);
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+const struct rt2x00debug rt2800_rt2x00debug = {
+ .owner = THIS_MODULE,
+ .csr = {
+ .read = rt2800_register_read,
+ .write = rt2800_register_write,
+ .flags = RT2X00DEBUGFS_OFFSET,
+ .word_base = CSR_REG_BASE,
+ .word_size = sizeof(u32),
+ .word_count = CSR_REG_SIZE / sizeof(u32),
+ },
+ .eeprom = {
+ /* NOTE: The local EEPROM access functions can't
+ * be used here, use the generic versions instead.
+ */
+ .read = rt2x00_eeprom_read,
+ .write = rt2x00_eeprom_write,
+ .word_base = EEPROM_BASE,
+ .word_size = sizeof(u16),
+ .word_count = EEPROM_SIZE / sizeof(u16),
+ },
+ .bbp = {
+ .read = rt2800_bbp_read,
+ .write = rt2800_bbp_write,
+ .word_base = BBP_BASE,
+ .word_size = sizeof(u8),
+ .word_count = BBP_SIZE / sizeof(u8),
+ },
+ .rf = {
+ .read = rt2x00_rf_read,
+ .write = rt2800_rf_write,
+ .word_base = RF_BASE,
+ .word_size = sizeof(u32),
+ .word_count = RF_SIZE / sizeof(u32),
+ },
+ .rfcsr = {
+ .read = rt2800_rfcsr_read,
+ .write = rt2800_rfcsr_write,
+ .word_base = RFCSR_BASE,
+ .word_size = sizeof(u8),
+ .word_count = RFCSR_SIZE / sizeof(u8),
+ },
+};
+EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ if (rt2x00_rt(rt2x00dev, RT3290)) {
+ reg = rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL);
+ return rt2x00_get_field32(reg, WLAN_GPIO_IN_BIT0);
+ } else {
+ reg = rt2800_register_read(rt2x00dev, GPIO_CTRL);
+ return rt2x00_get_field32(reg, GPIO_CTRL_VAL2);
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt2800_brightness_set(struct led_classdev *led_cdev,
+ enum led_brightness brightness)
+{
+ struct rt2x00_led *led =
+ container_of(led_cdev, struct rt2x00_led, led_dev);
+ unsigned int enabled = brightness != LED_OFF;
+ unsigned int bg_mode =
+ (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
+ unsigned int polarity =
+ rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
+ EEPROM_FREQ_LED_POLARITY);
+ unsigned int ledmode =
+ rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
+ EEPROM_FREQ_LED_MODE);
+ u32 reg;
+
+ /* Check for SoC (SOC devices don't support MCU requests) */
+ if (rt2x00_is_soc(led->rt2x00dev)) {
+ reg = rt2800_register_read(led->rt2x00dev, LED_CFG);
+
+ /* Set LED Polarity */
+ rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, polarity);
+
+ /* Set LED Mode */
+ if (led->type == LED_TYPE_RADIO) {
+ rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE,
+ enabled ? 3 : 0);
+ } else if (led->type == LED_TYPE_ASSOC) {
+ rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE,
+ enabled ? 3 : 0);
+ } else if (led->type == LED_TYPE_QUALITY) {
+ rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE,
+ enabled ? 3 : 0);
+ }
+
+ rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
+
+ } else {
+ if (led->type == LED_TYPE_RADIO) {
+ rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
+ enabled ? 0x20 : 0);
+ } else if (led->type == LED_TYPE_ASSOC) {
+ rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
+ enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
+ } else if (led->type == LED_TYPE_QUALITY) {
+ /*
+ * The brightness is divided into 6 levels (0 - 5),
+ * The specs tell us the following levels:
+ * 0, 1 ,3, 7, 15, 31
+ * to determine the level in a simple way we can simply
+ * work with bitshifting:
+ * (1 << level) - 1
+ */
+ rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
+ (1 << brightness / (LED_FULL / 6)) - 1,
+ polarity);
+ }
+ }
+}
+
+static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_led *led, enum led_type type)
+{
+ led->rt2x00dev = rt2x00dev;
+ led->type = type;
+ led->led_dev.brightness_set = rt2800_brightness_set;
+ led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+static void rt2800_config_wcid(struct rt2x00_dev *rt2x00dev,
+ const u8 *address,
+ int wcid)
+{
+ struct mac_wcid_entry wcid_entry;
+ u32 offset;
+
+ offset = MAC_WCID_ENTRY(wcid);
+
+ memset(&wcid_entry, 0xff, sizeof(wcid_entry));
+ if (address)
+ memcpy(wcid_entry.mac, address, ETH_ALEN);
+
+ rt2800_register_multiwrite(rt2x00dev, offset,
+ &wcid_entry, sizeof(wcid_entry));
+}
+
+static void rt2800_delete_wcid_attr(struct rt2x00_dev *rt2x00dev, int wcid)
+{
+ u32 offset;
+ offset = MAC_WCID_ATTR_ENTRY(wcid);
+ rt2800_register_write(rt2x00dev, offset, 0);
+}
+
+static void rt2800_config_wcid_attr_bssidx(struct rt2x00_dev *rt2x00dev,
+ int wcid, u32 bssidx)
+{
+ u32 offset = MAC_WCID_ATTR_ENTRY(wcid);
+ u32 reg;
+
+ /*
+ * The BSS Idx numbers is split in a main value of 3 bits,
+ * and a extended field for adding one additional bit to the value.
+ */
+ reg = rt2800_register_read(rt2x00dev, offset);
+ rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX, (bssidx & 0x7));
+ rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
+ (bssidx & 0x8) >> 3);
+ rt2800_register_write(rt2x00dev, offset, reg);
+}
+
+static void rt2800_config_wcid_attr_cipher(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key)
+{
+ struct mac_iveiv_entry iveiv_entry;
+ u32 offset;
+ u32 reg;
+
+ offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
+
+ if (crypto->cmd == SET_KEY) {
+ reg = rt2800_register_read(rt2x00dev, offset);
+ rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
+ !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
+ /*
+ * Both the cipher as the BSS Idx numbers are split in a main
+ * value of 3 bits, and a extended field for adding one additional
+ * bit to the value.
+ */
+ rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
+ (crypto->cipher & 0x7));
+ rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
+ (crypto->cipher & 0x8) >> 3);
+ rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
+ rt2800_register_write(rt2x00dev, offset, reg);
+ } else {
+ /* Delete the cipher without touching the bssidx */
+ reg = rt2800_register_read(rt2x00dev, offset);
+ rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB, 0);
+ rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER, 0);
+ rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT, 0);
+ rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, 0);
+ rt2800_register_write(rt2x00dev, offset, reg);
+ }
+
+ if (test_bit(DEVICE_STATE_RESET, &rt2x00dev->flags))
+ return;
+
+ offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
+
+ memset(&iveiv_entry, 0, sizeof(iveiv_entry));
+ if ((crypto->cipher == CIPHER_TKIP) ||
+ (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
+ (crypto->cipher == CIPHER_AES))
+ iveiv_entry.iv[3] |= 0x20;
+ iveiv_entry.iv[3] |= key->keyidx << 6;
+ rt2800_register_multiwrite(rt2x00dev, offset,
+ &iveiv_entry, sizeof(iveiv_entry));
+}
+
+int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key)
+{
+ struct hw_key_entry key_entry;
+ struct rt2x00_field32 field;
+ u32 offset;
+ u32 reg;
+
+ if (crypto->cmd == SET_KEY) {
+ key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
+
+ memcpy(key_entry.key, crypto->key,
+ sizeof(key_entry.key));
+ memcpy(key_entry.tx_mic, crypto->tx_mic,
+ sizeof(key_entry.tx_mic));
+ memcpy(key_entry.rx_mic, crypto->rx_mic,
+ sizeof(key_entry.rx_mic));
+
+ offset = SHARED_KEY_ENTRY(key->hw_key_idx);
+ rt2800_register_multiwrite(rt2x00dev, offset,
+ &key_entry, sizeof(key_entry));
+ }
+
+ /*
+ * The cipher types are stored over multiple registers
+ * starting with SHARED_KEY_MODE_BASE each word will have
+ * 32 bits and contains the cipher types for 2 bssidx each.
+ * Using the correct defines correctly will cause overhead,
+ * so just calculate the correct offset.
+ */
+ field.bit_offset = 4 * (key->hw_key_idx % 8);
+ field.bit_mask = 0x7 << field.bit_offset;
+
+ offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
+
+ reg = rt2800_register_read(rt2x00dev, offset);
+ rt2x00_set_field32(&reg, field,
+ (crypto->cmd == SET_KEY) * crypto->cipher);
+ rt2800_register_write(rt2x00dev, offset, reg);
+
+ /*
+ * Update WCID information
+ */
+ rt2800_config_wcid(rt2x00dev, crypto->address, key->hw_key_idx);
+ rt2800_config_wcid_attr_bssidx(rt2x00dev, key->hw_key_idx,
+ crypto->bssidx);
+ rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
+
+int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key)
+{
+ struct hw_key_entry key_entry;
+ u32 offset;
+
+ if (crypto->cmd == SET_KEY) {
+ /*
+ * Allow key configuration only for STAs that are
+ * known by the hw.
+ */
+ if (crypto->wcid > WCID_END)
+ return -ENOSPC;
+ key->hw_key_idx = crypto->wcid;
+
+ memcpy(key_entry.key, crypto->key,
+ sizeof(key_entry.key));
+ memcpy(key_entry.tx_mic, crypto->tx_mic,
+ sizeof(key_entry.tx_mic));
+ memcpy(key_entry.rx_mic, crypto->rx_mic,
+ sizeof(key_entry.rx_mic));
+
+ offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
+ rt2800_register_multiwrite(rt2x00dev, offset,
+ &key_entry, sizeof(key_entry));
+ }
+
+ /*
+ * Update WCID information
+ */
+ rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
+
+static void rt2800_set_max_psdu_len(struct rt2x00_dev *rt2x00dev)
+{
+ u8 i, max_psdu;
+ u32 reg;
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+
+ for (i = 0; i < 3; i++)
+ if (drv_data->ampdu_factor_cnt[i] > 0)
+ break;
+
+ max_psdu = min(drv_data->max_psdu, i);
+
+ reg = rt2800_register_read(rt2x00dev, MAX_LEN_CFG);
+ rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, max_psdu);
+ rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
+}
+
+int rt2800_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ struct rt2x00_sta *sta_priv = sta_to_rt2x00_sta(sta);
+ int wcid;
+
+ /*
+ * Limit global maximum TX AMPDU length to smallest value of all
+ * connected stations. In AP mode this can be suboptimal, but we
+ * do not have a choice if some connected STA is not capable to
+ * receive the same amount of data like the others.
+ */
+ if (sta->deflink.ht_cap.ht_supported) {
+ drv_data->ampdu_factor_cnt[sta->deflink.ht_cap.ampdu_factor & 3]++;
+ rt2800_set_max_psdu_len(rt2x00dev);
+ }
+
+ /*
+ * Search for the first free WCID entry and return the corresponding
+ * index.
+ */
+ wcid = find_first_zero_bit(drv_data->sta_ids, STA_IDS_SIZE) + WCID_START;
+
+ /*
+ * Store selected wcid even if it is invalid so that we can
+ * later decide if the STA is uploaded into the hw.
+ */
+ sta_priv->wcid = wcid;
+
+ /*
+ * No space left in the device, however, we can still communicate
+ * with the STA -> No error.
+ */
+ if (wcid > WCID_END)
+ return 0;
+
+ __set_bit(wcid - WCID_START, drv_data->sta_ids);
+ drv_data->wcid_to_sta[wcid - WCID_START] = sta;
+
+ /*
+ * Clean up WCID attributes and write STA address to the device.
+ */
+ rt2800_delete_wcid_attr(rt2x00dev, wcid);
+ rt2800_config_wcid(rt2x00dev, sta->addr, wcid);
+ rt2800_config_wcid_attr_bssidx(rt2x00dev, wcid,
+ rt2x00lib_get_bssidx(rt2x00dev, vif));
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_sta_add);
+
+int rt2800_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ struct rt2x00_sta *sta_priv = sta_to_rt2x00_sta(sta);
+ int wcid = sta_priv->wcid;
+
+ if (sta->deflink.ht_cap.ht_supported) {
+ drv_data->ampdu_factor_cnt[sta->deflink.ht_cap.ampdu_factor & 3]--;
+ rt2800_set_max_psdu_len(rt2x00dev);
+ }
+
+ if (wcid > WCID_END)
+ return 0;
+ /*
+ * Remove WCID entry, no need to clean the attributes as they will
+ * get renewed when the WCID is reused.
+ */
+ rt2800_config_wcid(rt2x00dev, NULL, wcid);
+ drv_data->wcid_to_sta[wcid - WCID_START] = NULL;
+ __clear_bit(wcid - WCID_START, drv_data->sta_ids);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_sta_remove);
+
+void rt2800_pre_reset_hw(struct rt2x00_dev *rt2x00dev)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ struct data_queue *queue = rt2x00dev->bcn;
+ struct queue_entry *entry;
+ int i, wcid;
+
+ for (wcid = WCID_START; wcid < WCID_END; wcid++) {
+ drv_data->wcid_to_sta[wcid - WCID_START] = NULL;
+ __clear_bit(wcid - WCID_START, drv_data->sta_ids);
+ }
+
+ for (i = 0; i < queue->limit; i++) {
+ entry = &queue->entries[i];
+ clear_bit(ENTRY_BCN_ASSIGNED, &entry->flags);
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800_pre_reset_hw);
+
+void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
+ const unsigned int filter_flags)
+{
+ u32 reg;
+
+ /*
+ * Start configuration steps.
+ * Note that the version error will always be dropped
+ * and broadcast frames will always be accepted since
+ * there is no filter for it at this time.
+ */
+ reg = rt2800_register_read(rt2x00dev, RX_FILTER_CFG);
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
+ !(filter_flags & FIF_FCSFAIL));
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
+ !(filter_flags & FIF_PLCPFAIL));
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
+ !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
+ !(filter_flags & FIF_ALLMULTI));
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
+ !(filter_flags & FIF_PSPOLL));
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 0);
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
+ !(filter_flags & FIF_CONTROL));
+ rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
+}
+EXPORT_SYMBOL_GPL(rt2800_config_filter);
+
+void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
+ struct rt2x00intf_conf *conf, const unsigned int flags)
+{
+ u32 reg;
+ bool update_bssid = false;
+
+ if (flags & CONFIG_UPDATE_TYPE) {
+ /*
+ * Enable synchronisation.
+ */
+ reg = rt2800_register_read(rt2x00dev, BCN_TIME_CFG);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
+ rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+ if (conf->sync == TSF_SYNC_AP_NONE) {
+ /*
+ * Tune beacon queue transmit parameters for AP mode
+ */
+ reg = rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG);
+ rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 0);
+ rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 1);
+ rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
+ rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 0);
+ rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
+ } else {
+ reg = rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG);
+ rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 4);
+ rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 2);
+ rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
+ rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 16);
+ rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
+ }
+ }
+
+ if (flags & CONFIG_UPDATE_MAC) {
+ if (flags & CONFIG_UPDATE_TYPE &&
+ conf->sync == TSF_SYNC_AP_NONE) {
+ /*
+ * The BSSID register has to be set to our own mac
+ * address in AP mode.
+ */
+ memcpy(conf->bssid, conf->mac, sizeof(conf->mac));
+ update_bssid = true;
+ }
+
+ if (!is_zero_ether_addr((const u8 *)conf->mac)) {
+ reg = le32_to_cpu(conf->mac[1]);
+ rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
+ conf->mac[1] = cpu_to_le32(reg);
+ }
+
+ rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
+ conf->mac, sizeof(conf->mac));
+ }
+
+ if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) {
+ if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
+ reg = le32_to_cpu(conf->bssid[1]);
+ rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
+ rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 0);
+ conf->bssid[1] = cpu_to_le32(reg);
+ }
+
+ rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
+ conf->bssid, sizeof(conf->bssid));
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800_config_intf);
+
+static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_erp *erp)
+{
+ bool any_sta_nongf = !!(erp->ht_opmode &
+ IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
+ u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
+ u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
+ u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
+ u32 reg;
+
+ /* default protection rate for HT20: OFDM 24M */
+ mm20_rate = gf20_rate = 0x4004;
+
+ /* default protection rate for HT40: duplicate OFDM 24M */
+ mm40_rate = gf40_rate = 0x4084;
+
+ switch (protection) {
+ case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
+ /*
+ * All STAs in this BSS are HT20/40 but there might be
+ * STAs not supporting greenfield mode.
+ * => Disable protection for HT transmissions.
+ */
+ mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;
+
+ break;
+ case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
+ /*
+ * All STAs in this BSS are HT20 or HT20/40 but there
+ * might be STAs not supporting greenfield mode.
+ * => Protect all HT40 transmissions.
+ */
+ mm20_mode = gf20_mode = 0;
+ mm40_mode = gf40_mode = 1;
+
+ break;
+ case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
+ /*
+ * Nonmember protection:
+ * According to 802.11n we _should_ protect all
+ * HT transmissions (but we don't have to).
+ *
+ * But if cts_protection is enabled we _shall_ protect
+ * all HT transmissions using a CCK rate.
+ *
+ * And if any station is non GF we _shall_ protect
+ * GF transmissions.
+ *
+ * We decide to protect everything
+ * -> fall through to mixed mode.
+ */
+ case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
+ /*
+ * Legacy STAs are present
+ * => Protect all HT transmissions.
+ */
+ mm20_mode = mm40_mode = gf20_mode = gf40_mode = 1;
+
+ /*
+ * If erp protection is needed we have to protect HT
+ * transmissions with CCK 11M long preamble.
+ */
+ if (erp->cts_protection) {
+ /* don't duplicate RTS/CTS in CCK mode */
+ mm20_rate = mm40_rate = 0x0003;
+ gf20_rate = gf40_rate = 0x0003;
+ }
+ break;
+ }
+
+ /* check for STAs not supporting greenfield mode */
+ if (any_sta_nongf)
+ gf20_mode = gf40_mode = 1;
+
+ /* Update HT protection config */
+ reg = rt2800_register_read(rt2x00dev, MM20_PROT_CFG);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
+ rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, MM40_PROT_CFG);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
+ rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, GF20_PROT_CFG);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
+ rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, GF40_PROT_CFG);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
+ rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
+}
+
+void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
+ u32 changed)
+{
+ u32 reg;
+
+ if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+ reg = rt2800_register_read(rt2x00dev, AUTO_RSP_CFG);
+ rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
+ !!erp->short_preamble);
+ rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
+ }
+
+ if (changed & BSS_CHANGED_ERP_CTS_PROT) {
+ reg = rt2800_register_read(rt2x00dev, OFDM_PROT_CFG);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
+ erp->cts_protection ? 2 : 0);
+ rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
+ }
+
+ if (changed & BSS_CHANGED_BASIC_RATES) {
+ rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
+ 0xff0 | erp->basic_rates);
+ rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
+ }
+
+ if (changed & BSS_CHANGED_ERP_SLOT) {
+ reg = rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG);
+ rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME,
+ erp->slot_time);
+ rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, XIFS_TIME_CFG);
+ rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
+ rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
+ }
+
+ if (changed & BSS_CHANGED_BEACON_INT) {
+ reg = rt2800_register_read(rt2x00dev, BCN_TIME_CFG);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
+ erp->beacon_int * 16);
+ rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+ }
+
+ if (changed & BSS_CHANGED_HT)
+ rt2800_config_ht_opmode(rt2x00dev, erp);
+}
+EXPORT_SYMBOL_GPL(rt2800_config_erp);
+
+static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev,
+ const struct rt2x00_field32 mask)
+{
+ unsigned int i;
+ u32 reg;
+
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ reg = rt2800_register_read(rt2x00dev, MAC_STATUS_CFG);
+ if (!rt2x00_get_field32(reg, mask))
+ return 0;
+
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ rt2x00_err(rt2x00dev, "BBP/RF register access failed, aborting\n");
+ return -EACCES;
+}
+
+static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u8 value;
+
+ /*
+ * BBP was enabled after firmware was loaded,
+ * but we need to reactivate it now.
+ */
+ rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
+ rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+ msleep(1);
+
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ value = rt2800_bbp_read(rt2x00dev, 0);
+ if ((value != 0xff) && (value != 0x00))
+ return 0;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+ return -EACCES;
+}
+
+static void rt2800_config_3572bt_ant(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+ u16 eeprom;
+ u8 led_ctrl, led_g_mode, led_r_mode;
+
+ reg = rt2800_register_read(rt2x00dev, GPIO_SWITCH);
+ if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
+ rt2x00_set_field32(&reg, GPIO_SWITCH_0, 1);
+ rt2x00_set_field32(&reg, GPIO_SWITCH_1, 1);
+ } else {
+ rt2x00_set_field32(&reg, GPIO_SWITCH_0, 0);
+ rt2x00_set_field32(&reg, GPIO_SWITCH_1, 0);
+ }
+ rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
+
+ reg = rt2800_register_read(rt2x00dev, LED_CFG);
+ led_g_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 3 : 0;
+ led_r_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 0 : 3;
+ if (led_g_mode != rt2x00_get_field32(reg, LED_CFG_G_LED_MODE) ||
+ led_r_mode != rt2x00_get_field32(reg, LED_CFG_R_LED_MODE)) {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_FREQ);
+ led_ctrl = rt2x00_get_field16(eeprom, EEPROM_FREQ_LED_MODE);
+ if (led_ctrl == 0 || led_ctrl > 0x40) {
+ rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, led_g_mode);
+ rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, led_r_mode);
+ rt2800_register_write(rt2x00dev, LED_CFG, reg);
+ } else {
+ rt2800_mcu_request(rt2x00dev, MCU_BAND_SELECT, 0xff,
+ (led_g_mode << 2) | led_r_mode, 1);
+ }
+ }
+}
+
+static void rt2800_set_ant_diversity(struct rt2x00_dev *rt2x00dev,
+ enum antenna ant)
+{
+ u32 reg;
+ u8 eesk_pin = (ant == ANTENNA_A) ? 1 : 0;
+ u8 gpio_bit3 = (ant == ANTENNA_A) ? 0 : 1;
+
+ if (rt2x00_is_pci(rt2x00dev)) {
+ reg = rt2800_register_read(rt2x00dev, E2PROM_CSR);
+ rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK, eesk_pin);
+ rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
+ } else if (rt2x00_is_usb(rt2x00dev))
+ rt2800_mcu_request(rt2x00dev, MCU_ANT_SELECT, 0xff,
+ eesk_pin, 0);
+
+ reg = rt2800_register_read(rt2x00dev, GPIO_CTRL);
+ rt2x00_set_field32(&reg, GPIO_CTRL_DIR3, 0);
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL3, gpio_bit3);
+ rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
+}
+
+void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
+{
+ u8 r1;
+ u8 r3;
+ u16 eeprom;
+
+ r1 = rt2800_bbp_read(rt2x00dev, 1);
+ r3 = rt2800_bbp_read(rt2x00dev, 3);
+
+ if (rt2x00_rt(rt2x00dev, RT3572) &&
+ rt2x00_has_cap_bt_coexist(rt2x00dev))
+ rt2800_config_3572bt_ant(rt2x00dev);
+
+ /*
+ * Configure the TX antenna.
+ */
+ switch (ant->tx_chain_num) {
+ case 1:
+ rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
+ break;
+ case 2:
+ if (rt2x00_rt(rt2x00dev, RT3572) &&
+ rt2x00_has_cap_bt_coexist(rt2x00dev))
+ rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 1);
+ else
+ rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
+ break;
+ case 3:
+ rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
+ break;
+ }
+
+ /*
+ * Configure the RX antenna.
+ */
+ switch (ant->rx_chain_num) {
+ case 1:
+ if (rt2x00_rt(rt2x00dev, RT3070) ||
+ rt2x00_rt(rt2x00dev, RT3090) ||
+ rt2x00_rt(rt2x00dev, RT3352) ||
+ rt2x00_rt(rt2x00dev, RT3390)) {
+ eeprom = rt2800_eeprom_read(rt2x00dev,
+ EEPROM_NIC_CONF1);
+ if (rt2x00_get_field16(eeprom,
+ EEPROM_NIC_CONF1_ANT_DIVERSITY))
+ rt2800_set_ant_diversity(rt2x00dev,
+ rt2x00dev->default_ant.rx);
+ }
+ rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
+ break;
+ case 2:
+ if (rt2x00_rt(rt2x00dev, RT3572) &&
+ rt2x00_has_cap_bt_coexist(rt2x00dev)) {
+ rt2x00_set_field8(&r3, BBP3_RX_ADC, 1);
+ rt2x00_set_field8(&r3, BBP3_RX_ANTENNA,
+ rt2x00dev->curr_band == NL80211_BAND_5GHZ);
+ rt2800_set_ant_diversity(rt2x00dev, ANTENNA_B);
+ } else {
+ rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
+ }
+ break;
+ case 3:
+ rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
+ break;
+ }
+
+ rt2800_bbp_write(rt2x00dev, 3, r3);
+ rt2800_bbp_write(rt2x00dev, 1, r1);
+
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883)) {
+ if (ant->rx_chain_num == 1)
+ rt2800_bbp_write(rt2x00dev, 86, 0x00);
+ else
+ rt2800_bbp_write(rt2x00dev, 86, 0x46);
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800_config_ant);
+
+static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ u16 eeprom;
+ short lna_gain;
+
+ if (libconf->rf.channel <= 14) {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_LNA);
+ lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
+ } else if (libconf->rf.channel <= 64) {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_LNA);
+ lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
+ } else if (libconf->rf.channel <= 128) {
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883)) {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2);
+ lna_gain = rt2x00_get_field16(eeprom,
+ EEPROM_EXT_LNA2_A1);
+ } else {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2);
+ lna_gain = rt2x00_get_field16(eeprom,
+ EEPROM_RSSI_BG2_LNA_A1);
+ }
+ } else {
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883)) {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2);
+ lna_gain = rt2x00_get_field16(eeprom,
+ EEPROM_EXT_LNA2_A2);
+ } else {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2);
+ lna_gain = rt2x00_get_field16(eeprom,
+ EEPROM_RSSI_A2_LNA_A2);
+ }
+ }
+
+ rt2x00dev->lna_gain = lna_gain;
+}
+
+static inline bool rt2800_clk_is_20mhz(struct rt2x00_dev *rt2x00dev)
+{
+ return clk_get_rate(rt2x00dev->clk) == 20000000;
+}
+
+#define FREQ_OFFSET_BOUND 0x5f
+
+static void rt2800_freq_cal_mode1(struct rt2x00_dev *rt2x00dev)
+{
+ u8 freq_offset, prev_freq_offset;
+ u8 rfcsr, prev_rfcsr;
+
+ freq_offset = rt2x00_get_field8(rt2x00dev->freq_offset, RFCSR17_CODE);
+ freq_offset = min_t(u8, freq_offset, FREQ_OFFSET_BOUND);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 17);
+ prev_rfcsr = rfcsr;
+
+ rt2x00_set_field8(&rfcsr, RFCSR17_CODE, freq_offset);
+ if (rfcsr == prev_rfcsr)
+ return;
+
+ if (rt2x00_is_usb(rt2x00dev)) {
+ rt2800_mcu_request(rt2x00dev, MCU_FREQ_OFFSET, 0xff,
+ freq_offset, prev_rfcsr);
+ return;
+ }
+
+ prev_freq_offset = rt2x00_get_field8(prev_rfcsr, RFCSR17_CODE);
+ while (prev_freq_offset != freq_offset) {
+ if (prev_freq_offset < freq_offset)
+ prev_freq_offset++;
+ else
+ prev_freq_offset--;
+
+ rt2x00_set_field8(&rfcsr, RFCSR17_CODE, prev_freq_offset);
+ rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
+
+ usleep_range(1000, 1500);
+ }
+}
+
+static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ struct rf_channel *rf,
+ struct channel_info *info)
+{
+ rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
+
+ if (rt2x00dev->default_ant.tx_chain_num == 1)
+ rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
+
+ if (rt2x00dev->default_ant.rx_chain_num == 1) {
+ rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
+ rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
+ } else if (rt2x00dev->default_ant.rx_chain_num == 2)
+ rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
+
+ if (rf->channel > 14) {
+ /*
+ * When TX power is below 0, we should increase it by 7 to
+ * make it a positive value (Minimum value is -7).
+ * However this means that values between 0 and 7 have
+ * double meaning, and we should set a 7DBm boost flag.
+ */
+ rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
+ (info->default_power1 >= 0));
+
+ if (info->default_power1 < 0)
+ info->default_power1 += 7;
+
+ rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);
+
+ rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
+ (info->default_power2 >= 0));
+
+ if (info->default_power2 < 0)
+ info->default_power2 += 7;
+
+ rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
+ } else {
+ rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
+ rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
+ }
+
+ rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
+
+ rt2800_rf_write(rt2x00dev, 1, rf->rf1);
+ rt2800_rf_write(rt2x00dev, 2, rf->rf2);
+ rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+ rt2800_rf_write(rt2x00dev, 4, rf->rf4);
+
+ udelay(200);
+
+ rt2800_rf_write(rt2x00dev, 1, rf->rf1);
+ rt2800_rf_write(rt2x00dev, 2, rf->rf2);
+ rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
+ rt2800_rf_write(rt2x00dev, 4, rf->rf4);
+
+ udelay(200);
+
+ rt2800_rf_write(rt2x00dev, 1, rf->rf1);
+ rt2800_rf_write(rt2x00dev, 2, rf->rf2);
+ rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+ rt2800_rf_write(rt2x00dev, 4, rf->rf4);
+}
+
+static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ struct rf_channel *rf,
+ struct channel_info *info)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u8 rfcsr, calib_tx, calib_rx;
+
+ rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
+ rt2x00_set_field8(&rfcsr, RFCSR3_K, rf->rf3);
+ rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 6);
+ rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
+ rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 12);
+ rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
+ rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 13);
+ rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
+ rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD,
+ rt2x00dev->default_ant.rx_chain_num <= 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD,
+ rt2x00dev->default_ant.rx_chain_num <= 2);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD,
+ rt2x00dev->default_ant.tx_chain_num <= 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD,
+ rt2x00dev->default_ant.tx_chain_num <= 2);
+ rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 23);
+ rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
+ rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
+
+ if (rt2x00_rt(rt2x00dev, RT3390)) {
+ calib_tx = conf_is_ht40(conf) ? 0x68 : 0x4f;
+ calib_rx = conf_is_ht40(conf) ? 0x6f : 0x4f;
+ } else {
+ if (conf_is_ht40(conf)) {
+ calib_tx = drv_data->calibration_bw40;
+ calib_rx = drv_data->calibration_bw40;
+ } else {
+ calib_tx = drv_data->calibration_bw20;
+ calib_rx = drv_data->calibration_bw20;
+ }
+ }
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 24);
+ rt2x00_set_field8(&rfcsr, RFCSR24_TX_CALIB, calib_tx);
+ rt2800_rfcsr_write(rt2x00dev, 24, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 31);
+ rt2x00_set_field8(&rfcsr, RFCSR31_RX_CALIB, calib_rx);
+ rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 7);
+ rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
+ rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 30);
+ rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
+ rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+
+ usleep_range(1000, 1500);
+
+ rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
+ rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+}
+
+static void rt2800_config_channel_rf3052(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ struct rf_channel *rf,
+ struct channel_info *info)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u8 rfcsr;
+ u32 reg;
+
+ if (rf->channel <= 14) {
+ rt2800_bbp_write(rt2x00dev, 25, drv_data->bbp25);
+ rt2800_bbp_write(rt2x00dev, 26, drv_data->bbp26);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 25, 0x09);
+ rt2800_bbp_write(rt2x00dev, 26, 0xff);
+ }
+
+ rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
+ rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 6);
+ rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
+ if (rf->channel <= 14)
+ rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 2);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 1);
+ rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 5);
+ if (rf->channel <= 14)
+ rt2x00_set_field8(&rfcsr, RFCSR5_R1, 1);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR5_R1, 2);
+ rt2800_rfcsr_write(rt2x00dev, 5, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 12);
+ if (rf->channel <= 14) {
+ rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 3);
+ rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
+ info->default_power1);
+ } else {
+ rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 7);
+ rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
+ (info->default_power1 & 0x3) |
+ ((info->default_power1 & 0xC) << 1));
+ }
+ rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 13);
+ if (rf->channel <= 14) {
+ rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 3);
+ rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
+ info->default_power2);
+ } else {
+ rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 7);
+ rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
+ (info->default_power2 & 0x3) |
+ ((info->default_power2 & 0xC) << 1));
+ }
+ rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
+ if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
+ if (rf->channel <= 14) {
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
+ }
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
+ } else {
+ switch (rt2x00dev->default_ant.tx_chain_num) {
+ case 1:
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
+ fallthrough;
+ case 2:
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
+ break;
+ }
+
+ switch (rt2x00dev->default_ant.rx_chain_num) {
+ case 1:
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
+ fallthrough;
+ case 2:
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
+ break;
+ }
+ }
+ rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 23);
+ rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
+ rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
+
+ if (conf_is_ht40(conf)) {
+ rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw40);
+ rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw40);
+ } else {
+ rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw20);
+ rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw20);
+ }
+
+ if (rf->channel <= 14) {
+ rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
+ rfcsr = 0x4c;
+ rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
+ drv_data->txmixer_gain_24g);
+ rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
+ rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
+ } else {
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 7);
+ rt2x00_set_field8(&rfcsr, RFCSR7_BIT2, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR7_BIT3, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR7_BIT4, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR7_BITS67, 0);
+ rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x43);
+ rfcsr = 0x7a;
+ rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
+ drv_data->txmixer_gain_5g);
+ rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
+ rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
+ if (rf->channel <= 64) {
+ rt2800_rfcsr_write(rt2x00dev, 19, 0xb7);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0xf6);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
+ } else if (rf->channel <= 128) {
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x74);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0xf4);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
+ } else {
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x72);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0xf3);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
+ }
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x87);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x01);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x9f);
+ }
+
+ reg = rt2800_register_read(rt2x00dev, GPIO_CTRL);
+ rt2x00_set_field32(&reg, GPIO_CTRL_DIR7, 0);
+ if (rf->channel <= 14)
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 1);
+ else
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 0);
+ rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 7);
+ rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
+ rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
+}
+
+static void rt2800_config_channel_rf3053(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ struct rf_channel *rf,
+ struct channel_info *info)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u8 txrx_agc_fc;
+ u8 txrx_h20m;
+ u8 rfcsr;
+ u8 bbp;
+ const bool txbf_enabled = false; /* TODO */
+
+ /* TODO: use TX{0,1,2}FinePowerControl values from EEPROM */
+ bbp = rt2800_bbp_read(rt2x00dev, 109);
+ rt2x00_set_field8(&bbp, BBP109_TX0_POWER, 0);
+ rt2x00_set_field8(&bbp, BBP109_TX1_POWER, 0);
+ rt2800_bbp_write(rt2x00dev, 109, bbp);
+
+ bbp = rt2800_bbp_read(rt2x00dev, 110);
+ rt2x00_set_field8(&bbp, BBP110_TX2_POWER, 0);
+ rt2800_bbp_write(rt2x00dev, 110, bbp);
+
+ if (rf->channel <= 14) {
+ /* Restore BBP 25 & 26 for 2.4 GHz */
+ rt2800_bbp_write(rt2x00dev, 25, drv_data->bbp25);
+ rt2800_bbp_write(rt2x00dev, 26, drv_data->bbp26);
+ } else {
+ /* Hard code BBP 25 & 26 for 5GHz */
+
+ /* Enable IQ Phase correction */
+ rt2800_bbp_write(rt2x00dev, 25, 0x09);
+ /* Setup IQ Phase correction value */
+ rt2800_bbp_write(rt2x00dev, 26, 0xff);
+ }
+
+ rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
+ rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3 & 0xf);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 11);
+ rt2x00_set_field8(&rfcsr, RFCSR11_R, (rf->rf2 & 0x3));
+ rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 11);
+ rt2x00_set_field8(&rfcsr, RFCSR11_PLL_IDOH, 1);
+ if (rf->channel <= 14)
+ rt2x00_set_field8(&rfcsr, RFCSR11_PLL_MOD, 1);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR11_PLL_MOD, 2);
+ rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 53);
+ if (rf->channel <= 14) {
+ rfcsr = 0;
+ rt2x00_set_field8(&rfcsr, RFCSR53_TX_POWER,
+ info->default_power1 & 0x1f);
+ } else {
+ if (rt2x00_is_usb(rt2x00dev))
+ rfcsr = 0x40;
+
+ rt2x00_set_field8(&rfcsr, RFCSR53_TX_POWER,
+ ((info->default_power1 & 0x18) << 1) |
+ (info->default_power1 & 7));
+ }
+ rt2800_rfcsr_write(rt2x00dev, 53, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 55);
+ if (rf->channel <= 14) {
+ rfcsr = 0;
+ rt2x00_set_field8(&rfcsr, RFCSR55_TX_POWER,
+ info->default_power2 & 0x1f);
+ } else {
+ if (rt2x00_is_usb(rt2x00dev))
+ rfcsr = 0x40;
+
+ rt2x00_set_field8(&rfcsr, RFCSR55_TX_POWER,
+ ((info->default_power2 & 0x18) << 1) |
+ (info->default_power2 & 7));
+ }
+ rt2800_rfcsr_write(rt2x00dev, 55, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 54);
+ if (rf->channel <= 14) {
+ rfcsr = 0;
+ rt2x00_set_field8(&rfcsr, RFCSR54_TX_POWER,
+ info->default_power3 & 0x1f);
+ } else {
+ if (rt2x00_is_usb(rt2x00dev))
+ rfcsr = 0x40;
+
+ rt2x00_set_field8(&rfcsr, RFCSR54_TX_POWER,
+ ((info->default_power3 & 0x18) << 1) |
+ (info->default_power3 & 7));
+ }
+ rt2800_rfcsr_write(rt2x00dev, 54, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
+
+ switch (rt2x00dev->default_ant.tx_chain_num) {
+ case 3:
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
+ fallthrough;
+ case 2:
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
+ fallthrough;
+ case 1:
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
+ break;
+ }
+
+ switch (rt2x00dev->default_ant.rx_chain_num) {
+ case 3:
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
+ fallthrough;
+ case 2:
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
+ fallthrough;
+ case 1:
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
+ break;
+ }
+ rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+ rt2800_freq_cal_mode1(rt2x00dev);
+
+ if (conf_is_ht40(conf)) {
+ txrx_agc_fc = rt2x00_get_field8(drv_data->calibration_bw40,
+ RFCSR24_TX_AGC_FC);
+ txrx_h20m = rt2x00_get_field8(drv_data->calibration_bw40,
+ RFCSR24_TX_H20M);
+ } else {
+ txrx_agc_fc = rt2x00_get_field8(drv_data->calibration_bw20,
+ RFCSR24_TX_AGC_FC);
+ txrx_h20m = rt2x00_get_field8(drv_data->calibration_bw20,
+ RFCSR24_TX_H20M);
+ }
+
+ /* NOTE: the reference driver does not writes the new value
+ * back to RFCSR 32
+ */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 32);
+ rt2x00_set_field8(&rfcsr, RFCSR32_TX_AGC_FC, txrx_agc_fc);
+
+ if (rf->channel <= 14)
+ rfcsr = 0xa0;
+ else
+ rfcsr = 0x80;
+ rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 30);
+ rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, txrx_h20m);
+ rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, txrx_h20m);
+ rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+
+ /* Band selection */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 36);
+ if (rf->channel <= 14)
+ rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 1);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 0);
+ rt2800_rfcsr_write(rt2x00dev, 36, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 34);
+ if (rf->channel <= 14)
+ rfcsr = 0x3c;
+ else
+ rfcsr = 0x20;
+ rt2800_rfcsr_write(rt2x00dev, 34, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 12);
+ if (rf->channel <= 14)
+ rfcsr = 0x1a;
+ else
+ rfcsr = 0x12;
+ rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 6);
+ if (rf->channel >= 1 && rf->channel <= 14)
+ rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 1);
+ else if (rf->channel >= 36 && rf->channel <= 64)
+ rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 2);
+ else if (rf->channel >= 100 && rf->channel <= 128)
+ rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 2);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 1);
+ rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 30);
+ rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
+ rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+
+ rt2800_rfcsr_write(rt2x00dev, 46, 0x60);
+
+ if (rf->channel <= 14) {
+ rt2800_rfcsr_write(rt2x00dev, 10, 0xd3);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x12);
+ } else {
+ rt2800_rfcsr_write(rt2x00dev, 10, 0xd8);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x23);
+ }
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 51);
+ rt2x00_set_field8(&rfcsr, RFCSR51_BITS01, 1);
+ rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 51);
+ if (rf->channel <= 14) {
+ rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, 5);
+ rt2x00_set_field8(&rfcsr, RFCSR51_BITS57, 3);
+ } else {
+ rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, 4);
+ rt2x00_set_field8(&rfcsr, RFCSR51_BITS57, 2);
+ }
+ rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 49);
+ if (rf->channel <= 14)
+ rt2x00_set_field8(&rfcsr, RFCSR49_TX_LO1_IC, 3);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR49_TX_LO1_IC, 2);
+
+ if (txbf_enabled)
+ rt2x00_set_field8(&rfcsr, RFCSR49_TX_DIV, 1);
+
+ rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 50);
+ rt2x00_set_field8(&rfcsr, RFCSR50_TX_LO1_EN, 0);
+ rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 57);
+ if (rf->channel <= 14)
+ rt2x00_set_field8(&rfcsr, RFCSR57_DRV_CC, 0x1b);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR57_DRV_CC, 0x0f);
+ rt2800_rfcsr_write(rt2x00dev, 57, rfcsr);
+
+ if (rf->channel <= 14) {
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x93);
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x45);
+ } else {
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x9b);
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x05);
+ }
+
+ /* Initiate VCO calibration */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
+ if (rf->channel <= 14) {
+ rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
+ } else {
+ rt2x00_set_field8(&rfcsr, RFCSR3_BIT1, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR3_BIT2, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR3_BIT3, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR3_BIT4, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR3_BIT5, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
+ }
+ rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
+
+ if (rf->channel >= 1 && rf->channel <= 14) {
+ rfcsr = 0x23;
+ if (txbf_enabled)
+ rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
+ rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
+
+ rt2800_rfcsr_write(rt2x00dev, 45, 0xbb);
+ } else if (rf->channel >= 36 && rf->channel <= 64) {
+ rfcsr = 0x36;
+ if (txbf_enabled)
+ rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x36);
+
+ rt2800_rfcsr_write(rt2x00dev, 45, 0xeb);
+ } else if (rf->channel >= 100 && rf->channel <= 128) {
+ rfcsr = 0x32;
+ if (txbf_enabled)
+ rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
+ rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
+
+ rt2800_rfcsr_write(rt2x00dev, 45, 0xb3);
+ } else {
+ rfcsr = 0x30;
+ if (txbf_enabled)
+ rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
+ rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
+
+ rt2800_rfcsr_write(rt2x00dev, 45, 0x9b);
+ }
+}
+
+static void rt2800_config_channel_rf3853(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ struct rf_channel *rf,
+ struct channel_info *info)
+{
+ u8 rfcsr;
+ u8 bbp;
+ u8 pwr1, pwr2, pwr3;
+
+ const bool txbf_enabled = false; /* TODO */
+
+ /* TODO: add band selection */
+
+ if (rf->channel <= 14)
+ rt2800_rfcsr_write(rt2x00dev, 6, 0x40);
+ else if (rf->channel < 132)
+ rt2800_rfcsr_write(rt2x00dev, 6, 0x80);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 6, 0x40);
+
+ rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
+ rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
+
+ if (rf->channel <= 14)
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x46);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x48);
+
+ if (rf->channel <= 14)
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x1a);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x52);
+
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x12);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
+
+ switch (rt2x00dev->default_ant.tx_chain_num) {
+ case 3:
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
+ fallthrough;
+ case 2:
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
+ fallthrough;
+ case 1:
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
+ break;
+ }
+
+ switch (rt2x00dev->default_ant.rx_chain_num) {
+ case 3:
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
+ fallthrough;
+ case 2:
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
+ fallthrough;
+ case 1:
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
+ break;
+ }
+ rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+ rt2800_freq_cal_mode1(rt2x00dev);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 30);
+ if (!conf_is_ht40(conf))
+ rfcsr &= ~(0x06);
+ else
+ rfcsr |= 0x06;
+ rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+
+ if (rf->channel <= 14)
+ rt2800_rfcsr_write(rt2x00dev, 31, 0xa0);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+
+ if (conf_is_ht40(conf))
+ rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 32, 0xd8);
+
+ if (rf->channel <= 14)
+ rt2800_rfcsr_write(rt2x00dev, 34, 0x3c);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 34, 0x20);
+
+ /* loopback RF_BS */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 36);
+ if (rf->channel <= 14)
+ rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 1);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 0);
+ rt2800_rfcsr_write(rt2x00dev, 36, rfcsr);
+
+ if (rf->channel <= 14)
+ rfcsr = 0x23;
+ else if (rf->channel < 100)
+ rfcsr = 0x36;
+ else if (rf->channel < 132)
+ rfcsr = 0x32;
+ else
+ rfcsr = 0x30;
+
+ if (txbf_enabled)
+ rfcsr |= 0x40;
+
+ rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
+
+ if (rf->channel <= 14)
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x93);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x9b);
+
+ if (rf->channel <= 14)
+ rfcsr = 0xbb;
+ else if (rf->channel < 100)
+ rfcsr = 0xeb;
+ else if (rf->channel < 132)
+ rfcsr = 0xb3;
+ else
+ rfcsr = 0x9b;
+ rt2800_rfcsr_write(rt2x00dev, 45, rfcsr);
+
+ if (rf->channel <= 14)
+ rfcsr = 0x8e;
+ else
+ rfcsr = 0x8a;
+
+ if (txbf_enabled)
+ rfcsr |= 0x20;
+
+ rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
+
+ rt2800_rfcsr_write(rt2x00dev, 50, 0x86);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 51);
+ if (rf->channel <= 14)
+ rt2800_rfcsr_write(rt2x00dev, 51, 0x75);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 51, 0x51);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 52);
+ if (rf->channel <= 14)
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x45);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x05);
+
+ if (rf->channel <= 14) {
+ pwr1 = info->default_power1 & 0x1f;
+ pwr2 = info->default_power2 & 0x1f;
+ pwr3 = info->default_power3 & 0x1f;
+ } else {
+ pwr1 = 0x48 | ((info->default_power1 & 0x18) << 1) |
+ (info->default_power1 & 0x7);
+ pwr2 = 0x48 | ((info->default_power2 & 0x18) << 1) |
+ (info->default_power2 & 0x7);
+ pwr3 = 0x48 | ((info->default_power3 & 0x18) << 1) |
+ (info->default_power3 & 0x7);
+ }
+
+ rt2800_rfcsr_write(rt2x00dev, 53, pwr1);
+ rt2800_rfcsr_write(rt2x00dev, 54, pwr2);
+ rt2800_rfcsr_write(rt2x00dev, 55, pwr3);
+
+ rt2x00_dbg(rt2x00dev, "Channel:%d, pwr1:%02x, pwr2:%02x, pwr3:%02x\n",
+ rf->channel, pwr1, pwr2, pwr3);
+
+ bbp = (info->default_power1 >> 5) |
+ ((info->default_power2 & 0xe0) >> 1);
+ rt2800_bbp_write(rt2x00dev, 109, bbp);
+
+ bbp = rt2800_bbp_read(rt2x00dev, 110);
+ bbp &= 0x0f;
+ bbp |= (info->default_power3 & 0xe0) >> 1;
+ rt2800_bbp_write(rt2x00dev, 110, bbp);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 57);
+ if (rf->channel <= 14)
+ rt2800_rfcsr_write(rt2x00dev, 57, 0x6e);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 57, 0x3e);
+
+ /* Enable RF tuning */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
+ rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
+ rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
+
+ udelay(2000);
+
+ bbp = rt2800_bbp_read(rt2x00dev, 49);
+ /* clear update flag */
+ rt2800_bbp_write(rt2x00dev, 49, bbp & 0xfe);
+ rt2800_bbp_write(rt2x00dev, 49, bbp);
+
+ /* TODO: add calibration for TxBF */
+}
+
+#define POWER_BOUND 0x27
+#define POWER_BOUND_5G 0x2b
+
+static void rt2800_config_channel_rf3290(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ struct rf_channel *rf,
+ struct channel_info *info)
+{
+ u8 rfcsr;
+
+ rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
+ rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 11);
+ rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
+ rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 49);
+ if (info->default_power1 > POWER_BOUND)
+ rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
+ rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
+
+ rt2800_freq_cal_mode1(rt2x00dev);
+
+ if (rf->channel <= 14) {
+ if (rf->channel == 6)
+ rt2800_bbp_write(rt2x00dev, 68, 0x0c);
+ else
+ rt2800_bbp_write(rt2x00dev, 68, 0x0b);
+
+ if (rf->channel >= 1 && rf->channel <= 6)
+ rt2800_bbp_write(rt2x00dev, 59, 0x0f);
+ else if (rf->channel >= 7 && rf->channel <= 11)
+ rt2800_bbp_write(rt2x00dev, 59, 0x0e);
+ else if (rf->channel >= 12 && rf->channel <= 14)
+ rt2800_bbp_write(rt2x00dev, 59, 0x0d);
+ }
+}
+
+static void rt2800_config_channel_rf3322(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ struct rf_channel *rf,
+ struct channel_info *info)
+{
+ u8 rfcsr;
+
+ rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
+ rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
+
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x42);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x1c);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x00);
+
+ if (info->default_power1 > POWER_BOUND)
+ rt2800_rfcsr_write(rt2x00dev, 47, POWER_BOUND);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 47, info->default_power1);
+
+ if (info->default_power2 > POWER_BOUND)
+ rt2800_rfcsr_write(rt2x00dev, 48, POWER_BOUND);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 48, info->default_power2);
+
+ rt2800_freq_cal_mode1(rt2x00dev);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
+
+ if ( rt2x00dev->default_ant.tx_chain_num == 2 )
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
+
+ if ( rt2x00dev->default_ant.rx_chain_num == 2 )
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
+
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
+
+ rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+ rt2800_rfcsr_write(rt2x00dev, 31, 80);
+}
+
+static void rt2800_config_channel_rf53xx(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ struct rf_channel *rf,
+ struct channel_info *info)
+{
+ u8 rfcsr;
+ int idx = rf->channel-1;
+
+ rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
+ rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 11);
+ rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
+ rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 49);
+ if (info->default_power1 > POWER_BOUND)
+ rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
+ rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
+
+ if (rt2x00_rt(rt2x00dev, RT5392)) {
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 50);
+ if (info->default_power2 > POWER_BOUND)
+ rt2x00_set_field8(&rfcsr, RFCSR50_TX, POWER_BOUND);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR50_TX,
+ info->default_power2);
+ rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
+ }
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
+ if (rt2x00_rt(rt2x00dev, RT5392)) {
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
+ }
+ rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
+ rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+ rt2800_freq_cal_mode1(rt2x00dev);
+
+ if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
+ /* r55/r59 value array of channel 1~14 */
+ static const u8 r55_bt_rev[] = {0x83, 0x83,
+ 0x83, 0x73, 0x73, 0x63, 0x53, 0x53,
+ 0x53, 0x43, 0x43, 0x43, 0x43, 0x43};
+ static const u8 r59_bt_rev[] = {0x0e, 0x0e,
+ 0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09,
+ 0x07, 0x07, 0x07, 0x07, 0x07, 0x07};
+
+ rt2800_rfcsr_write(rt2x00dev, 55,
+ r55_bt_rev[idx]);
+ rt2800_rfcsr_write(rt2x00dev, 59,
+ r59_bt_rev[idx]);
+ } else {
+ static const u8 r59_bt[] = {0x8b, 0x8b, 0x8b,
+ 0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89,
+ 0x88, 0x88, 0x86, 0x85, 0x84};
+
+ rt2800_rfcsr_write(rt2x00dev, 59, r59_bt[idx]);
+ }
+ } else {
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
+ static const u8 r55_nonbt_rev[] = {0x23, 0x23,
+ 0x23, 0x23, 0x13, 0x13, 0x03, 0x03,
+ 0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
+ static const u8 r59_nonbt_rev[] = {0x07, 0x07,
+ 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
+ 0x07, 0x07, 0x06, 0x05, 0x04, 0x04};
+
+ rt2800_rfcsr_write(rt2x00dev, 55,
+ r55_nonbt_rev[idx]);
+ rt2800_rfcsr_write(rt2x00dev, 59,
+ r59_nonbt_rev[idx]);
+ } else if (rt2x00_rt(rt2x00dev, RT5390) ||
+ rt2x00_rt(rt2x00dev, RT5392) ||
+ rt2x00_rt(rt2x00dev, RT6352)) {
+ static const u8 r59_non_bt[] = {0x8f, 0x8f,
+ 0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d,
+ 0x8a, 0x88, 0x88, 0x87, 0x87, 0x86};
+
+ rt2800_rfcsr_write(rt2x00dev, 59,
+ r59_non_bt[idx]);
+ } else if (rt2x00_rt(rt2x00dev, RT5350)) {
+ static const u8 r59_non_bt[] = {0x0b, 0x0b,
+ 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0a,
+ 0x0a, 0x09, 0x08, 0x07, 0x07, 0x06};
+
+ rt2800_rfcsr_write(rt2x00dev, 59,
+ r59_non_bt[idx]);
+ }
+ }
+}
+
+static void rt2800_config_channel_rf55xx(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ struct rf_channel *rf,
+ struct channel_info *info)
+{
+ u8 rfcsr, ep_reg;
+ u32 reg;
+ int power_bound;
+
+ /* TODO */
+ const bool is_11b = false;
+ const bool is_type_ep = false;
+
+ reg = rt2800_register_read(rt2x00dev, LDO_CFG0);
+ rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL,
+ (rf->channel > 14 || conf_is_ht40(conf)) ? 5 : 0);
+ rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+
+ /* Order of values on rf_channel entry: N, K, mod, R */
+ rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1 & 0xff);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 9);
+ rt2x00_set_field8(&rfcsr, RFCSR9_K, rf->rf2 & 0xf);
+ rt2x00_set_field8(&rfcsr, RFCSR9_N, (rf->rf1 & 0x100) >> 8);
+ rt2x00_set_field8(&rfcsr, RFCSR9_MOD, ((rf->rf3 - 8) & 0x4) >> 2);
+ rt2800_rfcsr_write(rt2x00dev, 9, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 11);
+ rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf4 - 1);
+ rt2x00_set_field8(&rfcsr, RFCSR11_MOD, (rf->rf3 - 8) & 0x3);
+ rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
+
+ if (rf->channel <= 14) {
+ rt2800_rfcsr_write(rt2x00dev, 10, 0x90);
+ /* FIXME: RF11 owerwrite ? */
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x4A);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x52);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x42);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x4A);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x42);
+ rt2800_rfcsr_write(rt2x00dev, 36, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
+ rt2800_rfcsr_write(rt2x00dev, 38, 0x89);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x1B);
+ rt2800_rfcsr_write(rt2x00dev, 40, 0x0D);
+ rt2800_rfcsr_write(rt2x00dev, 41, 0x9B);
+ rt2800_rfcsr_write(rt2x00dev, 42, 0xD5);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0x72);
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x0E);
+ rt2800_rfcsr_write(rt2x00dev, 45, 0xA2);
+ rt2800_rfcsr_write(rt2x00dev, 46, 0x6B);
+ rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 51, 0x3E);
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x48);
+ rt2800_rfcsr_write(rt2x00dev, 54, 0x38);
+ rt2800_rfcsr_write(rt2x00dev, 56, 0xA1);
+ rt2800_rfcsr_write(rt2x00dev, 57, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 58, 0x39);
+ rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
+ rt2800_rfcsr_write(rt2x00dev, 61, 0x91);
+ rt2800_rfcsr_write(rt2x00dev, 62, 0x39);
+
+ /* TODO RF27 <- tssi */
+
+ rfcsr = rf->channel <= 10 ? 0x07 : 0x06;
+ rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
+ rt2800_rfcsr_write(rt2x00dev, 59, rfcsr);
+
+ if (is_11b) {
+ /* CCK */
+ rt2800_rfcsr_write(rt2x00dev, 31, 0xF8);
+ rt2800_rfcsr_write(rt2x00dev, 32, 0xC0);
+ if (is_type_ep)
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x06);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x47);
+ } else {
+ /* OFDM */
+ if (is_type_ep)
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x03);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
+ }
+
+ power_bound = POWER_BOUND;
+ ep_reg = 0x2;
+ } else {
+ rt2800_rfcsr_write(rt2x00dev, 10, 0x97);
+ /* FIMXE: RF11 overwrite */
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0xBF);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x42);
+ rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 37, 0x04);
+ rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
+ rt2800_rfcsr_write(rt2x00dev, 40, 0x42);
+ rt2800_rfcsr_write(rt2x00dev, 41, 0xBB);
+ rt2800_rfcsr_write(rt2x00dev, 42, 0xD7);
+ rt2800_rfcsr_write(rt2x00dev, 45, 0x41);
+ rt2800_rfcsr_write(rt2x00dev, 48, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 57, 0x77);
+ rt2800_rfcsr_write(rt2x00dev, 60, 0x05);
+ rt2800_rfcsr_write(rt2x00dev, 61, 0x01);
+
+ /* TODO RF27 <- tssi */
+
+ if (rf->channel >= 36 && rf->channel <= 64) {
+
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x2E);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x22);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x60);
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x7F);
+ if (rf->channel <= 50)
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x09);
+ else if (rf->channel >= 52)
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x07);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x1C);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0x5B);
+ rt2800_rfcsr_write(rt2x00dev, 44, 0X40);
+ rt2800_rfcsr_write(rt2x00dev, 46, 0X00);
+ rt2800_rfcsr_write(rt2x00dev, 51, 0xFE);
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x0C);
+ rt2800_rfcsr_write(rt2x00dev, 54, 0xF8);
+ if (rf->channel <= 50) {
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x06),
+ rt2800_rfcsr_write(rt2x00dev, 56, 0xD3);
+ } else if (rf->channel >= 52) {
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x04);
+ rt2800_rfcsr_write(rt2x00dev, 56, 0xBB);
+ }
+
+ rt2800_rfcsr_write(rt2x00dev, 58, 0x15);
+ rt2800_rfcsr_write(rt2x00dev, 59, 0x7F);
+ rt2800_rfcsr_write(rt2x00dev, 62, 0x15);
+
+ } else if (rf->channel >= 100 && rf->channel <= 165) {
+
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x0E);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x42);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x40);
+ if (rf->channel <= 153) {
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x3C);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x06);
+ } else if (rf->channel >= 155) {
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x38);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x05);
+ }
+ if (rf->channel <= 138) {
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x1A);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0x3B);
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x20);
+ rt2800_rfcsr_write(rt2x00dev, 46, 0x18);
+ } else if (rf->channel >= 140) {
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x18);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0x1B);
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 46, 0X08);
+ }
+ if (rf->channel <= 124)
+ rt2800_rfcsr_write(rt2x00dev, 51, 0xFC);
+ else if (rf->channel >= 126)
+ rt2800_rfcsr_write(rt2x00dev, 51, 0xEC);
+ if (rf->channel <= 138)
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x06);
+ else if (rf->channel >= 140)
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x06);
+ rt2800_rfcsr_write(rt2x00dev, 54, 0xEB);
+ if (rf->channel <= 138)
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x01);
+ else if (rf->channel >= 140)
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x00);
+ if (rf->channel <= 128)
+ rt2800_rfcsr_write(rt2x00dev, 56, 0xBB);
+ else if (rf->channel >= 130)
+ rt2800_rfcsr_write(rt2x00dev, 56, 0xAB);
+ if (rf->channel <= 116)
+ rt2800_rfcsr_write(rt2x00dev, 58, 0x1D);
+ else if (rf->channel >= 118)
+ rt2800_rfcsr_write(rt2x00dev, 58, 0x15);
+ if (rf->channel <= 138)
+ rt2800_rfcsr_write(rt2x00dev, 59, 0x3F);
+ else if (rf->channel >= 140)
+ rt2800_rfcsr_write(rt2x00dev, 59, 0x7C);
+ if (rf->channel <= 116)
+ rt2800_rfcsr_write(rt2x00dev, 62, 0x1D);
+ else if (rf->channel >= 118)
+ rt2800_rfcsr_write(rt2x00dev, 62, 0x15);
+ }
+
+ power_bound = POWER_BOUND_5G;
+ ep_reg = 0x3;
+ }
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 49);
+ if (info->default_power1 > power_bound)
+ rt2x00_set_field8(&rfcsr, RFCSR49_TX, power_bound);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
+ if (is_type_ep)
+ rt2x00_set_field8(&rfcsr, RFCSR49_EP, ep_reg);
+ rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 50);
+ if (info->default_power2 > power_bound)
+ rt2x00_set_field8(&rfcsr, RFCSR50_TX, power_bound);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR50_TX, info->default_power2);
+ if (is_type_ep)
+ rt2x00_set_field8(&rfcsr, RFCSR50_EP, ep_reg);
+ rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
+
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD,
+ rt2x00dev->default_ant.tx_chain_num >= 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD,
+ rt2x00dev->default_ant.tx_chain_num == 2);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
+
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD,
+ rt2x00dev->default_ant.rx_chain_num >= 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD,
+ rt2x00dev->default_ant.rx_chain_num == 2);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
+
+ rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0xe4);
+
+ if (conf_is_ht40(conf))
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x16);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+
+ if (!is_11b) {
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
+ }
+
+ /* TODO proper frequency adjustment */
+ rt2800_freq_cal_mode1(rt2x00dev);
+
+ /* TODO merge with others */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
+ rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
+ rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
+
+ /* BBP settings */
+ rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
+
+ rt2800_bbp_write(rt2x00dev, 79, (rf->channel <= 14) ? 0x1C : 0x18);
+ rt2800_bbp_write(rt2x00dev, 80, (rf->channel <= 14) ? 0x0E : 0x08);
+ rt2800_bbp_write(rt2x00dev, 81, (rf->channel <= 14) ? 0x3A : 0x38);
+ rt2800_bbp_write(rt2x00dev, 82, (rf->channel <= 14) ? 0x62 : 0x92);
+
+ /* GLRT band configuration */
+ rt2800_bbp_write(rt2x00dev, 195, 128);
+ rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0xE0 : 0xF0);
+ rt2800_bbp_write(rt2x00dev, 195, 129);
+ rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x1F : 0x1E);
+ rt2800_bbp_write(rt2x00dev, 195, 130);
+ rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x38 : 0x28);
+ rt2800_bbp_write(rt2x00dev, 195, 131);
+ rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x32 : 0x20);
+ rt2800_bbp_write(rt2x00dev, 195, 133);
+ rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x28 : 0x7F);
+ rt2800_bbp_write(rt2x00dev, 195, 124);
+ rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x19 : 0x7F);
+}
+
+static void rt2800_config_channel_rf7620(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ struct rf_channel *rf,
+ struct channel_info *info)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u8 rx_agc_fc, tx_agc_fc;
+ u8 rfcsr;
+
+ /* Frequeny plan setting */
+ /* Rdiv setting (set 0x03 if Xtal==20)
+ * R13[1:0]
+ */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 13);
+ rt2x00_set_field8(&rfcsr, RFCSR13_RDIV_MT7620,
+ rt2800_clk_is_20mhz(rt2x00dev) ? 3 : 0);
+ rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
+
+ /* N setting
+ * R20[7:0] in rf->rf1
+ * R21[0] always 0
+ */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 20);
+ rfcsr = (rf->rf1 & 0x00ff);
+ rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 21);
+ rt2x00_set_field8(&rfcsr, RFCSR21_BIT1, 0);
+ rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
+
+ /* K setting (always 0)
+ * R16[3:0] (RF PLL freq selection)
+ */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 16);
+ rt2x00_set_field8(&rfcsr, RFCSR16_RF_PLL_FREQ_SEL_MT7620, 0);
+ rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
+
+ /* D setting (always 0)
+ * R22[2:0] (D=15, R22[2:0]=<111>)
+ */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 22);
+ rt2x00_set_field8(&rfcsr, RFCSR22_FREQPLAN_D_MT7620, 0);
+ rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
+
+ /* Ksd setting
+ * Ksd: R17<7:0> in rf->rf2
+ * R18<7:0> in rf->rf3
+ * R19<1:0> in rf->rf4
+ */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 17);
+ rfcsr = rf->rf2;
+ rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 18);
+ rfcsr = rf->rf3;
+ rt2800_rfcsr_write(rt2x00dev, 18, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 19);
+ rt2x00_set_field8(&rfcsr, RFCSR19_K, rf->rf4);
+ rt2800_rfcsr_write(rt2x00dev, 19, rfcsr);
+
+ /* Default: XO=20MHz , SDM mode */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 16);
+ rt2x00_set_field8(&rfcsr, RFCSR16_SDM_MODE_MT7620, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 21);
+ rt2x00_set_field8(&rfcsr, RFCSR21_BIT8, 1);
+ rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX2_EN_MT7620,
+ rt2x00dev->default_ant.tx_chain_num != 1);
+ rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 2);
+ rt2x00_set_field8(&rfcsr, RFCSR2_TX2_EN_MT7620,
+ rt2x00dev->default_ant.tx_chain_num != 1);
+ rt2x00_set_field8(&rfcsr, RFCSR2_RX2_EN_MT7620,
+ rt2x00dev->default_ant.rx_chain_num != 1);
+ rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 42);
+ rt2x00_set_field8(&rfcsr, RFCSR42_TX2_EN_MT7620,
+ rt2x00dev->default_ant.tx_chain_num != 1);
+ rt2800_rfcsr_write(rt2x00dev, 42, rfcsr);
+
+ /* RF for DC Cal BW */
+ if (conf_is_ht40(conf)) {
+ rt2800_rfcsr_write_dccal(rt2x00dev, 6, 0x10);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 7, 0x10);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 8, 0x04);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 58, 0x10);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 59, 0x10);
+ } else {
+ rt2800_rfcsr_write_dccal(rt2x00dev, 6, 0x20);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 7, 0x20);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 8, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 58, 0x20);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 59, 0x20);
+ }
+
+ if (conf_is_ht40(conf)) {
+ rt2800_rfcsr_write_dccal(rt2x00dev, 58, 0x08);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 59, 0x08);
+ } else {
+ rt2800_rfcsr_write_dccal(rt2x00dev, 58, 0x28);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 59, 0x28);
+ }
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 28);
+ rt2x00_set_field8(&rfcsr, RFCSR28_CH11_HT40,
+ conf_is_ht40(conf) && (rf->channel == 11));
+ rt2800_rfcsr_write(rt2x00dev, 28, rfcsr);
+
+ if (!test_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags)) {
+ if (conf_is_ht40(conf)) {
+ rx_agc_fc = drv_data->rx_calibration_bw40;
+ tx_agc_fc = drv_data->tx_calibration_bw40;
+ } else {
+ rx_agc_fc = drv_data->rx_calibration_bw20;
+ tx_agc_fc = drv_data->tx_calibration_bw20;
+ }
+ rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 5, 6);
+ rfcsr &= (~0x3F);
+ rfcsr |= rx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 6, rfcsr);
+ rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 5, 7);
+ rfcsr &= (~0x3F);
+ rfcsr |= rx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 7, rfcsr);
+ rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 7, 6);
+ rfcsr &= (~0x3F);
+ rfcsr |= rx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 6, rfcsr);
+ rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 7, 7);
+ rfcsr &= (~0x3F);
+ rfcsr |= rx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 7, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 5, 58);
+ rfcsr &= (~0x3F);
+ rfcsr |= tx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 58, rfcsr);
+ rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 5, 59);
+ rfcsr &= (~0x3F);
+ rfcsr |= tx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 59, rfcsr);
+ rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 7, 58);
+ rfcsr &= (~0x3F);
+ rfcsr |= tx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 58, rfcsr);
+ rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 7, 59);
+ rfcsr &= (~0x3F);
+ rfcsr |= tx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 59, rfcsr);
+ }
+
+ if (conf_is_ht40(conf)) {
+ rt2800_bbp_glrt_write(rt2x00dev, 141, 0x10);
+ rt2800_bbp_glrt_write(rt2x00dev, 157, 0x2f);
+ } else {
+ rt2800_bbp_glrt_write(rt2x00dev, 141, 0x1a);
+ rt2800_bbp_glrt_write(rt2x00dev, 157, 0x40);
+ }
+}
+
+static void rt2800_config_alc_rt6352(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_channel *chan,
+ int power_level)
+{
+ int cur_channel = rt2x00dev->rf_channel;
+ u16 eeprom, chan_power, rate_power, target_power;
+ u16 tx_power[2];
+ s8 *power_group[2];
+ u32 mac_sys_ctrl;
+ u32 cnt, reg;
+ u8 bbp;
+
+ if (WARN_ON(cur_channel < 1 || cur_channel > 14))
+ return;
+
+ /* get per chain power, 2 chains in total, unit is 0.5dBm */
+ power_level = (power_level - 3) * 2;
+
+ /* We can't get the accurate TX power. Based on some tests, the real
+ * TX power is approximately equal to channel_power + (max)rate_power.
+ * Usually max rate_power is the gain of the OFDM 6M rate. The antenna
+ * gain and externel PA gain are not included as we are unable to
+ * obtain these values.
+ */
+ rate_power = rt2800_eeprom_read_from_array(rt2x00dev,
+ EEPROM_TXPOWER_BYRATE, 1);
+ rate_power &= 0x3f;
+ power_level -= rate_power;
+ if (power_level < 1)
+ power_level = 1;
+
+ power_group[0] = rt2800_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
+ power_group[1] = rt2800_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
+ for (cnt = 0; cnt < 2; cnt++) {
+ chan_power = power_group[cnt][cur_channel - 1];
+ if (chan_power >= 0x20 || chan_power == 0)
+ chan_power = 0x10;
+ tx_power[cnt] = power_level < chan_power ? power_level : chan_power;
+ }
+
+ reg = rt2800_register_read(rt2x00dev, TX_ALC_CFG_0);
+ rt2x00_set_field32(&reg, TX_ALC_CFG_0_CH_INIT_0, tx_power[0]);
+ rt2x00_set_field32(&reg, TX_ALC_CFG_0_CH_INIT_1, tx_power[1]);
+ rt2x00_set_field32(&reg, TX_ALC_CFG_0_LIMIT_0, 0x2f);
+ rt2x00_set_field32(&reg, TX_ALC_CFG_0_LIMIT_1, 0x2f);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_INTERNAL_TX_ALC)) {
+ /* init base power by eeprom target power */
+ target_power = rt2800_eeprom_read(rt2x00dev,
+ EEPROM_TXPOWER_INIT);
+ rt2x00_set_field32(&reg, TX_ALC_CFG_0_CH_INIT_0, target_power);
+ rt2x00_set_field32(&reg, TX_ALC_CFG_0_CH_INIT_1, target_power);
+ }
+ rt2800_register_write(rt2x00dev, TX_ALC_CFG_0, reg);
+
+ reg = rt2800_register_read(rt2x00dev, TX_ALC_CFG_1);
+ rt2x00_set_field32(&reg, TX_ALC_CFG_1_TX_TEMP_COMP, 0);
+ rt2800_register_write(rt2x00dev, TX_ALC_CFG_1, reg);
+
+ /* Save MAC SYS CTRL registers */
+ mac_sys_ctrl = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ /* Disable Tx/Rx */
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
+ /* Check MAC Tx/Rx idle */
+ if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev, MAC_STATUS_CFG_BBP_RF_BUSY)))
+ rt2x00_warn(rt2x00dev, "RF busy while configuring ALC\n");
+
+ if (chan->center_freq > 2457) {
+ bbp = rt2800_bbp_read(rt2x00dev, 30);
+ bbp = 0x40;
+ rt2800_bbp_write(rt2x00dev, 30, bbp);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0);
+ if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
+ rt2800_rfcsr_write(rt2x00dev, 42, 0xfb);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 42, 0x7b);
+ } else {
+ bbp = rt2800_bbp_read(rt2x00dev, 30);
+ bbp = 0x1f;
+ rt2800_bbp_write(rt2x00dev, 30, bbp);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x80);
+ if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
+ rt2800_rfcsr_write(rt2x00dev, 42, 0xdb);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 42, 0x5b);
+ }
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, mac_sys_ctrl);
+
+ rt2800_vco_calibration(rt2x00dev);
+}
+
+static void rt2800_bbp_write_with_rx_chain(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word,
+ const u8 value)
+{
+ u8 chain, reg;
+
+ for (chain = 0; chain < rt2x00dev->default_ant.rx_chain_num; chain++) {
+ reg = rt2800_bbp_read(rt2x00dev, 27);
+ rt2x00_set_field8(&reg, BBP27_RX_CHAIN_SEL, chain);
+ rt2800_bbp_write(rt2x00dev, 27, reg);
+
+ rt2800_bbp_write(rt2x00dev, word, value);
+ }
+}
+
+static void rt2800_iq_calibrate(struct rt2x00_dev *rt2x00dev, int channel)
+{
+ u8 cal;
+
+ /* TX0 IQ Gain */
+ rt2800_bbp_write(rt2x00dev, 158, 0x2c);
+ if (channel <= 14)
+ cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_GAIN_CAL_TX0_2G);
+ else if (channel >= 36 && channel <= 64)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_GAIN_CAL_TX0_CH36_TO_CH64_5G);
+ else if (channel >= 100 && channel <= 138)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_GAIN_CAL_TX0_CH100_TO_CH138_5G);
+ else if (channel >= 140 && channel <= 165)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_GAIN_CAL_TX0_CH140_TO_CH165_5G);
+ else
+ cal = 0;
+ rt2800_bbp_write(rt2x00dev, 159, cal);
+
+ /* TX0 IQ Phase */
+ rt2800_bbp_write(rt2x00dev, 158, 0x2d);
+ if (channel <= 14)
+ cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_PHASE_CAL_TX0_2G);
+ else if (channel >= 36 && channel <= 64)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_PHASE_CAL_TX0_CH36_TO_CH64_5G);
+ else if (channel >= 100 && channel <= 138)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_PHASE_CAL_TX0_CH100_TO_CH138_5G);
+ else if (channel >= 140 && channel <= 165)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_PHASE_CAL_TX0_CH140_TO_CH165_5G);
+ else
+ cal = 0;
+ rt2800_bbp_write(rt2x00dev, 159, cal);
+
+ /* TX1 IQ Gain */
+ rt2800_bbp_write(rt2x00dev, 158, 0x4a);
+ if (channel <= 14)
+ cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_GAIN_CAL_TX1_2G);
+ else if (channel >= 36 && channel <= 64)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_GAIN_CAL_TX1_CH36_TO_CH64_5G);
+ else if (channel >= 100 && channel <= 138)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_GAIN_CAL_TX1_CH100_TO_CH138_5G);
+ else if (channel >= 140 && channel <= 165)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_GAIN_CAL_TX1_CH140_TO_CH165_5G);
+ else
+ cal = 0;
+ rt2800_bbp_write(rt2x00dev, 159, cal);
+
+ /* TX1 IQ Phase */
+ rt2800_bbp_write(rt2x00dev, 158, 0x4b);
+ if (channel <= 14)
+ cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_PHASE_CAL_TX1_2G);
+ else if (channel >= 36 && channel <= 64)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_PHASE_CAL_TX1_CH36_TO_CH64_5G);
+ else if (channel >= 100 && channel <= 138)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_PHASE_CAL_TX1_CH100_TO_CH138_5G);
+ else if (channel >= 140 && channel <= 165)
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_IQ_PHASE_CAL_TX1_CH140_TO_CH165_5G);
+ else
+ cal = 0;
+ rt2800_bbp_write(rt2x00dev, 159, cal);
+
+ /* FIXME: possible RX0, RX1 callibration ? */
+
+ /* RF IQ compensation control */
+ rt2800_bbp_write(rt2x00dev, 158, 0x04);
+ cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_RF_IQ_COMPENSATION_CONTROL);
+ rt2800_bbp_write(rt2x00dev, 159, cal != 0xff ? cal : 0);
+
+ /* RF IQ imbalance compensation control */
+ rt2800_bbp_write(rt2x00dev, 158, 0x03);
+ cal = rt2x00_eeprom_byte(rt2x00dev,
+ EEPROM_RF_IQ_IMBALANCE_COMPENSATION_CONTROL);
+ rt2800_bbp_write(rt2x00dev, 159, cal != 0xff ? cal : 0);
+}
+
+static s8 rt2800_txpower_to_dev(struct rt2x00_dev *rt2x00dev,
+ unsigned int channel,
+ s8 txpower)
+{
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883))
+ txpower = rt2x00_get_field8(txpower, EEPROM_TXPOWER_ALC);
+
+ if (channel <= 14)
+ return clamp_t(s8, txpower, MIN_G_TXPOWER, MAX_G_TXPOWER);
+
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883))
+ return clamp_t(s8, txpower, MIN_A_TXPOWER_3593,
+ MAX_A_TXPOWER_3593);
+ else
+ return clamp_t(s8, txpower, MIN_A_TXPOWER, MAX_A_TXPOWER);
+}
+
+static void rt3883_bbp_adjust(struct rt2x00_dev *rt2x00dev,
+ struct rf_channel *rf)
+{
+ u8 bbp;
+
+ bbp = (rf->channel > 14) ? 0x48 : 0x38;
+ rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, bbp);
+
+ rt2800_bbp_write(rt2x00dev, 69, 0x12);
+
+ if (rf->channel <= 14) {
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+ } else {
+ /* Disable CCK packet detection */
+ rt2800_bbp_write(rt2x00dev, 70, 0x00);
+ }
+
+ rt2800_bbp_write(rt2x00dev, 73, 0x10);
+
+ if (rf->channel > 14) {
+ rt2800_bbp_write(rt2x00dev, 62, 0x1d);
+ rt2800_bbp_write(rt2x00dev, 63, 0x1d);
+ rt2800_bbp_write(rt2x00dev, 64, 0x1d);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 62, 0x2d);
+ rt2800_bbp_write(rt2x00dev, 63, 0x2d);
+ rt2800_bbp_write(rt2x00dev, 64, 0x2d);
+ }
+}
+
+static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ struct rf_channel *rf,
+ struct channel_info *info)
+{
+ u32 reg;
+ u32 tx_pin;
+ u8 bbp, rfcsr;
+
+ info->default_power1 = rt2800_txpower_to_dev(rt2x00dev, rf->channel,
+ info->default_power1);
+ info->default_power2 = rt2800_txpower_to_dev(rt2x00dev, rf->channel,
+ info->default_power2);
+ if (rt2x00dev->default_ant.tx_chain_num > 2)
+ info->default_power3 =
+ rt2800_txpower_to_dev(rt2x00dev, rf->channel,
+ info->default_power3);
+
+ switch (rt2x00dev->chip.rt) {
+ case RT3883:
+ rt3883_bbp_adjust(rt2x00dev, rf);
+ break;
+ }
+
+ switch (rt2x00dev->chip.rf) {
+ case RF2020:
+ case RF3020:
+ case RF3021:
+ case RF3022:
+ case RF3320:
+ rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
+ break;
+ case RF3052:
+ rt2800_config_channel_rf3052(rt2x00dev, conf, rf, info);
+ break;
+ case RF3053:
+ rt2800_config_channel_rf3053(rt2x00dev, conf, rf, info);
+ break;
+ case RF3290:
+ rt2800_config_channel_rf3290(rt2x00dev, conf, rf, info);
+ break;
+ case RF3322:
+ rt2800_config_channel_rf3322(rt2x00dev, conf, rf, info);
+ break;
+ case RF3853:
+ rt2800_config_channel_rf3853(rt2x00dev, conf, rf, info);
+ break;
+ case RF3070:
+ case RF5350:
+ case RF5360:
+ case RF5362:
+ case RF5370:
+ case RF5372:
+ case RF5390:
+ case RF5392:
+ rt2800_config_channel_rf53xx(rt2x00dev, conf, rf, info);
+ break;
+ case RF5592:
+ rt2800_config_channel_rf55xx(rt2x00dev, conf, rf, info);
+ break;
+ case RF7620:
+ rt2800_config_channel_rf7620(rt2x00dev, conf, rf, info);
+ break;
+ default:
+ rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
+ }
+
+ if (rt2x00_rf(rt2x00dev, RF3070) ||
+ rt2x00_rf(rt2x00dev, RF3290) ||
+ rt2x00_rf(rt2x00dev, RF3322) ||
+ rt2x00_rf(rt2x00dev, RF5350) ||
+ rt2x00_rf(rt2x00dev, RF5360) ||
+ rt2x00_rf(rt2x00dev, RF5362) ||
+ rt2x00_rf(rt2x00dev, RF5370) ||
+ rt2x00_rf(rt2x00dev, RF5372) ||
+ rt2x00_rf(rt2x00dev, RF5390) ||
+ rt2x00_rf(rt2x00dev, RF5392)) {
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 30);
+ if (rt2x00_rf(rt2x00dev, RF3322)) {
+ rt2x00_set_field8(&rfcsr, RF3322_RFCSR30_TX_H20M,
+ conf_is_ht40(conf));
+ rt2x00_set_field8(&rfcsr, RF3322_RFCSR30_RX_H20M,
+ conf_is_ht40(conf));
+ } else {
+ rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M,
+ conf_is_ht40(conf));
+ rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M,
+ conf_is_ht40(conf));
+ }
+ rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
+ rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
+ rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
+ }
+
+ /*
+ * Change BBP settings
+ */
+
+ if (rt2x00_rt(rt2x00dev, RT3352)) {
+ rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
+
+ rt2800_bbp_write(rt2x00dev, 27, 0x0);
+ rt2800_bbp_write(rt2x00dev, 66, 0x26 + rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 27, 0x20);
+ rt2800_bbp_write(rt2x00dev, 66, 0x26 + rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 86, 0x38);
+ rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+ } else if (rt2x00_rt(rt2x00dev, RT3593)) {
+ if (rf->channel > 14) {
+ /* Disable CCK Packet detection on 5GHz */
+ rt2800_bbp_write(rt2x00dev, 70, 0x00);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+ }
+
+ if (conf_is_ht40(conf))
+ rt2800_bbp_write(rt2x00dev, 105, 0x04);
+ else
+ rt2800_bbp_write(rt2x00dev, 105, 0x34);
+
+ rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 77, 0x98);
+ } else if (rt2x00_rt(rt2x00dev, RT3883)) {
+ rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
+
+ if (rt2x00dev->default_ant.rx_chain_num > 1)
+ rt2800_bbp_write(rt2x00dev, 86, 0x46);
+ else
+ rt2800_bbp_write(rt2x00dev, 86, 0);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
+ rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
+ if (rt2x00_rt(rt2x00dev, RT6352))
+ rt2800_bbp_write(rt2x00dev, 86, 0x38);
+ else
+ rt2800_bbp_write(rt2x00dev, 86, 0);
+ }
+
+ if (rf->channel <= 14) {
+ if (!rt2x00_rt(rt2x00dev, RT5390) &&
+ !rt2x00_rt(rt2x00dev, RT5392) &&
+ !rt2x00_rt(rt2x00dev, RT6352)) {
+ if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+ rt2800_bbp_write(rt2x00dev, 75, 0x46);
+ } else {
+ if (rt2x00_rt(rt2x00dev, RT3593))
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+ else
+ rt2800_bbp_write(rt2x00dev, 82, 0x84);
+ rt2800_bbp_write(rt2x00dev, 75, 0x50);
+ }
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883))
+ rt2800_bbp_write(rt2x00dev, 83, 0x8a);
+ }
+
+ } else {
+ if (rt2x00_rt(rt2x00dev, RT3572))
+ rt2800_bbp_write(rt2x00dev, 82, 0x94);
+ else if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883))
+ rt2800_bbp_write(rt2x00dev, 82, 0x82);
+ else if (!rt2x00_rt(rt2x00dev, RT6352))
+ rt2800_bbp_write(rt2x00dev, 82, 0xf2);
+
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883))
+ rt2800_bbp_write(rt2x00dev, 83, 0x9a);
+
+ if (rt2x00_has_cap_external_lna_a(rt2x00dev))
+ rt2800_bbp_write(rt2x00dev, 75, 0x46);
+ else
+ rt2800_bbp_write(rt2x00dev, 75, 0x50);
+ }
+
+ reg = rt2800_register_read(rt2x00dev, TX_BAND_CFG);
+ rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
+ rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
+ rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
+ rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
+
+ if (rt2x00_rt(rt2x00dev, RT3572))
+ rt2800_rfcsr_write(rt2x00dev, 8, 0);
+
+ if (rt2x00_rt(rt2x00dev, RT6352)) {
+ tx_pin = rt2800_register_read(rt2x00dev, TX_PIN_CFG);
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFRX_EN, 1);
+ } else {
+ tx_pin = 0;
+ }
+
+ switch (rt2x00dev->default_ant.tx_chain_num) {
+ case 3:
+ /* Turn on tertiary PAs */
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A2_EN,
+ rf->channel > 14);
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G2_EN,
+ rf->channel <= 14);
+ fallthrough;
+ case 2:
+ /* Turn on secondary PAs */
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN,
+ rf->channel > 14);
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN,
+ rf->channel <= 14);
+ fallthrough;
+ case 1:
+ /* Turn on primary PAs */
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN,
+ rf->channel > 14);
+ if (rt2x00_has_cap_bt_coexist(rt2x00dev))
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
+ else
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN,
+ rf->channel <= 14);
+ break;
+ }
+
+ switch (rt2x00dev->default_ant.rx_chain_num) {
+ case 3:
+ /* Turn on tertiary LNAs */
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A2_EN, 1);
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G2_EN, 1);
+ fallthrough;
+ case 2:
+ /* Turn on secondary LNAs */
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
+ fallthrough;
+ case 1:
+ /* Turn on primary LNAs */
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
+ break;
+ }
+
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
+
+ rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
+
+ if (rt2x00_rt(rt2x00dev, RT3572)) {
+ rt2800_rfcsr_write(rt2x00dev, 8, 0x80);
+
+ /* AGC init */
+ if (rf->channel <= 14)
+ reg = 0x1c + (2 * rt2x00dev->lna_gain);
+ else
+ reg = 0x22 + ((rt2x00dev->lna_gain * 5) / 3);
+
+ rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);
+ }
+
+ if (rt2x00_rt(rt2x00dev, RT3593)) {
+ reg = rt2800_register_read(rt2x00dev, GPIO_CTRL);
+
+ /* Band selection */
+ if (rt2x00_is_usb(rt2x00dev) ||
+ rt2x00_is_pcie(rt2x00dev)) {
+ /* GPIO #8 controls all paths */
+ rt2x00_set_field32(&reg, GPIO_CTRL_DIR8, 0);
+ if (rf->channel <= 14)
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL8, 1);
+ else
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL8, 0);
+ }
+
+ /* LNA PE control. */
+ if (rt2x00_is_usb(rt2x00dev)) {
+ /* GPIO #4 controls PE0 and PE1,
+ * GPIO #7 controls PE2
+ */
+ rt2x00_set_field32(&reg, GPIO_CTRL_DIR4, 0);
+ rt2x00_set_field32(&reg, GPIO_CTRL_DIR7, 0);
+
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL4, 1);
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 1);
+ } else if (rt2x00_is_pcie(rt2x00dev)) {
+ /* GPIO #4 controls PE0, PE1 and PE2 */
+ rt2x00_set_field32(&reg, GPIO_CTRL_DIR4, 0);
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL4, 1);
+ }
+
+ rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
+
+ /* AGC init */
+ if (rf->channel <= 14)
+ reg = 0x1c + 2 * rt2x00dev->lna_gain;
+ else
+ reg = 0x22 + ((rt2x00dev->lna_gain * 5) / 3);
+
+ rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);
+
+ usleep_range(1000, 1500);
+ }
+
+ if (rt2x00_rt(rt2x00dev, RT3883)) {
+ if (!conf_is_ht40(conf))
+ rt2800_bbp_write(rt2x00dev, 105, 0x34);
+ else
+ rt2800_bbp_write(rt2x00dev, 105, 0x04);
+
+ /* AGC init */
+ if (rf->channel <= 14)
+ reg = 0x2e + rt2x00dev->lna_gain;
+ else
+ reg = 0x20 + ((rt2x00dev->lna_gain * 5) / 3);
+
+ rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);
+
+ usleep_range(1000, 1500);
+ }
+
+ if (rt2x00_rt(rt2x00dev, RT5592) || rt2x00_rt(rt2x00dev, RT6352)) {
+ reg = 0x10;
+ if (!conf_is_ht40(conf)) {
+ if (rt2x00_rt(rt2x00dev, RT6352) &&
+ rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
+ reg |= 0x5;
+ } else {
+ reg |= 0xa;
+ }
+ }
+ rt2800_bbp_write(rt2x00dev, 195, 141);
+ rt2800_bbp_write(rt2x00dev, 196, reg);
+
+ /* AGC init.
+ * Despite the vendor driver using different values here for
+ * RT6352 chip, we use 0x1c for now. This may have to be changed
+ * once TSSI got implemented.
+ */
+ reg = (rf->channel <= 14 ? 0x1c : 0x24) + 2*rt2x00dev->lna_gain;
+ rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);
+
+ if (rt2x00_rt(rt2x00dev, RT5592))
+ rt2800_iq_calibrate(rt2x00dev, rf->channel);
+ }
+
+ if (rt2x00_rt(rt2x00dev, RT6352)) {
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX0,
+ &rt2x00dev->cap_flags)) {
+ reg = rt2800_register_read(rt2x00dev, RF_CONTROL3);
+ reg |= 0x00000101;
+ rt2800_register_write(rt2x00dev, RF_CONTROL3, reg);
+
+ reg = rt2800_register_read(rt2x00dev, RF_BYPASS3);
+ reg |= 0x00000101;
+ rt2800_register_write(rt2x00dev, RF_BYPASS3, reg);
+
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 43, 0x73);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 44, 0x73);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 45, 0x73);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 46, 0x27);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 47, 0xC8);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 48, 0xA4);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 49, 0x05);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 54, 0x27);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 55, 0xC8);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 56, 0xA4);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 57, 0x05);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 58, 0x27);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 59, 0xC8);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 60, 0xA4);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 61, 0x05);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 05, 0x00);
+
+ rt2800_register_write(rt2x00dev, TX0_RF_GAIN_CORRECT,
+ 0x36303636);
+ rt2800_register_write(rt2x00dev, TX0_RF_GAIN_ATTEN,
+ 0x6C6C6B6C);
+ rt2800_register_write(rt2x00dev, TX1_RF_GAIN_ATTEN,
+ 0x6C6C6B6C);
+ }
+ }
+
+ bbp = rt2800_bbp_read(rt2x00dev, 4);
+ rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
+ rt2800_bbp_write(rt2x00dev, 4, bbp);
+
+ bbp = rt2800_bbp_read(rt2x00dev, 3);
+ rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
+ rt2800_bbp_write(rt2x00dev, 3, bbp);
+
+ if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
+ if (conf_is_ht40(conf)) {
+ rt2800_bbp_write(rt2x00dev, 69, 0x1a);
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+ rt2800_bbp_write(rt2x00dev, 73, 0x16);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 69, 0x16);
+ rt2800_bbp_write(rt2x00dev, 70, 0x08);
+ rt2800_bbp_write(rt2x00dev, 73, 0x11);
+ }
+ }
+
+ usleep_range(1000, 1500);
+
+ /*
+ * Clear channel statistic counters
+ */
+ reg = rt2800_register_read(rt2x00dev, CH_IDLE_STA);
+ reg = rt2800_register_read(rt2x00dev, CH_BUSY_STA);
+ reg = rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC);
+
+ /*
+ * Clear update flag
+ */
+ if (rt2x00_rt(rt2x00dev, RT3352) ||
+ rt2x00_rt(rt2x00dev, RT5350)) {
+ bbp = rt2800_bbp_read(rt2x00dev, 49);
+ rt2x00_set_field8(&bbp, BBP49_UPDATE_FLAG, 0);
+ rt2800_bbp_write(rt2x00dev, 49, bbp);
+ }
+}
+
+static int rt2800_get_gain_calibration_delta(struct rt2x00_dev *rt2x00dev)
+{
+ u8 tssi_bounds[9];
+ u8 current_tssi;
+ u16 eeprom;
+ u8 step;
+ int i;
+
+ /*
+ * First check if temperature compensation is supported.
+ */
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
+ if (!rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC))
+ return 0;
+
+ /*
+ * Read TSSI boundaries for temperature compensation from
+ * the EEPROM.
+ *
+ * Array idx 0 1 2 3 4 5 6 7 8
+ * Matching Delta value -4 -3 -2 -1 0 +1 +2 +3 +4
+ * Example TSSI bounds 0xF0 0xD0 0xB5 0xA0 0x88 0x45 0x25 0x15 0x00
+ */
+ if (rt2x00dev->curr_band == NL80211_BAND_2GHZ) {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG1);
+ tssi_bounds[0] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_BG1_MINUS4);
+ tssi_bounds[1] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_BG1_MINUS3);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG2);
+ tssi_bounds[2] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_BG2_MINUS2);
+ tssi_bounds[3] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_BG2_MINUS1);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG3);
+ tssi_bounds[4] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_BG3_REF);
+ tssi_bounds[5] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_BG3_PLUS1);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG4);
+ tssi_bounds[6] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_BG4_PLUS2);
+ tssi_bounds[7] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_BG4_PLUS3);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG5);
+ tssi_bounds[8] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_BG5_PLUS4);
+
+ step = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_BG5_AGC_STEP);
+ } else {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A1);
+ tssi_bounds[0] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_A1_MINUS4);
+ tssi_bounds[1] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_A1_MINUS3);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A2);
+ tssi_bounds[2] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_A2_MINUS2);
+ tssi_bounds[3] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_A2_MINUS1);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A3);
+ tssi_bounds[4] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_A3_REF);
+ tssi_bounds[5] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_A3_PLUS1);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A4);
+ tssi_bounds[6] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_A4_PLUS2);
+ tssi_bounds[7] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_A4_PLUS3);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A5);
+ tssi_bounds[8] = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_A5_PLUS4);
+
+ step = rt2x00_get_field16(eeprom,
+ EEPROM_TSSI_BOUND_A5_AGC_STEP);
+ }
+
+ /*
+ * Check if temperature compensation is supported.
+ */
+ if (tssi_bounds[4] == 0xff || step == 0xff)
+ return 0;
+
+ /*
+ * Read current TSSI (BBP 49).
+ */
+ current_tssi = rt2800_bbp_read(rt2x00dev, 49);
+
+ /*
+ * Compare TSSI value (BBP49) with the compensation boundaries
+ * from the EEPROM and increase or decrease tx power.
+ */
+ for (i = 0; i <= 3; i++) {
+ if (current_tssi > tssi_bounds[i])
+ break;
+ }
+
+ if (i == 4) {
+ for (i = 8; i >= 5; i--) {
+ if (current_tssi < tssi_bounds[i])
+ break;
+ }
+ }
+
+ return (i - 4) * step;
+}
+
+static int rt2800_get_txpower_bw_comp(struct rt2x00_dev *rt2x00dev,
+ enum nl80211_band band)
+{
+ u16 eeprom;
+ u8 comp_en;
+ u8 comp_type;
+ int comp_value = 0;
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TXPOWER_DELTA);
+
+ /*
+ * HT40 compensation not required.
+ */
+ if (eeprom == 0xffff ||
+ !test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
+ return 0;
+
+ if (band == NL80211_BAND_2GHZ) {
+ comp_en = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_DELTA_ENABLE_2G);
+ if (comp_en) {
+ comp_type = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_DELTA_TYPE_2G);
+ comp_value = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_DELTA_VALUE_2G);
+ if (!comp_type)
+ comp_value = -comp_value;
+ }
+ } else {
+ comp_en = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_DELTA_ENABLE_5G);
+ if (comp_en) {
+ comp_type = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_DELTA_TYPE_5G);
+ comp_value = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_DELTA_VALUE_5G);
+ if (!comp_type)
+ comp_value = -comp_value;
+ }
+ }
+
+ return comp_value;
+}
+
+static int rt2800_get_txpower_reg_delta(struct rt2x00_dev *rt2x00dev,
+ int power_level, int max_power)
+{
+ int delta;
+
+ if (rt2x00_has_cap_power_limit(rt2x00dev))
+ return 0;
+
+ /*
+ * XXX: We don't know the maximum transmit power of our hardware since
+ * the EEPROM doesn't expose it. We only know that we are calibrated
+ * to 100% tx power.
+ *
+ * Hence, we assume the regulatory limit that cfg80211 calulated for
+ * the current channel is our maximum and if we are requested to lower
+ * the value we just reduce our tx power accordingly.
+ */
+ delta = power_level - max_power;
+ return min(delta, 0);
+}
+
+static u8 rt2800_compensate_txpower(struct rt2x00_dev *rt2x00dev, int is_rate_b,
+ enum nl80211_band band, int power_level,
+ u8 txpower, int delta)
+{
+ u16 eeprom;
+ u8 criterion;
+ u8 eirp_txpower;
+ u8 eirp_txpower_criterion;
+ u8 reg_limit;
+
+ if (rt2x00_rt(rt2x00dev, RT3593))
+ return min_t(u8, txpower, 0xc);
+
+ if (rt2x00_rt(rt2x00dev, RT3883))
+ return min_t(u8, txpower, 0xf);
+
+ if (rt2x00_has_cap_power_limit(rt2x00dev)) {
+ /*
+ * Check if eirp txpower exceed txpower_limit.
+ * We use OFDM 6M as criterion and its eirp txpower
+ * is stored at EEPROM_EIRP_MAX_TX_POWER.
+ * .11b data rate need add additional 4dbm
+ * when calculating eirp txpower.
+ */
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev,
+ EEPROM_TXPOWER_BYRATE,
+ 1);
+ criterion = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_BYRATE_RATE0);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER);
+
+ if (band == NL80211_BAND_2GHZ)
+ eirp_txpower_criterion = rt2x00_get_field16(eeprom,
+ EEPROM_EIRP_MAX_TX_POWER_2GHZ);
+ else
+ eirp_txpower_criterion = rt2x00_get_field16(eeprom,
+ EEPROM_EIRP_MAX_TX_POWER_5GHZ);
+
+ eirp_txpower = eirp_txpower_criterion + (txpower - criterion) +
+ (is_rate_b ? 4 : 0) + delta;
+
+ reg_limit = (eirp_txpower > power_level) ?
+ (eirp_txpower - power_level) : 0;
+ } else
+ reg_limit = 0;
+
+ txpower = max(0, txpower + delta - reg_limit);
+ return min_t(u8, txpower, 0xc);
+}
+
+
+enum {
+ TX_PWR_CFG_0_IDX,
+ TX_PWR_CFG_1_IDX,
+ TX_PWR_CFG_2_IDX,
+ TX_PWR_CFG_3_IDX,
+ TX_PWR_CFG_4_IDX,
+ TX_PWR_CFG_5_IDX,
+ TX_PWR_CFG_6_IDX,
+ TX_PWR_CFG_7_IDX,
+ TX_PWR_CFG_8_IDX,
+ TX_PWR_CFG_9_IDX,
+ TX_PWR_CFG_0_EXT_IDX,
+ TX_PWR_CFG_1_EXT_IDX,
+ TX_PWR_CFG_2_EXT_IDX,
+ TX_PWR_CFG_3_EXT_IDX,
+ TX_PWR_CFG_4_EXT_IDX,
+ TX_PWR_CFG_IDX_COUNT,
+};
+
+static void rt2800_config_txpower_rt3593(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_channel *chan,
+ int power_level)
+{
+ u8 txpower;
+ u16 eeprom;
+ u32 regs[TX_PWR_CFG_IDX_COUNT];
+ unsigned int offset;
+ enum nl80211_band band = chan->band;
+ int delta;
+ int i;
+
+ memset(regs, '\0', sizeof(regs));
+
+ /* TODO: adapt TX power reduction from the rt28xx code */
+
+ /* calculate temperature compensation delta */
+ delta = rt2800_get_gain_calibration_delta(rt2x00dev);
+
+ if (band == NL80211_BAND_5GHZ)
+ offset = 16;
+ else
+ offset = 0;
+
+ if (test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
+ offset += 8;
+
+ /* read the next four txpower values */
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+ offset);
+
+ /* CCK 1MBS,2MBS */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 1, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+ TX_PWR_CFG_0_CCK1_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+ TX_PWR_CFG_0_CCK1_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
+ TX_PWR_CFG_0_EXT_CCK1_CH2, txpower);
+
+ /* CCK 5.5MBS,11MBS */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 1, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+ TX_PWR_CFG_0_CCK5_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+ TX_PWR_CFG_0_CCK5_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
+ TX_PWR_CFG_0_EXT_CCK5_CH2, txpower);
+
+ /* OFDM 6MBS,9MBS */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+ TX_PWR_CFG_0_OFDM6_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+ TX_PWR_CFG_0_OFDM6_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
+ TX_PWR_CFG_0_EXT_OFDM6_CH2, txpower);
+
+ /* OFDM 12MBS,18MBS */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+ TX_PWR_CFG_0_OFDM12_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+ TX_PWR_CFG_0_OFDM12_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
+ TX_PWR_CFG_0_EXT_OFDM12_CH2, txpower);
+
+ /* read the next four txpower values */
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+ offset + 1);
+
+ /* OFDM 24MBS,36MBS */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+ TX_PWR_CFG_1_OFDM24_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+ TX_PWR_CFG_1_OFDM24_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
+ TX_PWR_CFG_1_EXT_OFDM24_CH2, txpower);
+
+ /* OFDM 48MBS */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+ TX_PWR_CFG_1_OFDM48_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+ TX_PWR_CFG_1_OFDM48_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
+ TX_PWR_CFG_1_EXT_OFDM48_CH2, txpower);
+
+ /* OFDM 54MBS */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+ TX_PWR_CFG_7_OFDM54_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+ TX_PWR_CFG_7_OFDM54_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+ TX_PWR_CFG_7_OFDM54_CH2, txpower);
+
+ /* read the next four txpower values */
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+ offset + 2);
+
+ /* MCS 0,1 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+ TX_PWR_CFG_1_MCS0_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+ TX_PWR_CFG_1_MCS0_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
+ TX_PWR_CFG_1_EXT_MCS0_CH2, txpower);
+
+ /* MCS 2,3 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+ TX_PWR_CFG_1_MCS2_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+ TX_PWR_CFG_1_MCS2_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
+ TX_PWR_CFG_1_EXT_MCS2_CH2, txpower);
+
+ /* MCS 4,5 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+ TX_PWR_CFG_2_MCS4_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+ TX_PWR_CFG_2_MCS4_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
+ TX_PWR_CFG_2_EXT_MCS4_CH2, txpower);
+
+ /* MCS 6 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+ TX_PWR_CFG_2_MCS6_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+ TX_PWR_CFG_2_MCS6_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
+ TX_PWR_CFG_2_EXT_MCS6_CH2, txpower);
+
+ /* read the next four txpower values */
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+ offset + 3);
+
+ /* MCS 7 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+ TX_PWR_CFG_7_MCS7_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+ TX_PWR_CFG_7_MCS7_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+ TX_PWR_CFG_7_MCS7_CH2, txpower);
+
+ /* MCS 8,9 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+ TX_PWR_CFG_2_MCS8_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+ TX_PWR_CFG_2_MCS8_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
+ TX_PWR_CFG_2_EXT_MCS8_CH2, txpower);
+
+ /* MCS 10,11 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+ TX_PWR_CFG_2_MCS10_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+ TX_PWR_CFG_2_MCS10_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
+ TX_PWR_CFG_2_EXT_MCS10_CH2, txpower);
+
+ /* MCS 12,13 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+ TX_PWR_CFG_3_MCS12_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+ TX_PWR_CFG_3_MCS12_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
+ TX_PWR_CFG_3_EXT_MCS12_CH2, txpower);
+
+ /* read the next four txpower values */
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+ offset + 4);
+
+ /* MCS 14 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+ TX_PWR_CFG_3_MCS14_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+ TX_PWR_CFG_3_MCS14_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
+ TX_PWR_CFG_3_EXT_MCS14_CH2, txpower);
+
+ /* MCS 15 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+ TX_PWR_CFG_8_MCS15_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+ TX_PWR_CFG_8_MCS15_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+ TX_PWR_CFG_8_MCS15_CH2, txpower);
+
+ /* MCS 16,17 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+ TX_PWR_CFG_5_MCS16_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+ TX_PWR_CFG_5_MCS16_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+ TX_PWR_CFG_5_MCS16_CH2, txpower);
+
+ /* MCS 18,19 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+ TX_PWR_CFG_5_MCS18_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+ TX_PWR_CFG_5_MCS18_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+ TX_PWR_CFG_5_MCS18_CH2, txpower);
+
+ /* read the next four txpower values */
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+ offset + 5);
+
+ /* MCS 20,21 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+ TX_PWR_CFG_6_MCS20_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+ TX_PWR_CFG_6_MCS20_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+ TX_PWR_CFG_6_MCS20_CH2, txpower);
+
+ /* MCS 22 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+ TX_PWR_CFG_6_MCS22_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+ TX_PWR_CFG_6_MCS22_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+ TX_PWR_CFG_6_MCS22_CH2, txpower);
+
+ /* MCS 23 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+ TX_PWR_CFG_8_MCS23_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+ TX_PWR_CFG_8_MCS23_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+ TX_PWR_CFG_8_MCS23_CH2, txpower);
+
+ /* read the next four txpower values */
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+ offset + 6);
+
+ /* STBC, MCS 0,1 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+ TX_PWR_CFG_3_STBC0_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+ TX_PWR_CFG_3_STBC0_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
+ TX_PWR_CFG_3_EXT_STBC0_CH2, txpower);
+
+ /* STBC, MCS 2,3 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+ TX_PWR_CFG_3_STBC2_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+ TX_PWR_CFG_3_STBC2_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
+ TX_PWR_CFG_3_EXT_STBC2_CH2, txpower);
+
+ /* STBC, MCS 4,5 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_4_EXT_IDX], TX_PWR_CFG_RATE0,
+ txpower);
+
+ /* STBC, MCS 6 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE2, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE3, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_4_EXT_IDX], TX_PWR_CFG_RATE2,
+ txpower);
+
+ /* read the next four txpower values */
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+ offset + 7);
+
+ /* STBC, MCS 7 */
+ txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+ txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+ txpower, delta);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_9_IDX],
+ TX_PWR_CFG_9_STBC7_CH0, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_9_IDX],
+ TX_PWR_CFG_9_STBC7_CH1, txpower);
+ rt2x00_set_field32(&regs[TX_PWR_CFG_9_IDX],
+ TX_PWR_CFG_9_STBC7_CH2, txpower);
+
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_0, regs[TX_PWR_CFG_0_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_1, regs[TX_PWR_CFG_1_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_2, regs[TX_PWR_CFG_2_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_3, regs[TX_PWR_CFG_3_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_4, regs[TX_PWR_CFG_4_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_5, regs[TX_PWR_CFG_5_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_6, regs[TX_PWR_CFG_6_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_7, regs[TX_PWR_CFG_7_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_8, regs[TX_PWR_CFG_8_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_9, regs[TX_PWR_CFG_9_IDX]);
+
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_0_EXT,
+ regs[TX_PWR_CFG_0_EXT_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_1_EXT,
+ regs[TX_PWR_CFG_1_EXT_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_2_EXT,
+ regs[TX_PWR_CFG_2_EXT_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_3_EXT,
+ regs[TX_PWR_CFG_3_EXT_IDX]);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_4_EXT,
+ regs[TX_PWR_CFG_4_EXT_IDX]);
+
+ for (i = 0; i < TX_PWR_CFG_IDX_COUNT; i++)
+ rt2x00_dbg(rt2x00dev,
+ "band:%cGHz, BW:%c0MHz, TX_PWR_CFG_%d%s = %08lx\n",
+ (band == NL80211_BAND_5GHZ) ? '5' : '2',
+ (test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) ?
+ '4' : '2',
+ (i > TX_PWR_CFG_9_IDX) ?
+ (i - TX_PWR_CFG_9_IDX - 1) : i,
+ (i > TX_PWR_CFG_9_IDX) ? "_EXT" : "",
+ (unsigned long) regs[i]);
+}
+
+static void rt2800_config_txpower_rt6352(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_channel *chan,
+ int power_level)
+{
+ u32 reg, pwreg;
+ u16 eeprom;
+ u32 data, gdata;
+ u8 t, i;
+ enum nl80211_band band = chan->band;
+ int delta;
+
+ /* Warn user if bw_comp is set in EEPROM */
+ delta = rt2800_get_txpower_bw_comp(rt2x00dev, band);
+
+ if (delta)
+ rt2x00_warn(rt2x00dev, "ignoring EEPROM HT40 power delta: %d\n",
+ delta);
+
+ /* populate TX_PWR_CFG_0 up to TX_PWR_CFG_4 from EEPROM for HT20, limit
+ * value to 0x3f and replace 0x20 by 0x21 as this is what the vendor
+ * driver does as well, though it looks kinda wrong.
+ * Maybe some misunderstanding of what a signed 8-bit value is? Maybe
+ * the hardware has a problem handling 0x20, and as the code initially
+ * used a fixed offset between HT20 and HT40 rates they had to work-
+ * around that issue and most likely just forgot about it later on.
+ * Maybe we should use rt2800_get_txpower_bw_comp() here as well,
+ * however, the corresponding EEPROM value is not respected by the
+ * vendor driver, so maybe this is rather being taken care of the
+ * TXALC and the driver doesn't need to handle it...?
+ * Though this is all very awkward, just do as they did, as that's what
+ * board vendors expected when they populated the EEPROM...
+ */
+ for (i = 0; i < 5; i++) {
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev,
+ EEPROM_TXPOWER_BYRATE,
+ i * 2);
+
+ data = eeprom;
+
+ t = eeprom & 0x3f;
+ if (t == 32)
+ t++;
+
+ gdata = t;
+
+ t = (eeprom & 0x3f00) >> 8;
+ if (t == 32)
+ t++;
+
+ gdata |= (t << 8);
+
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev,
+ EEPROM_TXPOWER_BYRATE,
+ (i * 2) + 1);
+
+ t = eeprom & 0x3f;
+ if (t == 32)
+ t++;
+
+ gdata |= (t << 16);
+
+ t = (eeprom & 0x3f00) >> 8;
+ if (t == 32)
+ t++;
+
+ gdata |= (t << 24);
+ data |= (eeprom << 16);
+
+ if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) {
+ /* HT20 */
+ if (data != 0xffffffff)
+ rt2800_register_write(rt2x00dev,
+ TX_PWR_CFG_0 + (i * 4),
+ data);
+ } else {
+ /* HT40 */
+ if (gdata != 0xffffffff)
+ rt2800_register_write(rt2x00dev,
+ TX_PWR_CFG_0 + (i * 4),
+ gdata);
+ }
+ }
+
+ /* Aparently Ralink ran out of space in the BYRATE calibration section
+ * of the EERPOM which is copied to the corresponding TX_PWR_CFG_x
+ * registers. As recent 2T chips use 8-bit instead of 4-bit values for
+ * power-offsets more space would be needed. Ralink decided to keep the
+ * EEPROM layout untouched and rather have some shared values covering
+ * multiple bitrates.
+ * Populate the registers not covered by the EEPROM in the same way the
+ * vendor driver does.
+ */
+
+ /* For OFDM 54MBS use value from OFDM 48MBS */
+ pwreg = 0;
+ reg = rt2800_register_read(rt2x00dev, TX_PWR_CFG_1);
+ t = rt2x00_get_field32(reg, TX_PWR_CFG_1B_48MBS);
+ rt2x00_set_field32(&pwreg, TX_PWR_CFG_7B_54MBS, t);
+
+ /* For MCS 7 use value from MCS 6 */
+ reg = rt2800_register_read(rt2x00dev, TX_PWR_CFG_2);
+ t = rt2x00_get_field32(reg, TX_PWR_CFG_2B_MCS6_MCS7);
+ rt2x00_set_field32(&pwreg, TX_PWR_CFG_7B_MCS7, t);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_7, pwreg);
+
+ /* For MCS 15 use value from MCS 14 */
+ pwreg = 0;
+ reg = rt2800_register_read(rt2x00dev, TX_PWR_CFG_3);
+ t = rt2x00_get_field32(reg, TX_PWR_CFG_3B_MCS14);
+ rt2x00_set_field32(&pwreg, TX_PWR_CFG_8B_MCS15, t);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_8, pwreg);
+
+ /* For STBC MCS 7 use value from STBC MCS 6 */
+ pwreg = 0;
+ reg = rt2800_register_read(rt2x00dev, TX_PWR_CFG_4);
+ t = rt2x00_get_field32(reg, TX_PWR_CFG_4B_STBC_MCS6);
+ rt2x00_set_field32(&pwreg, TX_PWR_CFG_9B_STBC_MCS7, t);
+ rt2800_register_write(rt2x00dev, TX_PWR_CFG_9, pwreg);
+
+ rt2800_config_alc_rt6352(rt2x00dev, chan, power_level);
+
+ /* TODO: temperature compensation code! */
+}
+
+/*
+ * We configure transmit power using MAC TX_PWR_CFG_{0,...,N} registers and
+ * BBP R1 register. TX_PWR_CFG_X allow to configure per rate TX power values,
+ * 4 bits for each rate (tune from 0 to 15 dBm). BBP_R1 controls transmit power
+ * for all rates, but allow to set only 4 discrete values: -12, -6, 0 and 6 dBm.
+ * Reference per rate transmit power values are located in the EEPROM at
+ * EEPROM_TXPOWER_BYRATE offset. We adjust them and BBP R1 settings according to
+ * current conditions (i.e. band, bandwidth, temperature, user settings).
+ */
+static void rt2800_config_txpower_rt28xx(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_channel *chan,
+ int power_level)
+{
+ u8 txpower, r1;
+ u16 eeprom;
+ u32 reg, offset;
+ int i, is_rate_b, delta, power_ctrl;
+ enum nl80211_band band = chan->band;
+
+ /*
+ * Calculate HT40 compensation. For 40MHz we need to add or subtract
+ * value read from EEPROM (different for 2GHz and for 5GHz).
+ */
+ delta = rt2800_get_txpower_bw_comp(rt2x00dev, band);
+
+ /*
+ * Calculate temperature compensation. Depends on measurement of current
+ * TSSI (Transmitter Signal Strength Indication) we know TX power (due
+ * to temperature or maybe other factors) is smaller or bigger than
+ * expected. We adjust it, based on TSSI reference and boundaries values
+ * provided in EEPROM.
+ */
+ switch (rt2x00dev->chip.rt) {
+ case RT2860:
+ case RT2872:
+ case RT2883:
+ case RT3070:
+ case RT3071:
+ case RT3090:
+ case RT3572:
+ delta += rt2800_get_gain_calibration_delta(rt2x00dev);
+ break;
+ default:
+ /* TODO: temperature compensation code for other chips. */
+ break;
+ }
+
+ /*
+ * Decrease power according to user settings, on devices with unknown
+ * maximum tx power. For other devices we take user power_level into
+ * consideration on rt2800_compensate_txpower().
+ */
+ delta += rt2800_get_txpower_reg_delta(rt2x00dev, power_level,
+ chan->max_power);
+
+ /*
+ * BBP_R1 controls TX power for all rates, it allow to set the following
+ * gains -12, -6, 0, +6 dBm by setting values 2, 1, 0, 3 respectively.
+ *
+ * TODO: we do not use +6 dBm option to do not increase power beyond
+ * regulatory limit, however this could be utilized for devices with
+ * CAPABILITY_POWER_LIMIT.
+ */
+ if (delta <= -12) {
+ power_ctrl = 2;
+ delta += 12;
+ } else if (delta <= -6) {
+ power_ctrl = 1;
+ delta += 6;
+ } else {
+ power_ctrl = 0;
+ }
+ r1 = rt2800_bbp_read(rt2x00dev, 1);
+ rt2x00_set_field8(&r1, BBP1_TX_POWER_CTRL, power_ctrl);
+ rt2800_bbp_write(rt2x00dev, 1, r1);
+
+ offset = TX_PWR_CFG_0;
+
+ for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
+ /* just to be safe */
+ if (offset > TX_PWR_CFG_4)
+ break;
+
+ reg = rt2800_register_read(rt2x00dev, offset);
+
+ /* read the next four txpower values */
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev,
+ EEPROM_TXPOWER_BYRATE,
+ i);
+
+ is_rate_b = i ? 0 : 1;
+ /*
+ * TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
+ * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
+ * TX_PWR_CFG_4: unknown
+ */
+ txpower = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_BYRATE_RATE0);
+ txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+ power_level, txpower, delta);
+ rt2x00_set_field32(&reg, TX_PWR_CFG_RATE0, txpower);
+
+ /*
+ * TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
+ * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
+ * TX_PWR_CFG_4: unknown
+ */
+ txpower = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_BYRATE_RATE1);
+ txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+ power_level, txpower, delta);
+ rt2x00_set_field32(&reg, TX_PWR_CFG_RATE1, txpower);
+
+ /*
+ * TX_PWR_CFG_0: 5.5MBS, TX_PWR_CFG_1: 48MBS,
+ * TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14,
+ * TX_PWR_CFG_4: unknown
+ */
+ txpower = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_BYRATE_RATE2);
+ txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+ power_level, txpower, delta);
+ rt2x00_set_field32(&reg, TX_PWR_CFG_RATE2, txpower);
+
+ /*
+ * TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
+ * TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15,
+ * TX_PWR_CFG_4: unknown
+ */
+ txpower = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_BYRATE_RATE3);
+ txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+ power_level, txpower, delta);
+ rt2x00_set_field32(&reg, TX_PWR_CFG_RATE3, txpower);
+
+ /* read the next four txpower values */
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev,
+ EEPROM_TXPOWER_BYRATE,
+ i + 1);
+
+ is_rate_b = 0;
+ /*
+ * TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
+ * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
+ * TX_PWR_CFG_4: unknown
+ */
+ txpower = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_BYRATE_RATE0);
+ txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+ power_level, txpower, delta);
+ rt2x00_set_field32(&reg, TX_PWR_CFG_RATE4, txpower);
+
+ /*
+ * TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
+ * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
+ * TX_PWR_CFG_4: unknown
+ */
+ txpower = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_BYRATE_RATE1);
+ txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+ power_level, txpower, delta);
+ rt2x00_set_field32(&reg, TX_PWR_CFG_RATE5, txpower);
+
+ /*
+ * TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
+ * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
+ * TX_PWR_CFG_4: unknown
+ */
+ txpower = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_BYRATE_RATE2);
+ txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+ power_level, txpower, delta);
+ rt2x00_set_field32(&reg, TX_PWR_CFG_RATE6, txpower);
+
+ /*
+ * TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
+ * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
+ * TX_PWR_CFG_4: unknown
+ */
+ txpower = rt2x00_get_field16(eeprom,
+ EEPROM_TXPOWER_BYRATE_RATE3);
+ txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+ power_level, txpower, delta);
+ rt2x00_set_field32(&reg, TX_PWR_CFG_RATE7, txpower);
+
+ rt2800_register_write(rt2x00dev, offset, reg);
+
+ /* next TX_PWR_CFG register */
+ offset += 4;
+ }
+}
+
+static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_channel *chan,
+ int power_level)
+{
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883))
+ rt2800_config_txpower_rt3593(rt2x00dev, chan, power_level);
+ else if (rt2x00_rt(rt2x00dev, RT6352))
+ rt2800_config_txpower_rt6352(rt2x00dev, chan, power_level);
+ else
+ rt2800_config_txpower_rt28xx(rt2x00dev, chan, power_level);
+}
+
+void rt2800_gain_calibration(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_config_txpower(rt2x00dev, rt2x00dev->hw->conf.chandef.chan,
+ rt2x00dev->tx_power);
+}
+EXPORT_SYMBOL_GPL(rt2800_gain_calibration);
+
+void rt2800_vco_calibration(struct rt2x00_dev *rt2x00dev)
+{
+ u32 tx_pin;
+ u8 rfcsr;
+ unsigned long min_sleep = 0;
+
+ /*
+ * A voltage-controlled oscillator(VCO) is an electronic oscillator
+ * designed to be controlled in oscillation frequency by a voltage
+ * input. Maybe the temperature will affect the frequency of
+ * oscillation to be shifted. The VCO calibration will be called
+ * periodically to adjust the frequency to be precision.
+ */
+
+ tx_pin = rt2800_register_read(rt2x00dev, TX_PIN_CFG);
+ tx_pin &= TX_PIN_CFG_PA_PE_DISABLE;
+ rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
+
+ switch (rt2x00dev->chip.rf) {
+ case RF2020:
+ case RF3020:
+ case RF3021:
+ case RF3022:
+ case RF3320:
+ case RF3052:
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 7);
+ rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
+ rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
+ break;
+ case RF3053:
+ case RF3070:
+ case RF3290:
+ case RF3853:
+ case RF5350:
+ case RF5360:
+ case RF5362:
+ case RF5370:
+ case RF5372:
+ case RF5390:
+ case RF5392:
+ case RF5592:
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
+ rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
+ rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
+ min_sleep = 1000;
+ break;
+ case RF7620:
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 4, 0x0C);
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 4);
+ rt2x00_set_field8(&rfcsr, RFCSR4_VCOCAL_EN, 1);
+ rt2800_rfcsr_write(rt2x00dev, 4, rfcsr);
+ min_sleep = 2000;
+ break;
+ default:
+ WARN_ONCE(1, "Not supported RF chipset %x for VCO recalibration",
+ rt2x00dev->chip.rf);
+ return;
+ }
+
+ if (min_sleep > 0)
+ usleep_range(min_sleep, min_sleep * 2);
+
+ tx_pin = rt2800_register_read(rt2x00dev, TX_PIN_CFG);
+ if (rt2x00dev->rf_channel <= 14) {
+ switch (rt2x00dev->default_ant.tx_chain_num) {
+ case 3:
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G2_EN, 1);
+ fallthrough;
+ case 2:
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
+ fallthrough;
+ case 1:
+ default:
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
+ break;
+ }
+ } else {
+ switch (rt2x00dev->default_ant.tx_chain_num) {
+ case 3:
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A2_EN, 1);
+ fallthrough;
+ case 2:
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
+ fallthrough;
+ case 1:
+ default:
+ rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, 1);
+ break;
+ }
+ }
+ rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
+
+ if (rt2x00_rt(rt2x00dev, RT6352)) {
+ if (rt2x00dev->default_ant.rx_chain_num == 1) {
+ rt2800_bbp_write(rt2x00dev, 91, 0x07);
+ rt2800_bbp_write(rt2x00dev, 95, 0x1A);
+ rt2800_bbp_write(rt2x00dev, 195, 128);
+ rt2800_bbp_write(rt2x00dev, 196, 0xA0);
+ rt2800_bbp_write(rt2x00dev, 195, 170);
+ rt2800_bbp_write(rt2x00dev, 196, 0x12);
+ rt2800_bbp_write(rt2x00dev, 195, 171);
+ rt2800_bbp_write(rt2x00dev, 196, 0x10);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 91, 0x06);
+ rt2800_bbp_write(rt2x00dev, 95, 0x9A);
+ rt2800_bbp_write(rt2x00dev, 195, 128);
+ rt2800_bbp_write(rt2x00dev, 196, 0xE0);
+ rt2800_bbp_write(rt2x00dev, 195, 170);
+ rt2800_bbp_write(rt2x00dev, 196, 0x30);
+ rt2800_bbp_write(rt2x00dev, 195, 171);
+ rt2800_bbp_write(rt2x00dev, 196, 0x30);
+ }
+
+ if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
+ rt2800_bbp_write(rt2x00dev, 75, 0x68);
+ rt2800_bbp_write(rt2x00dev, 76, 0x4C);
+ rt2800_bbp_write(rt2x00dev, 79, 0x1C);
+ rt2800_bbp_write(rt2x00dev, 80, 0x0C);
+ rt2800_bbp_write(rt2x00dev, 82, 0xB6);
+ }
+
+ /* On 11A, We should delay and wait RF/BBP to be stable
+ * and the appropriate time should be 1000 micro seconds
+ * 2005/06/05 - On 11G, we also need this delay time.
+ * Otherwise it's difficult to pass the WHQL.
+ */
+ usleep_range(1000, 1500);
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800_vco_calibration);
+
+static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ u32 reg;
+
+ reg = rt2800_register_read(rt2x00dev, TX_RTY_CFG);
+ rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
+ libconf->conf->short_frame_max_tx_count);
+ rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
+ libconf->conf->long_frame_max_tx_count);
+ rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
+}
+
+static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ enum dev_state state =
+ (libconf->conf->flags & IEEE80211_CONF_PS) ?
+ STATE_SLEEP : STATE_AWAKE;
+ u32 reg;
+
+ if (state == STATE_SLEEP) {
+ rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
+
+ reg = rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG);
+ rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
+ rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
+ libconf->conf->listen_interval - 1);
+ rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
+ rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
+
+ rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+ } else {
+ reg = rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG);
+ rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
+ rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
+ rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
+ rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
+
+ rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+ }
+}
+
+void rt2800_config(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf,
+ const unsigned int flags)
+{
+ /* Always recalculate LNA gain before changing configuration */
+ rt2800_config_lna_gain(rt2x00dev, libconf);
+
+ if (flags & IEEE80211_CONF_CHANGE_CHANNEL) {
+ /*
+ * To provide correct survey data for survey-based ACS algorithm
+ * we have to save survey data for current channel before switching.
+ */
+ rt2800_update_survey(rt2x00dev);
+
+ rt2800_config_channel(rt2x00dev, libconf->conf,
+ &libconf->rf, &libconf->channel);
+ rt2800_config_txpower(rt2x00dev, libconf->conf->chandef.chan,
+ libconf->conf->power_level);
+ }
+ if (flags & IEEE80211_CONF_CHANGE_POWER)
+ rt2800_config_txpower(rt2x00dev, libconf->conf->chandef.chan,
+ libconf->conf->power_level);
+ if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+ rt2800_config_retry_limit(rt2x00dev, libconf);
+ if (flags & IEEE80211_CONF_CHANGE_PS)
+ rt2800_config_ps(rt2x00dev, libconf);
+}
+EXPORT_SYMBOL_GPL(rt2800_config);
+
+/*
+ * Link tuning
+ */
+void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
+{
+ u32 reg;
+
+ /*
+ * Update FCS error count from register.
+ */
+ reg = rt2800_register_read(rt2x00dev, RX_STA_CNT0);
+ qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
+}
+EXPORT_SYMBOL_GPL(rt2800_link_stats);
+
+static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
+{
+ u8 vgc;
+
+ if (rt2x00dev->curr_band == NL80211_BAND_2GHZ) {
+ if (rt2x00_rt(rt2x00dev, RT3070) ||
+ rt2x00_rt(rt2x00dev, RT3071) ||
+ rt2x00_rt(rt2x00dev, RT3090) ||
+ rt2x00_rt(rt2x00dev, RT3290) ||
+ rt2x00_rt(rt2x00dev, RT3390) ||
+ rt2x00_rt(rt2x00dev, RT3572) ||
+ rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT5390) ||
+ rt2x00_rt(rt2x00dev, RT5392) ||
+ rt2x00_rt(rt2x00dev, RT5592) ||
+ rt2x00_rt(rt2x00dev, RT6352))
+ vgc = 0x1c + (2 * rt2x00dev->lna_gain);
+ else
+ vgc = 0x2e + rt2x00dev->lna_gain;
+ } else { /* 5GHZ band */
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883))
+ vgc = 0x20 + (rt2x00dev->lna_gain * 5) / 3;
+ else if (rt2x00_rt(rt2x00dev, RT5592))
+ vgc = 0x24 + (2 * rt2x00dev->lna_gain);
+ else {
+ if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
+ vgc = 0x32 + (rt2x00dev->lna_gain * 5) / 3;
+ else
+ vgc = 0x3a + (rt2x00dev->lna_gain * 5) / 3;
+ }
+ }
+
+ return vgc;
+}
+
+static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual, u8 vgc_level)
+{
+ if (qual->vgc_level != vgc_level) {
+ if (rt2x00_rt(rt2x00dev, RT3572) ||
+ rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883) ||
+ rt2x00_rt(rt2x00dev, RT6352)) {
+ rt2800_bbp_write_with_rx_chain(rt2x00dev, 66,
+ vgc_level);
+ } else if (rt2x00_rt(rt2x00dev, RT5592)) {
+ rt2800_bbp_write(rt2x00dev, 83, qual->rssi > -65 ? 0x4a : 0x7a);
+ rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, vgc_level);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 66, vgc_level);
+ }
+
+ qual->vgc_level = vgc_level;
+ qual->vgc_level_reg = vgc_level;
+ }
+}
+
+void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
+{
+ rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
+}
+EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
+
+void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
+ const u32 count)
+{
+ u8 vgc;
+
+ if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
+ return;
+
+ /* When RSSI is better than a certain threshold, increase VGC
+ * with a chip specific value in order to improve the balance
+ * between sensibility and noise isolation.
+ */
+
+ vgc = rt2800_get_default_vgc(rt2x00dev);
+
+ switch (rt2x00dev->chip.rt) {
+ case RT3572:
+ case RT3593:
+ if (qual->rssi > -65) {
+ if (rt2x00dev->curr_band == NL80211_BAND_2GHZ)
+ vgc += 0x20;
+ else
+ vgc += 0x10;
+ }
+ break;
+
+ case RT3883:
+ if (qual->rssi > -65)
+ vgc += 0x10;
+ break;
+
+ case RT5592:
+ if (qual->rssi > -65)
+ vgc += 0x20;
+ break;
+
+ default:
+ if (qual->rssi > -80)
+ vgc += 0x10;
+ break;
+ }
+
+ rt2800_set_vgc(rt2x00dev, qual, vgc);
+}
+EXPORT_SYMBOL_GPL(rt2800_link_tuner);
+
+/*
+ * Initialization functions.
+ */
+static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u32 reg;
+ u16 eeprom;
+ unsigned int i;
+ int ret;
+
+ rt2800_disable_wpdma(rt2x00dev);
+
+ ret = rt2800_drv_init_registers(rt2x00dev);
+ if (ret)
+ return ret;
+
+ rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
+ rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
+
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
+
+ reg = rt2800_register_read(rt2x00dev, BCN_TIME_CFG);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
+ rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+ rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);
+
+ reg = rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG);
+ rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, 9);
+ rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
+ rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
+
+ if (rt2x00_rt(rt2x00dev, RT3290)) {
+ reg = rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL);
+ if (rt2x00_get_field32(reg, WLAN_EN) == 1) {
+ rt2x00_set_field32(&reg, PCIE_APP0_CLK_REQ, 1);
+ rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
+ }
+
+ reg = rt2800_register_read(rt2x00dev, CMB_CTRL);
+ if (!(rt2x00_get_field32(reg, LDO0_EN) == 1)) {
+ rt2x00_set_field32(&reg, LDO0_EN, 1);
+ rt2x00_set_field32(&reg, LDO_BGSEL, 3);
+ rt2800_register_write(rt2x00dev, CMB_CTRL, reg);
+ }
+
+ reg = rt2800_register_read(rt2x00dev, OSC_CTRL);
+ rt2x00_set_field32(&reg, OSC_ROSC_EN, 1);
+ rt2x00_set_field32(&reg, OSC_CAL_REQ, 1);
+ rt2x00_set_field32(&reg, OSC_REF_CYCLE, 0x27);
+ rt2800_register_write(rt2x00dev, OSC_CTRL, reg);
+
+ reg = rt2800_register_read(rt2x00dev, COEX_CFG0);
+ rt2x00_set_field32(&reg, COEX_CFG_ANT, 0x5e);
+ rt2800_register_write(rt2x00dev, COEX_CFG0, reg);
+
+ reg = rt2800_register_read(rt2x00dev, COEX_CFG2);
+ rt2x00_set_field32(&reg, BT_COEX_CFG1, 0x00);
+ rt2x00_set_field32(&reg, BT_COEX_CFG0, 0x17);
+ rt2x00_set_field32(&reg, WL_COEX_CFG1, 0x93);
+ rt2x00_set_field32(&reg, WL_COEX_CFG0, 0x7f);
+ rt2800_register_write(rt2x00dev, COEX_CFG2, reg);
+
+ reg = rt2800_register_read(rt2x00dev, PLL_CTRL);
+ rt2x00_set_field32(&reg, PLL_CONTROL, 1);
+ rt2800_register_write(rt2x00dev, PLL_CTRL, reg);
+ }
+
+ if (rt2x00_rt(rt2x00dev, RT3071) ||
+ rt2x00_rt(rt2x00dev, RT3090) ||
+ rt2x00_rt(rt2x00dev, RT3290) ||
+ rt2x00_rt(rt2x00dev, RT3390)) {
+
+ if (rt2x00_rt(rt2x00dev, RT3290))
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0,
+ 0x00000404);
+ else
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0,
+ 0x00000400);
+
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
+ if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
+ rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
+ rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2,
+ 0x0000002c);
+ else
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2,
+ 0x0000000f);
+ } else {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
+ }
+ } else if (rt2x00_rt(rt2x00dev, RT3070)) {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
+
+ if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
+ } else {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
+ }
+ } else if (rt2800_is_305x_soc(rt2x00dev)) {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000030);
+ } else if (rt2x00_rt(rt2x00dev, RT3352)) {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000402);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
+ } else if (rt2x00_rt(rt2x00dev, RT3572)) {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
+ } else if (rt2x00_rt(rt2x00dev, RT3593)) {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000402);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
+ if (rt2x00_rt_rev_lt(rt2x00dev, RT3593, REV_RT3593E)) {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
+ if (rt2x00_get_field16(eeprom,
+ EEPROM_NIC_CONF1_DAC_TEST))
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2,
+ 0x0000001f);
+ else
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2,
+ 0x0000000f);
+ } else {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2,
+ 0x00000000);
+ }
+ } else if (rt2x00_rt(rt2x00dev, RT3883)) {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000402);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00040000);
+ rt2800_register_write(rt2x00dev, TX_TXBF_CFG_0, 0x8000fc21);
+ rt2800_register_write(rt2x00dev, TX_TXBF_CFG_3, 0x00009c40);
+ } else if (rt2x00_rt(rt2x00dev, RT5390) ||
+ rt2x00_rt(rt2x00dev, RT5392)) {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000404);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
+ } else if (rt2x00_rt(rt2x00dev, RT5592)) {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000404);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
+ } else if (rt2x00_rt(rt2x00dev, RT5350)) {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000404);
+ } else if (rt2x00_rt(rt2x00dev, RT6352)) {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000401);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x000C0001);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
+ rt2800_register_write(rt2x00dev, TX_ALC_VGA3, 0x00000000);
+ rt2800_register_write(rt2x00dev, TX0_BB_GAIN_ATTEN, 0x0);
+ rt2800_register_write(rt2x00dev, TX1_BB_GAIN_ATTEN, 0x0);
+ rt2800_register_write(rt2x00dev, TX0_RF_GAIN_ATTEN, 0x6C6C666C);
+ rt2800_register_write(rt2x00dev, TX1_RF_GAIN_ATTEN, 0x6C6C666C);
+ rt2800_register_write(rt2x00dev, TX0_RF_GAIN_CORRECT,
+ 0x3630363A);
+ rt2800_register_write(rt2x00dev, TX1_RF_GAIN_CORRECT,
+ 0x3630363A);
+ reg = rt2800_register_read(rt2x00dev, TX_ALC_CFG_1);
+ rt2x00_set_field32(&reg, TX_ALC_CFG_1_ROS_BUSY_EN, 0);
+ rt2800_register_write(rt2x00dev, TX_ALC_CFG_1, reg);
+ } else {
+ rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
+ rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
+ }
+
+ reg = rt2800_register_read(rt2x00dev, TX_LINK_CFG);
+ rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
+ rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
+ rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
+ rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
+ rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
+ rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
+ rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
+ rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
+ rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG);
+ rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
+ rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
+ rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
+ rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, MAX_LEN_CFG);
+ rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
+ if (rt2x00_is_usb(rt2x00dev)) {
+ drv_data->max_psdu = 3;
+ } else if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
+ rt2x00_rt(rt2x00dev, RT2883) ||
+ rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E)) {
+ drv_data->max_psdu = 2;
+ } else {
+ drv_data->max_psdu = 1;
+ }
+ rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, drv_data->max_psdu);
+ rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 10);
+ rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 10);
+ rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, LED_CFG);
+ rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, 70);
+ rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, 30);
+ rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
+ rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
+ rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 3);
+ rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
+ rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
+ rt2800_register_write(rt2x00dev, LED_CFG, reg);
+
+ rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
+
+ reg = rt2800_register_read(rt2x00dev, TX_RTY_CFG);
+ rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT, 2);
+ rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT, 2);
+ rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
+ rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
+ rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
+ rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
+ rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, AUTO_RSP_CFG);
+ rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
+ rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
+ rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 1);
+ rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
+ rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE, 0);
+ rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
+ rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
+ rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, CCK_PROT_CFG);
+ rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 3);
+ rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
+ rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV_SHORT, 1);
+ rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
+ rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+ rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+ rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
+ rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+ rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
+ rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, 1);
+ rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, OFDM_PROT_CFG);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 3);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV_SHORT, 1);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, 1);
+ rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, MM20_PROT_CFG);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 1);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV_SHORT, 1);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 0);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, 0);
+ rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, MM40_PROT_CFG);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 1);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV_SHORT, 1);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 0);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, 0);
+ rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, GF20_PROT_CFG);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 1);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV_SHORT, 1);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 0);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, 0);
+ rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, GF40_PROT_CFG);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 1);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV_SHORT, 1);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 0);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, 0);
+ rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
+
+ if (rt2x00_is_usb(rt2x00dev)) {
+ rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
+
+ reg = rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
+ rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
+ }
+
+ /*
+ * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
+ * although it is reserved.
+ */
+ reg = rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG);
+ rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1);
+ rt2x00_set_field32(&reg, TXOP_CTRL_CFG_AC_TRUN_EN, 1);
+ rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1);
+ rt2x00_set_field32(&reg, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1);
+ rt2x00_set_field32(&reg, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1);
+ rt2x00_set_field32(&reg, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1);
+ rt2x00_set_field32(&reg, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0);
+ rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_EN, 0);
+ rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_DLY, 88);
+ rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CWMIN, 0);
+ rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg);
+
+ reg = rt2x00_rt(rt2x00dev, RT5592) ? 0x00000082 : 0x00000002;
+ rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, reg);
+
+ if (rt2x00_rt(rt2x00dev, RT3883)) {
+ rt2800_register_write(rt2x00dev, TX_FBK_CFG_3S_0, 0x12111008);
+ rt2800_register_write(rt2x00dev, TX_FBK_CFG_3S_1, 0x16151413);
+ }
+
+ reg = rt2800_register_read(rt2x00dev, TX_RTS_CFG);
+ rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 7);
+ rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
+ IEEE80211_MAX_RTS_THRESHOLD);
+ rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 1);
+ rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
+
+ rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
+
+ /*
+ * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
+ * time should be set to 16. However, the original Ralink driver uses
+ * 16 for both and indeed using a value of 10 for CCK SIFS results in
+ * connection problems with 11g + CTS protection. Hence, use the same
+ * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
+ */
+ reg = rt2800_register_read(rt2x00dev, XIFS_TIME_CFG);
+ rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
+ rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
+ rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
+ rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, 314);
+ rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
+ rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
+
+ rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
+
+ /*
+ * ASIC will keep garbage value after boot, clear encryption keys.
+ */
+ for (i = 0; i < 4; i++)
+ rt2800_register_write(rt2x00dev, SHARED_KEY_MODE_ENTRY(i), 0);
+
+ for (i = 0; i < 256; i++) {
+ rt2800_config_wcid(rt2x00dev, NULL, i);
+ rt2800_delete_wcid_attr(rt2x00dev, i);
+ }
+
+ /*
+ * Clear encryption initialization vectors on start, but keep them
+ * for watchdog reset. Otherwise we will have wrong IVs and not be
+ * able to keep connections after reset.
+ */
+ if (!test_bit(DEVICE_STATE_RESET, &rt2x00dev->flags))
+ for (i = 0; i < 256; i++)
+ rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
+
+ /*
+ * Clear all beacons
+ */
+ for (i = 0; i < 8; i++)
+ rt2800_clear_beacon_register(rt2x00dev, i);
+
+ if (rt2x00_is_usb(rt2x00dev)) {
+ reg = rt2800_register_read(rt2x00dev, US_CYC_CNT);
+ rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 30);
+ rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
+ } else if (rt2x00_is_pcie(rt2x00dev)) {
+ reg = rt2800_register_read(rt2x00dev, US_CYC_CNT);
+ rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 125);
+ rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
+ } else if (rt2x00_is_soc(rt2x00dev)) {
+ struct clk *clk = clk_get_sys("bus", NULL);
+ int rate;
+
+ if (IS_ERR(clk)) {
+ clk = clk_get_sys("cpu", NULL);
+
+ if (IS_ERR(clk)) {
+ rate = 125;
+ } else {
+ rate = clk_get_rate(clk) / 3000000;
+ clk_put(clk);
+ }
+ } else {
+ rate = clk_get_rate(clk) / 1000000;
+ clk_put(clk);
+ }
+
+ reg = rt2800_register_read(rt2x00dev, US_CYC_CNT);
+ rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, rate);
+ rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
+ }
+
+ reg = rt2800_register_read(rt2x00dev, HT_FBK_CFG0);
+ rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
+ rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
+ rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
+ rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
+ rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
+ rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
+ rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
+ rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
+ rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
+
+ reg = rt2800_register_read(rt2x00dev, HT_FBK_CFG1);
+ rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
+ rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
+ rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
+ rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
+ rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
+ rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
+ rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
+ rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
+ rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
+
+ reg = rt2800_register_read(rt2x00dev, LG_FBK_CFG0);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
+ rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
+
+ reg = rt2800_register_read(rt2x00dev, LG_FBK_CFG1);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
+ rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
+ rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
+
+ /*
+ * Do not force the BA window size, we use the TXWI to set it
+ */
+ reg = rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE);
+ rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0);
+ rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0);
+ rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg);
+
+ /*
+ * We must clear the error counters.
+ * These registers are cleared on read,
+ * so we may pass a useless variable to store the value.
+ */
+ reg = rt2800_register_read(rt2x00dev, RX_STA_CNT0);
+ reg = rt2800_register_read(rt2x00dev, RX_STA_CNT1);
+ reg = rt2800_register_read(rt2x00dev, RX_STA_CNT2);
+ reg = rt2800_register_read(rt2x00dev, TX_STA_CNT0);
+ reg = rt2800_register_read(rt2x00dev, TX_STA_CNT1);
+ reg = rt2800_register_read(rt2x00dev, TX_STA_CNT2);
+
+ /*
+ * Setup leadtime for pre tbtt interrupt to 6ms
+ */
+ reg = rt2800_register_read(rt2x00dev, INT_TIMER_CFG);
+ rt2x00_set_field32(&reg, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
+ rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);
+
+ /*
+ * Set up channel statistics timer
+ */
+ reg = rt2800_register_read(rt2x00dev, CH_TIME_CFG);
+ rt2x00_set_field32(&reg, CH_TIME_CFG_EIFS_BUSY, 1);
+ rt2x00_set_field32(&reg, CH_TIME_CFG_NAV_BUSY, 1);
+ rt2x00_set_field32(&reg, CH_TIME_CFG_RX_BUSY, 1);
+ rt2x00_set_field32(&reg, CH_TIME_CFG_TX_BUSY, 1);
+ rt2x00_set_field32(&reg, CH_TIME_CFG_TMR_EN, 1);
+ rt2800_register_write(rt2x00dev, CH_TIME_CFG, reg);
+
+ return 0;
+}
+
+
+static void rt2800_bbp4_mac_if_ctrl(struct rt2x00_dev *rt2x00dev)
+{
+ u8 value;
+
+ value = rt2800_bbp_read(rt2x00dev, 4);
+ rt2x00_set_field8(&value, BBP4_MAC_IF_CTRL, 1);
+ rt2800_bbp_write(rt2x00dev, 4, value);
+}
+
+static void rt2800_init_freq_calibration(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_bbp_write(rt2x00dev, 142, 1);
+ rt2800_bbp_write(rt2x00dev, 143, 57);
+}
+
+static void rt2800_init_bbp_5592_glrt(struct rt2x00_dev *rt2x00dev)
+{
+ static const u8 glrt_table[] = {
+ 0xE0, 0x1F, 0X38, 0x32, 0x08, 0x28, 0x19, 0x0A, 0xFF, 0x00, /* 128 ~ 137 */
+ 0x16, 0x10, 0x10, 0x0B, 0x36, 0x2C, 0x26, 0x24, 0x42, 0x36, /* 138 ~ 147 */
+ 0x30, 0x2D, 0x4C, 0x46, 0x3D, 0x40, 0x3E, 0x42, 0x3D, 0x40, /* 148 ~ 157 */
+ 0X3C, 0x34, 0x2C, 0x2F, 0x3C, 0x35, 0x2E, 0x2A, 0x49, 0x41, /* 158 ~ 167 */
+ 0x36, 0x31, 0x30, 0x30, 0x0E, 0x0D, 0x28, 0x21, 0x1C, 0x16, /* 168 ~ 177 */
+ 0x50, 0x4A, 0x43, 0x40, 0x10, 0x10, 0x10, 0x10, 0x00, 0x00, /* 178 ~ 187 */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 188 ~ 197 */
+ 0x00, 0x00, 0x7D, 0x14, 0x32, 0x2C, 0x36, 0x4C, 0x43, 0x2C, /* 198 ~ 207 */
+ 0x2E, 0x36, 0x30, 0x6E, /* 208 ~ 211 */
+ };
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(glrt_table); i++) {
+ rt2800_bbp_write(rt2x00dev, 195, 128 + i);
+ rt2800_bbp_write(rt2x00dev, 196, glrt_table[i]);
+ }
+};
+
+static void rt2800_init_bbp_early(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_bbp_write(rt2x00dev, 65, 0x2C);
+ rt2800_bbp_write(rt2x00dev, 66, 0x38);
+ rt2800_bbp_write(rt2x00dev, 68, 0x0B);
+ rt2800_bbp_write(rt2x00dev, 69, 0x12);
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+ rt2800_bbp_write(rt2x00dev, 73, 0x10);
+ rt2800_bbp_write(rt2x00dev, 81, 0x37);
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+ rt2800_bbp_write(rt2x00dev, 83, 0x6A);
+ rt2800_bbp_write(rt2x00dev, 84, 0x99);
+ rt2800_bbp_write(rt2x00dev, 86, 0x00);
+ rt2800_bbp_write(rt2x00dev, 91, 0x04);
+ rt2800_bbp_write(rt2x00dev, 92, 0x00);
+ rt2800_bbp_write(rt2x00dev, 103, 0x00);
+ rt2800_bbp_write(rt2x00dev, 105, 0x05);
+ rt2800_bbp_write(rt2x00dev, 106, 0x35);
+}
+
+static void rt2800_disable_unused_dac_adc(struct rt2x00_dev *rt2x00dev)
+{
+ u16 eeprom;
+ u8 value;
+
+ value = rt2800_bbp_read(rt2x00dev, 138);
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0);
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
+ value |= 0x20;
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
+ value &= ~0x02;
+ rt2800_bbp_write(rt2x00dev, 138, value);
+}
+
+static void rt2800_init_bbp_305x_soc(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+ rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+ rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+ rt2800_bbp_write(rt2x00dev, 69, 0x12);
+ rt2800_bbp_write(rt2x00dev, 73, 0x10);
+
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+ rt2800_bbp_write(rt2x00dev, 78, 0x0e);
+ rt2800_bbp_write(rt2x00dev, 80, 0x08);
+
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+ rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+
+ rt2800_bbp_write(rt2x00dev, 84, 0x99);
+
+ rt2800_bbp_write(rt2x00dev, 86, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+ rt2800_bbp_write(rt2x00dev, 92, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+ rt2800_bbp_write(rt2x00dev, 105, 0x01);
+
+ rt2800_bbp_write(rt2x00dev, 106, 0x35);
+}
+
+static void rt2800_init_bbp_28xx(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+ rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+ if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
+ rt2800_bbp_write(rt2x00dev, 69, 0x16);
+ rt2800_bbp_write(rt2x00dev, 73, 0x12);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 69, 0x12);
+ rt2800_bbp_write(rt2x00dev, 73, 0x10);
+ }
+
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+ rt2800_bbp_write(rt2x00dev, 81, 0x37);
+
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+ rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+
+ if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
+ rt2800_bbp_write(rt2x00dev, 84, 0x19);
+ else
+ rt2800_bbp_write(rt2x00dev, 84, 0x99);
+
+ rt2800_bbp_write(rt2x00dev, 86, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+ rt2800_bbp_write(rt2x00dev, 92, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 103, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 105, 0x05);
+
+ rt2800_bbp_write(rt2x00dev, 106, 0x35);
+}
+
+static void rt2800_init_bbp_30xx(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+ rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+ rt2800_bbp_write(rt2x00dev, 69, 0x12);
+ rt2800_bbp_write(rt2x00dev, 73, 0x10);
+
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+ rt2800_bbp_write(rt2x00dev, 79, 0x13);
+ rt2800_bbp_write(rt2x00dev, 80, 0x05);
+ rt2800_bbp_write(rt2x00dev, 81, 0x33);
+
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+ rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+
+ rt2800_bbp_write(rt2x00dev, 84, 0x99);
+
+ rt2800_bbp_write(rt2x00dev, 86, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+ rt2800_bbp_write(rt2x00dev, 92, 0x00);
+
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
+ rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
+ rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E))
+ rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+ else
+ rt2800_bbp_write(rt2x00dev, 103, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 105, 0x05);
+
+ rt2800_bbp_write(rt2x00dev, 106, 0x35);
+
+ if (rt2x00_rt(rt2x00dev, RT3071) ||
+ rt2x00_rt(rt2x00dev, RT3090))
+ rt2800_disable_unused_dac_adc(rt2x00dev);
+}
+
+static void rt2800_init_bbp_3290(struct rt2x00_dev *rt2x00dev)
+{
+ u8 value;
+
+ rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+ rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+ rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+ rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+ rt2800_bbp_write(rt2x00dev, 68, 0x0b);
+
+ rt2800_bbp_write(rt2x00dev, 69, 0x12);
+ rt2800_bbp_write(rt2x00dev, 73, 0x13);
+ rt2800_bbp_write(rt2x00dev, 75, 0x46);
+ rt2800_bbp_write(rt2x00dev, 76, 0x28);
+
+ rt2800_bbp_write(rt2x00dev, 77, 0x58);
+
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+ rt2800_bbp_write(rt2x00dev, 74, 0x0b);
+ rt2800_bbp_write(rt2x00dev, 79, 0x18);
+ rt2800_bbp_write(rt2x00dev, 80, 0x09);
+ rt2800_bbp_write(rt2x00dev, 81, 0x33);
+
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+ rt2800_bbp_write(rt2x00dev, 83, 0x7a);
+
+ rt2800_bbp_write(rt2x00dev, 84, 0x9a);
+
+ rt2800_bbp_write(rt2x00dev, 86, 0x38);
+
+ rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+ rt2800_bbp_write(rt2x00dev, 92, 0x02);
+
+ rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+ rt2800_bbp_write(rt2x00dev, 104, 0x92);
+
+ rt2800_bbp_write(rt2x00dev, 105, 0x1c);
+
+ rt2800_bbp_write(rt2x00dev, 106, 0x03);
+
+ rt2800_bbp_write(rt2x00dev, 128, 0x12);
+
+ rt2800_bbp_write(rt2x00dev, 67, 0x24);
+ rt2800_bbp_write(rt2x00dev, 143, 0x04);
+ rt2800_bbp_write(rt2x00dev, 142, 0x99);
+ rt2800_bbp_write(rt2x00dev, 150, 0x30);
+ rt2800_bbp_write(rt2x00dev, 151, 0x2e);
+ rt2800_bbp_write(rt2x00dev, 152, 0x20);
+ rt2800_bbp_write(rt2x00dev, 153, 0x34);
+ rt2800_bbp_write(rt2x00dev, 154, 0x40);
+ rt2800_bbp_write(rt2x00dev, 155, 0x3b);
+ rt2800_bbp_write(rt2x00dev, 253, 0x04);
+
+ value = rt2800_bbp_read(rt2x00dev, 47);
+ rt2x00_set_field8(&value, BBP47_TSSI_ADC6, 1);
+ rt2800_bbp_write(rt2x00dev, 47, value);
+
+ /* Use 5-bit ADC for Acquisition and 8-bit ADC for data */
+ value = rt2800_bbp_read(rt2x00dev, 3);
+ rt2x00_set_field8(&value, BBP3_ADC_MODE_SWITCH, 1);
+ rt2x00_set_field8(&value, BBP3_ADC_INIT_MODE, 1);
+ rt2800_bbp_write(rt2x00dev, 3, value);
+}
+
+static void rt2800_init_bbp_3352(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_bbp_write(rt2x00dev, 3, 0x00);
+ rt2800_bbp_write(rt2x00dev, 4, 0x50);
+
+ rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+ rt2800_bbp_write(rt2x00dev, 47, 0x48);
+
+ rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+ rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+ rt2800_bbp_write(rt2x00dev, 68, 0x0b);
+
+ rt2800_bbp_write(rt2x00dev, 69, 0x12);
+ rt2800_bbp_write(rt2x00dev, 73, 0x13);
+ rt2800_bbp_write(rt2x00dev, 75, 0x46);
+ rt2800_bbp_write(rt2x00dev, 76, 0x28);
+
+ rt2800_bbp_write(rt2x00dev, 77, 0x59);
+
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+ rt2800_bbp_write(rt2x00dev, 78, 0x0e);
+ rt2800_bbp_write(rt2x00dev, 80, 0x08);
+ rt2800_bbp_write(rt2x00dev, 81, 0x37);
+
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+ if (rt2x00_rt(rt2x00dev, RT5350)) {
+ rt2800_bbp_write(rt2x00dev, 83, 0x7a);
+ rt2800_bbp_write(rt2x00dev, 84, 0x9a);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+ rt2800_bbp_write(rt2x00dev, 84, 0x99);
+ }
+
+ rt2800_bbp_write(rt2x00dev, 86, 0x38);
+
+ rt2800_bbp_write(rt2x00dev, 88, 0x90);
+
+ rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+ rt2800_bbp_write(rt2x00dev, 92, 0x02);
+
+ rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+ rt2800_bbp_write(rt2x00dev, 104, 0x92);
+
+ if (rt2x00_rt(rt2x00dev, RT5350)) {
+ rt2800_bbp_write(rt2x00dev, 105, 0x3c);
+ rt2800_bbp_write(rt2x00dev, 106, 0x03);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 105, 0x34);
+ rt2800_bbp_write(rt2x00dev, 106, 0x05);
+ }
+
+ rt2800_bbp_write(rt2x00dev, 120, 0x50);
+
+ rt2800_bbp_write(rt2x00dev, 137, 0x0f);
+
+ rt2800_bbp_write(rt2x00dev, 163, 0xbd);
+ /* Set ITxBF timeout to 0x9c40=1000msec */
+ rt2800_bbp_write(rt2x00dev, 179, 0x02);
+ rt2800_bbp_write(rt2x00dev, 180, 0x00);
+ rt2800_bbp_write(rt2x00dev, 182, 0x40);
+ rt2800_bbp_write(rt2x00dev, 180, 0x01);
+ rt2800_bbp_write(rt2x00dev, 182, 0x9c);
+ rt2800_bbp_write(rt2x00dev, 179, 0x00);
+ /* Reprogram the inband interface to put right values in RXWI */
+ rt2800_bbp_write(rt2x00dev, 142, 0x04);
+ rt2800_bbp_write(rt2x00dev, 143, 0x3b);
+ rt2800_bbp_write(rt2x00dev, 142, 0x06);
+ rt2800_bbp_write(rt2x00dev, 143, 0xa0);
+ rt2800_bbp_write(rt2x00dev, 142, 0x07);
+ rt2800_bbp_write(rt2x00dev, 143, 0xa1);
+ rt2800_bbp_write(rt2x00dev, 142, 0x08);
+ rt2800_bbp_write(rt2x00dev, 143, 0xa2);
+
+ rt2800_bbp_write(rt2x00dev, 148, 0xc8);
+
+ if (rt2x00_rt(rt2x00dev, RT5350)) {
+ /* Antenna Software OFDM */
+ rt2800_bbp_write(rt2x00dev, 150, 0x40);
+ /* Antenna Software CCK */
+ rt2800_bbp_write(rt2x00dev, 151, 0x30);
+ rt2800_bbp_write(rt2x00dev, 152, 0xa3);
+ /* Clear previously selected antenna */
+ rt2800_bbp_write(rt2x00dev, 154, 0);
+ }
+}
+
+static void rt2800_init_bbp_3390(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+ rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+ rt2800_bbp_write(rt2x00dev, 69, 0x12);
+ rt2800_bbp_write(rt2x00dev, 73, 0x10);
+
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+ rt2800_bbp_write(rt2x00dev, 79, 0x13);
+ rt2800_bbp_write(rt2x00dev, 80, 0x05);
+ rt2800_bbp_write(rt2x00dev, 81, 0x33);
+
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+ rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+
+ rt2800_bbp_write(rt2x00dev, 84, 0x99);
+
+ rt2800_bbp_write(rt2x00dev, 86, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+ rt2800_bbp_write(rt2x00dev, 92, 0x00);
+
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E))
+ rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+ else
+ rt2800_bbp_write(rt2x00dev, 103, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 105, 0x05);
+
+ rt2800_bbp_write(rt2x00dev, 106, 0x35);
+
+ rt2800_disable_unused_dac_adc(rt2x00dev);
+}
+
+static void rt2800_init_bbp_3572(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+ rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+ rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+ rt2800_bbp_write(rt2x00dev, 69, 0x12);
+ rt2800_bbp_write(rt2x00dev, 73, 0x10);
+
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+ rt2800_bbp_write(rt2x00dev, 79, 0x13);
+ rt2800_bbp_write(rt2x00dev, 80, 0x05);
+ rt2800_bbp_write(rt2x00dev, 81, 0x33);
+
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+ rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+
+ rt2800_bbp_write(rt2x00dev, 84, 0x99);
+
+ rt2800_bbp_write(rt2x00dev, 86, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+ rt2800_bbp_write(rt2x00dev, 92, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+ rt2800_bbp_write(rt2x00dev, 105, 0x05);
+
+ rt2800_bbp_write(rt2x00dev, 106, 0x35);
+
+ rt2800_disable_unused_dac_adc(rt2x00dev);
+}
+
+static void rt2800_init_bbp_3593(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_init_bbp_early(rt2x00dev);
+
+ rt2800_bbp_write(rt2x00dev, 79, 0x13);
+ rt2800_bbp_write(rt2x00dev, 80, 0x05);
+ rt2800_bbp_write(rt2x00dev, 81, 0x33);
+ rt2800_bbp_write(rt2x00dev, 137, 0x0f);
+
+ rt2800_bbp_write(rt2x00dev, 84, 0x19);
+
+ /* Enable DC filter */
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT3593, REV_RT3593E))
+ rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+}
+
+static void rt2800_init_bbp_3883(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_init_bbp_early(rt2x00dev);
+
+ rt2800_bbp_write(rt2x00dev, 4, 0x50);
+ rt2800_bbp_write(rt2x00dev, 47, 0x48);
+
+ rt2800_bbp_write(rt2x00dev, 86, 0x46);
+ rt2800_bbp_write(rt2x00dev, 88, 0x90);
+
+ rt2800_bbp_write(rt2x00dev, 92, 0x02);
+
+ rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+ rt2800_bbp_write(rt2x00dev, 104, 0x92);
+ rt2800_bbp_write(rt2x00dev, 105, 0x34);
+ rt2800_bbp_write(rt2x00dev, 106, 0x12);
+ rt2800_bbp_write(rt2x00dev, 120, 0x50);
+ rt2800_bbp_write(rt2x00dev, 137, 0x0f);
+ rt2800_bbp_write(rt2x00dev, 163, 0x9d);
+
+ /* Set ITxBF timeout to 0x9C40=1000msec */
+ rt2800_bbp_write(rt2x00dev, 179, 0x02);
+ rt2800_bbp_write(rt2x00dev, 180, 0x00);
+ rt2800_bbp_write(rt2x00dev, 182, 0x40);
+ rt2800_bbp_write(rt2x00dev, 180, 0x01);
+ rt2800_bbp_write(rt2x00dev, 182, 0x9c);
+
+ rt2800_bbp_write(rt2x00dev, 179, 0x00);
+
+ /* Reprogram the inband interface to put right values in RXWI */
+ rt2800_bbp_write(rt2x00dev, 142, 0x04);
+ rt2800_bbp_write(rt2x00dev, 143, 0x3b);
+ rt2800_bbp_write(rt2x00dev, 142, 0x06);
+ rt2800_bbp_write(rt2x00dev, 143, 0xa0);
+ rt2800_bbp_write(rt2x00dev, 142, 0x07);
+ rt2800_bbp_write(rt2x00dev, 143, 0xa1);
+ rt2800_bbp_write(rt2x00dev, 142, 0x08);
+ rt2800_bbp_write(rt2x00dev, 143, 0xa2);
+ rt2800_bbp_write(rt2x00dev, 148, 0xc8);
+}
+
+static void rt2800_init_bbp_53xx(struct rt2x00_dev *rt2x00dev)
+{
+ int ant, div_mode;
+ u16 eeprom;
+ u8 value;
+
+ rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+ rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+ rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+ rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+ rt2800_bbp_write(rt2x00dev, 68, 0x0b);
+
+ rt2800_bbp_write(rt2x00dev, 69, 0x12);
+ rt2800_bbp_write(rt2x00dev, 73, 0x13);
+ rt2800_bbp_write(rt2x00dev, 75, 0x46);
+ rt2800_bbp_write(rt2x00dev, 76, 0x28);
+
+ rt2800_bbp_write(rt2x00dev, 77, 0x59);
+
+ rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+ rt2800_bbp_write(rt2x00dev, 79, 0x13);
+ rt2800_bbp_write(rt2x00dev, 80, 0x05);
+ rt2800_bbp_write(rt2x00dev, 81, 0x33);
+
+ rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+ rt2800_bbp_write(rt2x00dev, 83, 0x7a);
+
+ rt2800_bbp_write(rt2x00dev, 84, 0x9a);
+
+ rt2800_bbp_write(rt2x00dev, 86, 0x38);
+
+ if (rt2x00_rt(rt2x00dev, RT5392))
+ rt2800_bbp_write(rt2x00dev, 88, 0x90);
+
+ rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+ rt2800_bbp_write(rt2x00dev, 92, 0x02);
+
+ if (rt2x00_rt(rt2x00dev, RT5392)) {
+ rt2800_bbp_write(rt2x00dev, 95, 0x9a);
+ rt2800_bbp_write(rt2x00dev, 98, 0x12);
+ }
+
+ rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+ rt2800_bbp_write(rt2x00dev, 104, 0x92);
+
+ rt2800_bbp_write(rt2x00dev, 105, 0x3c);
+
+ if (rt2x00_rt(rt2x00dev, RT5390))
+ rt2800_bbp_write(rt2x00dev, 106, 0x03);
+ else if (rt2x00_rt(rt2x00dev, RT5392))
+ rt2800_bbp_write(rt2x00dev, 106, 0x12);
+ else
+ WARN_ON(1);
+
+ rt2800_bbp_write(rt2x00dev, 128, 0x12);
+
+ if (rt2x00_rt(rt2x00dev, RT5392)) {
+ rt2800_bbp_write(rt2x00dev, 134, 0xd0);
+ rt2800_bbp_write(rt2x00dev, 135, 0xf6);
+ }
+
+ rt2800_disable_unused_dac_adc(rt2x00dev);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
+ div_mode = rt2x00_get_field16(eeprom,
+ EEPROM_NIC_CONF1_ANT_DIVERSITY);
+ ant = (div_mode == 3) ? 1 : 0;
+
+ /* check if this is a Bluetooth combo card */
+ if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
+ u32 reg;
+
+ reg = rt2800_register_read(rt2x00dev, GPIO_CTRL);
+ rt2x00_set_field32(&reg, GPIO_CTRL_DIR3, 0);
+ rt2x00_set_field32(&reg, GPIO_CTRL_DIR6, 0);
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL3, 0);
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL6, 0);
+ if (ant == 0)
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL3, 1);
+ else if (ant == 1)
+ rt2x00_set_field32(&reg, GPIO_CTRL_VAL6, 1);
+ rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
+ }
+
+ /* These chips have hardware RX antenna diversity */
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390R) ||
+ rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5370G)) {
+ rt2800_bbp_write(rt2x00dev, 150, 0); /* Disable Antenna Software OFDM */
+ rt2800_bbp_write(rt2x00dev, 151, 0); /* Disable Antenna Software CCK */
+ rt2800_bbp_write(rt2x00dev, 154, 0); /* Clear previously selected antenna */
+ }
+
+ value = rt2800_bbp_read(rt2x00dev, 152);
+ if (ant == 0)
+ rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1);
+ else
+ rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0);
+ rt2800_bbp_write(rt2x00dev, 152, value);
+
+ rt2800_init_freq_calibration(rt2x00dev);
+}
+
+static void rt2800_init_bbp_5592(struct rt2x00_dev *rt2x00dev)
+{
+ int ant, div_mode;
+ u16 eeprom;
+ u8 value;
+
+ rt2800_init_bbp_early(rt2x00dev);
+
+ value = rt2800_bbp_read(rt2x00dev, 105);
+ rt2x00_set_field8(&value, BBP105_MLD,
+ rt2x00dev->default_ant.rx_chain_num == 2);
+ rt2800_bbp_write(rt2x00dev, 105, value);
+
+ rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+ rt2800_bbp_write(rt2x00dev, 20, 0x06);
+ rt2800_bbp_write(rt2x00dev, 31, 0x08);
+ rt2800_bbp_write(rt2x00dev, 65, 0x2C);
+ rt2800_bbp_write(rt2x00dev, 68, 0xDD);
+ rt2800_bbp_write(rt2x00dev, 69, 0x1A);
+ rt2800_bbp_write(rt2x00dev, 70, 0x05);
+ rt2800_bbp_write(rt2x00dev, 73, 0x13);
+ rt2800_bbp_write(rt2x00dev, 74, 0x0F);
+ rt2800_bbp_write(rt2x00dev, 75, 0x4F);
+ rt2800_bbp_write(rt2x00dev, 76, 0x28);
+ rt2800_bbp_write(rt2x00dev, 77, 0x59);
+ rt2800_bbp_write(rt2x00dev, 84, 0x9A);
+ rt2800_bbp_write(rt2x00dev, 86, 0x38);
+ rt2800_bbp_write(rt2x00dev, 88, 0x90);
+ rt2800_bbp_write(rt2x00dev, 91, 0x04);
+ rt2800_bbp_write(rt2x00dev, 92, 0x02);
+ rt2800_bbp_write(rt2x00dev, 95, 0x9a);
+ rt2800_bbp_write(rt2x00dev, 98, 0x12);
+ rt2800_bbp_write(rt2x00dev, 103, 0xC0);
+ rt2800_bbp_write(rt2x00dev, 104, 0x92);
+ /* FIXME BBP105 owerwrite */
+ rt2800_bbp_write(rt2x00dev, 105, 0x3C);
+ rt2800_bbp_write(rt2x00dev, 106, 0x35);
+ rt2800_bbp_write(rt2x00dev, 128, 0x12);
+ rt2800_bbp_write(rt2x00dev, 134, 0xD0);
+ rt2800_bbp_write(rt2x00dev, 135, 0xF6);
+ rt2800_bbp_write(rt2x00dev, 137, 0x0F);
+
+ /* Initialize GLRT (Generalized Likehood Radio Test) */
+ rt2800_init_bbp_5592_glrt(rt2x00dev);
+
+ rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
+ div_mode = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_ANT_DIVERSITY);
+ ant = (div_mode == 3) ? 1 : 0;
+ value = rt2800_bbp_read(rt2x00dev, 152);
+ if (ant == 0) {
+ /* Main antenna */
+ rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1);
+ } else {
+ /* Auxiliary antenna */
+ rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0);
+ }
+ rt2800_bbp_write(rt2x00dev, 152, value);
+
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5592, REV_RT5592C)) {
+ value = rt2800_bbp_read(rt2x00dev, 254);
+ rt2x00_set_field8(&value, BBP254_BIT7, 1);
+ rt2800_bbp_write(rt2x00dev, 254, value);
+ }
+
+ rt2800_init_freq_calibration(rt2x00dev);
+
+ rt2800_bbp_write(rt2x00dev, 84, 0x19);
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5592, REV_RT5592C))
+ rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+}
+
+static void rt2800_init_bbp_6352(struct rt2x00_dev *rt2x00dev)
+{
+ u8 bbp;
+
+ /* Apply Maximum Likelihood Detection (MLD) for 2 stream case */
+ bbp = rt2800_bbp_read(rt2x00dev, 105);
+ rt2x00_set_field8(&bbp, BBP105_MLD,
+ rt2x00dev->default_ant.rx_chain_num == 2);
+ rt2800_bbp_write(rt2x00dev, 105, bbp);
+
+ /* Avoid data loss and CRC errors */
+ rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+ /* Fix I/Q swap issue */
+ bbp = rt2800_bbp_read(rt2x00dev, 1);
+ bbp |= 0x04;
+ rt2800_bbp_write(rt2x00dev, 1, bbp);
+
+ /* BBP for G band */
+ rt2800_bbp_write(rt2x00dev, 3, 0x08);
+ rt2800_bbp_write(rt2x00dev, 4, 0x00); /* rt2800_bbp4_mac_if_ctrl? */
+ rt2800_bbp_write(rt2x00dev, 6, 0x08);
+ rt2800_bbp_write(rt2x00dev, 14, 0x09);
+ rt2800_bbp_write(rt2x00dev, 15, 0xFF);
+ rt2800_bbp_write(rt2x00dev, 16, 0x01);
+ rt2800_bbp_write(rt2x00dev, 20, 0x06);
+ rt2800_bbp_write(rt2x00dev, 21, 0x00);
+ rt2800_bbp_write(rt2x00dev, 22, 0x00);
+ rt2800_bbp_write(rt2x00dev, 27, 0x00);
+ rt2800_bbp_write(rt2x00dev, 28, 0x00);
+ rt2800_bbp_write(rt2x00dev, 30, 0x00);
+ rt2800_bbp_write(rt2x00dev, 31, 0x48);
+ rt2800_bbp_write(rt2x00dev, 47, 0x40);
+ rt2800_bbp_write(rt2x00dev, 62, 0x00);
+ rt2800_bbp_write(rt2x00dev, 63, 0x00);
+ rt2800_bbp_write(rt2x00dev, 64, 0x00);
+ rt2800_bbp_write(rt2x00dev, 65, 0x2C);
+ rt2800_bbp_write(rt2x00dev, 66, 0x1C);
+ rt2800_bbp_write(rt2x00dev, 67, 0x20);
+ rt2800_bbp_write(rt2x00dev, 68, 0xDD);
+ rt2800_bbp_write(rt2x00dev, 69, 0x10);
+ rt2800_bbp_write(rt2x00dev, 70, 0x05);
+ rt2800_bbp_write(rt2x00dev, 73, 0x18);
+ rt2800_bbp_write(rt2x00dev, 74, 0x0F);
+ rt2800_bbp_write(rt2x00dev, 75, 0x60);
+ rt2800_bbp_write(rt2x00dev, 76, 0x44);
+ rt2800_bbp_write(rt2x00dev, 77, 0x59);
+ rt2800_bbp_write(rt2x00dev, 78, 0x1E);
+ rt2800_bbp_write(rt2x00dev, 79, 0x1C);
+ rt2800_bbp_write(rt2x00dev, 80, 0x0C);
+ rt2800_bbp_write(rt2x00dev, 81, 0x3A);
+ rt2800_bbp_write(rt2x00dev, 82, 0xB6);
+ rt2800_bbp_write(rt2x00dev, 83, 0x9A);
+ rt2800_bbp_write(rt2x00dev, 84, 0x9A);
+ rt2800_bbp_write(rt2x00dev, 86, 0x38);
+ rt2800_bbp_write(rt2x00dev, 88, 0x90);
+ rt2800_bbp_write(rt2x00dev, 91, 0x04);
+ rt2800_bbp_write(rt2x00dev, 92, 0x02);
+ rt2800_bbp_write(rt2x00dev, 95, 0x9A);
+ rt2800_bbp_write(rt2x00dev, 96, 0x00);
+ rt2800_bbp_write(rt2x00dev, 103, 0xC0);
+ rt2800_bbp_write(rt2x00dev, 104, 0x92);
+ /* FIXME BBP105 owerwrite */
+ rt2800_bbp_write(rt2x00dev, 105, 0x3C);
+ rt2800_bbp_write(rt2x00dev, 106, 0x12);
+ rt2800_bbp_write(rt2x00dev, 109, 0x00);
+ rt2800_bbp_write(rt2x00dev, 134, 0x10);
+ rt2800_bbp_write(rt2x00dev, 135, 0xA6);
+ rt2800_bbp_write(rt2x00dev, 137, 0x04);
+ rt2800_bbp_write(rt2x00dev, 142, 0x30);
+ rt2800_bbp_write(rt2x00dev, 143, 0xF7);
+ rt2800_bbp_write(rt2x00dev, 160, 0xEC);
+ rt2800_bbp_write(rt2x00dev, 161, 0xC4);
+ rt2800_bbp_write(rt2x00dev, 162, 0x77);
+ rt2800_bbp_write(rt2x00dev, 163, 0xF9);
+ rt2800_bbp_write(rt2x00dev, 164, 0x00);
+ rt2800_bbp_write(rt2x00dev, 165, 0x00);
+ rt2800_bbp_write(rt2x00dev, 186, 0x00);
+ rt2800_bbp_write(rt2x00dev, 187, 0x00);
+ rt2800_bbp_write(rt2x00dev, 188, 0x00);
+ rt2800_bbp_write(rt2x00dev, 186, 0x00);
+ rt2800_bbp_write(rt2x00dev, 187, 0x01);
+ rt2800_bbp_write(rt2x00dev, 188, 0x00);
+ rt2800_bbp_write(rt2x00dev, 189, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 91, 0x06);
+ rt2800_bbp_write(rt2x00dev, 92, 0x04);
+ rt2800_bbp_write(rt2x00dev, 93, 0x54);
+ rt2800_bbp_write(rt2x00dev, 99, 0x50);
+ rt2800_bbp_write(rt2x00dev, 148, 0x84);
+ rt2800_bbp_write(rt2x00dev, 167, 0x80);
+ rt2800_bbp_write(rt2x00dev, 178, 0xFF);
+ rt2800_bbp_write(rt2x00dev, 106, 0x13);
+
+ /* BBP for G band GLRT function (BBP_128 ~ BBP_221) */
+ rt2800_bbp_glrt_write(rt2x00dev, 0, 0x00);
+ rt2800_bbp_glrt_write(rt2x00dev, 1, 0x14);
+ rt2800_bbp_glrt_write(rt2x00dev, 2, 0x20);
+ rt2800_bbp_glrt_write(rt2x00dev, 3, 0x0A);
+ rt2800_bbp_glrt_write(rt2x00dev, 10, 0x16);
+ rt2800_bbp_glrt_write(rt2x00dev, 11, 0x06);
+ rt2800_bbp_glrt_write(rt2x00dev, 12, 0x02);
+ rt2800_bbp_glrt_write(rt2x00dev, 13, 0x07);
+ rt2800_bbp_glrt_write(rt2x00dev, 14, 0x05);
+ rt2800_bbp_glrt_write(rt2x00dev, 15, 0x09);
+ rt2800_bbp_glrt_write(rt2x00dev, 16, 0x20);
+ rt2800_bbp_glrt_write(rt2x00dev, 17, 0x08);
+ rt2800_bbp_glrt_write(rt2x00dev, 18, 0x4A);
+ rt2800_bbp_glrt_write(rt2x00dev, 19, 0x00);
+ rt2800_bbp_glrt_write(rt2x00dev, 20, 0x00);
+ rt2800_bbp_glrt_write(rt2x00dev, 128, 0xE0);
+ rt2800_bbp_glrt_write(rt2x00dev, 129, 0x1F);
+ rt2800_bbp_glrt_write(rt2x00dev, 130, 0x4F);
+ rt2800_bbp_glrt_write(rt2x00dev, 131, 0x32);
+ rt2800_bbp_glrt_write(rt2x00dev, 132, 0x08);
+ rt2800_bbp_glrt_write(rt2x00dev, 133, 0x28);
+ rt2800_bbp_glrt_write(rt2x00dev, 134, 0x19);
+ rt2800_bbp_glrt_write(rt2x00dev, 135, 0x0A);
+ rt2800_bbp_glrt_write(rt2x00dev, 138, 0x16);
+ rt2800_bbp_glrt_write(rt2x00dev, 139, 0x10);
+ rt2800_bbp_glrt_write(rt2x00dev, 140, 0x10);
+ rt2800_bbp_glrt_write(rt2x00dev, 141, 0x1A);
+ rt2800_bbp_glrt_write(rt2x00dev, 142, 0x36);
+ rt2800_bbp_glrt_write(rt2x00dev, 143, 0x2C);
+ rt2800_bbp_glrt_write(rt2x00dev, 144, 0x26);
+ rt2800_bbp_glrt_write(rt2x00dev, 145, 0x24);
+ rt2800_bbp_glrt_write(rt2x00dev, 146, 0x42);
+ rt2800_bbp_glrt_write(rt2x00dev, 147, 0x40);
+ rt2800_bbp_glrt_write(rt2x00dev, 148, 0x30);
+ rt2800_bbp_glrt_write(rt2x00dev, 149, 0x29);
+ rt2800_bbp_glrt_write(rt2x00dev, 150, 0x4C);
+ rt2800_bbp_glrt_write(rt2x00dev, 151, 0x46);
+ rt2800_bbp_glrt_write(rt2x00dev, 152, 0x3D);
+ rt2800_bbp_glrt_write(rt2x00dev, 153, 0x40);
+ rt2800_bbp_glrt_write(rt2x00dev, 154, 0x3E);
+ rt2800_bbp_glrt_write(rt2x00dev, 155, 0x38);
+ rt2800_bbp_glrt_write(rt2x00dev, 156, 0x3D);
+ rt2800_bbp_glrt_write(rt2x00dev, 157, 0x2F);
+ rt2800_bbp_glrt_write(rt2x00dev, 158, 0x3C);
+ rt2800_bbp_glrt_write(rt2x00dev, 159, 0x34);
+ rt2800_bbp_glrt_write(rt2x00dev, 160, 0x2C);
+ rt2800_bbp_glrt_write(rt2x00dev, 161, 0x2F);
+ rt2800_bbp_glrt_write(rt2x00dev, 162, 0x3C);
+ rt2800_bbp_glrt_write(rt2x00dev, 163, 0x35);
+ rt2800_bbp_glrt_write(rt2x00dev, 164, 0x2E);
+ rt2800_bbp_glrt_write(rt2x00dev, 165, 0x2F);
+ rt2800_bbp_glrt_write(rt2x00dev, 166, 0x49);
+ rt2800_bbp_glrt_write(rt2x00dev, 167, 0x41);
+ rt2800_bbp_glrt_write(rt2x00dev, 168, 0x36);
+ rt2800_bbp_glrt_write(rt2x00dev, 169, 0x39);
+ rt2800_bbp_glrt_write(rt2x00dev, 170, 0x30);
+ rt2800_bbp_glrt_write(rt2x00dev, 171, 0x30);
+ rt2800_bbp_glrt_write(rt2x00dev, 172, 0x0E);
+ rt2800_bbp_glrt_write(rt2x00dev, 173, 0x0D);
+ rt2800_bbp_glrt_write(rt2x00dev, 174, 0x28);
+ rt2800_bbp_glrt_write(rt2x00dev, 175, 0x21);
+ rt2800_bbp_glrt_write(rt2x00dev, 176, 0x1C);
+ rt2800_bbp_glrt_write(rt2x00dev, 177, 0x16);
+ rt2800_bbp_glrt_write(rt2x00dev, 178, 0x50);
+ rt2800_bbp_glrt_write(rt2x00dev, 179, 0x4A);
+ rt2800_bbp_glrt_write(rt2x00dev, 180, 0x43);
+ rt2800_bbp_glrt_write(rt2x00dev, 181, 0x50);
+ rt2800_bbp_glrt_write(rt2x00dev, 182, 0x10);
+ rt2800_bbp_glrt_write(rt2x00dev, 183, 0x10);
+ rt2800_bbp_glrt_write(rt2x00dev, 184, 0x10);
+ rt2800_bbp_glrt_write(rt2x00dev, 185, 0x10);
+ rt2800_bbp_glrt_write(rt2x00dev, 200, 0x7D);
+ rt2800_bbp_glrt_write(rt2x00dev, 201, 0x14);
+ rt2800_bbp_glrt_write(rt2x00dev, 202, 0x32);
+ rt2800_bbp_glrt_write(rt2x00dev, 203, 0x2C);
+ rt2800_bbp_glrt_write(rt2x00dev, 204, 0x36);
+ rt2800_bbp_glrt_write(rt2x00dev, 205, 0x4C);
+ rt2800_bbp_glrt_write(rt2x00dev, 206, 0x43);
+ rt2800_bbp_glrt_write(rt2x00dev, 207, 0x2C);
+ rt2800_bbp_glrt_write(rt2x00dev, 208, 0x2E);
+ rt2800_bbp_glrt_write(rt2x00dev, 209, 0x36);
+ rt2800_bbp_glrt_write(rt2x00dev, 210, 0x30);
+ rt2800_bbp_glrt_write(rt2x00dev, 211, 0x6E);
+
+ /* BBP for G band DCOC function */
+ rt2800_bbp_dcoc_write(rt2x00dev, 140, 0x0C);
+ rt2800_bbp_dcoc_write(rt2x00dev, 141, 0x00);
+ rt2800_bbp_dcoc_write(rt2x00dev, 142, 0x10);
+ rt2800_bbp_dcoc_write(rt2x00dev, 143, 0x10);
+ rt2800_bbp_dcoc_write(rt2x00dev, 144, 0x10);
+ rt2800_bbp_dcoc_write(rt2x00dev, 145, 0x10);
+ rt2800_bbp_dcoc_write(rt2x00dev, 146, 0x08);
+ rt2800_bbp_dcoc_write(rt2x00dev, 147, 0x40);
+ rt2800_bbp_dcoc_write(rt2x00dev, 148, 0x04);
+ rt2800_bbp_dcoc_write(rt2x00dev, 149, 0x04);
+ rt2800_bbp_dcoc_write(rt2x00dev, 150, 0x08);
+ rt2800_bbp_dcoc_write(rt2x00dev, 151, 0x08);
+ rt2800_bbp_dcoc_write(rt2x00dev, 152, 0x03);
+ rt2800_bbp_dcoc_write(rt2x00dev, 153, 0x03);
+ rt2800_bbp_dcoc_write(rt2x00dev, 154, 0x03);
+ rt2800_bbp_dcoc_write(rt2x00dev, 155, 0x02);
+ rt2800_bbp_dcoc_write(rt2x00dev, 156, 0x40);
+ rt2800_bbp_dcoc_write(rt2x00dev, 157, 0x40);
+ rt2800_bbp_dcoc_write(rt2x00dev, 158, 0x64);
+ rt2800_bbp_dcoc_write(rt2x00dev, 159, 0x64);
+
+ rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+}
+
+static void rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u16 eeprom;
+ u8 reg_id;
+ u8 value;
+
+ if (rt2800_is_305x_soc(rt2x00dev))
+ rt2800_init_bbp_305x_soc(rt2x00dev);
+
+ switch (rt2x00dev->chip.rt) {
+ case RT2860:
+ case RT2872:
+ case RT2883:
+ rt2800_init_bbp_28xx(rt2x00dev);
+ break;
+ case RT3070:
+ case RT3071:
+ case RT3090:
+ rt2800_init_bbp_30xx(rt2x00dev);
+ break;
+ case RT3290:
+ rt2800_init_bbp_3290(rt2x00dev);
+ break;
+ case RT3352:
+ case RT5350:
+ rt2800_init_bbp_3352(rt2x00dev);
+ break;
+ case RT3390:
+ rt2800_init_bbp_3390(rt2x00dev);
+ break;
+ case RT3572:
+ rt2800_init_bbp_3572(rt2x00dev);
+ break;
+ case RT3593:
+ rt2800_init_bbp_3593(rt2x00dev);
+ return;
+ case RT3883:
+ rt2800_init_bbp_3883(rt2x00dev);
+ return;
+ case RT5390:
+ case RT5392:
+ rt2800_init_bbp_53xx(rt2x00dev);
+ break;
+ case RT5592:
+ rt2800_init_bbp_5592(rt2x00dev);
+ return;
+ case RT6352:
+ rt2800_init_bbp_6352(rt2x00dev);
+ break;
+ }
+
+ for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+ eeprom = rt2800_eeprom_read_from_array(rt2x00dev,
+ EEPROM_BBP_START, i);
+
+ if (eeprom != 0xffff && eeprom != 0x0000) {
+ reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+ value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+ rt2800_bbp_write(rt2x00dev, reg_id, value);
+ }
+ }
+}
+
+static void rt2800_led_open_drain_enable(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ reg = rt2800_register_read(rt2x00dev, OPT_14_CSR);
+ rt2x00_set_field32(&reg, OPT_14_CSR_BIT0, 1);
+ rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);
+}
+
+static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev, bool bw40,
+ u8 filter_target)
+{
+ unsigned int i;
+ u8 bbp;
+ u8 rfcsr;
+ u8 passband;
+ u8 stopband;
+ u8 overtuned = 0;
+ u8 rfcsr24 = (bw40) ? 0x27 : 0x07;
+
+ rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
+
+ bbp = rt2800_bbp_read(rt2x00dev, 4);
+ rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
+ rt2800_bbp_write(rt2x00dev, 4, bbp);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 31);
+ rt2x00_set_field8(&rfcsr, RFCSR31_RX_H20M, bw40);
+ rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 22);
+ rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
+ rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
+
+ /*
+ * Set power & frequency of passband test tone
+ */
+ rt2800_bbp_write(rt2x00dev, 24, 0);
+
+ for (i = 0; i < 100; i++) {
+ rt2800_bbp_write(rt2x00dev, 25, 0x90);
+ msleep(1);
+
+ passband = rt2800_bbp_read(rt2x00dev, 55);
+ if (passband)
+ break;
+ }
+
+ /*
+ * Set power & frequency of stopband test tone
+ */
+ rt2800_bbp_write(rt2x00dev, 24, 0x06);
+
+ for (i = 0; i < 100; i++) {
+ rt2800_bbp_write(rt2x00dev, 25, 0x90);
+ msleep(1);
+
+ stopband = rt2800_bbp_read(rt2x00dev, 55);
+
+ if ((passband - stopband) <= filter_target) {
+ rfcsr24++;
+ overtuned += ((passband - stopband) == filter_target);
+ } else
+ break;
+
+ rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
+ }
+
+ rfcsr24 -= !!overtuned;
+
+ rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
+ return rfcsr24;
+}
+
+static void rt2800_rf_init_calibration(struct rt2x00_dev *rt2x00dev,
+ const unsigned int rf_reg)
+{
+ u8 rfcsr;
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, rf_reg);
+ rt2x00_set_field8(&rfcsr, FIELD8(0x80), 1);
+ rt2800_rfcsr_write(rt2x00dev, rf_reg, rfcsr);
+ msleep(1);
+ rt2x00_set_field8(&rfcsr, FIELD8(0x80), 0);
+ rt2800_rfcsr_write(rt2x00dev, rf_reg, rfcsr);
+}
+
+static void rt2800_rx_filter_calibration(struct rt2x00_dev *rt2x00dev)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u8 filter_tgt_bw20;
+ u8 filter_tgt_bw40;
+ u8 rfcsr, bbp;
+
+ /*
+ * TODO: sync filter_tgt values with vendor driver
+ */
+ if (rt2x00_rt(rt2x00dev, RT3070)) {
+ filter_tgt_bw20 = 0x16;
+ filter_tgt_bw40 = 0x19;
+ } else {
+ filter_tgt_bw20 = 0x13;
+ filter_tgt_bw40 = 0x15;
+ }
+
+ drv_data->calibration_bw20 =
+ rt2800_init_rx_filter(rt2x00dev, false, filter_tgt_bw20);
+ drv_data->calibration_bw40 =
+ rt2800_init_rx_filter(rt2x00dev, true, filter_tgt_bw40);
+
+ /*
+ * Save BBP 25 & 26 values for later use in channel switching (for 3052)
+ */
+ drv_data->bbp25 = rt2800_bbp_read(rt2x00dev, 25);
+ drv_data->bbp26 = rt2800_bbp_read(rt2x00dev, 26);
+
+ /*
+ * Set back to initial state
+ */
+ rt2800_bbp_write(rt2x00dev, 24, 0);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 22);
+ rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
+ rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
+
+ /*
+ * Set BBP back to BW20
+ */
+ bbp = rt2800_bbp_read(rt2x00dev, 4);
+ rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
+ rt2800_bbp_write(rt2x00dev, 4, bbp);
+}
+
+static void rt2800_normal_mode_setup_3xxx(struct rt2x00_dev *rt2x00dev)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u8 min_gain, rfcsr, bbp;
+ u16 eeprom;
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 17);
+
+ rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
+ if (rt2x00_rt(rt2x00dev, RT3070) ||
+ rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
+ rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
+ rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
+ if (!rt2x00_has_cap_external_lna_bg(rt2x00dev))
+ rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
+ }
+
+ min_gain = rt2x00_rt(rt2x00dev, RT3070) ? 1 : 2;
+ if (drv_data->txmixer_gain_24g >= min_gain) {
+ rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
+ drv_data->txmixer_gain_24g);
+ }
+
+ rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
+
+ if (rt2x00_rt(rt2x00dev, RT3090)) {
+ /* Turn off unused DAC1 and ADC1 to reduce power consumption */
+ bbp = rt2800_bbp_read(rt2x00dev, 138);
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0);
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
+ rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
+ rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);
+ rt2800_bbp_write(rt2x00dev, 138, bbp);
+ }
+
+ if (rt2x00_rt(rt2x00dev, RT3070)) {
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 27);
+ if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F))
+ rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
+ else
+ rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
+ rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
+ } else if (rt2x00_rt(rt2x00dev, RT3071) ||
+ rt2x00_rt(rt2x00dev, RT3090) ||
+ rt2x00_rt(rt2x00dev, RT3390)) {
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
+ rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 15);
+ rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
+ rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 20);
+ rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
+ rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 21);
+ rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
+ rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
+ }
+}
+
+static void rt2800_normal_mode_setup_3593(struct rt2x00_dev *rt2x00dev)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u8 rfcsr;
+ u8 tx_gain;
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 50);
+ rt2x00_set_field8(&rfcsr, RFCSR50_TX_LO2_EN, 0);
+ rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 51);
+ tx_gain = rt2x00_get_field8(drv_data->txmixer_gain_24g,
+ RFCSR17_TXMIXER_GAIN);
+ rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, tx_gain);
+ rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 38);
+ rt2x00_set_field8(&rfcsr, RFCSR38_RX_LO1_EN, 0);
+ rt2800_rfcsr_write(rt2x00dev, 38, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 39);
+ rt2x00_set_field8(&rfcsr, RFCSR39_RX_LO2_EN, 0);
+ rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
+ rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 30);
+ rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
+ rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+
+ /* TODO: enable stream mode */
+}
+
+static void rt2800_normal_mode_setup_5xxx(struct rt2x00_dev *rt2x00dev)
+{
+ u8 reg;
+ u16 eeprom;
+
+ /* Turn off unused DAC1 and ADC1 to reduce power consumption */
+ reg = rt2800_bbp_read(rt2x00dev, 138);
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0);
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
+ rt2x00_set_field8(&reg, BBP138_RX_ADC1, 0);
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
+ rt2x00_set_field8(&reg, BBP138_TX_DAC1, 1);
+ rt2800_bbp_write(rt2x00dev, 138, reg);
+
+ reg = rt2800_rfcsr_read(rt2x00dev, 38);
+ rt2x00_set_field8(&reg, RFCSR38_RX_LO1_EN, 0);
+ rt2800_rfcsr_write(rt2x00dev, 38, reg);
+
+ reg = rt2800_rfcsr_read(rt2x00dev, 39);
+ rt2x00_set_field8(&reg, RFCSR39_RX_LO2_EN, 0);
+ rt2800_rfcsr_write(rt2x00dev, 39, reg);
+
+ rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+ reg = rt2800_rfcsr_read(rt2x00dev, 30);
+ rt2x00_set_field8(&reg, RFCSR30_RX_VCM, 2);
+ rt2800_rfcsr_write(rt2x00dev, 30, reg);
+}
+
+static void rt2800_init_rfcsr_305x_soc(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_rf_init_calibration(rt2x00dev, 30);
+
+ rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
+ rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
+ rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
+ rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
+ rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
+ rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
+}
+
+static void rt2800_init_rfcsr_30xx(struct rt2x00_dev *rt2x00dev)
+{
+ u8 rfcsr;
+ u16 eeprom;
+ u32 reg;
+
+ /* XXX vendor driver do this only for 3070 */
+ rt2800_rf_init_calibration(rt2x00dev, 30);
+
+ rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 7, 0x60);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
+ rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
+
+ if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
+ reg = rt2800_register_read(rt2x00dev, LDO_CFG0);
+ rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
+ rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
+ rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+ } else if (rt2x00_rt(rt2x00dev, RT3071) ||
+ rt2x00_rt(rt2x00dev, RT3090)) {
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x14);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 6);
+ rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
+ rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
+
+ reg = rt2800_register_read(rt2x00dev, LDO_CFG0);
+ rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
+ if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
+ rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
+ rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
+ else
+ rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
+ }
+ rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+
+ reg = rt2800_register_read(rt2x00dev, GPIO_SWITCH);
+ rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
+ rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
+ }
+
+ rt2800_rx_filter_calibration(rt2x00dev);
+
+ if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
+ rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
+ rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E))
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
+
+ rt2800_led_open_drain_enable(rt2x00dev);
+ rt2800_normal_mode_setup_3xxx(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_3290(struct rt2x00_dev *rt2x00dev)
+{
+ u8 rfcsr;
+
+ rt2800_rf_init_calibration(rt2x00dev, 2);
+
+ rt2800_rfcsr_write(rt2x00dev, 1, 0x0f);
+ rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0x08);
+ rt2800_rfcsr_write(rt2x00dev, 4, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0xa0);
+ rt2800_rfcsr_write(rt2x00dev, 8, 0xf3);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x83);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x82);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 34, 0x05);
+ rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
+ rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
+ rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
+ rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
+ rt2800_rfcsr_write(rt2x00dev, 42, 0xd5);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0x7b);
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
+ rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
+ rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
+ rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 49, 0x98);
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
+ rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 54, 0x78);
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
+ rt2800_rfcsr_write(rt2x00dev, 56, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 57, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 58, 0x7f);
+ rt2800_rfcsr_write(rt2x00dev, 59, 0x09);
+ rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
+ rt2800_rfcsr_write(rt2x00dev, 61, 0xc1);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 29);
+ rt2x00_set_field8(&rfcsr, RFCSR29_RSSI_GAIN, 3);
+ rt2800_rfcsr_write(rt2x00dev, 29, rfcsr);
+
+ rt2800_led_open_drain_enable(rt2x00dev);
+ rt2800_normal_mode_setup_3xxx(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_3352(struct rt2x00_dev *rt2x00dev)
+{
+ int tx0_ext_pa = test_bit(CAPABILITY_EXTERNAL_PA_TX0,
+ &rt2x00dev->cap_flags);
+ int tx1_ext_pa = test_bit(CAPABILITY_EXTERNAL_PA_TX1,
+ &rt2x00dev->cap_flags);
+ u8 rfcsr;
+
+ rt2800_rf_init_calibration(rt2x00dev, 30);
+
+ rt2800_rfcsr_write(rt2x00dev, 0, 0xf0);
+ rt2800_rfcsr_write(rt2x00dev, 1, 0x23);
+ rt2800_rfcsr_write(rt2x00dev, 2, 0x50);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0x18);
+ rt2800_rfcsr_write(rt2x00dev, 4, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0x33);
+ rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 8, 0xf1);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0xd2);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x42);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x1c);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0x5a);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0x01);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x45);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
+ rfcsr = 0x01;
+ if (tx0_ext_pa)
+ rt2x00_set_field8(&rfcsr, RFCSR34_TX0_EXT_PA, 1);
+ if (tx1_ext_pa)
+ rt2x00_set_field8(&rfcsr, RFCSR34_TX1_EXT_PA, 1);
+ rt2800_rfcsr_write(rt2x00dev, 34, rfcsr);
+ rt2800_rfcsr_write(rt2x00dev, 35, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 36, 0xbd);
+ rt2800_rfcsr_write(rt2x00dev, 37, 0x3c);
+ rt2800_rfcsr_write(rt2x00dev, 38, 0x5f);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0xc5);
+ rt2800_rfcsr_write(rt2x00dev, 40, 0x33);
+ rfcsr = 0x52;
+ if (!tx0_ext_pa) {
+ rt2x00_set_field8(&rfcsr, RFCSR41_BIT1, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR41_BIT4, 1);
+ }
+ rt2800_rfcsr_write(rt2x00dev, 41, rfcsr);
+ rfcsr = 0x52;
+ if (!tx1_ext_pa) {
+ rt2x00_set_field8(&rfcsr, RFCSR42_BIT1, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR42_BIT4, 1);
+ }
+ rt2800_rfcsr_write(rt2x00dev, 42, rfcsr);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0xdb);
+ rt2800_rfcsr_write(rt2x00dev, 44, 0xdb);
+ rt2800_rfcsr_write(rt2x00dev, 45, 0xdb);
+ rt2800_rfcsr_write(rt2x00dev, 46, 0xdd);
+ rt2800_rfcsr_write(rt2x00dev, 47, 0x0d);
+ rt2800_rfcsr_write(rt2x00dev, 48, 0x14);
+ rt2800_rfcsr_write(rt2x00dev, 49, 0x00);
+ rfcsr = 0x2d;
+ if (tx0_ext_pa)
+ rt2x00_set_field8(&rfcsr, RFCSR50_TX0_EXT_PA, 1);
+ if (tx1_ext_pa)
+ rt2x00_set_field8(&rfcsr, RFCSR50_TX1_EXT_PA, 1);
+ rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
+ rt2800_rfcsr_write(rt2x00dev, 51, (tx0_ext_pa ? 0x52 : 0x7f));
+ rt2800_rfcsr_write(rt2x00dev, 52, (tx0_ext_pa ? 0xc0 : 0x00));
+ rt2800_rfcsr_write(rt2x00dev, 53, (tx0_ext_pa ? 0xd2 : 0x52));
+ rt2800_rfcsr_write(rt2x00dev, 54, (tx0_ext_pa ? 0xc0 : 0x1b));
+ rt2800_rfcsr_write(rt2x00dev, 55, (tx1_ext_pa ? 0x52 : 0x7f));
+ rt2800_rfcsr_write(rt2x00dev, 56, (tx1_ext_pa ? 0xc0 : 0x00));
+ rt2800_rfcsr_write(rt2x00dev, 57, (tx0_ext_pa ? 0x49 : 0x52));
+ rt2800_rfcsr_write(rt2x00dev, 58, (tx1_ext_pa ? 0xc0 : 0x1b));
+ rt2800_rfcsr_write(rt2x00dev, 59, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 60, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 61, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
+
+ rt2800_rx_filter_calibration(rt2x00dev);
+ rt2800_led_open_drain_enable(rt2x00dev);
+ rt2800_normal_mode_setup_3xxx(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_3390(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ rt2800_rf_init_calibration(rt2x00dev, 30);
+
+ rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
+ rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
+ rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
+ rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
+ rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
+ rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
+ rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
+
+ reg = rt2800_register_read(rt2x00dev, GPIO_SWITCH);
+ rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
+ rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
+
+ rt2800_rx_filter_calibration(rt2x00dev);
+
+ if (rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
+
+ rt2800_led_open_drain_enable(rt2x00dev);
+ rt2800_normal_mode_setup_3xxx(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_3572(struct rt2x00_dev *rt2x00dev)
+{
+ u8 rfcsr;
+ u32 reg;
+
+ rt2800_rf_init_calibration(rt2x00dev, 30);
+
+ rt2800_rfcsr_write(rt2x00dev, 0, 0x70);
+ rt2800_rfcsr_write(rt2x00dev, 1, 0x81);
+ rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 4, 0x4c);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x05);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0x4a);
+ rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x70);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x65);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0xa0);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0x4c);
+ rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0xac);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0xd0);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x3c);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x09);
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x10);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 6);
+ rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
+ rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
+
+ reg = rt2800_register_read(rt2x00dev, LDO_CFG0);
+ rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
+ rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
+ rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+ msleep(1);
+ reg = rt2800_register_read(rt2x00dev, LDO_CFG0);
+ rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
+ rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
+ rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+
+ rt2800_rx_filter_calibration(rt2x00dev);
+ rt2800_led_open_drain_enable(rt2x00dev);
+ rt2800_normal_mode_setup_3xxx(rt2x00dev);
+}
+
+static void rt3593_post_bbp_init(struct rt2x00_dev *rt2x00dev)
+{
+ u8 bbp;
+ bool txbf_enabled = false; /* FIXME */
+
+ bbp = rt2800_bbp_read(rt2x00dev, 105);
+ if (rt2x00dev->default_ant.rx_chain_num == 1)
+ rt2x00_set_field8(&bbp, BBP105_MLD, 0);
+ else
+ rt2x00_set_field8(&bbp, BBP105_MLD, 1);
+ rt2800_bbp_write(rt2x00dev, 105, bbp);
+
+ rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+ rt2800_bbp_write(rt2x00dev, 92, 0x02);
+ rt2800_bbp_write(rt2x00dev, 82, 0x82);
+ rt2800_bbp_write(rt2x00dev, 106, 0x05);
+ rt2800_bbp_write(rt2x00dev, 104, 0x92);
+ rt2800_bbp_write(rt2x00dev, 88, 0x90);
+ rt2800_bbp_write(rt2x00dev, 148, 0xc8);
+ rt2800_bbp_write(rt2x00dev, 47, 0x48);
+ rt2800_bbp_write(rt2x00dev, 120, 0x50);
+
+ if (txbf_enabled)
+ rt2800_bbp_write(rt2x00dev, 163, 0xbd);
+ else
+ rt2800_bbp_write(rt2x00dev, 163, 0x9d);
+
+ /* SNR mapping */
+ rt2800_bbp_write(rt2x00dev, 142, 6);
+ rt2800_bbp_write(rt2x00dev, 143, 160);
+ rt2800_bbp_write(rt2x00dev, 142, 7);
+ rt2800_bbp_write(rt2x00dev, 143, 161);
+ rt2800_bbp_write(rt2x00dev, 142, 8);
+ rt2800_bbp_write(rt2x00dev, 143, 162);
+
+ /* ADC/DAC control */
+ rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+ /* RX AGC energy lower bound in log2 */
+ rt2800_bbp_write(rt2x00dev, 68, 0x0b);
+
+ /* FIXME: BBP 105 owerwrite? */
+ rt2800_bbp_write(rt2x00dev, 105, 0x04);
+
+}
+
+static void rt2800_init_rfcsr_3593(struct rt2x00_dev *rt2x00dev)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u32 reg;
+ u8 rfcsr;
+
+ /* Disable GPIO #4 and #7 function for LAN PE control */
+ reg = rt2800_register_read(rt2x00dev, GPIO_SWITCH);
+ rt2x00_set_field32(&reg, GPIO_SWITCH_4, 0);
+ rt2x00_set_field32(&reg, GPIO_SWITCH_7, 0);
+ rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
+
+ /* Initialize default register values */
+ rt2800_rfcsr_write(rt2x00dev, 1, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 8, 0xf1);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0xd3);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x4e);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x12);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 32, 0x78);
+ rt2800_rfcsr_write(rt2x00dev, 33, 0x3b);
+ rt2800_rfcsr_write(rt2x00dev, 34, 0x3c);
+ rt2800_rfcsr_write(rt2x00dev, 35, 0xe0);
+ rt2800_rfcsr_write(rt2x00dev, 38, 0x86);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x23);
+ rt2800_rfcsr_write(rt2x00dev, 44, 0xd3);
+ rt2800_rfcsr_write(rt2x00dev, 45, 0xbb);
+ rt2800_rfcsr_write(rt2x00dev, 46, 0x60);
+ rt2800_rfcsr_write(rt2x00dev, 49, 0x8e);
+ rt2800_rfcsr_write(rt2x00dev, 50, 0x86);
+ rt2800_rfcsr_write(rt2x00dev, 51, 0x75);
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x45);
+ rt2800_rfcsr_write(rt2x00dev, 53, 0x18);
+ rt2800_rfcsr_write(rt2x00dev, 54, 0x18);
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x18);
+ rt2800_rfcsr_write(rt2x00dev, 56, 0xdb);
+ rt2800_rfcsr_write(rt2x00dev, 57, 0x6e);
+
+ /* Initiate calibration */
+ /* TODO: use rt2800_rf_init_calibration ? */
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 2);
+ rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 1);
+ rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
+
+ rt2800_freq_cal_mode1(rt2x00dev);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 18);
+ rt2x00_set_field8(&rfcsr, RFCSR18_XO_TUNE_BYPASS, 1);
+ rt2800_rfcsr_write(rt2x00dev, 18, rfcsr);
+
+ reg = rt2800_register_read(rt2x00dev, LDO_CFG0);
+ rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
+ rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
+ rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+ usleep_range(1000, 1500);
+ reg = rt2800_register_read(rt2x00dev, LDO_CFG0);
+ rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
+ rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+
+ /* Set initial values for RX filter calibration */
+ drv_data->calibration_bw20 = 0x1f;
+ drv_data->calibration_bw40 = 0x2f;
+
+ /* Save BBP 25 & 26 values for later use in channel switching */
+ drv_data->bbp25 = rt2800_bbp_read(rt2x00dev, 25);
+ drv_data->bbp26 = rt2800_bbp_read(rt2x00dev, 26);
+
+ rt2800_led_open_drain_enable(rt2x00dev);
+ rt2800_normal_mode_setup_3593(rt2x00dev);
+
+ rt3593_post_bbp_init(rt2x00dev);
+
+ /* TODO: enable stream mode support */
+}
+
+static void rt2800_init_rfcsr_5350(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_rfcsr_write(rt2x00dev, 0, 0xf0);
+ rt2800_rfcsr_write(rt2x00dev, 1, 0x23);
+ rt2800_rfcsr_write(rt2x00dev, 2, 0x50);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0x08);
+ rt2800_rfcsr_write(rt2x00dev, 4, 0x49);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
+ rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 8, 0xf1);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
+ if (rt2800_clk_is_20mhz(rt2x00dev))
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x1f);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0xc0);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0xd0);
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
+ rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
+ rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
+ rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
+ rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
+ rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
+ rt2800_rfcsr_write(rt2x00dev, 42, 0xd5);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0x9b);
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x0c);
+ rt2800_rfcsr_write(rt2x00dev, 45, 0xa6);
+ rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
+ rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 49, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 50, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 51, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
+ rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 54, 0x38);
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
+ rt2800_rfcsr_write(rt2x00dev, 56, 0x82);
+ rt2800_rfcsr_write(rt2x00dev, 57, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 58, 0x39);
+ rt2800_rfcsr_write(rt2x00dev, 59, 0x0b);
+ rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
+ rt2800_rfcsr_write(rt2x00dev, 61, 0xd1);
+ rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
+}
+
+static void rt2800_init_rfcsr_3883(struct rt2x00_dev *rt2x00dev)
+{
+ u8 rfcsr;
+
+ /* TODO: get the actual ECO value from the SoC */
+ const unsigned int eco = 5;
+
+ rt2800_rf_init_calibration(rt2x00dev, 2);
+
+ rt2800_rfcsr_write(rt2x00dev, 0, 0xe0);
+ rt2800_rfcsr_write(rt2x00dev, 1, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 2, 0x50);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0x20);
+ rt2800_rfcsr_write(rt2x00dev, 4, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 8, 0x5b);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0x08);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0xd3);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x48);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x1a);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x12);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
+
+ /* RFCSR 17 will be initialized later based on the
+ * frequency offset stored in the EEPROM
+ */
+
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
+ rt2800_rfcsr_write(rt2x00dev, 23, 0xc0);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 34, 0x20);
+ rt2800_rfcsr_write(rt2x00dev, 35, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 37, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 38, 0x86);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x23);
+ rt2800_rfcsr_write(rt2x00dev, 40, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 41, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 42, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x93);
+ rt2800_rfcsr_write(rt2x00dev, 45, 0xbb);
+ rt2800_rfcsr_write(rt2x00dev, 46, 0x60);
+ rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 48, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 49, 0x8e);
+ rt2800_rfcsr_write(rt2x00dev, 50, 0x86);
+ rt2800_rfcsr_write(rt2x00dev, 51, 0x51);
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x05);
+ rt2800_rfcsr_write(rt2x00dev, 53, 0x76);
+ rt2800_rfcsr_write(rt2x00dev, 54, 0x76);
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x76);
+ rt2800_rfcsr_write(rt2x00dev, 56, 0xdb);
+ rt2800_rfcsr_write(rt2x00dev, 57, 0x3e);
+ rt2800_rfcsr_write(rt2x00dev, 58, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 59, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 60, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 61, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
+
+ /* TODO: rx filter calibration? */
+
+ rt2800_bbp_write(rt2x00dev, 137, 0x0f);
+
+ rt2800_bbp_write(rt2x00dev, 163, 0x9d);
+
+ rt2800_bbp_write(rt2x00dev, 105, 0x05);
+
+ rt2800_bbp_write(rt2x00dev, 179, 0x02);
+ rt2800_bbp_write(rt2x00dev, 180, 0x00);
+ rt2800_bbp_write(rt2x00dev, 182, 0x40);
+ rt2800_bbp_write(rt2x00dev, 180, 0x01);
+ rt2800_bbp_write(rt2x00dev, 182, 0x9c);
+
+ rt2800_bbp_write(rt2x00dev, 179, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 142, 0x04);
+ rt2800_bbp_write(rt2x00dev, 143, 0x3b);
+ rt2800_bbp_write(rt2x00dev, 142, 0x06);
+ rt2800_bbp_write(rt2x00dev, 143, 0xa0);
+ rt2800_bbp_write(rt2x00dev, 142, 0x07);
+ rt2800_bbp_write(rt2x00dev, 143, 0xa1);
+ rt2800_bbp_write(rt2x00dev, 142, 0x08);
+ rt2800_bbp_write(rt2x00dev, 143, 0xa2);
+ rt2800_bbp_write(rt2x00dev, 148, 0xc8);
+
+ if (eco == 5) {
+ rt2800_rfcsr_write(rt2x00dev, 32, 0xd8);
+ rt2800_rfcsr_write(rt2x00dev, 33, 0x32);
+ }
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 2);
+ rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_BP, 0);
+ rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 1);
+ rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
+ msleep(1);
+ rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 0);
+ rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
+ rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+ rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 6);
+ rfcsr |= 0xc0;
+ rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 22);
+ rfcsr |= 0x20;
+ rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 46);
+ rfcsr |= 0x20;
+ rt2800_rfcsr_write(rt2x00dev, 46, rfcsr);
+
+ rfcsr = rt2800_rfcsr_read(rt2x00dev, 20);
+ rfcsr &= ~0xee;
+ rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
+}
+
+static void rt2800_init_rfcsr_5390(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_rf_init_calibration(rt2x00dev, 2);
+
+ rt2800_rfcsr_write(rt2x00dev, 1, 0x0f);
+ rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0x88);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
+ rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 6, 0xa0);
+ rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x00);
+
+ rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
+ if (rt2x00_is_usb(rt2x00dev) &&
+ rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 25, 0xc0);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
+
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
+ rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
+ rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
+ rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
+
+ rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
+ rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
+ rt2800_rfcsr_write(rt2x00dev, 42, 0xd2);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0x9a);
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
+ rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
+ rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 46, 0x7b);
+ rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 49, 0x94);
+
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
+ rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 53, 0x84);
+ rt2800_rfcsr_write(rt2x00dev, 54, 0x78);
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x44);
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
+ rt2800_rfcsr_write(rt2x00dev, 56, 0x42);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 56, 0x22);
+ rt2800_rfcsr_write(rt2x00dev, 57, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 58, 0x7f);
+ rt2800_rfcsr_write(rt2x00dev, 59, 0x8f);
+
+ rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
+ if (rt2x00_is_usb(rt2x00dev))
+ rt2800_rfcsr_write(rt2x00dev, 61, 0xd1);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 61, 0xd5);
+ } else {
+ if (rt2x00_is_usb(rt2x00dev))
+ rt2800_rfcsr_write(rt2x00dev, 61, 0xdd);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 61, 0xb5);
+ }
+ rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
+
+ rt2800_normal_mode_setup_5xxx(rt2x00dev);
+
+ rt2800_led_open_drain_enable(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_5392(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_rf_init_calibration(rt2x00dev, 2);
+
+ rt2800_rfcsr_write(rt2x00dev, 1, 0x17);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0x88);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
+ rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
+ rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x4d);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0x8d);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x0b);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x44);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x82);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 32, 0x20);
+ rt2800_rfcsr_write(rt2x00dev, 33, 0xC0);
+ rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
+ rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
+ rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
+ rt2800_rfcsr_write(rt2x00dev, 38, 0x89);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
+ rt2800_rfcsr_write(rt2x00dev, 40, 0x0f);
+ rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
+ rt2800_rfcsr_write(rt2x00dev, 42, 0xd5);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0x9b);
+ rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
+ rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
+ rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
+ rt2800_rfcsr_write(rt2x00dev, 47, 0x0c);
+ rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 49, 0x94);
+ rt2800_rfcsr_write(rt2x00dev, 50, 0x94);
+ rt2800_rfcsr_write(rt2x00dev, 51, 0x3a);
+ rt2800_rfcsr_write(rt2x00dev, 52, 0x48);
+ rt2800_rfcsr_write(rt2x00dev, 53, 0x44);
+ rt2800_rfcsr_write(rt2x00dev, 54, 0x38);
+ rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
+ rt2800_rfcsr_write(rt2x00dev, 56, 0xa1);
+ rt2800_rfcsr_write(rt2x00dev, 57, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 58, 0x39);
+ rt2800_rfcsr_write(rt2x00dev, 59, 0x07);
+ rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
+ rt2800_rfcsr_write(rt2x00dev, 61, 0x91);
+ rt2800_rfcsr_write(rt2x00dev, 62, 0x39);
+ rt2800_rfcsr_write(rt2x00dev, 63, 0x07);
+
+ rt2800_normal_mode_setup_5xxx(rt2x00dev);
+
+ rt2800_led_open_drain_enable(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_5592(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_rf_init_calibration(rt2x00dev, 30);
+
+ rt2800_rfcsr_write(rt2x00dev, 1, 0x3F);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0x08);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0xE4);
+ rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x4D);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0x8D);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x82);
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
+ rt2800_rfcsr_write(rt2x00dev, 33, 0xC0);
+ rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
+ rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
+ rt2800_rfcsr_write(rt2x00dev, 47, 0x0C);
+ rt2800_rfcsr_write(rt2x00dev, 53, 0x22);
+ rt2800_rfcsr_write(rt2x00dev, 63, 0x07);
+
+ rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
+ msleep(1);
+
+ rt2800_freq_cal_mode1(rt2x00dev);
+
+ /* Enable DC filter */
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5592, REV_RT5592C))
+ rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+ rt2800_normal_mode_setup_5xxx(rt2x00dev);
+
+ if (rt2x00_rt_rev_lt(rt2x00dev, RT5592, REV_RT5592C))
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
+
+ rt2800_led_open_drain_enable(rt2x00dev);
+}
+
+static void rt2800_rf_self_txdc_cal(struct rt2x00_dev *rt2x00dev)
+{
+ u8 rfb5r1_org, rfb7r1_org, rfvalue;
+ u32 mac0518, mac051c, mac0528, mac052c;
+ u8 i;
+
+ mac0518 = rt2800_register_read(rt2x00dev, RF_CONTROL0);
+ mac051c = rt2800_register_read(rt2x00dev, RF_BYPASS0);
+ mac0528 = rt2800_register_read(rt2x00dev, RF_CONTROL2);
+ mac052c = rt2800_register_read(rt2x00dev, RF_BYPASS2);
+
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, 0x0);
+ rt2800_register_write(rt2x00dev, RF_BYPASS2, 0x0);
+
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0xC);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, 0x3306);
+ rt2800_register_write(rt2x00dev, RF_CONTROL2, 0x3330);
+ rt2800_register_write(rt2x00dev, RF_BYPASS2, 0xfffff);
+ rfb5r1_org = rt2800_rfcsr_read_bank(rt2x00dev, 5, 1);
+ rfb7r1_org = rt2800_rfcsr_read_bank(rt2x00dev, 7, 1);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 1, 0x4);
+ for (i = 0; i < 100; ++i) {
+ usleep_range(50, 100);
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 5, 1);
+ if ((rfvalue & 0x04) != 0x4)
+ break;
+ }
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 1, rfb5r1_org);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 1, 0x4);
+ for (i = 0; i < 100; ++i) {
+ usleep_range(50, 100);
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 7, 1);
+ if ((rfvalue & 0x04) != 0x4)
+ break;
+ }
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 1, rfb7r1_org);
+
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, 0x0);
+ rt2800_register_write(rt2x00dev, RF_BYPASS2, 0x0);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, mac0518);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, mac051c);
+ rt2800_register_write(rt2x00dev, RF_CONTROL2, mac0528);
+ rt2800_register_write(rt2x00dev, RF_BYPASS2, mac052c);
+}
+
+static int rt2800_calcrcalibrationcode(struct rt2x00_dev *rt2x00dev, int d1, int d2)
+{
+ int calcode = ((d2 - d1) * 1000) / 43;
+
+ if ((calcode % 10) >= 5)
+ calcode += 10;
+ calcode = (calcode / 10);
+
+ return calcode;
+}
+
+static void rt2800_r_calibration(struct rt2x00_dev *rt2x00dev)
+{
+ u32 savemacsysctrl;
+ u8 saverfb0r1, saverfb0r34, saverfb0r35;
+ u8 saverfb5r4, saverfb5r17, saverfb5r18;
+ u8 saverfb5r19, saverfb5r20;
+ u8 savebbpr22, savebbpr47, savebbpr49;
+ u8 bytevalue = 0;
+ int rcalcode;
+ u8 r_cal_code = 0;
+ s8 d1 = 0, d2 = 0;
+ u8 rfvalue;
+ u32 MAC_RF_BYPASS0, MAC_RF_CONTROL0, MAC_PWR_PIN_CFG;
+ u32 maccfg;
+
+ saverfb0r1 = rt2800_rfcsr_read_bank(rt2x00dev, 0, 1);
+ saverfb0r34 = rt2800_rfcsr_read_bank(rt2x00dev, 0, 34);
+ saverfb0r35 = rt2800_rfcsr_read_bank(rt2x00dev, 0, 35);
+ saverfb5r4 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 4);
+ saverfb5r17 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 17);
+ saverfb5r18 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 18);
+ saverfb5r19 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 19);
+ saverfb5r20 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 20);
+
+ savebbpr22 = rt2800_bbp_read(rt2x00dev, 22);
+ savebbpr47 = rt2800_bbp_read(rt2x00dev, 47);
+ savebbpr49 = rt2800_bbp_read(rt2x00dev, 49);
+
+ savemacsysctrl = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ MAC_RF_BYPASS0 = rt2800_register_read(rt2x00dev, RF_BYPASS0);
+ MAC_RF_CONTROL0 = rt2800_register_read(rt2x00dev, RF_CONTROL0);
+ MAC_PWR_PIN_CFG = rt2800_register_read(rt2x00dev, PWR_PIN_CFG);
+
+ maccfg = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ maccfg &= (~0x04);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, maccfg);
+
+ if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev, MAC_STATUS_CFG_BBP_RF_BUSY_TX)))
+ rt2x00_warn(rt2x00dev, "Wait MAC Tx Status to MAX !!!\n");
+
+ maccfg = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ maccfg &= (~0x08);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, maccfg);
+
+ if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev, MAC_STATUS_CFG_BBP_RF_BUSY_RX)))
+ rt2x00_warn(rt2x00dev, "Wait MAC Rx Status to MAX !!!\n");
+
+ rfvalue = (MAC_RF_BYPASS0 | 0x3004);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, rfvalue);
+ rfvalue = (MAC_RF_CONTROL0 | (~0x3002));
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, rfvalue);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 4, 0x27);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 17, 0x80);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 18, 0x83);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 19, 0x00);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 20, 0x20);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 1, 0x00);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 34, 0x13);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 35, 0x00);
+
+ rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x1);
+
+ rt2800_bbp_write(rt2x00dev, 47, 0x04);
+ rt2800_bbp_write(rt2x00dev, 22, 0x80);
+ usleep_range(100, 200);
+ bytevalue = rt2800_bbp_read(rt2x00dev, 49);
+ if (bytevalue > 128)
+ d1 = bytevalue - 256;
+ else
+ d1 = (s8)bytevalue;
+ rt2800_bbp_write(rt2x00dev, 22, 0x0);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 35, 0x01);
+
+ rt2800_bbp_write(rt2x00dev, 22, 0x80);
+ usleep_range(100, 200);
+ bytevalue = rt2800_bbp_read(rt2x00dev, 49);
+ if (bytevalue > 128)
+ d2 = bytevalue - 256;
+ else
+ d2 = (s8)bytevalue;
+ rt2800_bbp_write(rt2x00dev, 22, 0x0);
+
+ rcalcode = rt2800_calcrcalibrationcode(rt2x00dev, d1, d2);
+ if (rcalcode < 0)
+ r_cal_code = 256 + rcalcode;
+ else
+ r_cal_code = (u8)rcalcode;
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 7, r_cal_code);
+
+ rt2800_bbp_write(rt2x00dev, 22, 0x0);
+
+ bytevalue = rt2800_bbp_read(rt2x00dev, 21);
+ bytevalue |= 0x1;
+ rt2800_bbp_write(rt2x00dev, 21, bytevalue);
+ bytevalue = rt2800_bbp_read(rt2x00dev, 21);
+ bytevalue &= (~0x1);
+ rt2800_bbp_write(rt2x00dev, 21, bytevalue);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 1, saverfb0r1);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 34, saverfb0r34);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 35, saverfb0r35);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 4, saverfb5r4);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 17, saverfb5r17);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 18, saverfb5r18);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 19, saverfb5r19);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 20, saverfb5r20);
+
+ rt2800_bbp_write(rt2x00dev, 22, savebbpr22);
+ rt2800_bbp_write(rt2x00dev, 47, savebbpr47);
+ rt2800_bbp_write(rt2x00dev, 49, savebbpr49);
+
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, MAC_RF_BYPASS0);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, MAC_RF_CONTROL0);
+
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, savemacsysctrl);
+ rt2800_register_write(rt2x00dev, PWR_PIN_CFG, MAC_PWR_PIN_CFG);
+}
+
+static void rt2800_rxdcoc_calibration(struct rt2x00_dev *rt2x00dev)
+{
+ u8 bbpreg = 0;
+ u32 macvalue = 0;
+ u8 saverfb0r2, saverfb5r4, saverfb7r4, rfvalue;
+ int i;
+
+ saverfb0r2 = rt2800_rfcsr_read_bank(rt2x00dev, 0, 2);
+ rfvalue = saverfb0r2;
+ rfvalue |= 0x03;
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 2, rfvalue);
+
+ rt2800_bbp_write(rt2x00dev, 158, 141);
+ bbpreg = rt2800_bbp_read(rt2x00dev, 159);
+ bbpreg |= 0x10;
+ rt2800_bbp_write(rt2x00dev, 159, bbpreg);
+
+ macvalue = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x8);
+
+ if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev, MAC_STATUS_CFG_BBP_RF_BUSY_TX)))
+ rt2x00_warn(rt2x00dev, "RF TX busy in RX RXDCOC calibration\n");
+
+ saverfb5r4 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 4);
+ saverfb7r4 = rt2800_rfcsr_read_bank(rt2x00dev, 7, 4);
+ saverfb5r4 = saverfb5r4 & (~0x40);
+ saverfb7r4 = saverfb7r4 & (~0x40);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 4, 0x64);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 4, saverfb5r4);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 4, saverfb7r4);
+
+ rt2800_bbp_write(rt2x00dev, 158, 141);
+ bbpreg = rt2800_bbp_read(rt2x00dev, 159);
+ bbpreg = bbpreg & (~0x40);
+ rt2800_bbp_write(rt2x00dev, 159, bbpreg);
+ bbpreg |= 0x48;
+ rt2800_bbp_write(rt2x00dev, 159, bbpreg);
+
+ for (i = 0; i < 10000; i++) {
+ bbpreg = rt2800_bbp_read(rt2x00dev, 159);
+ if ((bbpreg & 0x40) == 0)
+ break;
+ usleep_range(50, 100);
+ }
+
+ bbpreg = rt2800_bbp_read(rt2x00dev, 159);
+ bbpreg = bbpreg & (~0x40);
+ rt2800_bbp_write(rt2x00dev, 159, bbpreg);
+
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, macvalue);
+
+ rt2800_bbp_write(rt2x00dev, 158, 141);
+ bbpreg = rt2800_bbp_read(rt2x00dev, 159);
+ bbpreg &= (~0x10);
+ rt2800_bbp_write(rt2x00dev, 159, bbpreg);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 2, saverfb0r2);
+}
+
+static u32 rt2800_do_sqrt_accumulation(u32 si)
+{
+ u32 root, root_pre, bit;
+ s8 i;
+
+ bit = 1 << 15;
+ root = 0;
+ for (i = 15; i >= 0; i = i - 1) {
+ root_pre = root + bit;
+ if ((root_pre * root_pre) <= si)
+ root = root_pre;
+ bit = bit >> 1;
+ }
+
+ return root;
+}
+
+static void rt2800_rxiq_calibration(struct rt2x00_dev *rt2x00dev)
+{
+ u8 rfb0r1, rfb0r2, rfb0r42;
+ u8 rfb4r0, rfb4r19;
+ u8 rfb5r3, rfb5r4, rfb5r17, rfb5r18, rfb5r19, rfb5r20;
+ u8 rfb6r0, rfb6r19;
+ u8 rfb7r3, rfb7r4, rfb7r17, rfb7r18, rfb7r19, rfb7r20;
+
+ u8 bbp1, bbp4;
+ u8 bbpr241, bbpr242;
+ u32 i;
+ u8 ch_idx;
+ u8 bbpval;
+ u8 rfval, vga_idx = 0;
+ int mi = 0, mq = 0, si = 0, sq = 0, riq = 0;
+ int sigma_i, sigma_q, r_iq, g_rx;
+ int g_imb;
+ int ph_rx;
+ u32 savemacsysctrl = 0;
+ u32 orig_RF_CONTROL0 = 0;
+ u32 orig_RF_BYPASS0 = 0;
+ u32 orig_RF_CONTROL1 = 0;
+ u32 orig_RF_BYPASS1 = 0;
+ u32 orig_RF_CONTROL3 = 0;
+ u32 orig_RF_BYPASS3 = 0;
+ u32 bbpval1 = 0;
+ static const u8 rf_vga_table[] = {0x20, 0x21, 0x22, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f};
+
+ savemacsysctrl = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ orig_RF_CONTROL0 = rt2800_register_read(rt2x00dev, RF_CONTROL0);
+ orig_RF_BYPASS0 = rt2800_register_read(rt2x00dev, RF_BYPASS0);
+ orig_RF_CONTROL1 = rt2800_register_read(rt2x00dev, RF_CONTROL1);
+ orig_RF_BYPASS1 = rt2800_register_read(rt2x00dev, RF_BYPASS1);
+ orig_RF_CONTROL3 = rt2800_register_read(rt2x00dev, RF_CONTROL3);
+ orig_RF_BYPASS3 = rt2800_register_read(rt2x00dev, RF_BYPASS3);
+
+ bbp1 = rt2800_bbp_read(rt2x00dev, 1);
+ bbp4 = rt2800_bbp_read(rt2x00dev, 4);
+
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x0);
+
+ if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev, MAC_STATUS_CFG_BBP_RF_BUSY)))
+ rt2x00_warn(rt2x00dev, "Timeout waiting for MAC status in RXIQ calibration\n");
+
+ bbpval = bbp4 & (~0x18);
+ bbpval = bbp4 | 0x00;
+ rt2800_bbp_write(rt2x00dev, 4, bbpval);
+
+ bbpval = rt2800_bbp_read(rt2x00dev, 21);
+ bbpval = bbpval | 1;
+ rt2800_bbp_write(rt2x00dev, 21, bbpval);
+ bbpval = bbpval & 0xfe;
+ rt2800_bbp_write(rt2x00dev, 21, bbpval);
+
+ rt2800_register_write(rt2x00dev, RF_CONTROL1, 0x00000202);
+ rt2800_register_write(rt2x00dev, RF_BYPASS1, 0x00000303);
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX0, &rt2x00dev->cap_flags))
+ rt2800_register_write(rt2x00dev, RF_CONTROL3, 0x0101);
+ else
+ rt2800_register_write(rt2x00dev, RF_CONTROL3, 0x0000);
+
+ rt2800_register_write(rt2x00dev, RF_BYPASS3, 0xf1f1);
+
+ rfb0r1 = rt2800_rfcsr_read_bank(rt2x00dev, 0, 1);
+ rfb0r2 = rt2800_rfcsr_read_bank(rt2x00dev, 0, 2);
+ rfb0r42 = rt2800_rfcsr_read_bank(rt2x00dev, 0, 42);
+ rfb4r0 = rt2800_rfcsr_read_bank(rt2x00dev, 4, 0);
+ rfb4r19 = rt2800_rfcsr_read_bank(rt2x00dev, 4, 19);
+ rfb5r3 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 3);
+ rfb5r4 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 4);
+ rfb5r17 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 17);
+ rfb5r18 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 18);
+ rfb5r19 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 19);
+ rfb5r20 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 20);
+
+ rfb6r0 = rt2800_rfcsr_read_bank(rt2x00dev, 6, 0);
+ rfb6r19 = rt2800_rfcsr_read_bank(rt2x00dev, 6, 19);
+ rfb7r3 = rt2800_rfcsr_read_bank(rt2x00dev, 7, 3);
+ rfb7r4 = rt2800_rfcsr_read_bank(rt2x00dev, 7, 4);
+ rfb7r17 = rt2800_rfcsr_read_bank(rt2x00dev, 7, 17);
+ rfb7r18 = rt2800_rfcsr_read_bank(rt2x00dev, 7, 18);
+ rfb7r19 = rt2800_rfcsr_read_bank(rt2x00dev, 7, 19);
+ rfb7r20 = rt2800_rfcsr_read_bank(rt2x00dev, 7, 20);
+
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 0, 0x87);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 19, 0x27);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 3, 0x38);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 4, 0x38);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 17, 0x80);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 18, 0xC1);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 19, 0x60);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 20, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 23, 0x0);
+ rt2800_bbp_write(rt2x00dev, 24, 0x0);
+
+ rt2800_bbp_dcoc_write(rt2x00dev, 5, 0x0);
+
+ bbpr241 = rt2800_bbp_read(rt2x00dev, 241);
+ bbpr242 = rt2800_bbp_read(rt2x00dev, 242);
+
+ rt2800_bbp_write(rt2x00dev, 241, 0x10);
+ rt2800_bbp_write(rt2x00dev, 242, 0x84);
+ rt2800_bbp_write(rt2x00dev, 244, 0x31);
+
+ bbpval = rt2800_bbp_dcoc_read(rt2x00dev, 3);
+ bbpval = bbpval & (~0x7);
+ rt2800_bbp_dcoc_write(rt2x00dev, 3, bbpval);
+
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00000004);
+ udelay(1);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00000006);
+ usleep_range(1, 200);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, 0x00003376);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00001006);
+ udelay(1);
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX0, &rt2x00dev->cap_flags)) {
+ rt2800_bbp_write(rt2x00dev, 23, 0x06);
+ rt2800_bbp_write(rt2x00dev, 24, 0x06);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 23, 0x02);
+ rt2800_bbp_write(rt2x00dev, 24, 0x02);
+ }
+
+ for (ch_idx = 0; ch_idx < 2; ch_idx = ch_idx + 1) {
+ if (ch_idx == 0) {
+ rfval = rfb0r1 & (~0x3);
+ rfval = rfb0r1 | 0x1;
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 1, rfval);
+ rfval = rfb0r2 & (~0x33);
+ rfval = rfb0r2 | 0x11;
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 2, rfval);
+ rfval = rfb0r42 & (~0x50);
+ rfval = rfb0r42 | 0x10;
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 42, rfval);
+
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00001006);
+ udelay(1);
+
+ bbpval = bbp1 & (~0x18);
+ bbpval = bbpval | 0x00;
+ rt2800_bbp_write(rt2x00dev, 1, bbpval);
+
+ rt2800_bbp_dcoc_write(rt2x00dev, 1, 0x00);
+ } else {
+ rfval = rfb0r1 & (~0x3);
+ rfval = rfb0r1 | 0x2;
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 1, rfval);
+ rfval = rfb0r2 & (~0x33);
+ rfval = rfb0r2 | 0x22;
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 2, rfval);
+ rfval = rfb0r42 & (~0x50);
+ rfval = rfb0r42 | 0x40;
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 42, rfval);
+
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00002006);
+ udelay(1);
+
+ bbpval = bbp1 & (~0x18);
+ bbpval = bbpval | 0x08;
+ rt2800_bbp_write(rt2x00dev, 1, bbpval);
+
+ rt2800_bbp_dcoc_write(rt2x00dev, 1, 0x01);
+ }
+ usleep_range(500, 1500);
+
+ vga_idx = 0;
+ while (vga_idx < 11) {
+ rt2800_rfcsr_write_dccal(rt2x00dev, 3, rf_vga_table[vga_idx]);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 4, rf_vga_table[vga_idx]);
+
+ rt2800_bbp_dcoc_write(rt2x00dev, 0, 0x93);
+
+ for (i = 0; i < 10000; i++) {
+ bbpval = rt2800_bbp_read(rt2x00dev, 159);
+ if ((bbpval & 0xff) == 0x93)
+ usleep_range(50, 100);
+ else
+ break;
+ }
+
+ if ((bbpval & 0xff) == 0x93) {
+ rt2x00_warn(rt2x00dev, "Fatal Error: Calibration doesn't finish");
+ goto restore_value;
+ }
+ for (i = 0; i < 5; i++) {
+ u32 bbptemp = 0;
+ u8 value = 0;
+ int result = 0;
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x1e);
+ rt2800_bbp_write(rt2x00dev, 159, i);
+ rt2800_bbp_write(rt2x00dev, 158, 0x22);
+ value = rt2800_bbp_read(rt2x00dev, 159);
+ bbptemp = bbptemp + (value << 24);
+ rt2800_bbp_write(rt2x00dev, 158, 0x21);
+ value = rt2800_bbp_read(rt2x00dev, 159);
+ bbptemp = bbptemp + (value << 16);
+ rt2800_bbp_write(rt2x00dev, 158, 0x20);
+ value = rt2800_bbp_read(rt2x00dev, 159);
+ bbptemp = bbptemp + (value << 8);
+ rt2800_bbp_write(rt2x00dev, 158, 0x1f);
+ value = rt2800_bbp_read(rt2x00dev, 159);
+ bbptemp = bbptemp + value;
+
+ if (i < 2 && (bbptemp & 0x800000))
+ result = (bbptemp & 0xffffff) - 0x1000000;
+ else
+ result = bbptemp;
+
+ if (i == 0)
+ mi = result / 4096;
+ else if (i == 1)
+ mq = result / 4096;
+ else if (i == 2)
+ si = bbptemp / 4096;
+ else if (i == 3)
+ sq = bbptemp / 4096;
+ else
+ riq = result / 4096;
+ }
+
+ bbpval1 = si - mi * mi;
+ rt2x00_dbg(rt2x00dev,
+ "RXIQ si=%d, sq=%d, riq=%d, bbpval %d, vga_idx %d",
+ si, sq, riq, bbpval1, vga_idx);
+
+ if (bbpval1 >= (100 * 100))
+ break;
+
+ if (bbpval1 <= 100)
+ vga_idx = vga_idx + 9;
+ else if (bbpval1 <= 158)
+ vga_idx = vga_idx + 8;
+ else if (bbpval1 <= 251)
+ vga_idx = vga_idx + 7;
+ else if (bbpval1 <= 398)
+ vga_idx = vga_idx + 6;
+ else if (bbpval1 <= 630)
+ vga_idx = vga_idx + 5;
+ else if (bbpval1 <= 1000)
+ vga_idx = vga_idx + 4;
+ else if (bbpval1 <= 1584)
+ vga_idx = vga_idx + 3;
+ else if (bbpval1 <= 2511)
+ vga_idx = vga_idx + 2;
+ else
+ vga_idx = vga_idx + 1;
+ }
+
+ sigma_i = rt2800_do_sqrt_accumulation(100 * (si - mi * mi));
+ sigma_q = rt2800_do_sqrt_accumulation(100 * (sq - mq * mq));
+ r_iq = 10 * (riq - (mi * mq));
+
+ rt2x00_dbg(rt2x00dev, "Sigma_i=%d, Sigma_q=%d, R_iq=%d", sigma_i, sigma_q, r_iq);
+
+ if (sigma_i <= 1400 && sigma_i >= 1000 &&
+ (sigma_i - sigma_q) <= 112 &&
+ (sigma_i - sigma_q) >= -112 &&
+ mi <= 32 && mi >= -32 &&
+ mq <= 32 && mq >= -32) {
+ r_iq = 10 * (riq - (mi * mq));
+ rt2x00_dbg(rt2x00dev, "RXIQ Sigma_i=%d, Sigma_q=%d, R_iq=%d\n",
+ sigma_i, sigma_q, r_iq);
+
+ g_rx = (1000 * sigma_q) / sigma_i;
+ g_imb = ((-2) * 128 * (1000 - g_rx)) / (1000 + g_rx);
+ ph_rx = (r_iq * 2292) / (sigma_i * sigma_q);
+
+ if (ph_rx > 20 || ph_rx < -20) {
+ ph_rx = 0;
+ rt2x00_warn(rt2x00dev, "RXIQ calibration FAIL");
+ }
+
+ if (g_imb > 12 || g_imb < -12) {
+ g_imb = 0;
+ rt2x00_warn(rt2x00dev, "RXIQ calibration FAIL");
+ }
+ } else {
+ g_imb = 0;
+ ph_rx = 0;
+ rt2x00_dbg(rt2x00dev, "RXIQ Sigma_i=%d, Sigma_q=%d, R_iq=%d\n",
+ sigma_i, sigma_q, r_iq);
+ rt2x00_warn(rt2x00dev, "RXIQ calibration FAIL");
+ }
+
+ if (ch_idx == 0) {
+ rt2800_bbp_write(rt2x00dev, 158, 0x37);
+ rt2800_bbp_write(rt2x00dev, 159, g_imb & 0x3f);
+ rt2800_bbp_write(rt2x00dev, 158, 0x35);
+ rt2800_bbp_write(rt2x00dev, 159, ph_rx & 0x3f);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 158, 0x55);
+ rt2800_bbp_write(rt2x00dev, 159, g_imb & 0x3f);
+ rt2800_bbp_write(rt2x00dev, 158, 0x53);
+ rt2800_bbp_write(rt2x00dev, 159, ph_rx & 0x3f);
+ }
+ }
+
+restore_value:
+ rt2800_bbp_write(rt2x00dev, 158, 0x3);
+ bbpval = rt2800_bbp_read(rt2x00dev, 159);
+ rt2800_bbp_write(rt2x00dev, 159, (bbpval | 0x07));
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x00);
+ rt2800_bbp_write(rt2x00dev, 159, 0x00);
+ rt2800_bbp_write(rt2x00dev, 1, bbp1);
+ rt2800_bbp_write(rt2x00dev, 4, bbp4);
+ rt2800_bbp_write(rt2x00dev, 241, bbpr241);
+ rt2800_bbp_write(rt2x00dev, 242, bbpr242);
+
+ rt2800_bbp_write(rt2x00dev, 244, 0x00);
+ bbpval = rt2800_bbp_read(rt2x00dev, 21);
+ bbpval |= 0x1;
+ rt2800_bbp_write(rt2x00dev, 21, bbpval);
+ usleep_range(10, 200);
+ bbpval &= 0xfe;
+ rt2800_bbp_write(rt2x00dev, 21, bbpval);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 1, rfb0r1);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 2, rfb0r2);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 42, rfb0r42);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 4, 0, rfb4r0);
+ rt2800_rfcsr_write_bank(rt2x00dev, 4, 19, rfb4r19);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 3, rfb5r3);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 4, rfb5r4);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 17, rfb5r17);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 18, rfb5r18);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 19, rfb5r19);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 20, rfb5r20);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 6, 0, rfb6r0);
+ rt2800_rfcsr_write_bank(rt2x00dev, 6, 19, rfb6r19);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 3, rfb7r3);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 4, rfb7r4);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 17, rfb7r17);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 18, rfb7r18);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 19, rfb7r19);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 20, rfb7r20);
+
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00000006);
+ udelay(1);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00000004);
+ udelay(1);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, orig_RF_CONTROL0);
+ udelay(1);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, orig_RF_BYPASS0);
+ rt2800_register_write(rt2x00dev, RF_CONTROL1, orig_RF_CONTROL1);
+ rt2800_register_write(rt2x00dev, RF_BYPASS1, orig_RF_BYPASS1);
+ rt2800_register_write(rt2x00dev, RF_CONTROL3, orig_RF_CONTROL3);
+ rt2800_register_write(rt2x00dev, RF_BYPASS3, orig_RF_BYPASS3);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, savemacsysctrl);
+}
+
+static void rt2800_rf_configstore(struct rt2x00_dev *rt2x00dev,
+ struct rf_reg_pair rf_reg_record[][13], u8 chain)
+{
+ u8 rfvalue = 0;
+
+ if (chain == CHAIN_0) {
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 0, 1);
+ rf_reg_record[CHAIN_0][0].bank = 0;
+ rf_reg_record[CHAIN_0][0].reg = 1;
+ rf_reg_record[CHAIN_0][0].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 0, 2);
+ rf_reg_record[CHAIN_0][1].bank = 0;
+ rf_reg_record[CHAIN_0][1].reg = 2;
+ rf_reg_record[CHAIN_0][1].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 0, 35);
+ rf_reg_record[CHAIN_0][2].bank = 0;
+ rf_reg_record[CHAIN_0][2].reg = 35;
+ rf_reg_record[CHAIN_0][2].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 0, 42);
+ rf_reg_record[CHAIN_0][3].bank = 0;
+ rf_reg_record[CHAIN_0][3].reg = 42;
+ rf_reg_record[CHAIN_0][3].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 4, 0);
+ rf_reg_record[CHAIN_0][4].bank = 4;
+ rf_reg_record[CHAIN_0][4].reg = 0;
+ rf_reg_record[CHAIN_0][4].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 4, 2);
+ rf_reg_record[CHAIN_0][5].bank = 4;
+ rf_reg_record[CHAIN_0][5].reg = 2;
+ rf_reg_record[CHAIN_0][5].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 4, 34);
+ rf_reg_record[CHAIN_0][6].bank = 4;
+ rf_reg_record[CHAIN_0][6].reg = 34;
+ rf_reg_record[CHAIN_0][6].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 5, 3);
+ rf_reg_record[CHAIN_0][7].bank = 5;
+ rf_reg_record[CHAIN_0][7].reg = 3;
+ rf_reg_record[CHAIN_0][7].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 5, 4);
+ rf_reg_record[CHAIN_0][8].bank = 5;
+ rf_reg_record[CHAIN_0][8].reg = 4;
+ rf_reg_record[CHAIN_0][8].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 5, 17);
+ rf_reg_record[CHAIN_0][9].bank = 5;
+ rf_reg_record[CHAIN_0][9].reg = 17;
+ rf_reg_record[CHAIN_0][9].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 5, 18);
+ rf_reg_record[CHAIN_0][10].bank = 5;
+ rf_reg_record[CHAIN_0][10].reg = 18;
+ rf_reg_record[CHAIN_0][10].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 5, 19);
+ rf_reg_record[CHAIN_0][11].bank = 5;
+ rf_reg_record[CHAIN_0][11].reg = 19;
+ rf_reg_record[CHAIN_0][11].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 5, 20);
+ rf_reg_record[CHAIN_0][12].bank = 5;
+ rf_reg_record[CHAIN_0][12].reg = 20;
+ rf_reg_record[CHAIN_0][12].value = rfvalue;
+ } else if (chain == CHAIN_1) {
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 0, 1);
+ rf_reg_record[CHAIN_1][0].bank = 0;
+ rf_reg_record[CHAIN_1][0].reg = 1;
+ rf_reg_record[CHAIN_1][0].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 0, 2);
+ rf_reg_record[CHAIN_1][1].bank = 0;
+ rf_reg_record[CHAIN_1][1].reg = 2;
+ rf_reg_record[CHAIN_1][1].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 0, 35);
+ rf_reg_record[CHAIN_1][2].bank = 0;
+ rf_reg_record[CHAIN_1][2].reg = 35;
+ rf_reg_record[CHAIN_1][2].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 0, 42);
+ rf_reg_record[CHAIN_1][3].bank = 0;
+ rf_reg_record[CHAIN_1][3].reg = 42;
+ rf_reg_record[CHAIN_1][3].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 6, 0);
+ rf_reg_record[CHAIN_1][4].bank = 6;
+ rf_reg_record[CHAIN_1][4].reg = 0;
+ rf_reg_record[CHAIN_1][4].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 6, 2);
+ rf_reg_record[CHAIN_1][5].bank = 6;
+ rf_reg_record[CHAIN_1][5].reg = 2;
+ rf_reg_record[CHAIN_1][5].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 6, 34);
+ rf_reg_record[CHAIN_1][6].bank = 6;
+ rf_reg_record[CHAIN_1][6].reg = 34;
+ rf_reg_record[CHAIN_1][6].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 7, 3);
+ rf_reg_record[CHAIN_1][7].bank = 7;
+ rf_reg_record[CHAIN_1][7].reg = 3;
+ rf_reg_record[CHAIN_1][7].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 7, 4);
+ rf_reg_record[CHAIN_1][8].bank = 7;
+ rf_reg_record[CHAIN_1][8].reg = 4;
+ rf_reg_record[CHAIN_1][8].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 7, 17);
+ rf_reg_record[CHAIN_1][9].bank = 7;
+ rf_reg_record[CHAIN_1][9].reg = 17;
+ rf_reg_record[CHAIN_1][9].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 7, 18);
+ rf_reg_record[CHAIN_1][10].bank = 7;
+ rf_reg_record[CHAIN_1][10].reg = 18;
+ rf_reg_record[CHAIN_1][10].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 7, 19);
+ rf_reg_record[CHAIN_1][11].bank = 7;
+ rf_reg_record[CHAIN_1][11].reg = 19;
+ rf_reg_record[CHAIN_1][11].value = rfvalue;
+ rfvalue = rt2800_rfcsr_read_bank(rt2x00dev, 7, 20);
+ rf_reg_record[CHAIN_1][12].bank = 7;
+ rf_reg_record[CHAIN_1][12].reg = 20;
+ rf_reg_record[CHAIN_1][12].value = rfvalue;
+ } else {
+ rt2x00_warn(rt2x00dev, "Unknown chain = %u\n", chain);
+ }
+}
+
+static void rt2800_rf_configrecover(struct rt2x00_dev *rt2x00dev,
+ struct rf_reg_pair rf_record[][13])
+{
+ u8 chain_index = 0, record_index = 0;
+ u8 bank = 0, rf_register = 0, value = 0;
+
+ for (chain_index = 0; chain_index < 2; chain_index++) {
+ for (record_index = 0; record_index < 13; record_index++) {
+ bank = rf_record[chain_index][record_index].bank;
+ rf_register = rf_record[chain_index][record_index].reg;
+ value = rf_record[chain_index][record_index].value;
+ rt2800_rfcsr_write_bank(rt2x00dev, bank, rf_register, value);
+ rt2x00_dbg(rt2x00dev, "bank: %d, rf_register: %d, value: %x\n",
+ bank, rf_register, value);
+ }
+ }
+}
+
+static void rt2800_setbbptonegenerator(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_bbp_write(rt2x00dev, 158, 0xAA);
+ rt2800_bbp_write(rt2x00dev, 159, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xAB);
+ rt2800_bbp_write(rt2x00dev, 159, 0x0A);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xAC);
+ rt2800_bbp_write(rt2x00dev, 159, 0x3F);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xAD);
+ rt2800_bbp_write(rt2x00dev, 159, 0x3F);
+
+ rt2800_bbp_write(rt2x00dev, 244, 0x40);
+}
+
+static u32 rt2800_do_fft_accumulation(struct rt2x00_dev *rt2x00dev, u8 tidx, u8 read_neg)
+{
+ u32 macvalue = 0;
+ int fftout_i = 0, fftout_q = 0;
+ u32 ptmp = 0, pint = 0;
+ u8 bbp = 0;
+ u8 tidxi;
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x00);
+ rt2800_bbp_write(rt2x00dev, 159, 0x9b);
+
+ bbp = 0x9b;
+
+ while (bbp == 0x9b) {
+ usleep_range(10, 50);
+ bbp = rt2800_bbp_read(rt2x00dev, 159);
+ bbp = bbp & 0xff;
+ }
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xba);
+ rt2800_bbp_write(rt2x00dev, 159, tidx);
+ rt2800_bbp_write(rt2x00dev, 159, tidx);
+ rt2800_bbp_write(rt2x00dev, 159, tidx);
+
+ macvalue = rt2800_register_read(rt2x00dev, 0x057C);
+
+ fftout_i = (macvalue >> 16);
+ fftout_i = (fftout_i & 0x8000) ? (fftout_i - 0x10000) : fftout_i;
+ fftout_q = (macvalue & 0xffff);
+ fftout_q = (fftout_q & 0x8000) ? (fftout_q - 0x10000) : fftout_q;
+ ptmp = (fftout_i * fftout_i);
+ ptmp = ptmp + (fftout_q * fftout_q);
+ pint = ptmp;
+ rt2x00_dbg(rt2x00dev, "I = %d, Q = %d, power = %x\n", fftout_i, fftout_q, pint);
+ if (read_neg) {
+ pint = pint >> 1;
+ tidxi = 0x40 - tidx;
+ tidxi = tidxi & 0x3f;
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xba);
+ rt2800_bbp_write(rt2x00dev, 159, tidxi);
+ rt2800_bbp_write(rt2x00dev, 159, tidxi);
+ rt2800_bbp_write(rt2x00dev, 159, tidxi);
+
+ macvalue = rt2800_register_read(rt2x00dev, 0x057C);
+
+ fftout_i = (macvalue >> 16);
+ fftout_i = (fftout_i & 0x8000) ? (fftout_i - 0x10000) : fftout_i;
+ fftout_q = (macvalue & 0xffff);
+ fftout_q = (fftout_q & 0x8000) ? (fftout_q - 0x10000) : fftout_q;
+ ptmp = (fftout_i * fftout_i);
+ ptmp = ptmp + (fftout_q * fftout_q);
+ ptmp = ptmp >> 1;
+ pint = pint + ptmp;
+ }
+
+ return pint;
+}
+
+static u32 rt2800_read_fft_accumulation(struct rt2x00_dev *rt2x00dev, u8 tidx)
+{
+ u32 macvalue = 0;
+ int fftout_i = 0, fftout_q = 0;
+ u32 ptmp = 0, pint = 0;
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xBA);
+ rt2800_bbp_write(rt2x00dev, 159, tidx);
+ rt2800_bbp_write(rt2x00dev, 159, tidx);
+ rt2800_bbp_write(rt2x00dev, 159, tidx);
+
+ macvalue = rt2800_register_read(rt2x00dev, 0x057C);
+
+ fftout_i = (macvalue >> 16);
+ fftout_i = (fftout_i & 0x8000) ? (fftout_i - 0x10000) : fftout_i;
+ fftout_q = (macvalue & 0xffff);
+ fftout_q = (fftout_q & 0x8000) ? (fftout_q - 0x10000) : fftout_q;
+ ptmp = (fftout_i * fftout_i);
+ ptmp = ptmp + (fftout_q * fftout_q);
+ pint = ptmp;
+
+ return pint;
+}
+
+static void rt2800_write_dc(struct rt2x00_dev *rt2x00dev, u8 ch_idx, u8 alc, u8 iorq, u8 dc)
+{
+ u8 bbp = 0;
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xb0);
+ bbp = alc | 0x80;
+ rt2800_bbp_write(rt2x00dev, 159, bbp);
+
+ if (ch_idx == 0)
+ bbp = (iorq == 0) ? 0xb1 : 0xb2;
+ else
+ bbp = (iorq == 0) ? 0xb8 : 0xb9;
+
+ rt2800_bbp_write(rt2x00dev, 158, bbp);
+ bbp = dc;
+ rt2800_bbp_write(rt2x00dev, 159, bbp);
+}
+
+static void rt2800_loft_search(struct rt2x00_dev *rt2x00dev, u8 ch_idx,
+ u8 alc_idx, u8 dc_result[][RF_ALC_NUM][2])
+{
+ u32 p0 = 0, p1 = 0, pf = 0;
+ s8 idx0 = 0, idx1 = 0;
+ u8 idxf[] = {0x00, 0x00};
+ u8 ibit = 0x20;
+ u8 iorq;
+ s8 bidx;
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xb0);
+ rt2800_bbp_write(rt2x00dev, 159, 0x80);
+
+ for (bidx = 5; bidx >= 0; bidx--) {
+ for (iorq = 0; iorq <= 1; iorq++) {
+ if (idxf[iorq] == 0x20) {
+ idx0 = 0x20;
+ p0 = pf;
+ } else {
+ idx0 = idxf[iorq] - ibit;
+ idx0 = idx0 & 0x3F;
+ rt2800_write_dc(rt2x00dev, ch_idx, 0, iorq, idx0);
+ p0 = rt2800_do_fft_accumulation(rt2x00dev, 0x0A, 0);
+ }
+
+ idx1 = idxf[iorq] + (bidx == 5 ? 0 : ibit);
+ idx1 = idx1 & 0x3F;
+ rt2800_write_dc(rt2x00dev, ch_idx, 0, iorq, idx1);
+ p1 = rt2800_do_fft_accumulation(rt2x00dev, 0x0A, 0);
+
+ rt2x00_dbg(rt2x00dev, "alc=%u, IorQ=%u, idx_final=%2x\n",
+ alc_idx, iorq, idxf[iorq]);
+ rt2x00_dbg(rt2x00dev, "p0=%x, p1=%x, pf=%x, idx_0=%x, idx_1=%x, ibit=%x\n",
+ p0, p1, pf, idx0, idx1, ibit);
+
+ if (bidx != 5 && pf <= p0 && pf < p1) {
+ idxf[iorq] = idxf[iorq];
+ } else if (p0 < p1) {
+ pf = p0;
+ idxf[iorq] = idx0 & 0x3F;
+ } else {
+ pf = p1;
+ idxf[iorq] = idx1 & 0x3F;
+ }
+ rt2x00_dbg(rt2x00dev, "IorQ=%u, idx_final[%u]:%x, pf:%8x\n",
+ iorq, iorq, idxf[iorq], pf);
+
+ rt2800_write_dc(rt2x00dev, ch_idx, 0, iorq, idxf[iorq]);
+ }
+ ibit = ibit >> 1;
+ }
+ dc_result[ch_idx][alc_idx][0] = idxf[0];
+ dc_result[ch_idx][alc_idx][1] = idxf[1];
+}
+
+static void rt2800_iq_search(struct rt2x00_dev *rt2x00dev, u8 ch_idx, u8 *ges, u8 *pes)
+{
+ u32 p0 = 0, p1 = 0, pf = 0;
+ s8 perr = 0, gerr = 0, iq_err = 0;
+ s8 pef = 0, gef = 0;
+ s8 psta, pend;
+ s8 gsta, gend;
+
+ u8 ibit = 0x20;
+ u8 first_search = 0x00, touch_neg_max = 0x00;
+ s8 idx0 = 0, idx1 = 0;
+ u8 gop;
+ u8 bbp = 0;
+ s8 bidx;
+
+ for (bidx = 5; bidx >= 1; bidx--) {
+ for (gop = 0; gop < 2; gop++) {
+ if (gop == 1 || bidx < 4) {
+ if (gop == 0)
+ iq_err = gerr;
+ else
+ iq_err = perr;
+
+ first_search = (gop == 0) ? (bidx == 3) : (bidx == 5);
+ touch_neg_max = (gop) ? ((iq_err & 0x0F) == 0x08) :
+ ((iq_err & 0x3F) == 0x20);
+
+ if (touch_neg_max) {
+ p0 = pf;
+ idx0 = iq_err;
+ } else {
+ idx0 = iq_err - ibit;
+ bbp = (ch_idx == 0) ? ((gop == 0) ? 0x28 : 0x29) :
+ ((gop == 0) ? 0x46 : 0x47);
+
+ rt2800_bbp_write(rt2x00dev, 158, bbp);
+ rt2800_bbp_write(rt2x00dev, 159, idx0);
+
+ p0 = rt2800_do_fft_accumulation(rt2x00dev, 0x14, 1);
+ }
+
+ idx1 = iq_err + (first_search ? 0 : ibit);
+ idx1 = (gop == 0) ? (idx1 & 0x0F) : (idx1 & 0x3F);
+
+ bbp = (ch_idx == 0) ? (gop == 0) ? 0x28 : 0x29 :
+ (gop == 0) ? 0x46 : 0x47;
+
+ rt2800_bbp_write(rt2x00dev, 158, bbp);
+ rt2800_bbp_write(rt2x00dev, 159, idx1);
+
+ p1 = rt2800_do_fft_accumulation(rt2x00dev, 0x14, 1);
+
+ rt2x00_dbg(rt2x00dev,
+ "p0=%x, p1=%x, pwer_final=%x, idx0=%x, idx1=%x, iq_err=%x, gop=%d, ibit=%x\n",
+ p0, p1, pf, idx0, idx1, iq_err, gop, ibit);
+
+ if (!(!first_search && pf <= p0 && pf < p1)) {
+ if (p0 < p1) {
+ pf = p0;
+ iq_err = idx0;
+ } else {
+ pf = p1;
+ iq_err = idx1;
+ }
+ }
+
+ bbp = (ch_idx == 0) ? (gop == 0) ? 0x28 : 0x29 :
+ (gop == 0) ? 0x46 : 0x47;
+
+ rt2800_bbp_write(rt2x00dev, 158, bbp);
+ rt2800_bbp_write(rt2x00dev, 159, iq_err);
+
+ if (gop == 0)
+ gerr = iq_err;
+ else
+ perr = iq_err;
+
+ rt2x00_dbg(rt2x00dev, "IQCalibration pf=%8x (%2x, %2x) !\n",
+ pf, gerr & 0x0F, perr & 0x3F);
+ }
+ }
+
+ if (bidx > 0)
+ ibit = (ibit >> 1);
+ }
+ gerr = (gerr & 0x08) ? (gerr & 0x0F) - 0x10 : (gerr & 0x0F);
+ perr = (perr & 0x20) ? (perr & 0x3F) - 0x40 : (perr & 0x3F);
+
+ gerr = (gerr < -0x07) ? -0x07 : (gerr > 0x05) ? 0x05 : gerr;
+ gsta = gerr - 1;
+ gend = gerr + 2;
+
+ perr = (perr < -0x1f) ? -0x1f : (perr > 0x1d) ? 0x1d : perr;
+ psta = perr - 1;
+ pend = perr + 2;
+
+ for (gef = gsta; gef <= gend; gef = gef + 1)
+ for (pef = psta; pef <= pend; pef = pef + 1) {
+ bbp = (ch_idx == 0) ? 0x28 : 0x46;
+ rt2800_bbp_write(rt2x00dev, 158, bbp);
+ rt2800_bbp_write(rt2x00dev, 159, gef & 0x0F);
+
+ bbp = (ch_idx == 0) ? 0x29 : 0x47;
+ rt2800_bbp_write(rt2x00dev, 158, bbp);
+ rt2800_bbp_write(rt2x00dev, 159, pef & 0x3F);
+
+ p1 = rt2800_do_fft_accumulation(rt2x00dev, 0x14, 1);
+ if (gef == gsta && pef == psta) {
+ pf = p1;
+ gerr = gef;
+ perr = pef;
+ } else if (pf > p1) {
+ pf = p1;
+ gerr = gef;
+ perr = pef;
+ }
+ rt2x00_dbg(rt2x00dev, "Fine IQCalibration p1=%8x pf=%8x (%2x, %2x) !\n",
+ p1, pf, gef & 0x0F, pef & 0x3F);
+ }
+
+ ges[ch_idx] = gerr & 0x0F;
+ pes[ch_idx] = perr & 0x3F;
+}
+
+static void rt2800_rf_aux_tx0_loopback(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 1, 0x21);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 2, 0x10);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 35, 0x00);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 42, 0x1b);
+ rt2800_rfcsr_write_bank(rt2x00dev, 4, 0, 0x81);
+ rt2800_rfcsr_write_bank(rt2x00dev, 4, 2, 0x81);
+ rt2800_rfcsr_write_bank(rt2x00dev, 4, 34, 0xee);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 3, 0x2d);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 4, 0x2d);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 17, 0x80);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 18, 0xd7);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 19, 0xa2);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 20, 0x20);
+}
+
+static void rt2800_rf_aux_tx1_loopback(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 1, 0x22);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 2, 0x20);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 35, 0x00);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 42, 0x4b);
+ rt2800_rfcsr_write_bank(rt2x00dev, 6, 0, 0x81);
+ rt2800_rfcsr_write_bank(rt2x00dev, 6, 2, 0x81);
+ rt2800_rfcsr_write_bank(rt2x00dev, 6, 34, 0xee);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 3, 0x2d);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 4, 0x2d);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 17, 0x80);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 18, 0xd7);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 19, 0xa2);
+ rt2800_rfcsr_write_bank(rt2x00dev, 7, 20, 0x20);
+}
+
+static void rt2800_loft_iq_calibration(struct rt2x00_dev *rt2x00dev)
+{
+ struct rf_reg_pair rf_store[CHAIN_NUM][13];
+ u32 macorg1 = 0;
+ u32 macorg2 = 0;
+ u32 macorg3 = 0;
+ u32 macorg4 = 0;
+ u32 macorg5 = 0;
+ u32 orig528 = 0;
+ u32 orig52c = 0;
+
+ u32 savemacsysctrl = 0;
+ u32 macvalue = 0;
+ u32 mac13b8 = 0;
+ u32 p0 = 0, p1 = 0;
+ u32 p0_idx10 = 0, p1_idx10 = 0;
+
+ u8 rfvalue;
+ u8 loft_dc_search_result[CHAIN_NUM][RF_ALC_NUM][2];
+ u8 ger[CHAIN_NUM], per[CHAIN_NUM];
+
+ u8 vga_gain[] = {14, 14};
+ u8 bbp = 0, ch_idx = 0, rf_alc_idx = 0, idx = 0;
+ u8 bbpr30, rfb0r39, rfb0r42;
+ u8 bbpr1;
+ u8 bbpr4;
+ u8 bbpr241, bbpr242;
+ u8 count_step;
+
+ static const u8 rf_gain[] = {0x00, 0x01, 0x02, 0x04, 0x08, 0x0c};
+ static const u8 rfvga_gain_table[] = {0x24, 0x25, 0x26, 0x27, 0x28, 0x2c, 0x2d, 0x2e, 0x2f, 0x30,
+ 0x31, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3F};
+ static const u8 bbp_2324gain[] = {0x16, 0x14, 0x12, 0x10, 0x0c, 0x08};
+
+ savemacsysctrl = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ macorg1 = rt2800_register_read(rt2x00dev, TX_PIN_CFG);
+ macorg2 = rt2800_register_read(rt2x00dev, RF_CONTROL0);
+ macorg3 = rt2800_register_read(rt2x00dev, RF_BYPASS0);
+ macorg4 = rt2800_register_read(rt2x00dev, RF_CONTROL3);
+ macorg5 = rt2800_register_read(rt2x00dev, RF_BYPASS3);
+ mac13b8 = rt2800_register_read(rt2x00dev, 0x13b8);
+ orig528 = rt2800_register_read(rt2x00dev, RF_CONTROL2);
+ orig52c = rt2800_register_read(rt2x00dev, RF_BYPASS2);
+
+ macvalue = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ macvalue &= (~0x04);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, macvalue);
+
+ if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev, MAC_STATUS_CFG_BBP_RF_BUSY_TX)))
+ rt2x00_warn(rt2x00dev, "RF TX busy in LOFT IQ calibration\n");
+
+ macvalue = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ macvalue &= (~0x08);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, macvalue);
+
+ if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev, MAC_STATUS_CFG_BBP_RF_BUSY_RX)))
+ rt2x00_warn(rt2x00dev, "RF RX busy in LOFT IQ calibration\n");
+
+ for (ch_idx = 0; ch_idx < 2; ch_idx++)
+ rt2800_rf_configstore(rt2x00dev, rf_store, ch_idx);
+
+ bbpr30 = rt2800_bbp_read(rt2x00dev, 30);
+ rfb0r39 = rt2800_rfcsr_read_bank(rt2x00dev, 0, 39);
+ rfb0r42 = rt2800_rfcsr_read_bank(rt2x00dev, 0, 42);
+
+ rt2800_bbp_write(rt2x00dev, 30, 0x1F);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 39, 0x80);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 42, 0x5B);
+
+ rt2800_bbp_write(rt2x00dev, 23, 0x00);
+ rt2800_bbp_write(rt2x00dev, 24, 0x00);
+
+ rt2800_setbbptonegenerator(rt2x00dev);
+
+ for (ch_idx = 0; ch_idx < 2; ch_idx++) {
+ rt2800_bbp_write(rt2x00dev, 23, 0x00);
+ rt2800_bbp_write(rt2x00dev, 24, 0x00);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00);
+ rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0x0000000F);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00000004);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, 0x00003306);
+ rt2800_register_write(rt2x00dev, 0x13b8, 0x10);
+ udelay(1);
+
+ if (ch_idx == 0)
+ rt2800_rf_aux_tx0_loopback(rt2x00dev);
+ else
+ rt2800_rf_aux_tx1_loopback(rt2x00dev);
+
+ udelay(1);
+
+ if (ch_idx == 0)
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00001004);
+ else
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00002004);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x05);
+ rt2800_bbp_write(rt2x00dev, 159, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x01);
+ if (ch_idx == 0)
+ rt2800_bbp_write(rt2x00dev, 159, 0x00);
+ else
+ rt2800_bbp_write(rt2x00dev, 159, 0x01);
+
+ vga_gain[ch_idx] = 18;
+ for (rf_alc_idx = 0; rf_alc_idx < 3; rf_alc_idx++) {
+ rt2800_bbp_write(rt2x00dev, 23, bbp_2324gain[rf_alc_idx]);
+ rt2800_bbp_write(rt2x00dev, 24, bbp_2324gain[rf_alc_idx]);
+
+ macvalue = rt2800_register_read(rt2x00dev, RF_CONTROL3);
+ macvalue &= (~0x0000F1F1);
+ macvalue |= (rf_gain[rf_alc_idx] << 4);
+ macvalue |= (rf_gain[rf_alc_idx] << 12);
+ rt2800_register_write(rt2x00dev, RF_CONTROL3, macvalue);
+ macvalue = (0x0000F1F1);
+ rt2800_register_write(rt2x00dev, RF_BYPASS3, macvalue);
+
+ if (rf_alc_idx == 0) {
+ rt2800_write_dc(rt2x00dev, ch_idx, 0, 1, 0x21);
+ for (; vga_gain[ch_idx] > 0;
+ vga_gain[ch_idx] = vga_gain[ch_idx] - 2) {
+ rfvalue = rfvga_gain_table[vga_gain[ch_idx]];
+ rt2800_rfcsr_write_dccal(rt2x00dev, 3, rfvalue);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 4, rfvalue);
+ rt2800_write_dc(rt2x00dev, ch_idx, 0, 1, 0x00);
+ rt2800_write_dc(rt2x00dev, ch_idx, 0, 0, 0x00);
+ p0 = rt2800_do_fft_accumulation(rt2x00dev, 0x0A, 0);
+ rt2800_write_dc(rt2x00dev, ch_idx, 0, 0, 0x21);
+ p1 = rt2800_do_fft_accumulation(rt2x00dev, 0x0A, 0);
+ rt2x00_dbg(rt2x00dev, "LOFT AGC %d %d\n", p0, p1);
+ if ((p0 < 7000 * 7000) && (p1 < (7000 * 7000)))
+ break;
+ }
+
+ rt2800_write_dc(rt2x00dev, ch_idx, 0, 0, 0x00);
+ rt2800_write_dc(rt2x00dev, ch_idx, 0, 1, 0x00);
+
+ rt2x00_dbg(rt2x00dev, "Used VGA %d %x\n", vga_gain[ch_idx],
+ rfvga_gain_table[vga_gain[ch_idx]]);
+
+ if (vga_gain[ch_idx] < 0)
+ vga_gain[ch_idx] = 0;
+ }
+
+ rfvalue = rfvga_gain_table[vga_gain[ch_idx]];
+
+ rt2800_rfcsr_write_dccal(rt2x00dev, 3, rfvalue);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 4, rfvalue);
+
+ rt2800_loft_search(rt2x00dev, ch_idx, rf_alc_idx, loft_dc_search_result);
+ }
+ }
+
+ for (rf_alc_idx = 0; rf_alc_idx < 3; rf_alc_idx++) {
+ for (idx = 0; idx < 4; idx++) {
+ rt2800_bbp_write(rt2x00dev, 158, 0xB0);
+ bbp = (idx << 2) + rf_alc_idx;
+ rt2800_bbp_write(rt2x00dev, 159, bbp);
+ rt2x00_dbg(rt2x00dev, " ALC %2x,", bbp);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xb1);
+ bbp = loft_dc_search_result[CHAIN_0][rf_alc_idx][0x00];
+ bbp = bbp & 0x3F;
+ rt2800_bbp_write(rt2x00dev, 159, bbp);
+ rt2x00_dbg(rt2x00dev, " I0 %2x,", bbp);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xb2);
+ bbp = loft_dc_search_result[CHAIN_0][rf_alc_idx][0x01];
+ bbp = bbp & 0x3F;
+ rt2800_bbp_write(rt2x00dev, 159, bbp);
+ rt2x00_dbg(rt2x00dev, " Q0 %2x,", bbp);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xb8);
+ bbp = loft_dc_search_result[CHAIN_1][rf_alc_idx][0x00];
+ bbp = bbp & 0x3F;
+ rt2800_bbp_write(rt2x00dev, 159, bbp);
+ rt2x00_dbg(rt2x00dev, " I1 %2x,", bbp);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0xb9);
+ bbp = loft_dc_search_result[CHAIN_1][rf_alc_idx][0x01];
+ bbp = bbp & 0x3F;
+ rt2800_bbp_write(rt2x00dev, 159, bbp);
+ rt2x00_dbg(rt2x00dev, " Q1 %2x\n", bbp);
+ }
+ }
+
+ rt2800_bbp_write(rt2x00dev, 23, 0x00);
+ rt2800_bbp_write(rt2x00dev, 24, 0x00);
+
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x04);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x00);
+ rt2800_bbp_write(rt2x00dev, 159, 0x00);
+
+ bbp = 0x00;
+ rt2800_bbp_write(rt2x00dev, 244, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 21, 0x01);
+ udelay(1);
+ rt2800_bbp_write(rt2x00dev, 21, 0x00);
+
+ rt2800_rf_configrecover(rt2x00dev, rf_store);
+
+ rt2800_register_write(rt2x00dev, TX_PIN_CFG, macorg1);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x04);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, 0x00);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, macorg2);
+ udelay(1);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, macorg3);
+ rt2800_register_write(rt2x00dev, RF_CONTROL3, macorg4);
+ rt2800_register_write(rt2x00dev, RF_BYPASS3, macorg5);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, savemacsysctrl);
+ rt2800_register_write(rt2x00dev, RF_CONTROL2, orig528);
+ rt2800_register_write(rt2x00dev, RF_BYPASS2, orig52c);
+ rt2800_register_write(rt2x00dev, 0x13b8, mac13b8);
+
+ savemacsysctrl = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ macorg1 = rt2800_register_read(rt2x00dev, TX_PIN_CFG);
+ macorg2 = rt2800_register_read(rt2x00dev, RF_CONTROL0);
+ macorg3 = rt2800_register_read(rt2x00dev, RF_BYPASS0);
+ macorg4 = rt2800_register_read(rt2x00dev, RF_CONTROL3);
+ macorg5 = rt2800_register_read(rt2x00dev, RF_BYPASS3);
+
+ bbpr1 = rt2800_bbp_read(rt2x00dev, 1);
+ bbpr4 = rt2800_bbp_read(rt2x00dev, 4);
+ bbpr241 = rt2800_bbp_read(rt2x00dev, 241);
+ bbpr242 = rt2800_bbp_read(rt2x00dev, 242);
+ mac13b8 = rt2800_register_read(rt2x00dev, 0x13b8);
+
+ macvalue = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ macvalue &= (~0x04);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, macvalue);
+
+ if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev, MAC_STATUS_CFG_BBP_RF_BUSY_TX)))
+ rt2x00_warn(rt2x00dev, "RF TX busy in LOFT IQ calibration\n");
+
+ macvalue = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ macvalue &= (~0x08);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, macvalue);
+
+ if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev, MAC_STATUS_CFG_BBP_RF_BUSY_RX)))
+ rt2x00_warn(rt2x00dev, "RF RX busy in LOFT IQ calibration\n");
+
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX0, &rt2x00dev->cap_flags)) {
+ rt2800_register_write(rt2x00dev, RF_CONTROL3, 0x00000101);
+ rt2800_register_write(rt2x00dev, RF_BYPASS3, 0x0000F1F1);
+ }
+
+ rt2800_bbp_write(rt2x00dev, 23, 0x00);
+ rt2800_bbp_write(rt2x00dev, 24, 0x00);
+
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX0, &rt2x00dev->cap_flags)) {
+ rt2800_bbp_write(rt2x00dev, 4, bbpr4 & (~0x18));
+ rt2800_bbp_write(rt2x00dev, 21, 0x01);
+ udelay(1);
+ rt2800_bbp_write(rt2x00dev, 21, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 241, 0x14);
+ rt2800_bbp_write(rt2x00dev, 242, 0x80);
+ rt2800_bbp_write(rt2x00dev, 244, 0x31);
+ } else {
+ rt2800_setbbptonegenerator(rt2x00dev);
+ }
+
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00000004);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, 0x00003306);
+ udelay(1);
+
+ rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0x0000000F);
+
+ if (!test_bit(CAPABILITY_EXTERNAL_PA_TX0, &rt2x00dev->cap_flags)) {
+ rt2800_register_write(rt2x00dev, RF_CONTROL3, 0x00000000);
+ rt2800_register_write(rt2x00dev, RF_BYPASS3, 0x0000F1F1);
+ }
+
+ rt2800_register_write(rt2x00dev, 0x13b8, 0x00000010);
+
+ for (ch_idx = 0; ch_idx < 2; ch_idx++)
+ rt2800_rf_configstore(rt2x00dev, rf_store, ch_idx);
+
+ rt2800_rfcsr_write_dccal(rt2x00dev, 3, 0x3B);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 4, 0x3B);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x03);
+ rt2800_bbp_write(rt2x00dev, 159, 0x60);
+ rt2800_bbp_write(rt2x00dev, 158, 0xB0);
+ rt2800_bbp_write(rt2x00dev, 159, 0x80);
+
+ for (ch_idx = 0; ch_idx < 2; ch_idx++) {
+ rt2800_bbp_write(rt2x00dev, 23, 0x00);
+ rt2800_bbp_write(rt2x00dev, 24, 0x00);
+
+ if (ch_idx == 0) {
+ rt2800_bbp_write(rt2x00dev, 158, 0x01);
+ rt2800_bbp_write(rt2x00dev, 159, 0x00);
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX0, &rt2x00dev->cap_flags)) {
+ bbp = bbpr1 & (~0x18);
+ bbp = bbp | 0x00;
+ rt2800_bbp_write(rt2x00dev, 1, bbp);
+ }
+ rt2800_rf_aux_tx0_loopback(rt2x00dev);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00001004);
+ } else {
+ rt2800_bbp_write(rt2x00dev, 158, 0x01);
+ rt2800_bbp_write(rt2x00dev, 159, 0x01);
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX1, &rt2x00dev->cap_flags)) {
+ bbp = bbpr1 & (~0x18);
+ bbp = bbp | 0x08;
+ rt2800_bbp_write(rt2x00dev, 1, bbp);
+ }
+ rt2800_rf_aux_tx1_loopback(rt2x00dev);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00002004);
+ }
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x05);
+ rt2800_bbp_write(rt2x00dev, 159, 0x04);
+
+ bbp = (ch_idx == 0) ? 0x28 : 0x46;
+ rt2800_bbp_write(rt2x00dev, 158, bbp);
+ rt2800_bbp_write(rt2x00dev, 159, 0x00);
+
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX0, &rt2x00dev->cap_flags)) {
+ rt2800_bbp_write(rt2x00dev, 23, 0x06);
+ rt2800_bbp_write(rt2x00dev, 24, 0x06);
+ count_step = 1;
+ } else {
+ rt2800_bbp_write(rt2x00dev, 23, 0x1F);
+ rt2800_bbp_write(rt2x00dev, 24, 0x1F);
+ count_step = 2;
+ }
+
+ for (; vga_gain[ch_idx] < 19; vga_gain[ch_idx] = (vga_gain[ch_idx] + count_step)) {
+ rfvalue = rfvga_gain_table[vga_gain[ch_idx]];
+ rt2800_rfcsr_write_dccal(rt2x00dev, 3, rfvalue);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 4, rfvalue);
+
+ bbp = (ch_idx == 0) ? 0x29 : 0x47;
+ rt2800_bbp_write(rt2x00dev, 158, bbp);
+ rt2800_bbp_write(rt2x00dev, 159, 0x00);
+ p0 = rt2800_do_fft_accumulation(rt2x00dev, 0x14, 0);
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX0, &rt2x00dev->cap_flags))
+ p0_idx10 = rt2800_read_fft_accumulation(rt2x00dev, 0x0A);
+
+ bbp = (ch_idx == 0) ? 0x29 : 0x47;
+ rt2800_bbp_write(rt2x00dev, 158, bbp);
+ rt2800_bbp_write(rt2x00dev, 159, 0x21);
+ p1 = rt2800_do_fft_accumulation(rt2x00dev, 0x14, 0);
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX1, &rt2x00dev->cap_flags))
+ p1_idx10 = rt2800_read_fft_accumulation(rt2x00dev, 0x0A);
+
+ rt2x00_dbg(rt2x00dev, "IQ AGC %d %d\n", p0, p1);
+
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX0, &rt2x00dev->cap_flags)) {
+ rt2x00_dbg(rt2x00dev, "IQ AGC IDX 10 %d %d\n", p0_idx10, p1_idx10);
+ if ((p0_idx10 > 7000 * 7000) || (p1_idx10 > 7000 * 7000)) {
+ if (vga_gain[ch_idx] != 0)
+ vga_gain[ch_idx] = vga_gain[ch_idx] - 1;
+ break;
+ }
+ }
+
+ if ((p0 > 2500 * 2500) || (p1 > 2500 * 2500))
+ break;
+ }
+
+ if (vga_gain[ch_idx] > 18)
+ vga_gain[ch_idx] = 18;
+ rt2x00_dbg(rt2x00dev, "Used VGA %d %x\n", vga_gain[ch_idx],
+ rfvga_gain_table[vga_gain[ch_idx]]);
+
+ bbp = (ch_idx == 0) ? 0x29 : 0x47;
+ rt2800_bbp_write(rt2x00dev, 158, bbp);
+ rt2800_bbp_write(rt2x00dev, 159, 0x00);
+
+ rt2800_iq_search(rt2x00dev, ch_idx, ger, per);
+ }
+
+ rt2800_bbp_write(rt2x00dev, 23, 0x00);
+ rt2800_bbp_write(rt2x00dev, 24, 0x00);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x04);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x28);
+ bbp = ger[CHAIN_0] & 0x0F;
+ rt2800_bbp_write(rt2x00dev, 159, bbp);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x29);
+ bbp = per[CHAIN_0] & 0x3F;
+ rt2800_bbp_write(rt2x00dev, 159, bbp);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x46);
+ bbp = ger[CHAIN_1] & 0x0F;
+ rt2800_bbp_write(rt2x00dev, 159, bbp);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x47);
+ bbp = per[CHAIN_1] & 0x3F;
+ rt2800_bbp_write(rt2x00dev, 159, bbp);
+
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX0, &rt2x00dev->cap_flags)) {
+ rt2800_bbp_write(rt2x00dev, 1, bbpr1);
+ rt2800_bbp_write(rt2x00dev, 241, bbpr241);
+ rt2800_bbp_write(rt2x00dev, 242, bbpr242);
+ }
+ rt2800_bbp_write(rt2x00dev, 244, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 158, 0x00);
+ rt2800_bbp_write(rt2x00dev, 159, 0x00);
+ rt2800_bbp_write(rt2x00dev, 158, 0xB0);
+ rt2800_bbp_write(rt2x00dev, 159, 0x00);
+
+ rt2800_bbp_write(rt2x00dev, 30, bbpr30);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 39, rfb0r39);
+ rt2800_rfcsr_write_bank(rt2x00dev, 0, 42, rfb0r42);
+
+ if (test_bit(CAPABILITY_EXTERNAL_PA_TX0, &rt2x00dev->cap_flags))
+ rt2800_bbp_write(rt2x00dev, 4, bbpr4);
+
+ rt2800_bbp_write(rt2x00dev, 21, 0x01);
+ udelay(1);
+ rt2800_bbp_write(rt2x00dev, 21, 0x00);
+
+ rt2800_rf_configrecover(rt2x00dev, rf_store);
+
+ rt2800_register_write(rt2x00dev, TX_PIN_CFG, macorg1);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x00);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, 0x00);
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, macorg2);
+ udelay(1);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, macorg3);
+ rt2800_register_write(rt2x00dev, RF_CONTROL3, macorg4);
+ rt2800_register_write(rt2x00dev, RF_BYPASS3, macorg5);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, savemacsysctrl);
+ rt2800_register_write(rt2x00dev, 0x13b8, mac13b8);
+}
+
+static void rt2800_bbp_core_soft_reset(struct rt2x00_dev *rt2x00dev,
+ bool set_bw, bool is_ht40)
+{
+ u8 bbp_val;
+
+ bbp_val = rt2800_bbp_read(rt2x00dev, 21);
+ bbp_val |= 0x1;
+ rt2800_bbp_write(rt2x00dev, 21, bbp_val);
+ usleep_range(100, 200);
+
+ if (set_bw) {
+ bbp_val = rt2800_bbp_read(rt2x00dev, 4);
+ rt2x00_set_field8(&bbp_val, BBP4_BANDWIDTH, 2 * is_ht40);
+ rt2800_bbp_write(rt2x00dev, 4, bbp_val);
+ usleep_range(100, 200);
+ }
+
+ bbp_val = rt2800_bbp_read(rt2x00dev, 21);
+ bbp_val &= (~0x1);
+ rt2800_bbp_write(rt2x00dev, 21, bbp_val);
+ usleep_range(100, 200);
+}
+
+static int rt2800_rf_lp_config(struct rt2x00_dev *rt2x00dev, bool btxcal)
+{
+ u8 rf_val;
+
+ if (btxcal)
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x04);
+ else
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, 0x02);
+
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, 0x06);
+
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 17);
+ rf_val |= 0x80;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 17, rf_val);
+
+ if (btxcal) {
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 18, 0xC1);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 19, 0x20);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 20, 0x02);
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 3);
+ rf_val &= (~0x3F);
+ rf_val |= 0x3F;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 3, rf_val);
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 4);
+ rf_val &= (~0x3F);
+ rf_val |= 0x3F;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 4, rf_val);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 5, 0x31);
+ } else {
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 18, 0xF1);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 19, 0x18);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 20, 0x02);
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 3);
+ rf_val &= (~0x3F);
+ rf_val |= 0x34;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 3, rf_val);
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 4);
+ rf_val &= (~0x3F);
+ rf_val |= 0x34;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 4, rf_val);
+ }
+
+ return 0;
+}
+
+static s8 rt2800_lp_tx_filter_bw_cal(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int cnt;
+ u8 bbp_val;
+ s8 cal_val;
+
+ rt2800_bbp_dcoc_write(rt2x00dev, 0, 0x82);
+
+ cnt = 0;
+ do {
+ usleep_range(500, 2000);
+ bbp_val = rt2800_bbp_read(rt2x00dev, 159);
+ if (bbp_val == 0x02 || cnt == 20)
+ break;
+
+ cnt++;
+ } while (cnt < 20);
+
+ bbp_val = rt2800_bbp_dcoc_read(rt2x00dev, 0x39);
+ cal_val = bbp_val & 0x7F;
+ if (cal_val >= 0x40)
+ cal_val -= 128;
+
+ return cal_val;
+}
+
+static void rt2800_bw_filter_calibration(struct rt2x00_dev *rt2x00dev,
+ bool btxcal)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u8 tx_agc_fc = 0, rx_agc_fc = 0, cmm_agc_fc;
+ u8 filter_target;
+ u8 tx_filter_target_20m = 0x09, tx_filter_target_40m = 0x02;
+ u8 rx_filter_target_20m = 0x27, rx_filter_target_40m = 0x31;
+ int loop = 0, is_ht40, cnt;
+ u8 bbp_val, rf_val;
+ s8 cal_r32_init, cal_r32_val, cal_diff;
+ u8 saverfb5r00, saverfb5r01, saverfb5r03, saverfb5r04, saverfb5r05;
+ u8 saverfb5r06, saverfb5r07;
+ u8 saverfb5r08, saverfb5r17, saverfb5r18, saverfb5r19, saverfb5r20;
+ u8 saverfb5r37, saverfb5r38, saverfb5r39, saverfb5r40, saverfb5r41;
+ u8 saverfb5r42, saverfb5r43, saverfb5r44, saverfb5r45, saverfb5r46;
+ u8 saverfb5r58, saverfb5r59;
+ u8 savebbp159r0, savebbp159r2, savebbpr23;
+ u32 MAC_RF_CONTROL0, MAC_RF_BYPASS0;
+
+ /* Save MAC registers */
+ MAC_RF_CONTROL0 = rt2800_register_read(rt2x00dev, RF_CONTROL0);
+ MAC_RF_BYPASS0 = rt2800_register_read(rt2x00dev, RF_BYPASS0);
+
+ /* save BBP registers */
+ savebbpr23 = rt2800_bbp_read(rt2x00dev, 23);
+
+ savebbp159r0 = rt2800_bbp_dcoc_read(rt2x00dev, 0);
+ savebbp159r2 = rt2800_bbp_dcoc_read(rt2x00dev, 2);
+
+ /* Save RF registers */
+ saverfb5r00 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 0);
+ saverfb5r01 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 1);
+ saverfb5r03 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 3);
+ saverfb5r04 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 4);
+ saverfb5r05 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 5);
+ saverfb5r06 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 6);
+ saverfb5r07 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 7);
+ saverfb5r08 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 8);
+ saverfb5r17 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 17);
+ saverfb5r18 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 18);
+ saverfb5r19 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 19);
+ saverfb5r20 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 20);
+
+ saverfb5r37 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 37);
+ saverfb5r38 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 38);
+ saverfb5r39 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 39);
+ saverfb5r40 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 40);
+ saverfb5r41 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 41);
+ saverfb5r42 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 42);
+ saverfb5r43 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 43);
+ saverfb5r44 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 44);
+ saverfb5r45 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 45);
+ saverfb5r46 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 46);
+
+ saverfb5r58 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 58);
+ saverfb5r59 = rt2800_rfcsr_read_bank(rt2x00dev, 5, 59);
+
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 0);
+ rf_val |= 0x3;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 0, rf_val);
+
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 1);
+ rf_val |= 0x1;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 1, rf_val);
+
+ cnt = 0;
+ do {
+ usleep_range(500, 2000);
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 1);
+ if (((rf_val & 0x1) == 0x00) || (cnt == 40))
+ break;
+ cnt++;
+ } while (cnt < 40);
+
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 0);
+ rf_val &= (~0x3);
+ rf_val |= 0x1;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 0, rf_val);
+
+ /* I-3 */
+ bbp_val = rt2800_bbp_read(rt2x00dev, 23);
+ bbp_val &= (~0x1F);
+ bbp_val |= 0x10;
+ rt2800_bbp_write(rt2x00dev, 23, bbp_val);
+
+ do {
+ /* I-4,5,6,7,8,9 */
+ if (loop == 0) {
+ is_ht40 = false;
+
+ if (btxcal)
+ filter_target = tx_filter_target_20m;
+ else
+ filter_target = rx_filter_target_20m;
+ } else {
+ is_ht40 = true;
+
+ if (btxcal)
+ filter_target = tx_filter_target_40m;
+ else
+ filter_target = rx_filter_target_40m;
+ }
+
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 8);
+ rf_val &= (~0x04);
+ if (loop == 1)
+ rf_val |= 0x4;
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 8, rf_val);
+
+ rt2800_bbp_core_soft_reset(rt2x00dev, true, is_ht40);
+
+ rt2800_rf_lp_config(rt2x00dev, btxcal);
+ if (btxcal) {
+ tx_agc_fc = 0;
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 58);
+ rf_val &= (~0x7F);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 58, rf_val);
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 59);
+ rf_val &= (~0x7F);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 59, rf_val);
+ } else {
+ rx_agc_fc = 0;
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 6);
+ rf_val &= (~0x7F);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 6, rf_val);
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 7);
+ rf_val &= (~0x7F);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 7, rf_val);
+ }
+
+ usleep_range(1000, 2000);
+
+ bbp_val = rt2800_bbp_dcoc_read(rt2x00dev, 2);
+ bbp_val &= (~0x6);
+ rt2800_bbp_dcoc_write(rt2x00dev, 2, bbp_val);
+
+ rt2800_bbp_core_soft_reset(rt2x00dev, false, is_ht40);
+
+ cal_r32_init = rt2800_lp_tx_filter_bw_cal(rt2x00dev);
+
+ bbp_val = rt2800_bbp_dcoc_read(rt2x00dev, 2);
+ bbp_val |= 0x6;
+ rt2800_bbp_dcoc_write(rt2x00dev, 2, bbp_val);
+do_cal:
+ if (btxcal) {
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 58);
+ rf_val &= (~0x7F);
+ rf_val |= tx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 58, rf_val);
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 59);
+ rf_val &= (~0x7F);
+ rf_val |= tx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 59, rf_val);
+ } else {
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 6);
+ rf_val &= (~0x7F);
+ rf_val |= rx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 6, rf_val);
+ rf_val = rt2800_rfcsr_read_bank(rt2x00dev, 5, 7);
+ rf_val &= (~0x7F);
+ rf_val |= rx_agc_fc;
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 7, rf_val);
+ }
+
+ usleep_range(500, 1000);
+
+ rt2800_bbp_core_soft_reset(rt2x00dev, false, is_ht40);
+
+ cal_r32_val = rt2800_lp_tx_filter_bw_cal(rt2x00dev);
+
+ cal_diff = cal_r32_init - cal_r32_val;
+
+ if (btxcal)
+ cmm_agc_fc = tx_agc_fc;
+ else
+ cmm_agc_fc = rx_agc_fc;
+
+ if (((cal_diff > filter_target) && (cmm_agc_fc == 0)) ||
+ ((cal_diff < filter_target) && (cmm_agc_fc == 0x3f))) {
+ if (btxcal)
+ tx_agc_fc = 0;
+ else
+ rx_agc_fc = 0;
+ } else if ((cal_diff <= filter_target) && (cmm_agc_fc < 0x3f)) {
+ if (btxcal)
+ tx_agc_fc++;
+ else
+ rx_agc_fc++;
+ goto do_cal;
+ }
+
+ if (btxcal) {
+ if (loop == 0)
+ drv_data->tx_calibration_bw20 = tx_agc_fc;
+ else
+ drv_data->tx_calibration_bw40 = tx_agc_fc;
+ } else {
+ if (loop == 0)
+ drv_data->rx_calibration_bw20 = rx_agc_fc;
+ else
+ drv_data->rx_calibration_bw40 = rx_agc_fc;
+ }
+
+ loop++;
+ } while (loop <= 1);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 0, saverfb5r00);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 1, saverfb5r01);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 3, saverfb5r03);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 4, saverfb5r04);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 5, saverfb5r05);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 6, saverfb5r06);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 7, saverfb5r07);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 8, saverfb5r08);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 17, saverfb5r17);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 18, saverfb5r18);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 19, saverfb5r19);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 20, saverfb5r20);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 37, saverfb5r37);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 38, saverfb5r38);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 39, saverfb5r39);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 40, saverfb5r40);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 41, saverfb5r41);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 42, saverfb5r42);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 43, saverfb5r43);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 44, saverfb5r44);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 45, saverfb5r45);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 46, saverfb5r46);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 58, saverfb5r58);
+ rt2800_rfcsr_write_bank(rt2x00dev, 5, 59, saverfb5r59);
+
+ rt2800_bbp_write(rt2x00dev, 23, savebbpr23);
+
+ rt2800_bbp_dcoc_write(rt2x00dev, 0, savebbp159r0);
+ rt2800_bbp_dcoc_write(rt2x00dev, 2, savebbp159r2);
+
+ bbp_val = rt2800_bbp_read(rt2x00dev, 4);
+ rt2x00_set_field8(&bbp_val, BBP4_BANDWIDTH,
+ 2 * test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags));
+ rt2800_bbp_write(rt2x00dev, 4, bbp_val);
+
+ rt2800_register_write(rt2x00dev, RF_CONTROL0, MAC_RF_CONTROL0);
+ rt2800_register_write(rt2x00dev, RF_BYPASS0, MAC_RF_BYPASS0);
+}
+
+static void rt2800_init_rfcsr_6352(struct rt2x00_dev *rt2x00dev)
+{
+ /* Initialize RF central register to default value */
+ rt2800_rfcsr_write(rt2x00dev, 0, 0x02);
+ rt2800_rfcsr_write(rt2x00dev, 1, 0x03);
+ rt2800_rfcsr_write(rt2x00dev, 2, 0x33);
+ rt2800_rfcsr_write(rt2x00dev, 3, 0xFF);
+ rt2800_rfcsr_write(rt2x00dev, 4, 0x0C);
+ rt2800_rfcsr_write(rt2x00dev, 5, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 6, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 9, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 10, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 12, rt2x00dev->freq_offset);
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0x40);
+ rt2800_rfcsr_write(rt2x00dev, 15, 0x22);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0x4C);
+ rt2800_rfcsr_write(rt2x00dev, 17, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0xA0);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0x12);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x07);
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x13);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0xFE);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x24);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x7A);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0x05);
+ rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 32, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 34, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 35, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 37, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 38, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 40, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 41, 0xD0);
+ rt2800_rfcsr_write(rt2x00dev, 42, 0x5B);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0x00);
+
+ rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
+ if (rt2800_clk_is_20mhz(rt2x00dev))
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x03);
+ else
+ rt2800_rfcsr_write(rt2x00dev, 13, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 14, 0x7C);
+ rt2800_rfcsr_write(rt2x00dev, 16, 0x80);
+ rt2800_rfcsr_write(rt2x00dev, 17, 0x99);
+ rt2800_rfcsr_write(rt2x00dev, 18, 0x99);
+ rt2800_rfcsr_write(rt2x00dev, 19, 0x09);
+ rt2800_rfcsr_write(rt2x00dev, 20, 0x50);
+ rt2800_rfcsr_write(rt2x00dev, 21, 0xB0);
+ rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 23, 0x06);
+ rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 25, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 26, 0x5D);
+ rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x61);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0xB5);
+ rt2800_rfcsr_write(rt2x00dev, 43, 0x02);
+
+ rt2800_rfcsr_write(rt2x00dev, 28, 0x62);
+ rt2800_rfcsr_write(rt2x00dev, 29, 0xAD);
+ rt2800_rfcsr_write(rt2x00dev, 39, 0x80);
+
+ /* Initialize RF channel register to default value */
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 0, 0x03);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 1, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 2, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 3, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 4, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 5, 0x08);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 6, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 7, 0x51);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 8, 0x53);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 9, 0x16);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 10, 0x61);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 11, 0x53);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 12, 0x22);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 13, 0x3D);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 14, 0x06);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 15, 0x13);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 16, 0x22);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 17, 0x27);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 18, 0x02);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 19, 0xA7);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 20, 0x01);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 21, 0x52);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 22, 0x80);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 23, 0xB3);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 24, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 25, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 26, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 27, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 28, 0x5C);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 29, 0x6B);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 30, 0x6B);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 31, 0x31);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 32, 0x5D);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 33, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 34, 0xE6);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 35, 0x55);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 36, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 37, 0xBB);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 38, 0xB3);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 39, 0xB3);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 40, 0x03);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 41, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 42, 0x00);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 43, 0xB3);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 44, 0xD3);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 45, 0xD5);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 46, 0x07);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 47, 0x68);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 48, 0xEF);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 49, 0x1C);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 54, 0x07);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 55, 0xA8);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 56, 0x85);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 57, 0x10);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 58, 0x07);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 59, 0x6A);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 60, 0x85);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 61, 0x10);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 62, 0x1C);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 63, 0x00);
+
+ rt2800_rfcsr_write_bank(rt2x00dev, 6, 45, 0xC5);
+
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 9, 0x47);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 10, 0x71);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 11, 0x33);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 14, 0x0E);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 17, 0x23);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 19, 0xA4);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 20, 0x02);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 21, 0x12);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 28, 0x1C);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 29, 0xEB);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 32, 0x7D);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 34, 0xD6);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 36, 0x08);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 38, 0xB4);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 43, 0xD3);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 44, 0xB3);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 45, 0xD5);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 46, 0x27);
+ rt2800_rfcsr_write_bank(rt2x00dev, 4, 47, 0x67);
+ rt2800_rfcsr_write_bank(rt2x00dev, 6, 47, 0x69);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 48, 0xFF);
+ rt2800_rfcsr_write_bank(rt2x00dev, 4, 54, 0x27);
+ rt2800_rfcsr_write_bank(rt2x00dev, 6, 54, 0x20);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 55, 0x66);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 56, 0xFF);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 57, 0x1C);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 58, 0x20);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 59, 0x6B);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 60, 0xF7);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 61, 0x09);
+
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 10, 0x51);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 14, 0x06);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 19, 0xA7);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 28, 0x2C);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 55, 0x64);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 8, 0x51);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 9, 0x36);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 11, 0x53);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 14, 0x16);
+
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 47, 0x6C);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 48, 0xFC);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 49, 0x1F);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 54, 0x27);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 55, 0x66);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 59, 0x6B);
+
+ /* Initialize RF channel register for DRQFN */
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 43, 0xD3);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 44, 0xE3);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 45, 0xE5);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 47, 0x28);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 55, 0x68);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 56, 0xF7);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 58, 0x02);
+ rt2800_rfcsr_write_chanreg(rt2x00dev, 60, 0xC7);
+
+ /* Initialize RF DC calibration register to default value */
+ rt2800_rfcsr_write_dccal(rt2x00dev, 0, 0x47);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 1, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 2, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 3, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 4, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 5, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 6, 0x10);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 7, 0x10);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 8, 0x04);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 9, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 10, 0x07);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 11, 0x01);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 12, 0x07);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 13, 0x07);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 14, 0x07);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 15, 0x20);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 16, 0x22);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 17, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 18, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 19, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 20, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 21, 0xF1);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 22, 0x11);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 23, 0x02);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 24, 0x41);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 25, 0x20);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 26, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 27, 0xD7);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 28, 0xA2);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 29, 0x20);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 30, 0x49);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 31, 0x20);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 32, 0x04);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 33, 0xF1);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 34, 0xA1);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 35, 0x01);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 41, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 42, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 43, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 44, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 45, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 46, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 47, 0x3E);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 48, 0x3D);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 49, 0x3E);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 50, 0x3D);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 51, 0x3E);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 52, 0x3D);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 53, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 54, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 55, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 56, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 57, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 58, 0x10);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 59, 0x10);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 60, 0x0A);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 61, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 62, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 63, 0x00);
+
+ rt2800_rfcsr_write_dccal(rt2x00dev, 3, 0x08);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 4, 0x04);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 5, 0x20);
+
+ rt2800_rfcsr_write_dccal(rt2x00dev, 5, 0x00);
+ rt2800_rfcsr_write_dccal(rt2x00dev, 17, 0x7C);
+
+ rt2800_r_calibration(rt2x00dev);
+ rt2800_rf_self_txdc_cal(rt2x00dev);
+ rt2800_rxdcoc_calibration(rt2x00dev);
+ rt2800_bw_filter_calibration(rt2x00dev, true);
+ rt2800_bw_filter_calibration(rt2x00dev, false);
+ rt2800_loft_iq_calibration(rt2x00dev);
+ rt2800_rxiq_calibration(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
+{
+ if (rt2800_is_305x_soc(rt2x00dev)) {
+ rt2800_init_rfcsr_305x_soc(rt2x00dev);
+ return;
+ }
+
+ switch (rt2x00dev->chip.rt) {
+ case RT3070:
+ case RT3071:
+ case RT3090:
+ rt2800_init_rfcsr_30xx(rt2x00dev);
+ break;
+ case RT3290:
+ rt2800_init_rfcsr_3290(rt2x00dev);
+ break;
+ case RT3352:
+ rt2800_init_rfcsr_3352(rt2x00dev);
+ break;
+ case RT3390:
+ rt2800_init_rfcsr_3390(rt2x00dev);
+ break;
+ case RT3883:
+ rt2800_init_rfcsr_3883(rt2x00dev);
+ break;
+ case RT3572:
+ rt2800_init_rfcsr_3572(rt2x00dev);
+ break;
+ case RT3593:
+ rt2800_init_rfcsr_3593(rt2x00dev);
+ break;
+ case RT5350:
+ rt2800_init_rfcsr_5350(rt2x00dev);
+ break;
+ case RT5390:
+ rt2800_init_rfcsr_5390(rt2x00dev);
+ break;
+ case RT5392:
+ rt2800_init_rfcsr_5392(rt2x00dev);
+ break;
+ case RT5592:
+ rt2800_init_rfcsr_5592(rt2x00dev);
+ break;
+ case RT6352:
+ rt2800_init_rfcsr_6352(rt2x00dev);
+ break;
+ }
+}
+
+int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+ u16 word;
+
+ /*
+ * Initialize MAC registers.
+ */
+ if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
+ rt2800_init_registers(rt2x00dev)))
+ return -EIO;
+
+ /*
+ * Wait BBP/RF to wake up.
+ */
+ if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev, MAC_STATUS_CFG_BBP_RF_BUSY)))
+ return -EIO;
+
+ /*
+ * Send signal during boot time to initialize firmware.
+ */
+ rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
+ rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+ if (rt2x00_is_usb(rt2x00dev))
+ rt2800_register_write(rt2x00dev, H2M_INT_SRC, 0);
+ rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
+ msleep(1);
+
+ /*
+ * Make sure BBP is up and running.
+ */
+ if (unlikely(rt2800_wait_bbp_ready(rt2x00dev)))
+ return -EIO;
+
+ /*
+ * Initialize BBP/RF registers.
+ */
+ rt2800_init_bbp(rt2x00dev);
+ rt2800_init_rfcsr(rt2x00dev);
+
+ if (rt2x00_is_usb(rt2x00dev) &&
+ (rt2x00_rt(rt2x00dev, RT3070) ||
+ rt2x00_rt(rt2x00dev, RT3071) ||
+ rt2x00_rt(rt2x00dev, RT3572))) {
+ udelay(200);
+ rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0);
+ udelay(10);
+ }
+
+ /*
+ * Enable RX.
+ */
+ reg = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+
+ udelay(50);
+
+ reg = rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
+ rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
+ rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+
+ /*
+ * Initialize LED control
+ */
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_LED_AG_CONF);
+ rt2800_mcu_request(rt2x00dev, MCU_LED_AG_CONF, 0xff,
+ word & 0xff, (word >> 8) & 0xff);
+
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_LED_ACT_CONF);
+ rt2800_mcu_request(rt2x00dev, MCU_LED_ACT_CONF, 0xff,
+ word & 0xff, (word >> 8) & 0xff);
+
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_LED_POLARITY);
+ rt2800_mcu_request(rt2x00dev, MCU_LED_LED_POLARITY, 0xff,
+ word & 0xff, (word >> 8) & 0xff);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_enable_radio);
+
+void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ rt2800_disable_wpdma(rt2x00dev);
+
+ /* Wait for DMA, ignore error */
+ rt2800_wait_wpdma_ready(rt2x00dev);
+
+ reg = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 0);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
+ rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+}
+EXPORT_SYMBOL_GPL(rt2800_disable_radio);
+
+int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+ u16 efuse_ctrl_reg;
+
+ if (rt2x00_rt(rt2x00dev, RT3290))
+ efuse_ctrl_reg = EFUSE_CTRL_3290;
+ else
+ efuse_ctrl_reg = EFUSE_CTRL;
+
+ reg = rt2800_register_read(rt2x00dev, efuse_ctrl_reg);
+ return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
+}
+EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
+
+static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
+{
+ u32 reg;
+ u16 efuse_ctrl_reg;
+ u16 efuse_data0_reg;
+ u16 efuse_data1_reg;
+ u16 efuse_data2_reg;
+ u16 efuse_data3_reg;
+
+ if (rt2x00_rt(rt2x00dev, RT3290)) {
+ efuse_ctrl_reg = EFUSE_CTRL_3290;
+ efuse_data0_reg = EFUSE_DATA0_3290;
+ efuse_data1_reg = EFUSE_DATA1_3290;
+ efuse_data2_reg = EFUSE_DATA2_3290;
+ efuse_data3_reg = EFUSE_DATA3_3290;
+ } else {
+ efuse_ctrl_reg = EFUSE_CTRL;
+ efuse_data0_reg = EFUSE_DATA0;
+ efuse_data1_reg = EFUSE_DATA1;
+ efuse_data2_reg = EFUSE_DATA2;
+ efuse_data3_reg = EFUSE_DATA3;
+ }
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ reg = rt2800_register_read_lock(rt2x00dev, efuse_ctrl_reg);
+ rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
+ rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
+ rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
+ rt2800_register_write_lock(rt2x00dev, efuse_ctrl_reg, reg);
+
+ /* Wait until the EEPROM has been loaded */
+ rt2800_regbusy_read(rt2x00dev, efuse_ctrl_reg, EFUSE_CTRL_KICK, &reg);
+ /* Apparently the data is read from end to start */
+ reg = rt2800_register_read_lock(rt2x00dev, efuse_data3_reg);
+ /* The returned value is in CPU order, but eeprom is le */
+ *(u32 *)&rt2x00dev->eeprom[i] = cpu_to_le32(reg);
+ reg = rt2800_register_read_lock(rt2x00dev, efuse_data2_reg);
+ *(u32 *)&rt2x00dev->eeprom[i + 2] = cpu_to_le32(reg);
+ reg = rt2800_register_read_lock(rt2x00dev, efuse_data1_reg);
+ *(u32 *)&rt2x00dev->eeprom[i + 4] = cpu_to_le32(reg);
+ reg = rt2800_register_read_lock(rt2x00dev, efuse_data0_reg);
+ *(u32 *)&rt2x00dev->eeprom[i + 6] = cpu_to_le32(reg);
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+int rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+
+ for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
+ rt2800_efuse_read(rt2x00dev, i);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
+
+static u8 rt2800_get_txmixer_gain_24g(struct rt2x00_dev *rt2x00dev)
+{
+ u16 word;
+
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883))
+ return 0;
+
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG);
+ if ((word & 0x00ff) != 0x00ff)
+ return rt2x00_get_field16(word, EEPROM_TXMIXER_GAIN_BG_VAL);
+
+ return 0;
+}
+
+static u8 rt2800_get_txmixer_gain_5g(struct rt2x00_dev *rt2x00dev)
+{
+ u16 word;
+
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883))
+ return 0;
+
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_A);
+ if ((word & 0x00ff) != 0x00ff)
+ return rt2x00_get_field16(word, EEPROM_TXMIXER_GAIN_A_VAL);
+
+ return 0;
+}
+
+static int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u16 word;
+ u8 *mac;
+ u8 default_lna_gain;
+ int retval;
+
+ /*
+ * Read the EEPROM.
+ */
+ retval = rt2800_read_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Start validation of the data that has been read.
+ */
+ mac = rt2800_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+ rt2x00lib_set_mac_address(rt2x00dev, mac);
+
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF0_TXPATH, 1);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RF_TYPE, RF2820);
+ rt2800_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
+ } else if (rt2x00_rt(rt2x00dev, RT2860) ||
+ rt2x00_rt(rt2x00dev, RT2872)) {
+ /*
+ * There is a max of 2 RX streams for RT28x0 series
+ */
+ if (rt2x00_get_field16(word, EEPROM_NIC_CONF0_RXPATH) > 2)
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
+ rt2800_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
+ }
+
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_HW_RADIO, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_CARDBUS_ACCEL, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_2G, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_5G, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_WPS_PBC, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_2G, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_5G, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_ANT_DIVERSITY, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_INTERNAL_TX_ALC, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BT_COEXIST, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CONF1_DAC_TEST, 0);
+ rt2800_eeprom_write(rt2x00dev, EEPROM_NIC_CONF1, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
+ }
+
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_FREQ);
+ if ((word & 0x00ff) == 0x00ff) {
+ rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
+ rt2800_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
+ }
+ if ((word & 0xff00) == 0xff00) {
+ rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
+ LED_MODE_TXRX_ACTIVITY);
+ rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
+ rt2800_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
+ rt2800_eeprom_write(rt2x00dev, EEPROM_LED_AG_CONF, 0x5555);
+ rt2800_eeprom_write(rt2x00dev, EEPROM_LED_ACT_CONF, 0x2221);
+ rt2800_eeprom_write(rt2x00dev, EEPROM_LED_POLARITY, 0xa9f8);
+ rt2x00_eeprom_dbg(rt2x00dev, "Led Mode: 0x%04x\n", word);
+ }
+
+ /*
+ * During the LNA validation we are going to use
+ * lna0 as correct value. Note that EEPROM_LNA
+ * is never validated.
+ */
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_LNA);
+ default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
+
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG);
+ if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
+ if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
+ rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
+
+ drv_data->txmixer_gain_24g = rt2800_get_txmixer_gain_24g(rt2x00dev);
+
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2);
+ if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
+ if (!rt2x00_rt(rt2x00dev, RT3593) &&
+ !rt2x00_rt(rt2x00dev, RT3883)) {
+ if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
+ rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
+ rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
+ default_lna_gain);
+ }
+ rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
+
+ drv_data->txmixer_gain_5g = rt2800_get_txmixer_gain_5g(rt2x00dev);
+
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A);
+ if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
+ if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
+ rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
+
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2);
+ if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
+ if (!rt2x00_rt(rt2x00dev, RT3593) &&
+ !rt2x00_rt(rt2x00dev, RT3883)) {
+ if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
+ rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
+ rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
+ default_lna_gain);
+ }
+ rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
+
+ if (rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT3883)) {
+ word = rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2);
+ if (rt2x00_get_field16(word, EEPROM_EXT_LNA2_A1) == 0x00 ||
+ rt2x00_get_field16(word, EEPROM_EXT_LNA2_A1) == 0xff)
+ rt2x00_set_field16(&word, EEPROM_EXT_LNA2_A1,
+ default_lna_gain);
+ if (rt2x00_get_field16(word, EEPROM_EXT_LNA2_A2) == 0x00 ||
+ rt2x00_get_field16(word, EEPROM_EXT_LNA2_A2) == 0xff)
+ rt2x00_set_field16(&word, EEPROM_EXT_LNA2_A1,
+ default_lna_gain);
+ rt2800_eeprom_write(rt2x00dev, EEPROM_EXT_LNA2, word);
+ }
+
+ return 0;
+}
+
+static int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ u16 value;
+ u16 eeprom;
+ u16 rf;
+
+ /*
+ * Read EEPROM word for configuration.
+ */
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0);
+
+ /*
+ * Identify RF chipset by EEPROM value
+ * RT28xx/RT30xx: defined in "EEPROM_NIC_CONF0_RF_TYPE" field
+ * RT53xx: defined in "EEPROM_CHIP_ID" field
+ */
+ if (rt2x00_rt(rt2x00dev, RT3290) ||
+ rt2x00_rt(rt2x00dev, RT5390) ||
+ rt2x00_rt(rt2x00dev, RT5392) ||
+ rt2x00_rt(rt2x00dev, RT6352))
+ rf = rt2800_eeprom_read(rt2x00dev, EEPROM_CHIP_ID);
+ else if (rt2x00_rt(rt2x00dev, RT3352))
+ rf = RF3322;
+ else if (rt2x00_rt(rt2x00dev, RT3883))
+ rf = RF3853;
+ else if (rt2x00_rt(rt2x00dev, RT5350))
+ rf = RF5350;
+ else if (rt2x00_rt(rt2x00dev, RT5592))
+ rf = RF5592;
+ else
+ rf = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RF_TYPE);
+
+ switch (rf) {
+ case RF2820:
+ case RF2850:
+ case RF2720:
+ case RF2750:
+ case RF3020:
+ case RF2020:
+ case RF3021:
+ case RF3022:
+ case RF3052:
+ case RF3053:
+ case RF3070:
+ case RF3290:
+ case RF3320:
+ case RF3322:
+ case RF3853:
+ case RF5350:
+ case RF5360:
+ case RF5362:
+ case RF5370:
+ case RF5372:
+ case RF5390:
+ case RF5392:
+ case RF5592:
+ case RF7620:
+ break;
+ default:
+ rt2x00_err(rt2x00dev, "Invalid RF chipset 0x%04x detected\n",
+ rf);
+ return -ENODEV;
+ }
+
+ rt2x00_set_rf(rt2x00dev, rf);
+
+ /*
+ * Identify default antenna configuration.
+ */
+ rt2x00dev->default_ant.tx_chain_num =
+ rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH);
+ rt2x00dev->default_ant.rx_chain_num =
+ rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH);
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
+
+ if (rt2x00_rt(rt2x00dev, RT3070) ||
+ rt2x00_rt(rt2x00dev, RT3090) ||
+ rt2x00_rt(rt2x00dev, RT3352) ||
+ rt2x00_rt(rt2x00dev, RT3390)) {
+ value = rt2x00_get_field16(eeprom,
+ EEPROM_NIC_CONF1_ANT_DIVERSITY);
+ switch (value) {
+ case 0:
+ case 1:
+ case 2:
+ rt2x00dev->default_ant.tx = ANTENNA_A;
+ rt2x00dev->default_ant.rx = ANTENNA_A;
+ break;
+ case 3:
+ rt2x00dev->default_ant.tx = ANTENNA_A;
+ rt2x00dev->default_ant.rx = ANTENNA_B;
+ break;
+ }
+ } else {
+ rt2x00dev->default_ant.tx = ANTENNA_A;
+ rt2x00dev->default_ant.rx = ANTENNA_A;
+ }
+
+ /* These chips have hardware RX antenna diversity */
+ if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390R) ||
+ rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5370G)) {
+ rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; /* Unused */
+ rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; /* Unused */
+ }
+
+ /*
+ * Determine external LNA informations.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G))
+ __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G))
+ __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
+
+ /*
+ * Detect if this device has an hardware controlled radio.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_HW_RADIO))
+ __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+
+ /*
+ * Detect if this device has Bluetooth co-existence.
+ */
+ if (!rt2x00_rt(rt2x00dev, RT3352) &&
+ rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_BT_COEXIST))
+ __set_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags);
+
+ /*
+ * Read frequency offset and RF programming sequence.
+ */
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_FREQ);
+ rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
+
+ /*
+ * Store led settings, for correct led behaviour.
+ */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+ rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+ rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
+ rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
+
+ rt2x00dev->led_mcu_reg = eeprom;
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+ /*
+ * Check if support EIRP tx power limit feature.
+ */
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER);
+
+ if (rt2x00_get_field16(eeprom, EEPROM_EIRP_MAX_TX_POWER_2GHZ) <
+ EIRP_MAX_TX_POWER_LIMIT)
+ __set_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags);
+
+ /*
+ * Detect if device uses internal or external PA
+ */
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
+
+ if (rt2x00_rt(rt2x00dev, RT3352) ||
+ rt2x00_rt(rt2x00dev, RT6352)) {
+ if (rt2x00_get_field16(eeprom,
+ EEPROM_NIC_CONF1_EXTERNAL_TX0_PA_3352))
+ __set_bit(CAPABILITY_EXTERNAL_PA_TX0,
+ &rt2x00dev->cap_flags);
+ if (rt2x00_get_field16(eeprom,
+ EEPROM_NIC_CONF1_EXTERNAL_TX1_PA_3352))
+ __set_bit(CAPABILITY_EXTERNAL_PA_TX1,
+ &rt2x00dev->cap_flags);
+ }
+
+ eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF2);
+
+ if (rt2x00_rt(rt2x00dev, RT6352) && eeprom != 0 && eeprom != 0xffff) {
+ if (!rt2x00_get_field16(eeprom,
+ EEPROM_NIC_CONF2_EXTERNAL_PA)) {
+ __clear_bit(CAPABILITY_EXTERNAL_PA_TX0,
+ &rt2x00dev->cap_flags);
+ __clear_bit(CAPABILITY_EXTERNAL_PA_TX1,
+ &rt2x00dev->cap_flags);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * RF value list for rt28xx
+ * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
+ */
+static const struct rf_channel rf_vals[] = {
+ { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
+ { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
+ { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
+ { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
+ { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
+ { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
+ { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
+ { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
+ { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
+ { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
+ { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
+ { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
+ { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
+ { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
+
+ /* 802.11 UNI / HyperLan 2 */
+ { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
+ { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
+ { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
+ { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
+ { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
+ { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
+ { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
+ { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
+ { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
+ { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
+ { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
+ { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
+
+ /* 802.11 HyperLan 2 */
+ { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
+ { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
+ { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
+ { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
+ { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
+ { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
+ { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
+ { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
+ { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
+ { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
+ { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
+ { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
+ { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
+ { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
+ { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
+ { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
+
+ /* 802.11 UNII */
+ { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
+ { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
+ { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
+ { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
+ { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
+ { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
+ { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
+ { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
+ { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
+ { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
+ { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
+
+ /* 802.11 Japan */
+ { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
+ { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
+ { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
+ { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
+ { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
+ { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
+ { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
+};
+
+/*
+ * RF value list for rt3xxx
+ * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052 & RF3053)
+ */
+static const struct rf_channel rf_vals_3x[] = {
+ {1, 241, 2, 2 },
+ {2, 241, 2, 7 },
+ {3, 242, 2, 2 },
+ {4, 242, 2, 7 },
+ {5, 243, 2, 2 },
+ {6, 243, 2, 7 },
+ {7, 244, 2, 2 },
+ {8, 244, 2, 7 },
+ {9, 245, 2, 2 },
+ {10, 245, 2, 7 },
+ {11, 246, 2, 2 },
+ {12, 246, 2, 7 },
+ {13, 247, 2, 2 },
+ {14, 248, 2, 4 },
+
+ /* 802.11 UNI / HyperLan 2 */
+ {36, 0x56, 0, 4},
+ {38, 0x56, 0, 6},
+ {40, 0x56, 0, 8},
+ {44, 0x57, 0, 0},
+ {46, 0x57, 0, 2},
+ {48, 0x57, 0, 4},
+ {52, 0x57, 0, 8},
+ {54, 0x57, 0, 10},
+ {56, 0x58, 0, 0},
+ {60, 0x58, 0, 4},
+ {62, 0x58, 0, 6},
+ {64, 0x58, 0, 8},
+
+ /* 802.11 HyperLan 2 */
+ {100, 0x5b, 0, 8},
+ {102, 0x5b, 0, 10},
+ {104, 0x5c, 0, 0},
+ {108, 0x5c, 0, 4},
+ {110, 0x5c, 0, 6},
+ {112, 0x5c, 0, 8},
+ {116, 0x5d, 0, 0},
+ {118, 0x5d, 0, 2},
+ {120, 0x5d, 0, 4},
+ {124, 0x5d, 0, 8},
+ {126, 0x5d, 0, 10},
+ {128, 0x5e, 0, 0},
+ {132, 0x5e, 0, 4},
+ {134, 0x5e, 0, 6},
+ {136, 0x5e, 0, 8},
+ {140, 0x5f, 0, 0},
+
+ /* 802.11 UNII */
+ {149, 0x5f, 0, 9},
+ {151, 0x5f, 0, 11},
+ {153, 0x60, 0, 1},
+ {157, 0x60, 0, 5},
+ {159, 0x60, 0, 7},
+ {161, 0x60, 0, 9},
+ {165, 0x61, 0, 1},
+ {167, 0x61, 0, 3},
+ {169, 0x61, 0, 5},
+ {171, 0x61, 0, 7},
+ {173, 0x61, 0, 9},
+};
+
+/*
+ * RF value list for rt3xxx with Xtal20MHz
+ * Supports: 2.4 GHz (all) (RF3322)
+ */
+static const struct rf_channel rf_vals_3x_xtal20[] = {
+ {1, 0xE2, 2, 0x14},
+ {2, 0xE3, 2, 0x14},
+ {3, 0xE4, 2, 0x14},
+ {4, 0xE5, 2, 0x14},
+ {5, 0xE6, 2, 0x14},
+ {6, 0xE7, 2, 0x14},
+ {7, 0xE8, 2, 0x14},
+ {8, 0xE9, 2, 0x14},
+ {9, 0xEA, 2, 0x14},
+ {10, 0xEB, 2, 0x14},
+ {11, 0xEC, 2, 0x14},
+ {12, 0xED, 2, 0x14},
+ {13, 0xEE, 2, 0x14},
+ {14, 0xF0, 2, 0x18},
+};
+
+static const struct rf_channel rf_vals_3853[] = {
+ {1, 241, 6, 2},
+ {2, 241, 6, 7},
+ {3, 242, 6, 2},
+ {4, 242, 6, 7},
+ {5, 243, 6, 2},
+ {6, 243, 6, 7},
+ {7, 244, 6, 2},
+ {8, 244, 6, 7},
+ {9, 245, 6, 2},
+ {10, 245, 6, 7},
+ {11, 246, 6, 2},
+ {12, 246, 6, 7},
+ {13, 247, 6, 2},
+ {14, 248, 6, 4},
+
+ {36, 0x56, 8, 4},
+ {38, 0x56, 8, 6},
+ {40, 0x56, 8, 8},
+ {44, 0x57, 8, 0},
+ {46, 0x57, 8, 2},
+ {48, 0x57, 8, 4},
+ {52, 0x57, 8, 8},
+ {54, 0x57, 8, 10},
+ {56, 0x58, 8, 0},
+ {60, 0x58, 8, 4},
+ {62, 0x58, 8, 6},
+ {64, 0x58, 8, 8},
+
+ {100, 0x5b, 8, 8},
+ {102, 0x5b, 8, 10},
+ {104, 0x5c, 8, 0},
+ {108, 0x5c, 8, 4},
+ {110, 0x5c, 8, 6},
+ {112, 0x5c, 8, 8},
+ {114, 0x5c, 8, 10},
+ {116, 0x5d, 8, 0},
+ {118, 0x5d, 8, 2},
+ {120, 0x5d, 8, 4},
+ {124, 0x5d, 8, 8},
+ {126, 0x5d, 8, 10},
+ {128, 0x5e, 8, 0},
+ {132, 0x5e, 8, 4},
+ {134, 0x5e, 8, 6},
+ {136, 0x5e, 8, 8},
+ {140, 0x5f, 8, 0},
+
+ {149, 0x5f, 8, 9},
+ {151, 0x5f, 8, 11},
+ {153, 0x60, 8, 1},
+ {157, 0x60, 8, 5},
+ {159, 0x60, 8, 7},
+ {161, 0x60, 8, 9},
+ {165, 0x61, 8, 1},
+ {167, 0x61, 8, 3},
+ {169, 0x61, 8, 5},
+ {171, 0x61, 8, 7},
+ {173, 0x61, 8, 9},
+};
+
+static const struct rf_channel rf_vals_5592_xtal20[] = {
+ /* Channel, N, K, mod, R */
+ {1, 482, 4, 10, 3},
+ {2, 483, 4, 10, 3},
+ {3, 484, 4, 10, 3},
+ {4, 485, 4, 10, 3},
+ {5, 486, 4, 10, 3},
+ {6, 487, 4, 10, 3},
+ {7, 488, 4, 10, 3},
+ {8, 489, 4, 10, 3},
+ {9, 490, 4, 10, 3},
+ {10, 491, 4, 10, 3},
+ {11, 492, 4, 10, 3},
+ {12, 493, 4, 10, 3},
+ {13, 494, 4, 10, 3},
+ {14, 496, 8, 10, 3},
+ {36, 172, 8, 12, 1},
+ {38, 173, 0, 12, 1},
+ {40, 173, 4, 12, 1},
+ {42, 173, 8, 12, 1},
+ {44, 174, 0, 12, 1},
+ {46, 174, 4, 12, 1},
+ {48, 174, 8, 12, 1},
+ {50, 175, 0, 12, 1},
+ {52, 175, 4, 12, 1},
+ {54, 175, 8, 12, 1},
+ {56, 176, 0, 12, 1},
+ {58, 176, 4, 12, 1},
+ {60, 176, 8, 12, 1},
+ {62, 177, 0, 12, 1},
+ {64, 177, 4, 12, 1},
+ {100, 183, 4, 12, 1},
+ {102, 183, 8, 12, 1},
+ {104, 184, 0, 12, 1},
+ {106, 184, 4, 12, 1},
+ {108, 184, 8, 12, 1},
+ {110, 185, 0, 12, 1},
+ {112, 185, 4, 12, 1},
+ {114, 185, 8, 12, 1},
+ {116, 186, 0, 12, 1},
+ {118, 186, 4, 12, 1},
+ {120, 186, 8, 12, 1},
+ {122, 187, 0, 12, 1},
+ {124, 187, 4, 12, 1},
+ {126, 187, 8, 12, 1},
+ {128, 188, 0, 12, 1},
+ {130, 188, 4, 12, 1},
+ {132, 188, 8, 12, 1},
+ {134, 189, 0, 12, 1},
+ {136, 189, 4, 12, 1},
+ {138, 189, 8, 12, 1},
+ {140, 190, 0, 12, 1},
+ {149, 191, 6, 12, 1},
+ {151, 191, 10, 12, 1},
+ {153, 192, 2, 12, 1},
+ {155, 192, 6, 12, 1},
+ {157, 192, 10, 12, 1},
+ {159, 193, 2, 12, 1},
+ {161, 193, 6, 12, 1},
+ {165, 194, 2, 12, 1},
+ {184, 164, 0, 12, 1},
+ {188, 164, 4, 12, 1},
+ {192, 165, 8, 12, 1},
+ {196, 166, 0, 12, 1},
+};
+
+static const struct rf_channel rf_vals_5592_xtal40[] = {
+ /* Channel, N, K, mod, R */
+ {1, 241, 2, 10, 3},
+ {2, 241, 7, 10, 3},
+ {3, 242, 2, 10, 3},
+ {4, 242, 7, 10, 3},
+ {5, 243, 2, 10, 3},
+ {6, 243, 7, 10, 3},
+ {7, 244, 2, 10, 3},
+ {8, 244, 7, 10, 3},
+ {9, 245, 2, 10, 3},
+ {10, 245, 7, 10, 3},
+ {11, 246, 2, 10, 3},
+ {12, 246, 7, 10, 3},
+ {13, 247, 2, 10, 3},
+ {14, 248, 4, 10, 3},
+ {36, 86, 4, 12, 1},
+ {38, 86, 6, 12, 1},
+ {40, 86, 8, 12, 1},
+ {42, 86, 10, 12, 1},
+ {44, 87, 0, 12, 1},
+ {46, 87, 2, 12, 1},
+ {48, 87, 4, 12, 1},
+ {50, 87, 6, 12, 1},
+ {52, 87, 8, 12, 1},
+ {54, 87, 10, 12, 1},
+ {56, 88, 0, 12, 1},
+ {58, 88, 2, 12, 1},
+ {60, 88, 4, 12, 1},
+ {62, 88, 6, 12, 1},
+ {64, 88, 8, 12, 1},
+ {100, 91, 8, 12, 1},
+ {102, 91, 10, 12, 1},
+ {104, 92, 0, 12, 1},
+ {106, 92, 2, 12, 1},
+ {108, 92, 4, 12, 1},
+ {110, 92, 6, 12, 1},
+ {112, 92, 8, 12, 1},
+ {114, 92, 10, 12, 1},
+ {116, 93, 0, 12, 1},
+ {118, 93, 2, 12, 1},
+ {120, 93, 4, 12, 1},
+ {122, 93, 6, 12, 1},
+ {124, 93, 8, 12, 1},
+ {126, 93, 10, 12, 1},
+ {128, 94, 0, 12, 1},
+ {130, 94, 2, 12, 1},
+ {132, 94, 4, 12, 1},
+ {134, 94, 6, 12, 1},
+ {136, 94, 8, 12, 1},
+ {138, 94, 10, 12, 1},
+ {140, 95, 0, 12, 1},
+ {149, 95, 9, 12, 1},
+ {151, 95, 11, 12, 1},
+ {153, 96, 1, 12, 1},
+ {155, 96, 3, 12, 1},
+ {157, 96, 5, 12, 1},
+ {159, 96, 7, 12, 1},
+ {161, 96, 9, 12, 1},
+ {165, 97, 1, 12, 1},
+ {184, 82, 0, 12, 1},
+ {188, 82, 4, 12, 1},
+ {192, 82, 8, 12, 1},
+ {196, 83, 0, 12, 1},
+};
+
+static const struct rf_channel rf_vals_7620[] = {
+ {1, 0x50, 0x99, 0x99, 1},
+ {2, 0x50, 0x44, 0x44, 2},
+ {3, 0x50, 0xEE, 0xEE, 2},
+ {4, 0x50, 0x99, 0x99, 3},
+ {5, 0x51, 0x44, 0x44, 0},
+ {6, 0x51, 0xEE, 0xEE, 0},
+ {7, 0x51, 0x99, 0x99, 1},
+ {8, 0x51, 0x44, 0x44, 2},
+ {9, 0x51, 0xEE, 0xEE, 2},
+ {10, 0x51, 0x99, 0x99, 3},
+ {11, 0x52, 0x44, 0x44, 0},
+ {12, 0x52, 0xEE, 0xEE, 0},
+ {13, 0x52, 0x99, 0x99, 1},
+ {14, 0x52, 0x33, 0x33, 3},
+};
+
+static int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+ struct hw_mode_spec *spec = &rt2x00dev->spec;
+ struct channel_info *info;
+ s8 *default_power1;
+ s8 *default_power2;
+ s8 *default_power3;
+ unsigned int i, tx_chains, rx_chains;
+ u32 reg;
+
+ /*
+ * Disable powersaving as default.
+ */
+ rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
+
+ /*
+ * Change default retry settings to values corresponding more closely
+ * to rate[0].count setting of minstrel rate control algorithm.
+ */
+ rt2x00dev->hw->wiphy->retry_short = 2;
+ rt2x00dev->hw->wiphy->retry_long = 2;
+
+ /*
+ * Initialize all hw fields.
+ */
+ ieee80211_hw_set(rt2x00dev->hw, REPORTS_TX_ACK_STATUS);
+ ieee80211_hw_set(rt2x00dev->hw, AMPDU_AGGREGATION);
+ ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+ ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+ ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+
+ /*
+ * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
+ * unless we are capable of sending the buffered frames out after the
+ * DTIM transmission using rt2x00lib_beacondone. This will send out
+ * multicast and broadcast traffic immediately instead of buffering it
+ * infinitly and thus dropping it after some time.
+ */
+ if (!rt2x00_is_usb(rt2x00dev))
+ ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
+
+ ieee80211_hw_set(rt2x00dev->hw, MFP_CAPABLE);
+
+ SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+ SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+ rt2800_eeprom_addr(rt2x00dev,
+ EEPROM_MAC_ADDR_0));
+
+ /*
+ * As rt2800 has a global fallback table we cannot specify
+ * more then one tx rate per frame but since the hw will
+ * try several rates (based on the fallback table) we should
+ * initialize max_report_rates to the maximum number of rates
+ * we are going to try. Otherwise mac80211 will truncate our
+ * reported tx rates and the rc algortihm will end up with
+ * incorrect data.
+ */
+ rt2x00dev->hw->max_rates = 1;
+ rt2x00dev->hw->max_report_rates = 7;
+ rt2x00dev->hw->max_rate_tries = 1;
+
+ /*
+ * Initialize hw_mode information.
+ */
+ spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+ switch (rt2x00dev->chip.rf) {
+ case RF2720:
+ case RF2820:
+ spec->num_channels = 14;
+ spec->channels = rf_vals;
+ break;
+
+ case RF2750:
+ case RF2850:
+ spec->num_channels = ARRAY_SIZE(rf_vals);
+ spec->channels = rf_vals;
+ break;
+
+ case RF2020:
+ case RF3020:
+ case RF3021:
+ case RF3022:
+ case RF3070:
+ case RF3290:
+ case RF3320:
+ case RF3322:
+ case RF5350:
+ case RF5360:
+ case RF5362:
+ case RF5370:
+ case RF5372:
+ case RF5390:
+ case RF5392:
+ spec->num_channels = 14;
+ if (rt2800_clk_is_20mhz(rt2x00dev))
+ spec->channels = rf_vals_3x_xtal20;
+ else
+ spec->channels = rf_vals_3x;
+ break;
+
+ case RF7620:
+ spec->num_channels = ARRAY_SIZE(rf_vals_7620);
+ spec->channels = rf_vals_7620;
+ break;
+
+ case RF3052:
+ case RF3053:
+ spec->num_channels = ARRAY_SIZE(rf_vals_3x);
+ spec->channels = rf_vals_3x;
+ break;
+
+ case RF3853:
+ spec->num_channels = ARRAY_SIZE(rf_vals_3853);
+ spec->channels = rf_vals_3853;
+ break;
+
+ case RF5592:
+ reg = rt2800_register_read(rt2x00dev, MAC_DEBUG_INDEX);
+ if (rt2x00_get_field32(reg, MAC_DEBUG_INDEX_XTAL)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_5592_xtal40);
+ spec->channels = rf_vals_5592_xtal40;
+ } else {
+ spec->num_channels = ARRAY_SIZE(rf_vals_5592_xtal20);
+ spec->channels = rf_vals_5592_xtal20;
+ }
+ break;
+ }
+
+ if (WARN_ON_ONCE(!spec->channels))
+ return -ENODEV;
+
+ spec->supported_bands = SUPPORT_BAND_2GHZ;
+ if (spec->num_channels > 14)
+ spec->supported_bands |= SUPPORT_BAND_5GHZ;
+
+ /*
+ * Initialize HT information.
+ */
+ if (!rt2x00_rf(rt2x00dev, RF2020))
+ spec->ht.ht_supported = true;
+ else
+ spec->ht.ht_supported = false;
+
+ spec->ht.cap =
+ IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
+ IEEE80211_HT_CAP_GRN_FLD |
+ IEEE80211_HT_CAP_SGI_20 |
+ IEEE80211_HT_CAP_SGI_40;
+
+ tx_chains = rt2x00dev->default_ant.tx_chain_num;
+ rx_chains = rt2x00dev->default_ant.rx_chain_num;
+
+ if (tx_chains >= 2)
+ spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;
+
+ spec->ht.cap |= rx_chains << IEEE80211_HT_CAP_RX_STBC_SHIFT;
+
+ spec->ht.ampdu_factor = (rx_chains > 1) ? 3 : 2;
+ spec->ht.ampdu_density = 4;
+ spec->ht.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
+ if (tx_chains != rx_chains) {
+ spec->ht.mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
+ spec->ht.mcs.tx_params |=
+ (tx_chains - 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
+ }
+
+ switch (rx_chains) {
+ case 3:
+ spec->ht.mcs.rx_mask[2] = 0xff;
+ fallthrough;
+ case 2:
+ spec->ht.mcs.rx_mask[1] = 0xff;
+ fallthrough;
+ case 1:
+ spec->ht.mcs.rx_mask[0] = 0xff;
+ spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
+ break;
+ }
+
+ /*
+ * Create channel information and survey arrays
+ */
+ info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ rt2x00dev->chan_survey =
+ kcalloc(spec->num_channels, sizeof(struct rt2x00_chan_survey),
+ GFP_KERNEL);
+ if (!rt2x00dev->chan_survey) {
+ kfree(info);
+ return -ENOMEM;
+ }
+
+ spec->channels_info = info;
+
+ default_power1 = rt2800_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
+ default_power2 = rt2800_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
+
+ if (rt2x00dev->default_ant.tx_chain_num > 2)
+ default_power3 = rt2800_eeprom_addr(rt2x00dev,
+ EEPROM_EXT_TXPOWER_BG3);
+ else
+ default_power3 = NULL;
+
+ for (i = 0; i < 14; i++) {
+ info[i].default_power1 = default_power1[i];
+ info[i].default_power2 = default_power2[i];
+ if (default_power3)
+ info[i].default_power3 = default_power3[i];
+ }
+
+ if (spec->num_channels > 14) {
+ default_power1 = rt2800_eeprom_addr(rt2x00dev,
+ EEPROM_TXPOWER_A1);
+ default_power2 = rt2800_eeprom_addr(rt2x00dev,
+ EEPROM_TXPOWER_A2);
+
+ if (rt2x00dev->default_ant.tx_chain_num > 2)
+ default_power3 =
+ rt2800_eeprom_addr(rt2x00dev,
+ EEPROM_EXT_TXPOWER_A3);
+ else
+ default_power3 = NULL;
+
+ for (i = 14; i < spec->num_channels; i++) {
+ info[i].default_power1 = default_power1[i - 14];
+ info[i].default_power2 = default_power2[i - 14];
+ if (default_power3)
+ info[i].default_power3 = default_power3[i - 14];
+ }
+ }
+
+ switch (rt2x00dev->chip.rf) {
+ case RF2020:
+ case RF3020:
+ case RF3021:
+ case RF3022:
+ case RF3320:
+ case RF3052:
+ case RF3053:
+ case RF3070:
+ case RF3290:
+ case RF3853:
+ case RF5350:
+ case RF5360:
+ case RF5362:
+ case RF5370:
+ case RF5372:
+ case RF5390:
+ case RF5392:
+ case RF5592:
+ case RF7620:
+ __set_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags);
+ break;
+ }
+
+ return 0;
+}
+
+static int rt2800_probe_rt(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+ u32 rt;
+ u32 rev;
+
+ if (rt2x00_rt(rt2x00dev, RT3290))
+ reg = rt2800_register_read(rt2x00dev, MAC_CSR0_3290);
+ else
+ reg = rt2800_register_read(rt2x00dev, MAC_CSR0);
+
+ rt = rt2x00_get_field32(reg, MAC_CSR0_CHIPSET);
+ rev = rt2x00_get_field32(reg, MAC_CSR0_REVISION);
+
+ switch (rt) {
+ case RT2860:
+ case RT2872:
+ case RT2883:
+ case RT3070:
+ case RT3071:
+ case RT3090:
+ case RT3290:
+ case RT3352:
+ case RT3390:
+ case RT3572:
+ case RT3593:
+ case RT3883:
+ case RT5350:
+ case RT5390:
+ case RT5392:
+ case RT5592:
+ break;
+ default:
+ rt2x00_err(rt2x00dev, "Invalid RT chipset 0x%04x, rev %04x detected\n",
+ rt, rev);
+ return -ENODEV;
+ }
+
+ if (rt == RT5390 && rt2x00_is_soc(rt2x00dev))
+ rt = RT6352;
+
+ rt2x00_set_rt(rt2x00dev, rt, rev);
+
+ return 0;
+}
+
+int rt2800_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+ u32 reg;
+
+ retval = rt2800_probe_rt(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Allocate eeprom data.
+ */
+ retval = rt2800_validate_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ retval = rt2800_init_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Enable rfkill polling by setting GPIO direction of the
+ * rfkill switch GPIO pin correctly.
+ */
+ reg = rt2800_register_read(rt2x00dev, GPIO_CTRL);
+ rt2x00_set_field32(&reg, GPIO_CTRL_DIR2, 1);
+ rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
+
+ /*
+ * Initialize hw specifications.
+ */
+ retval = rt2800_probe_hw_mode(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Set device capabilities.
+ */
+ __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
+ __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
+ if (!rt2x00_is_usb(rt2x00dev))
+ __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
+
+ /*
+ * Set device requirements.
+ */
+ if (!rt2x00_is_soc(rt2x00dev))
+ __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
+ if (!rt2800_hwcrypt_disabled(rt2x00dev))
+ __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
+ __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
+ if (rt2x00_is_usb(rt2x00dev))
+ __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
+ else {
+ __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
+ }
+
+ if (modparam_watchdog) {
+ __set_bit(CAPABILITY_RESTART_HW, &rt2x00dev->cap_flags);
+ rt2x00dev->link.watchdog_interval = msecs_to_jiffies(100);
+ } else {
+ rt2x00dev->link.watchdog_disabled = true;
+ }
+
+ /*
+ * Set the rssi offset.
+ */
+ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_probe_hw);
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+void rt2800_get_key_seq(struct ieee80211_hw *hw,
+ struct ieee80211_key_conf *key,
+ struct ieee80211_key_seq *seq)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct mac_iveiv_entry iveiv_entry;
+ u32 offset;
+
+ if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
+ return;
+
+ offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
+ rt2800_register_multiread(rt2x00dev, offset,
+ &iveiv_entry, sizeof(iveiv_entry));
+
+ memcpy(&seq->tkip.iv16, &iveiv_entry.iv[0], 2);
+ memcpy(&seq->tkip.iv32, &iveiv_entry.iv[4], 4);
+}
+EXPORT_SYMBOL_GPL(rt2800_get_key_seq);
+
+int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u32 reg;
+ bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
+
+ reg = rt2800_register_read(rt2x00dev, TX_RTS_CFG);
+ rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
+ rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, CCK_PROT_CFG);
+ rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
+ rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, OFDM_PROT_CFG);
+ rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
+ rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, MM20_PROT_CFG);
+ rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
+ rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, MM40_PROT_CFG);
+ rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
+ rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, GF20_PROT_CFG);
+ rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
+ rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, GF40_PROT_CFG);
+ rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
+ rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
+
+int rt2800_conf_tx(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ unsigned int link_id, u16 queue_idx,
+ const struct ieee80211_tx_queue_params *params)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct data_queue *queue;
+ struct rt2x00_field32 field;
+ int retval;
+ u32 reg;
+ u32 offset;
+
+ /*
+ * First pass the configuration through rt2x00lib, that will
+ * update the queue settings and validate the input. After that
+ * we are free to update the registers based on the value
+ * in the queue parameter.
+ */
+ retval = rt2x00mac_conf_tx(hw, vif, link_id, queue_idx, params);
+ if (retval)
+ return retval;
+
+ /*
+ * We only need to perform additional register initialization
+ * for WMM queues/
+ */
+ if (queue_idx >= 4)
+ return 0;
+
+ queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+
+ /* Update WMM TXOP register */
+ offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
+ field.bit_offset = (queue_idx & 1) * 16;
+ field.bit_mask = 0xffff << field.bit_offset;
+
+ reg = rt2800_register_read(rt2x00dev, offset);
+ rt2x00_set_field32(&reg, field, queue->txop);
+ rt2800_register_write(rt2x00dev, offset, reg);
+
+ /* Update WMM registers */
+ field.bit_offset = queue_idx * 4;
+ field.bit_mask = 0xf << field.bit_offset;
+
+ reg = rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG);
+ rt2x00_set_field32(&reg, field, queue->aifs);
+ rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG);
+ rt2x00_set_field32(&reg, field, queue->cw_min);
+ rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
+
+ reg = rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG);
+ rt2x00_set_field32(&reg, field, queue->cw_max);
+ rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
+
+ /* Update EDCA registers */
+ offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
+
+ reg = rt2800_register_read(rt2x00dev, offset);
+ rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
+ rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
+ rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
+ rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
+ rt2800_register_write(rt2x00dev, offset, reg);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_conf_tx);
+
+u64 rt2800_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u64 tsf;
+ u32 reg;
+
+ reg = rt2800_register_read(rt2x00dev, TSF_TIMER_DW1);
+ tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
+ reg = rt2800_register_read(rt2x00dev, TSF_TIMER_DW0);
+ tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
+
+ return tsf;
+}
+EXPORT_SYMBOL_GPL(rt2800_get_tsf);
+
+int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+ struct ieee80211_ampdu_params *params)
+{
+ struct ieee80211_sta *sta = params->sta;
+ enum ieee80211_ampdu_mlme_action action = params->action;
+ u16 tid = params->tid;
+ struct rt2x00_sta *sta_priv = (struct rt2x00_sta *)sta->drv_priv;
+ int ret = 0;
+
+ /*
+ * Don't allow aggregation for stations the hardware isn't aware
+ * of because tx status reports for frames to an unknown station
+ * always contain wcid=WCID_END+1 and thus we can't distinguish
+ * between multiple stations which leads to unwanted situations
+ * when the hw reorders frames due to aggregation.
+ */
+ if (sta_priv->wcid > WCID_END)
+ return -ENOSPC;
+
+ switch (action) {
+ case IEEE80211_AMPDU_RX_START:
+ case IEEE80211_AMPDU_RX_STOP:
+ /*
+ * The hw itself takes care of setting up BlockAck mechanisms.
+ * So, we only have to allow mac80211 to nagotiate a BlockAck
+ * agreement. Once that is done, the hw will BlockAck incoming
+ * AMPDUs without further setup.
+ */
+ break;
+ case IEEE80211_AMPDU_TX_START:
+ ret = IEEE80211_AMPDU_TX_START_IMMEDIATE;
+ break;
+ case IEEE80211_AMPDU_TX_STOP_CONT:
+ case IEEE80211_AMPDU_TX_STOP_FLUSH:
+ case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
+ ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
+ break;
+ case IEEE80211_AMPDU_TX_OPERATIONAL:
+ break;
+ default:
+ rt2x00_warn((struct rt2x00_dev *)hw->priv,
+ "Unknown AMPDU action\n");
+ }
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
+
+int rt2800_get_survey(struct ieee80211_hw *hw, int idx,
+ struct survey_info *survey)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct rt2x00_chan_survey *chan_survey =
+ &rt2x00dev->chan_survey[idx];
+ enum nl80211_band band = NL80211_BAND_2GHZ;
+
+ if (idx >= rt2x00dev->bands[band].n_channels) {
+ idx -= rt2x00dev->bands[band].n_channels;
+ band = NL80211_BAND_5GHZ;
+ }
+
+ if (idx >= rt2x00dev->bands[band].n_channels)
+ return -ENOENT;
+
+ if (idx == 0)
+ rt2800_update_survey(rt2x00dev);
+
+ survey->channel = &rt2x00dev->bands[band].channels[idx];
+
+ survey->filled = SURVEY_INFO_TIME |
+ SURVEY_INFO_TIME_BUSY |
+ SURVEY_INFO_TIME_EXT_BUSY;
+
+ survey->time = div_u64(chan_survey->time_idle + chan_survey->time_busy, 1000);
+ survey->time_busy = div_u64(chan_survey->time_busy, 1000);
+ survey->time_ext_busy = div_u64(chan_survey->time_ext_busy, 1000);
+
+ if (!(hw->conf.flags & IEEE80211_CONF_OFFCHANNEL))
+ survey->filled |= SURVEY_INFO_IN_USE;
+
+ return 0;
+
+}
+EXPORT_SYMBOL_GPL(rt2800_get_survey);
+
+MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2800 library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2800lib.h b/drivers/net/wireless/ralink/rt2x00/rt2800lib.h
new file mode 100644
index 0000000000..194de676df
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2800lib.h
@@ -0,0 +1,273 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+ Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2009 Bartlomiej Zolnierkiewicz
+
+ */
+
+#ifndef RT2800LIB_H
+#define RT2800LIB_H
+
+/*
+ * Hardware has 255 WCID table entries. First 32 entries are reserved for
+ * shared keys. Since parts of the pairwise key table might be shared with
+ * the beacon frame buffers 6 & 7 we could only use the first 222 entries.
+ */
+#define WCID_START 33
+#define WCID_END 222
+#define STA_IDS_SIZE (WCID_END - WCID_START + 2)
+#define CHAIN_0 0x0
+#define CHAIN_1 0x1
+#define RF_ALC_NUM 6
+#define CHAIN_NUM 2
+
+struct rf_reg_pair {
+ u8 bank;
+ u8 reg;
+ u8 value;
+};
+
+/* RT2800 driver data structure */
+struct rt2800_drv_data {
+ u8 calibration_bw20;
+ u8 calibration_bw40;
+ s8 rx_calibration_bw20;
+ s8 rx_calibration_bw40;
+ s8 tx_calibration_bw20;
+ s8 tx_calibration_bw40;
+ u8 bbp25;
+ u8 bbp26;
+ u8 txmixer_gain_24g;
+ u8 txmixer_gain_5g;
+ u8 max_psdu;
+ unsigned int tbtt_tick;
+ unsigned int ampdu_factor_cnt[4];
+ DECLARE_BITMAP(sta_ids, STA_IDS_SIZE);
+ struct ieee80211_sta *wcid_to_sta[STA_IDS_SIZE];
+};
+
+struct rt2800_ops {
+ u32 (*register_read)(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset);
+ u32 (*register_read_lock)(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset);
+ void (*register_write)(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset, u32 value);
+ void (*register_write_lock)(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset, u32 value);
+
+ void (*register_multiread)(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ void *value, const u32 length);
+ void (*register_multiwrite)(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ const void *value, const u32 length);
+
+ int (*regbusy_read)(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ const struct rt2x00_field32 field, u32 *reg);
+
+ int (*read_eeprom)(struct rt2x00_dev *rt2x00dev);
+ bool (*hwcrypt_disabled)(struct rt2x00_dev *rt2x00dev);
+
+ int (*drv_write_firmware)(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len);
+ int (*drv_init_registers)(struct rt2x00_dev *rt2x00dev);
+ __le32 *(*drv_get_txwi)(struct queue_entry *entry);
+ unsigned int (*drv_get_dma_done)(struct data_queue *queue);
+};
+
+static inline u32 rt2800_register_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset)
+{
+ const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+ return rt2800ops->register_read(rt2x00dev, offset);
+}
+
+static inline u32 rt2800_register_read_lock(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset)
+{
+ const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+ return rt2800ops->register_read_lock(rt2x00dev, offset);
+}
+
+static inline void rt2800_register_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ u32 value)
+{
+ const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+ rt2800ops->register_write(rt2x00dev, offset, value);
+}
+
+static inline void rt2800_register_write_lock(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ u32 value)
+{
+ const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+ rt2800ops->register_write_lock(rt2x00dev, offset, value);
+}
+
+static inline void rt2800_register_multiread(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ void *value, const u32 length)
+{
+ const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+ rt2800ops->register_multiread(rt2x00dev, offset, value, length);
+}
+
+static inline void rt2800_register_multiwrite(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ const void *value,
+ const u32 length)
+{
+ const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+ rt2800ops->register_multiwrite(rt2x00dev, offset, value, length);
+}
+
+static inline int rt2800_regbusy_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ const struct rt2x00_field32 field,
+ u32 *reg)
+{
+ const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+ return rt2800ops->regbusy_read(rt2x00dev, offset, field, reg);
+}
+
+static inline int rt2800_read_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+ return rt2800ops->read_eeprom(rt2x00dev);
+}
+
+static inline bool rt2800_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
+{
+ const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+ return rt2800ops->hwcrypt_disabled(rt2x00dev);
+}
+
+static inline int rt2800_drv_write_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+ return rt2800ops->drv_write_firmware(rt2x00dev, data, len);
+}
+
+static inline int rt2800_drv_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+ const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+ return rt2800ops->drv_init_registers(rt2x00dev);
+}
+
+static inline __le32 *rt2800_drv_get_txwi(struct queue_entry *entry)
+{
+ const struct rt2800_ops *rt2800ops = entry->queue->rt2x00dev->ops->drv;
+
+ return rt2800ops->drv_get_txwi(entry);
+}
+
+static inline unsigned int rt2800_drv_get_dma_done(struct data_queue *queue)
+{
+ const struct rt2800_ops *rt2800ops = queue->rt2x00dev->ops->drv;
+
+ return rt2800ops->drv_get_dma_done(queue);
+}
+
+void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
+ const u8 command, const u8 token,
+ const u8 arg0, const u8 arg1);
+
+int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev);
+int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev);
+
+int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len);
+int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len);
+
+void rt2800_write_tx_data(struct queue_entry *entry,
+ struct txentry_desc *txdesc);
+void rt2800_process_rxwi(struct queue_entry *entry, struct rxdone_entry_desc *txdesc);
+
+void rt2800_txdone_entry(struct queue_entry *entry, u32 status, __le32 *txwi,
+ bool match);
+void rt2800_txdone(struct rt2x00_dev *rt2x00dev, unsigned int quota);
+void rt2800_txdone_nostatus(struct rt2x00_dev *rt2x00dev);
+bool rt2800_txstatus_timeout(struct rt2x00_dev *rt2x00dev);
+bool rt2800_txstatus_pending(struct rt2x00_dev *rt2x00dev);
+
+void rt2800_watchdog(struct rt2x00_dev *rt2x00dev);
+
+void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc);
+void rt2800_clear_beacon(struct queue_entry *entry);
+
+extern const struct rt2x00debug rt2800_rt2x00debug;
+
+int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev);
+int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key);
+int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key);
+int rt2800_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta);
+int rt2800_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta);
+void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
+ const unsigned int filter_flags);
+void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
+ struct rt2x00intf_conf *conf, const unsigned int flags);
+void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
+ u32 changed);
+void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant);
+void rt2800_config(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf,
+ const unsigned int flags);
+void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual);
+void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual);
+void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
+ const u32 count);
+void rt2800_gain_calibration(struct rt2x00_dev *rt2x00dev);
+void rt2800_vco_calibration(struct rt2x00_dev *rt2x00dev);
+
+int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev);
+void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev);
+
+int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev);
+int rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev);
+
+int rt2800_probe_hw(struct rt2x00_dev *rt2x00dev);
+
+void rt2800_get_key_seq(struct ieee80211_hw *hw,
+ struct ieee80211_key_conf *key,
+ struct ieee80211_key_seq *seq);
+int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value);
+int rt2800_conf_tx(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ unsigned int link_id, u16 queue_idx,
+ const struct ieee80211_tx_queue_params *params);
+u64 rt2800_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
+int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+ struct ieee80211_ampdu_params *params);
+int rt2800_get_survey(struct ieee80211_hw *hw, int idx,
+ struct survey_info *survey);
+void rt2800_disable_wpdma(struct rt2x00_dev *rt2x00dev);
+
+void rt2800_get_txwi_rxwi_size(struct rt2x00_dev *rt2x00dev,
+ unsigned short *txwi_size,
+ unsigned short *rxwi_size);
+void rt2800_pre_reset_hw(struct rt2x00_dev *rt2x00dev);
+
+#endif /* RT2800LIB_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2800mmio.c b/drivers/net/wireless/ralink/rt2x00/rt2800mmio.c
new file mode 100644
index 0000000000..862098f753
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2800mmio.c
@@ -0,0 +1,856 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+ * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+ * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+ * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+ * <http://rt2x00.serialmonkey.com>
+ */
+
+/* Module: rt2800mmio
+ * Abstract: rt2800 MMIO device routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/export.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2800.h"
+#include "rt2800lib.h"
+#include "rt2800mmio.h"
+
+unsigned int rt2800mmio_get_dma_done(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ struct queue_entry *entry;
+ int idx, qid;
+
+ switch (queue->qid) {
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ qid = queue->qid;
+ idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(qid));
+ break;
+ case QID_MGMT:
+ idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(5));
+ break;
+ case QID_RX:
+ entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
+ idx = entry->entry_idx;
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ idx = 0;
+ break;
+ }
+
+ return idx;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_get_dma_done);
+
+/*
+ * TX descriptor initialization
+ */
+__le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
+{
+ return (__le32 *) entry->skb->data;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
+
+void rt2800mmio_write_tx_desc(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ __le32 *txd = entry_priv->desc;
+ u32 word;
+ const unsigned int txwi_size = entry->queue->winfo_size;
+
+ /*
+ * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
+ * must contains a TXWI structure + 802.11 header + padding + 802.11
+ * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
+ * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
+ * data. It means that LAST_SEC0 is always 0.
+ */
+
+ /*
+ * Initialize TX descriptor
+ */
+ word = 0;
+ rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
+ rt2x00_desc_write(txd, 0, word);
+
+ word = 0;
+ rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
+ rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
+ !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W1_BURST,
+ test_bit(ENTRY_TXD_BURST, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
+ rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
+ rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
+ rt2x00_desc_write(txd, 1, word);
+
+ word = 0;
+ rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
+ skbdesc->skb_dma + txwi_size);
+ rt2x00_desc_write(txd, 2, word);
+
+ word = 0;
+ rt2x00_set_field32(&word, TXD_W3_WIV,
+ !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
+ rt2x00_desc_write(txd, 3, word);
+
+ /*
+ * Register descriptor details in skb frame descriptor.
+ */
+ skbdesc->desc = txd;
+ skbdesc->desc_len = TXD_DESC_SIZE;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
+
+/*
+ * RX control handlers
+ */
+void rt2800mmio_fill_rxdone(struct queue_entry *entry,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ __le32 *rxd = entry_priv->desc;
+ u32 word;
+
+ word = rt2x00_desc_read(rxd, 3);
+
+ if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
+ rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+
+ /*
+ * Unfortunately we don't know the cipher type used during
+ * decryption. This prevents us from correct providing
+ * correct statistics through debugfs.
+ */
+ rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
+
+ if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
+ /*
+ * Hardware has stripped IV/EIV data from 802.11 frame during
+ * decryption. Unfortunately the descriptor doesn't contain
+ * any fields with the EIV/IV data either, so they can't
+ * be restored by rt2x00lib.
+ */
+ rxdesc->flags |= RX_FLAG_IV_STRIPPED;
+
+ /*
+ * The hardware has already checked the Michael Mic and has
+ * stripped it from the frame. Signal this to mac80211.
+ */
+ rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
+
+ if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
+ rxdesc->flags |= RX_FLAG_DECRYPTED;
+ } else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
+ /*
+ * In order to check the Michael Mic, the packet must have
+ * been decrypted. Mac80211 doesnt check the MMIC failure
+ * flag to initiate MMIC countermeasures if the decoded flag
+ * has not been set.
+ */
+ rxdesc->flags |= RX_FLAG_DECRYPTED;
+
+ rxdesc->flags |= RX_FLAG_MMIC_ERROR;
+ }
+ }
+
+ if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
+ rxdesc->dev_flags |= RXDONE_MY_BSS;
+
+ if (rt2x00_get_field32(word, RXD_W3_L2PAD))
+ rxdesc->dev_flags |= RXDONE_L2PAD;
+
+ /*
+ * Process the RXWI structure that is at the start of the buffer.
+ */
+ rt2800_process_rxwi(entry, rxdesc);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
+
+/*
+ * Interrupt functions.
+ */
+static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
+{
+ struct ieee80211_conf conf = { .flags = 0 };
+ struct rt2x00lib_conf libconf = { .conf = &conf };
+
+ rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
+}
+
+static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_field32 irq_field)
+{
+ u32 reg;
+
+ /*
+ * Enable a single interrupt. The interrupt mask register
+ * access needs locking.
+ */
+ spin_lock_irq(&rt2x00dev->irqmask_lock);
+ reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
+ rt2x00_set_field32(&reg, irq_field, 1);
+ rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+ spin_unlock_irq(&rt2x00dev->irqmask_lock);
+}
+
+void rt2800mmio_pretbtt_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
+ pretbtt_tasklet);
+ rt2x00lib_pretbtt(rt2x00dev);
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
+
+void rt2800mmio_tbtt_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
+ struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+ u32 reg;
+
+ rt2x00lib_beacondone(rt2x00dev);
+
+ if (rt2x00dev->intf_ap_count) {
+ /*
+ * The rt2800pci hardware tbtt timer is off by 1us per tbtt
+ * causing beacon skew and as a result causing problems with
+ * some powersaving clients over time. Shorten the beacon
+ * interval every 64 beacons by 64us to mitigate this effect.
+ */
+ if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
+ reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
+ (rt2x00dev->beacon_int * 16) - 1);
+ rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+ } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
+ reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
+ (rt2x00dev->beacon_int * 16));
+ rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+ }
+ drv_data->tbtt_tick++;
+ drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
+ }
+
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
+
+void rt2800mmio_rxdone_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
+ rxdone_tasklet);
+ if (rt2x00mmio_rxdone(rt2x00dev))
+ tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+ else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
+
+void rt2800mmio_autowake_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
+ autowake_tasklet);
+ rt2800mmio_wakeup(rt2x00dev);
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt2800mmio_enable_interrupt(rt2x00dev,
+ INT_MASK_CSR_AUTO_WAKEUP);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
+
+static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
+{
+ u32 status;
+ unsigned long flags;
+
+ /*
+ * The TX_FIFO_STATUS interrupt needs special care. We should
+ * read TX_STA_FIFO but we should do it immediately as otherwise
+ * the register can overflow and we would lose status reports.
+ *
+ * Hence, read the TX_STA_FIFO register and copy all tx status
+ * reports into a kernel FIFO which is handled in the txstatus
+ * tasklet. We use a tasklet to process the tx status reports
+ * because we can schedule the tasklet multiple times (when the
+ * interrupt fires again during tx status processing).
+ *
+ * We also read statuses from tx status timeout timer, use
+ * lock to prevent concurent writes to fifo.
+ */
+
+ spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
+
+ while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
+ status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
+ if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
+ break;
+
+ kfifo_put(&rt2x00dev->txstatus_fifo, status);
+ }
+
+ spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
+}
+
+void rt2800mmio_txstatus_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
+ txstatus_tasklet);
+
+ rt2800_txdone(rt2x00dev, 16);
+
+ if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
+ tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
+
+irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
+{
+ struct rt2x00_dev *rt2x00dev = dev_instance;
+ u32 reg, mask;
+
+ /* Read status and ACK all interrupts */
+ reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
+ rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
+
+ if (!reg)
+ return IRQ_NONE;
+
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return IRQ_HANDLED;
+
+ /*
+ * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
+ * for interrupts and interrupt masks we can just use the value of
+ * INT_SOURCE_CSR to create the interrupt mask.
+ */
+ mask = ~reg;
+
+ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
+ rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
+ rt2800mmio_fetch_txstatus(rt2x00dev);
+ if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
+ tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+ }
+
+ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
+ tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
+
+ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
+ tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
+
+ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
+ tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+
+ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
+ tasklet_schedule(&rt2x00dev->autowake_tasklet);
+
+ /*
+ * Disable all interrupts for which a tasklet was scheduled right now,
+ * the tasklet will reenable the appropriate interrupts.
+ */
+ spin_lock(&rt2x00dev->irqmask_lock);
+ reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
+ reg &= mask;
+ rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+ spin_unlock(&rt2x00dev->irqmask_lock);
+
+ return IRQ_HANDLED;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
+
+void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ u32 reg;
+ unsigned long flags;
+
+ /*
+ * When interrupts are being enabled, the interrupt registers
+ * should clear the register to assure a clean state.
+ */
+ if (state == STATE_RADIO_IRQ_ON) {
+ reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
+ rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
+ }
+
+ spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
+ reg = 0;
+ if (state == STATE_RADIO_IRQ_ON) {
+ rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
+ rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
+ rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
+ rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
+ rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
+ }
+ rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+ spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
+
+ if (state == STATE_RADIO_IRQ_OFF) {
+ /*
+ * Wait for possibly running tasklets to finish.
+ */
+ tasklet_kill(&rt2x00dev->txstatus_tasklet);
+ tasklet_kill(&rt2x00dev->rxdone_tasklet);
+ tasklet_kill(&rt2x00dev->autowake_tasklet);
+ tasklet_kill(&rt2x00dev->tbtt_tasklet);
+ tasklet_kill(&rt2x00dev->pretbtt_tasklet);
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
+
+/*
+ * Queue handlers.
+ */
+void rt2800mmio_start_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_RX:
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
+ rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
+ rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
+ rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
+ rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
+ break;
+ default:
+ break;
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
+
+/* 200 ms */
+#define TXSTATUS_TIMEOUT 200000000
+
+void rt2800mmio_kick_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ struct queue_entry *entry;
+
+ switch (queue->qid) {
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ WARN_ON_ONCE(rt2x00queue_empty(queue));
+ entry = rt2x00queue_get_entry(queue, Q_INDEX);
+ rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
+ entry->entry_idx);
+ hrtimer_start(&rt2x00dev->txstatus_timer,
+ TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
+ break;
+ case QID_MGMT:
+ entry = rt2x00queue_get_entry(queue, Q_INDEX);
+ rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
+ entry->entry_idx);
+ break;
+ default:
+ break;
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
+
+void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ bool tx_queue = false;
+ unsigned int i;
+
+ switch (queue->qid) {
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ tx_queue = true;
+ break;
+ case QID_RX:
+ break;
+ default:
+ return;
+ }
+
+ for (i = 0; i < 5; i++) {
+ /*
+ * Check if the driver is already done, otherwise we
+ * have to sleep a little while to give the driver/hw
+ * the oppurtunity to complete interrupt process itself.
+ */
+ if (rt2x00queue_empty(queue))
+ break;
+
+ /*
+ * For TX queues schedule completion tasklet to catch
+ * tx status timeouts, othewise just wait.
+ */
+ if (tx_queue)
+ queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
+
+ /*
+ * Wait for a little while to give the driver
+ * the oppurtunity to recover itself.
+ */
+ msleep(50);
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
+
+void rt2800mmio_stop_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_RX:
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
+ rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
+ rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
+ rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
+ rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
+
+ /*
+ * Wait for current invocation to finish. The tasklet
+ * won't be scheduled anymore afterwards since we disabled
+ * the TBTT and PRE TBTT timer.
+ */
+ tasklet_kill(&rt2x00dev->tbtt_tasklet);
+ tasklet_kill(&rt2x00dev->pretbtt_tasklet);
+
+ break;
+ default:
+ break;
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
+
+void rt2800mmio_queue_init(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ unsigned short txwi_size, rxwi_size;
+
+ rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
+
+ switch (queue->qid) {
+ case QID_RX:
+ queue->limit = 128;
+ queue->data_size = AGGREGATION_SIZE;
+ queue->desc_size = RXD_DESC_SIZE;
+ queue->winfo_size = rxwi_size;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ queue->limit = 64;
+ queue->data_size = AGGREGATION_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->winfo_size = txwi_size;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_BEACON:
+ queue->limit = 8;
+ queue->data_size = 0; /* No DMA required for beacons */
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->winfo_size = txwi_size;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_ATIM:
+ default:
+ BUG();
+ break;
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
+
+/*
+ * Initialization functions.
+ */
+bool rt2800mmio_get_entry_state(struct queue_entry *entry)
+{
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ u32 word;
+
+ if (entry->queue->qid == QID_RX) {
+ word = rt2x00_desc_read(entry_priv->desc, 1);
+
+ return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
+ } else {
+ word = rt2x00_desc_read(entry_priv->desc, 1);
+
+ return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
+
+void rt2800mmio_clear_entry(struct queue_entry *entry)
+{
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ u32 word;
+
+ if (entry->queue->qid == QID_RX) {
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+ rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
+ rt2x00_desc_write(entry_priv->desc, 0, word);
+
+ word = rt2x00_desc_read(entry_priv->desc, 1);
+ rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
+ rt2x00_desc_write(entry_priv->desc, 1, word);
+
+ /*
+ * Set RX IDX in register to inform hardware that we have
+ * handled this entry and it is available for reuse again.
+ */
+ rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
+ entry->entry_idx);
+ } else {
+ word = rt2x00_desc_read(entry_priv->desc, 1);
+ rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
+ rt2x00_desc_write(entry_priv->desc, 1, word);
+
+ /* If last entry stop txstatus timer */
+ if (entry->queue->length == 1)
+ hrtimer_cancel(&rt2x00dev->txstatus_timer);
+ }
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
+
+int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
+{
+ struct queue_entry_priv_mmio *entry_priv;
+
+ /*
+ * Initialize registers.
+ */
+ entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
+ rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
+ rt2x00dev->tx[0].limit);
+ rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
+ rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
+
+ entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
+ rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
+ rt2x00dev->tx[1].limit);
+ rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
+ rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
+
+ entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
+ rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
+ rt2x00dev->tx[2].limit);
+ rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
+ rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
+
+ entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
+ rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
+ rt2x00dev->tx[3].limit);
+ rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
+ rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
+
+ rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
+ rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
+ rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
+ rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
+
+ rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
+ rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
+ rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
+ rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
+
+ entry_priv = rt2x00dev->rx->entries[0].priv_data;
+ rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
+ rt2x00dev->rx[0].limit);
+ rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
+ rt2x00dev->rx[0].limit - 1);
+ rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
+
+ rt2800_disable_wpdma(rt2x00dev);
+
+ rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
+
+int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ /*
+ * Reset DMA indexes
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
+ rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
+ rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
+ rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
+ rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
+ rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
+ rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
+ rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
+ rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
+
+ rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
+ rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
+
+ if (rt2x00_is_pcie(rt2x00dev) &&
+ (rt2x00_rt(rt2x00dev, RT3090) ||
+ rt2x00_rt(rt2x00dev, RT3390) ||
+ rt2x00_rt(rt2x00dev, RT3572) ||
+ rt2x00_rt(rt2x00dev, RT3593) ||
+ rt2x00_rt(rt2x00dev, RT5390) ||
+ rt2x00_rt(rt2x00dev, RT5392) ||
+ rt2x00_rt(rt2x00dev, RT5592))) {
+ reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
+ rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
+ rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
+ rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
+ }
+
+ rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
+
+ reg = 0;
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
+ rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+
+ rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
+
+/*
+ * Device state switch handlers.
+ */
+int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ /* Wait for DMA, ignore error until we initialize queues. */
+ rt2800_wait_wpdma_ready(rt2x00dev);
+
+ if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
+ return -EIO;
+
+ return rt2800_enable_radio(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
+
+static void rt2800mmio_work_txdone(struct work_struct *work)
+{
+ struct rt2x00_dev *rt2x00dev =
+ container_of(work, struct rt2x00_dev, txdone_work);
+
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return;
+
+ while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
+ rt2800_txstatus_timeout(rt2x00dev)) {
+
+ tasklet_disable(&rt2x00dev->txstatus_tasklet);
+ rt2800_txdone(rt2x00dev, UINT_MAX);
+ rt2800_txdone_nostatus(rt2x00dev);
+ tasklet_enable(&rt2x00dev->txstatus_tasklet);
+ }
+
+ if (rt2800_txstatus_pending(rt2x00dev))
+ hrtimer_start(&rt2x00dev->txstatus_timer,
+ TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
+}
+
+static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer)
+{
+ struct rt2x00_dev *rt2x00dev =
+ container_of(timer, struct rt2x00_dev, txstatus_timer);
+
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ goto out;
+
+ if (!rt2800_txstatus_pending(rt2x00dev))
+ goto out;
+
+ rt2800mmio_fetch_txstatus(rt2x00dev);
+ if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
+ tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+ else
+ queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
+out:
+ return HRTIMER_NORESTART;
+}
+
+int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+
+ retval = rt2800_probe_hw(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Set txstatus timer function.
+ */
+ rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout;
+
+ /*
+ * Overwrite TX done handler
+ */
+ INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw);
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2800 MMIO library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2800mmio.h b/drivers/net/wireless/ralink/rt2x00/rt2800mmio.h
new file mode 100644
index 0000000000..05708950f2
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2800mmio.h
@@ -0,0 +1,155 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+ * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+ * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+ * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+ * <http://rt2x00.serialmonkey.com>
+ */
+
+/* Module: rt2800mmio
+ * Abstract: forward declarations for the rt2800mmio module.
+ */
+
+#ifndef RT2800MMIO_H
+#define RT2800MMIO_H
+
+/*
+ * Queue register offset macros
+ */
+#define TX_QUEUE_REG_OFFSET 0x10
+#define TX_BASE_PTR(__x) (TX_BASE_PTR0 + ((__x) * TX_QUEUE_REG_OFFSET))
+#define TX_MAX_CNT(__x) (TX_MAX_CNT0 + ((__x) * TX_QUEUE_REG_OFFSET))
+#define TX_CTX_IDX(__x) (TX_CTX_IDX0 + ((__x) * TX_QUEUE_REG_OFFSET))
+#define TX_DTX_IDX(__x) (TX_DTX_IDX0 + ((__x) * TX_QUEUE_REG_OFFSET))
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE (4 * sizeof(__le32))
+#define RXD_DESC_SIZE (4 * sizeof(__le32))
+
+/*
+ * TX descriptor format for TX, PRIO and Beacon Ring.
+ */
+
+/*
+ * Word0
+ */
+#define TXD_W0_SD_PTR0 FIELD32(0xffffffff)
+
+/*
+ * Word1
+ */
+#define TXD_W1_SD_LEN1 FIELD32(0x00003fff)
+#define TXD_W1_LAST_SEC1 FIELD32(0x00004000)
+#define TXD_W1_BURST FIELD32(0x00008000)
+#define TXD_W1_SD_LEN0 FIELD32(0x3fff0000)
+#define TXD_W1_LAST_SEC0 FIELD32(0x40000000)
+#define TXD_W1_DMA_DONE FIELD32(0x80000000)
+
+/*
+ * Word2
+ */
+#define TXD_W2_SD_PTR1 FIELD32(0xffffffff)
+
+/*
+ * Word3
+ * WIV: Wireless Info Valid. 1: Driver filled WI, 0: DMA needs to copy WI
+ * QSEL: Select on-chip FIFO ID for 2nd-stage output scheduler.
+ * 0:MGMT, 1:HCCA 2:EDCA
+ */
+#define TXD_W3_WIV FIELD32(0x01000000)
+#define TXD_W3_QSEL FIELD32(0x06000000)
+#define TXD_W3_TCO FIELD32(0x20000000)
+#define TXD_W3_UCO FIELD32(0x40000000)
+#define TXD_W3_ICO FIELD32(0x80000000)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ */
+#define RXD_W0_SDP0 FIELD32(0xffffffff)
+
+/*
+ * Word1
+ */
+#define RXD_W1_SDL1 FIELD32(0x00003fff)
+#define RXD_W1_SDL0 FIELD32(0x3fff0000)
+#define RXD_W1_LS0 FIELD32(0x40000000)
+#define RXD_W1_DMA_DONE FIELD32(0x80000000)
+
+/*
+ * Word2
+ */
+#define RXD_W2_SDP1 FIELD32(0xffffffff)
+
+/*
+ * Word3
+ * AMSDU: RX with 802.3 header, not 802.11 header.
+ * DECRYPTED: This frame is being decrypted.
+ */
+#define RXD_W3_BA FIELD32(0x00000001)
+#define RXD_W3_DATA FIELD32(0x00000002)
+#define RXD_W3_NULLDATA FIELD32(0x00000004)
+#define RXD_W3_FRAG FIELD32(0x00000008)
+#define RXD_W3_UNICAST_TO_ME FIELD32(0x00000010)
+#define RXD_W3_MULTICAST FIELD32(0x00000020)
+#define RXD_W3_BROADCAST FIELD32(0x00000040)
+#define RXD_W3_MY_BSS FIELD32(0x00000080)
+#define RXD_W3_CRC_ERROR FIELD32(0x00000100)
+#define RXD_W3_CIPHER_ERROR FIELD32(0x00000600)
+#define RXD_W3_AMSDU FIELD32(0x00000800)
+#define RXD_W3_HTC FIELD32(0x00001000)
+#define RXD_W3_RSSI FIELD32(0x00002000)
+#define RXD_W3_L2PAD FIELD32(0x00004000)
+#define RXD_W3_AMPDU FIELD32(0x00008000)
+#define RXD_W3_DECRYPTED FIELD32(0x00010000)
+#define RXD_W3_PLCP_SIGNAL FIELD32(0x00020000)
+#define RXD_W3_PLCP_RSSI FIELD32(0x00040000)
+
+unsigned int rt2800mmio_get_dma_done(struct data_queue *queue);
+
+/* TX descriptor initialization */
+__le32 *rt2800mmio_get_txwi(struct queue_entry *entry);
+void rt2800mmio_write_tx_desc(struct queue_entry *entry,
+ struct txentry_desc *txdesc);
+
+/* RX control handlers */
+void rt2800mmio_fill_rxdone(struct queue_entry *entry,
+ struct rxdone_entry_desc *rxdesc);
+
+/* Interrupt functions */
+void rt2800mmio_txstatus_tasklet(struct tasklet_struct *t);
+void rt2800mmio_pretbtt_tasklet(struct tasklet_struct *t);
+void rt2800mmio_tbtt_tasklet(struct tasklet_struct *t);
+void rt2800mmio_rxdone_tasklet(struct tasklet_struct *t);
+void rt2800mmio_autowake_tasklet(struct tasklet_struct *t);
+irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance);
+void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state);
+
+/* Queue handlers */
+void rt2800mmio_start_queue(struct data_queue *queue);
+void rt2800mmio_kick_queue(struct data_queue *queue);
+void rt2800mmio_flush_queue(struct data_queue *queue, bool drop);
+void rt2800mmio_stop_queue(struct data_queue *queue);
+void rt2800mmio_queue_init(struct data_queue *queue);
+
+/* Initialization functions */
+int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev);
+bool rt2800mmio_get_entry_state(struct queue_entry *entry);
+void rt2800mmio_clear_entry(struct queue_entry *entry);
+int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev);
+int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev);
+
+/* Device state switch handlers. */
+int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev);
+
+#endif /* RT2800MMIO_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2800pci.c b/drivers/net/wireless/ralink/rt2x00/rt2800pci.c
new file mode 100644
index 0000000000..dcb56f708a
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2800pci.c
@@ -0,0 +1,461 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+ Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+ Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+ Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2800pci
+ Abstract: rt2800pci device specific routines.
+ Supported chipsets: RT2800E & RT2800ED.
+ */
+
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/eeprom_93cx6.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2x00pci.h"
+#include "rt2800lib.h"
+#include "rt2800mmio.h"
+#include "rt2800.h"
+#include "rt2800pci.h"
+
+/*
+ * Allow hardware encryption to be disabled.
+ */
+static bool modparam_nohwcrypt = false;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
+{
+ return modparam_nohwcrypt;
+}
+
+static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
+{
+ unsigned int i;
+ u32 reg;
+
+ /*
+ * SOC devices don't support MCU requests.
+ */
+ if (rt2x00_is_soc(rt2x00dev))
+ return;
+
+ for (i = 0; i < 200; i++) {
+ reg = rt2x00mmio_register_read(rt2x00dev, H2M_MAILBOX_CID);
+
+ if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
+ (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
+ (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
+ (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
+ break;
+
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ if (i == 200)
+ rt2x00_err(rt2x00dev, "MCU request failed, no response from hardware\n");
+
+ rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
+ rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
+}
+
+static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
+{
+ struct rt2x00_dev *rt2x00dev = eeprom->data;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
+
+ eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
+ eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
+ eeprom->reg_data_clock =
+ !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
+ eeprom->reg_chip_select =
+ !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
+}
+
+static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
+{
+ struct rt2x00_dev *rt2x00dev = eeprom->data;
+ u32 reg = 0;
+
+ rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
+ rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
+ rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
+ !!eeprom->reg_data_clock);
+ rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
+ !!eeprom->reg_chip_select);
+
+ rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
+}
+
+static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
+{
+ struct eeprom_93cx6 eeprom;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
+
+ eeprom.data = rt2x00dev;
+ eeprom.register_read = rt2800pci_eepromregister_read;
+ eeprom.register_write = rt2800pci_eepromregister_write;
+ switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
+ {
+ case 0:
+ eeprom.width = PCI_EEPROM_WIDTH_93C46;
+ break;
+ case 1:
+ eeprom.width = PCI_EEPROM_WIDTH_93C66;
+ break;
+ default:
+ eeprom.width = PCI_EEPROM_WIDTH_93C86;
+ break;
+ }
+ eeprom.reg_data_in = 0;
+ eeprom.reg_data_out = 0;
+ eeprom.reg_data_clock = 0;
+ eeprom.reg_chip_select = 0;
+
+ eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
+ EEPROM_SIZE / sizeof(u16));
+
+ return 0;
+}
+
+static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2800_efuse_detect(rt2x00dev);
+}
+
+static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2800_read_eeprom_efuse(rt2x00dev);
+}
+
+/*
+ * Firmware functions
+ */
+static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
+{
+ /*
+ * Chip rt3290 use specific 4KB firmware named rt3290.bin.
+ */
+ if (rt2x00_rt(rt2x00dev, RT3290))
+ return FIRMWARE_RT3290;
+ else
+ return FIRMWARE_RT2860;
+}
+
+static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ u32 reg;
+
+ /*
+ * enable Host program ram write selection
+ */
+ reg = 0;
+ rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
+ rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
+
+ /*
+ * Write firmware to device.
+ */
+ rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
+ data, len);
+
+ rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
+ rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
+
+ rt2x00mmio_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
+ rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+
+ return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+
+ retval = rt2800mmio_enable_radio(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /* After resume MCU_BOOT_SIGNAL will trash these. */
+ rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
+ rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
+
+ rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
+ rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
+
+ rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
+ rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
+
+ return retval;
+}
+
+static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ if (state == STATE_AWAKE) {
+ rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
+ 0, 0x02);
+ rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
+ } else if (state == STATE_SLEEP) {
+ rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
+ 0xffffffff);
+ rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID,
+ 0xffffffff);
+ rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
+ 0xff, 0x01);
+ }
+
+ return 0;
+}
+
+static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int retval = 0;
+
+ switch (state) {
+ case STATE_RADIO_ON:
+ retval = rt2800pci_enable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_OFF:
+ /*
+ * After the radio has been disabled, the device should
+ * be put to sleep for powersaving.
+ */
+ rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
+ break;
+ case STATE_RADIO_IRQ_ON:
+ case STATE_RADIO_IRQ_OFF:
+ rt2800mmio_toggle_irq(rt2x00dev, state);
+ break;
+ case STATE_DEEP_SLEEP:
+ case STATE_SLEEP:
+ case STATE_STANDBY:
+ case STATE_AWAKE:
+ retval = rt2800pci_set_state(rt2x00dev, state);
+ break;
+ default:
+ retval = -ENOTSUPP;
+ break;
+ }
+
+ if (unlikely(retval))
+ rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+ state, retval);
+
+ return retval;
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+
+ if (rt2800pci_efuse_detect(rt2x00dev))
+ retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
+ else
+ retval = rt2800pci_read_eeprom_pci(rt2x00dev);
+
+ return retval;
+}
+
+static const struct ieee80211_ops rt2800pci_mac80211_ops = {
+ .tx = rt2x00mac_tx,
+ .wake_tx_queue = ieee80211_handle_wake_tx_queue,
+ .start = rt2x00mac_start,
+ .stop = rt2x00mac_stop,
+ .add_interface = rt2x00mac_add_interface,
+ .remove_interface = rt2x00mac_remove_interface,
+ .config = rt2x00mac_config,
+ .configure_filter = rt2x00mac_configure_filter,
+ .set_key = rt2x00mac_set_key,
+ .sw_scan_start = rt2x00mac_sw_scan_start,
+ .sw_scan_complete = rt2x00mac_sw_scan_complete,
+ .get_stats = rt2x00mac_get_stats,
+ .get_key_seq = rt2800_get_key_seq,
+ .set_rts_threshold = rt2800_set_rts_threshold,
+ .sta_add = rt2800_sta_add,
+ .sta_remove = rt2800_sta_remove,
+ .bss_info_changed = rt2x00mac_bss_info_changed,
+ .conf_tx = rt2800_conf_tx,
+ .get_tsf = rt2800_get_tsf,
+ .rfkill_poll = rt2x00mac_rfkill_poll,
+ .ampdu_action = rt2800_ampdu_action,
+ .flush = rt2x00mac_flush,
+ .get_survey = rt2800_get_survey,
+ .get_ringparam = rt2x00mac_get_ringparam,
+ .tx_frames_pending = rt2x00mac_tx_frames_pending,
+ .reconfig_complete = rt2x00mac_reconfig_complete,
+};
+
+static const struct rt2800_ops rt2800pci_rt2800_ops = {
+ .register_read = rt2x00mmio_register_read,
+ .register_read_lock = rt2x00mmio_register_read, /* same for PCI */
+ .register_write = rt2x00mmio_register_write,
+ .register_write_lock = rt2x00mmio_register_write, /* same for PCI */
+ .register_multiread = rt2x00mmio_register_multiread,
+ .register_multiwrite = rt2x00mmio_register_multiwrite,
+ .regbusy_read = rt2x00mmio_regbusy_read,
+ .read_eeprom = rt2800pci_read_eeprom,
+ .hwcrypt_disabled = rt2800pci_hwcrypt_disabled,
+ .drv_write_firmware = rt2800pci_write_firmware,
+ .drv_init_registers = rt2800mmio_init_registers,
+ .drv_get_txwi = rt2800mmio_get_txwi,
+ .drv_get_dma_done = rt2800mmio_get_dma_done,
+};
+
+static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
+ .irq_handler = rt2800mmio_interrupt,
+ .txstatus_tasklet = rt2800mmio_txstatus_tasklet,
+ .pretbtt_tasklet = rt2800mmio_pretbtt_tasklet,
+ .tbtt_tasklet = rt2800mmio_tbtt_tasklet,
+ .rxdone_tasklet = rt2800mmio_rxdone_tasklet,
+ .autowake_tasklet = rt2800mmio_autowake_tasklet,
+ .probe_hw = rt2800mmio_probe_hw,
+ .get_firmware_name = rt2800pci_get_firmware_name,
+ .check_firmware = rt2800_check_firmware,
+ .load_firmware = rt2800_load_firmware,
+ .initialize = rt2x00mmio_initialize,
+ .uninitialize = rt2x00mmio_uninitialize,
+ .get_entry_state = rt2800mmio_get_entry_state,
+ .clear_entry = rt2800mmio_clear_entry,
+ .set_device_state = rt2800pci_set_device_state,
+ .rfkill_poll = rt2800_rfkill_poll,
+ .link_stats = rt2800_link_stats,
+ .reset_tuner = rt2800_reset_tuner,
+ .link_tuner = rt2800_link_tuner,
+ .gain_calibration = rt2800_gain_calibration,
+ .vco_calibration = rt2800_vco_calibration,
+ .watchdog = rt2800_watchdog,
+ .start_queue = rt2800mmio_start_queue,
+ .kick_queue = rt2800mmio_kick_queue,
+ .stop_queue = rt2800mmio_stop_queue,
+ .flush_queue = rt2800mmio_flush_queue,
+ .write_tx_desc = rt2800mmio_write_tx_desc,
+ .write_tx_data = rt2800_write_tx_data,
+ .write_beacon = rt2800_write_beacon,
+ .clear_beacon = rt2800_clear_beacon,
+ .fill_rxdone = rt2800mmio_fill_rxdone,
+ .config_shared_key = rt2800_config_shared_key,
+ .config_pairwise_key = rt2800_config_pairwise_key,
+ .config_filter = rt2800_config_filter,
+ .config_intf = rt2800_config_intf,
+ .config_erp = rt2800_config_erp,
+ .config_ant = rt2800_config_ant,
+ .config = rt2800_config,
+ .pre_reset_hw = rt2800_pre_reset_hw,
+};
+
+static const struct rt2x00_ops rt2800pci_ops = {
+ .name = KBUILD_MODNAME,
+ .drv_data_size = sizeof(struct rt2800_drv_data),
+ .max_ap_intf = 8,
+ .eeprom_size = EEPROM_SIZE,
+ .rf_size = RF_SIZE,
+ .tx_queues = NUM_TX_QUEUES,
+ .queue_init = rt2800mmio_queue_init,
+ .lib = &rt2800pci_rt2x00_ops,
+ .drv = &rt2800pci_rt2800_ops,
+ .hw = &rt2800pci_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+ .debugfs = &rt2800_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * RT2800pci module information.
+ */
+static const struct pci_device_id rt2800pci_device_table[] = {
+ { PCI_DEVICE(0x1814, 0x0601) },
+ { PCI_DEVICE(0x1814, 0x0681) },
+ { PCI_DEVICE(0x1814, 0x0701) },
+ { PCI_DEVICE(0x1814, 0x0781) },
+ { PCI_DEVICE(0x1814, 0x3090) },
+ { PCI_DEVICE(0x1814, 0x3091) },
+ { PCI_DEVICE(0x1814, 0x3092) },
+ { PCI_DEVICE(0x1432, 0x7708) },
+ { PCI_DEVICE(0x1432, 0x7727) },
+ { PCI_DEVICE(0x1432, 0x7728) },
+ { PCI_DEVICE(0x1432, 0x7738) },
+ { PCI_DEVICE(0x1432, 0x7748) },
+ { PCI_DEVICE(0x1432, 0x7758) },
+ { PCI_DEVICE(0x1432, 0x7768) },
+ { PCI_DEVICE(0x1462, 0x891a) },
+ { PCI_DEVICE(0x1a3b, 0x1059) },
+#ifdef CONFIG_RT2800PCI_RT3290
+ { PCI_DEVICE(0x1814, 0x3290) },
+#endif
+#ifdef CONFIG_RT2800PCI_RT33XX
+ { PCI_DEVICE(0x1814, 0x3390) },
+#endif
+#ifdef CONFIG_RT2800PCI_RT35XX
+ { PCI_DEVICE(0x1432, 0x7711) },
+ { PCI_DEVICE(0x1432, 0x7722) },
+ { PCI_DEVICE(0x1814, 0x3060) },
+ { PCI_DEVICE(0x1814, 0x3062) },
+ { PCI_DEVICE(0x1814, 0x3562) },
+ { PCI_DEVICE(0x1814, 0x3592) },
+ { PCI_DEVICE(0x1814, 0x3593) },
+ { PCI_DEVICE(0x1814, 0x359f) },
+#endif
+#ifdef CONFIG_RT2800PCI_RT53XX
+ { PCI_DEVICE(0x1814, 0x5360) },
+ { PCI_DEVICE(0x1814, 0x5362) },
+ { PCI_DEVICE(0x1814, 0x5390) },
+ { PCI_DEVICE(0x1814, 0x5392) },
+ { PCI_DEVICE(0x1814, 0x539a) },
+ { PCI_DEVICE(0x1814, 0x539b) },
+ { PCI_DEVICE(0x1814, 0x539f) },
+#endif
+ { 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
+MODULE_FIRMWARE(FIRMWARE_RT2860);
+MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
+MODULE_LICENSE("GPL");
+
+static int rt2800pci_probe(struct pci_dev *pci_dev,
+ const struct pci_device_id *id)
+{
+ return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
+}
+
+static struct pci_driver rt2800pci_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = rt2800pci_device_table,
+ .probe = rt2800pci_probe,
+ .remove = rt2x00pci_remove,
+ .driver.pm = &rt2x00pci_pm_ops,
+};
+
+module_pci_driver(rt2800pci_driver);
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2800pci.h b/drivers/net/wireless/ralink/rt2x00/rt2800pci.h
new file mode 100644
index 0000000000..aa17824855
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2800pci.h
@@ -0,0 +1,31 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+ Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+ Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+ Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2800pci
+ Abstract: Data structures and registers for the rt2800pci module.
+ Supported chipsets: RT2800E & RT2800ED.
+ */
+
+#ifndef RT2800PCI_H
+#define RT2800PCI_H
+
+/*
+ * 8051 firmware image.
+ */
+#define FIRMWARE_RT2860 "rt2860.bin"
+#define FIRMWARE_RT3290 "rt3290.bin"
+#define FIRMWARE_IMAGE_BASE 0x2000
+
+#endif /* RT2800PCI_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2800soc.c b/drivers/net/wireless/ralink/rt2x00/rt2800soc.c
new file mode 100644
index 0000000000..7118d4f903
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2800soc.c
@@ -0,0 +1,258 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+ * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+ * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+ * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+ * <http://rt2x00.serialmonkey.com>
+ */
+
+/* Module: rt2800soc
+ * Abstract: rt2800 WiSoC specific routines.
+ */
+
+#include <linux/etherdevice.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2x00soc.h"
+#include "rt2800.h"
+#include "rt2800lib.h"
+#include "rt2800mmio.h"
+
+/* Allow hardware encryption to be disabled. */
+static bool modparam_nohwcrypt;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+static bool rt2800soc_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
+{
+ return modparam_nohwcrypt;
+}
+
+static void rt2800soc_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ rt2800_disable_radio(rt2x00dev);
+ rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0);
+
+ reg = 0;
+ if (rt2x00_rt(rt2x00dev, RT3883))
+ rt2x00_set_field32(&reg, TX_PIN_CFG_RFTR_EN, 1);
+
+ rt2x00mmio_register_write(rt2x00dev, TX_PIN_CFG, reg);
+}
+
+static int rt2800soc_set_device_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int retval = 0;
+
+ switch (state) {
+ case STATE_RADIO_ON:
+ retval = rt2800mmio_enable_radio(rt2x00dev);
+ break;
+
+ case STATE_RADIO_OFF:
+ rt2800soc_disable_radio(rt2x00dev);
+ break;
+
+ case STATE_RADIO_IRQ_ON:
+ case STATE_RADIO_IRQ_OFF:
+ rt2800mmio_toggle_irq(rt2x00dev, state);
+ break;
+
+ case STATE_DEEP_SLEEP:
+ case STATE_SLEEP:
+ case STATE_STANDBY:
+ case STATE_AWAKE:
+ /* These states are not supported, but don't report an error */
+ retval = 0;
+ break;
+
+ default:
+ retval = -ENOTSUPP;
+ break;
+ }
+
+ if (unlikely(retval))
+ rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+ state, retval);
+
+ return retval;
+}
+
+static int rt2800soc_read_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
+
+ if (!base_addr)
+ return -ENOMEM;
+
+ memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
+
+ iounmap(base_addr);
+ return 0;
+}
+
+/* Firmware functions */
+static char *rt2800soc_get_firmware_name(struct rt2x00_dev *rt2x00dev)
+{
+ WARN_ON_ONCE(1);
+ return NULL;
+}
+
+static int rt2800soc_load_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ WARN_ON_ONCE(1);
+ return 0;
+}
+
+static int rt2800soc_check_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ WARN_ON_ONCE(1);
+ return 0;
+}
+
+static int rt2800soc_write_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ WARN_ON_ONCE(1);
+ return 0;
+}
+
+static const struct ieee80211_ops rt2800soc_mac80211_ops = {
+ .tx = rt2x00mac_tx,
+ .wake_tx_queue = ieee80211_handle_wake_tx_queue,
+ .start = rt2x00mac_start,
+ .stop = rt2x00mac_stop,
+ .add_interface = rt2x00mac_add_interface,
+ .remove_interface = rt2x00mac_remove_interface,
+ .config = rt2x00mac_config,
+ .configure_filter = rt2x00mac_configure_filter,
+ .set_key = rt2x00mac_set_key,
+ .sw_scan_start = rt2x00mac_sw_scan_start,
+ .sw_scan_complete = rt2x00mac_sw_scan_complete,
+ .get_stats = rt2x00mac_get_stats,
+ .get_key_seq = rt2800_get_key_seq,
+ .set_rts_threshold = rt2800_set_rts_threshold,
+ .sta_add = rt2800_sta_add,
+ .sta_remove = rt2800_sta_remove,
+ .bss_info_changed = rt2x00mac_bss_info_changed,
+ .conf_tx = rt2800_conf_tx,
+ .get_tsf = rt2800_get_tsf,
+ .rfkill_poll = rt2x00mac_rfkill_poll,
+ .ampdu_action = rt2800_ampdu_action,
+ .flush = rt2x00mac_flush,
+ .get_survey = rt2800_get_survey,
+ .get_ringparam = rt2x00mac_get_ringparam,
+ .tx_frames_pending = rt2x00mac_tx_frames_pending,
+ .reconfig_complete = rt2x00mac_reconfig_complete,
+};
+
+static const struct rt2800_ops rt2800soc_rt2800_ops = {
+ .register_read = rt2x00mmio_register_read,
+ .register_read_lock = rt2x00mmio_register_read, /* same for SoCs */
+ .register_write = rt2x00mmio_register_write,
+ .register_write_lock = rt2x00mmio_register_write, /* same for SoCs */
+ .register_multiread = rt2x00mmio_register_multiread,
+ .register_multiwrite = rt2x00mmio_register_multiwrite,
+ .regbusy_read = rt2x00mmio_regbusy_read,
+ .read_eeprom = rt2800soc_read_eeprom,
+ .hwcrypt_disabled = rt2800soc_hwcrypt_disabled,
+ .drv_write_firmware = rt2800soc_write_firmware,
+ .drv_init_registers = rt2800mmio_init_registers,
+ .drv_get_txwi = rt2800mmio_get_txwi,
+ .drv_get_dma_done = rt2800mmio_get_dma_done,
+};
+
+static const struct rt2x00lib_ops rt2800soc_rt2x00_ops = {
+ .irq_handler = rt2800mmio_interrupt,
+ .txstatus_tasklet = rt2800mmio_txstatus_tasklet,
+ .pretbtt_tasklet = rt2800mmio_pretbtt_tasklet,
+ .tbtt_tasklet = rt2800mmio_tbtt_tasklet,
+ .rxdone_tasklet = rt2800mmio_rxdone_tasklet,
+ .autowake_tasklet = rt2800mmio_autowake_tasklet,
+ .probe_hw = rt2800mmio_probe_hw,
+ .get_firmware_name = rt2800soc_get_firmware_name,
+ .check_firmware = rt2800soc_check_firmware,
+ .load_firmware = rt2800soc_load_firmware,
+ .initialize = rt2x00mmio_initialize,
+ .uninitialize = rt2x00mmio_uninitialize,
+ .get_entry_state = rt2800mmio_get_entry_state,
+ .clear_entry = rt2800mmio_clear_entry,
+ .set_device_state = rt2800soc_set_device_state,
+ .rfkill_poll = rt2800_rfkill_poll,
+ .link_stats = rt2800_link_stats,
+ .reset_tuner = rt2800_reset_tuner,
+ .link_tuner = rt2800_link_tuner,
+ .gain_calibration = rt2800_gain_calibration,
+ .vco_calibration = rt2800_vco_calibration,
+ .watchdog = rt2800_watchdog,
+ .start_queue = rt2800mmio_start_queue,
+ .kick_queue = rt2800mmio_kick_queue,
+ .stop_queue = rt2800mmio_stop_queue,
+ .flush_queue = rt2800mmio_flush_queue,
+ .write_tx_desc = rt2800mmio_write_tx_desc,
+ .write_tx_data = rt2800_write_tx_data,
+ .write_beacon = rt2800_write_beacon,
+ .clear_beacon = rt2800_clear_beacon,
+ .fill_rxdone = rt2800mmio_fill_rxdone,
+ .config_shared_key = rt2800_config_shared_key,
+ .config_pairwise_key = rt2800_config_pairwise_key,
+ .config_filter = rt2800_config_filter,
+ .config_intf = rt2800_config_intf,
+ .config_erp = rt2800_config_erp,
+ .config_ant = rt2800_config_ant,
+ .config = rt2800_config,
+ .pre_reset_hw = rt2800_pre_reset_hw,
+};
+
+static const struct rt2x00_ops rt2800soc_ops = {
+ .name = KBUILD_MODNAME,
+ .drv_data_size = sizeof(struct rt2800_drv_data),
+ .max_ap_intf = 8,
+ .eeprom_size = EEPROM_SIZE,
+ .rf_size = RF_SIZE,
+ .tx_queues = NUM_TX_QUEUES,
+ .queue_init = rt2800mmio_queue_init,
+ .lib = &rt2800soc_rt2x00_ops,
+ .drv = &rt2800soc_rt2800_ops,
+ .hw = &rt2800soc_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+ .debugfs = &rt2800_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+static int rt2800soc_probe(struct platform_device *pdev)
+{
+ return rt2x00soc_probe(pdev, &rt2800soc_ops);
+}
+
+static struct platform_driver rt2800soc_driver = {
+ .driver = {
+ .name = "rt2800_wmac",
+ .mod_name = KBUILD_MODNAME,
+ },
+ .probe = rt2800soc_probe,
+ .remove = rt2x00soc_remove,
+ .suspend = rt2x00soc_suspend,
+ .resume = rt2x00soc_resume,
+};
+
+module_platform_driver(rt2800soc_driver);
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink WiSoC Wireless LAN driver.");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2800usb.c b/drivers/net/wireless/ralink/rt2x00/rt2800usb.c
new file mode 100644
index 0000000000..b2a8e75a90
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2800usb.c
@@ -0,0 +1,1272 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+ Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ Copyright (C) 2009 Axel Kollhofer <rain_maker@root-forum.org>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2800usb
+ Abstract: rt2800usb device specific routines.
+ Supported chipsets: RT2800U.
+ */
+
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/usb.h>
+
+#include "rt2x00.h"
+#include "rt2x00usb.h"
+#include "rt2800lib.h"
+#include "rt2800.h"
+#include "rt2800usb.h"
+
+/*
+ * Allow hardware encryption to be disabled.
+ */
+static bool modparam_nohwcrypt;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+static bool rt2800usb_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
+{
+ return modparam_nohwcrypt;
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt2800usb_start_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_RX:
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_SYS_CTRL);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
+ rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00usb_register_read(rt2x00dev, BCN_TIME_CFG);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
+ rt2x00usb_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+static void rt2800usb_stop_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_RX:
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_SYS_CTRL);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
+ rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00usb_register_read(rt2x00dev, BCN_TIME_CFG);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
+ rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
+ rt2x00usb_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+#define TXSTATUS_READ_INTERVAL 1000000
+
+static bool rt2800usb_tx_sta_fifo_read_completed(struct rt2x00_dev *rt2x00dev,
+ int urb_status, u32 tx_status)
+{
+ bool valid;
+
+ if (urb_status) {
+ rt2x00_warn(rt2x00dev, "TX status read failed %d\n",
+ urb_status);
+
+ goto stop_reading;
+ }
+
+ valid = rt2x00_get_field32(tx_status, TX_STA_FIFO_VALID);
+ if (valid) {
+ if (!kfifo_put(&rt2x00dev->txstatus_fifo, tx_status))
+ rt2x00_warn(rt2x00dev, "TX status FIFO overrun\n");
+
+ queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
+
+ /* Reschedule urb to read TX status again instantly */
+ return true;
+ }
+
+ /* Check if there is any entry that timedout waiting on TX status */
+ if (rt2800_txstatus_timeout(rt2x00dev))
+ queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
+
+ if (rt2800_txstatus_pending(rt2x00dev)) {
+ /* Read register after 1 ms */
+ hrtimer_start(&rt2x00dev->txstatus_timer,
+ TXSTATUS_READ_INTERVAL,
+ HRTIMER_MODE_REL);
+ return false;
+ }
+
+stop_reading:
+ clear_bit(TX_STATUS_READING, &rt2x00dev->flags);
+ /*
+ * There is small race window above, between txstatus pending check and
+ * clear_bit someone could do rt2x00usb_interrupt_txdone, so recheck
+ * here again if status reading is needed.
+ */
+ if (rt2800_txstatus_pending(rt2x00dev) &&
+ !test_and_set_bit(TX_STATUS_READING, &rt2x00dev->flags))
+ return true;
+ else
+ return false;
+}
+
+static void rt2800usb_async_read_tx_status(struct rt2x00_dev *rt2x00dev)
+{
+
+ if (test_and_set_bit(TX_STATUS_READING, &rt2x00dev->flags))
+ return;
+
+ /* Read TX_STA_FIFO register after 2 ms */
+ hrtimer_start(&rt2x00dev->txstatus_timer,
+ 2 * TXSTATUS_READ_INTERVAL,
+ HRTIMER_MODE_REL);
+}
+
+static void rt2800usb_tx_dma_done(struct queue_entry *entry)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+
+ rt2800usb_async_read_tx_status(rt2x00dev);
+}
+
+static enum hrtimer_restart rt2800usb_tx_sta_fifo_timeout(struct hrtimer *timer)
+{
+ struct rt2x00_dev *rt2x00dev =
+ container_of(timer, struct rt2x00_dev, txstatus_timer);
+
+ rt2x00usb_register_read_async(rt2x00dev, TX_STA_FIFO,
+ rt2800usb_tx_sta_fifo_read_completed);
+
+ return HRTIMER_NORESTART;
+}
+
+/*
+ * Firmware functions
+ */
+static int rt2800usb_autorun_detect(struct rt2x00_dev *rt2x00dev)
+{
+ __le32 *reg;
+ u32 fw_mode;
+ int ret;
+
+ reg = kmalloc(sizeof(*reg), GFP_KERNEL);
+ if (reg == NULL)
+ return -ENOMEM;
+ /* cannot use rt2x00usb_register_read here as it uses different
+ * mode (MULTI_READ vs. DEVICE_MODE) and does not pass the
+ * magic value USB_MODE_AUTORUN (0x11) to the device, thus the
+ * returned value would be invalid.
+ */
+ ret = rt2x00usb_vendor_request(rt2x00dev, USB_DEVICE_MODE,
+ USB_VENDOR_REQUEST_IN, 0,
+ USB_MODE_AUTORUN, reg, sizeof(*reg),
+ REGISTER_TIMEOUT_FIRMWARE);
+ fw_mode = le32_to_cpu(*reg);
+ kfree(reg);
+ if (ret < 0)
+ return ret;
+
+ if ((fw_mode & 0x00000003) == 2)
+ return 1;
+
+ return 0;
+}
+
+static char *rt2800usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
+{
+ return FIRMWARE_RT2870;
+}
+
+static int rt2800usb_write_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ int status;
+ u32 offset;
+ u32 length;
+ int retval;
+
+ /*
+ * Check which section of the firmware we need.
+ */
+ if (rt2x00_rt(rt2x00dev, RT2860) ||
+ rt2x00_rt(rt2x00dev, RT2872) ||
+ rt2x00_rt(rt2x00dev, RT3070)) {
+ offset = 0;
+ length = 4096;
+ } else {
+ offset = 4096;
+ length = 4096;
+ }
+
+ /*
+ * Write firmware to device.
+ */
+ retval = rt2800usb_autorun_detect(rt2x00dev);
+ if (retval < 0)
+ return retval;
+ if (retval) {
+ rt2x00_info(rt2x00dev,
+ "Firmware loading not required - NIC in AutoRun mode\n");
+ __clear_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
+ } else {
+ rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
+ data + offset, length);
+ }
+
+ rt2x00usb_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
+ rt2x00usb_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
+
+ /*
+ * Send firmware request to device to load firmware,
+ * we need to specify a long timeout time.
+ */
+ status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
+ 0, USB_MODE_FIRMWARE,
+ REGISTER_TIMEOUT_FIRMWARE);
+ if (status < 0) {
+ rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
+ return status;
+ }
+
+ msleep(10);
+ rt2x00usb_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+
+ return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static int rt2800usb_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ /*
+ * Wait until BBP and RF are ready.
+ */
+ if (rt2800_wait_csr_ready(rt2x00dev))
+ return -EBUSY;
+
+ reg = rt2x00usb_register_read(rt2x00dev, PBF_SYS_CTRL);
+ rt2x00usb_register_write(rt2x00dev, PBF_SYS_CTRL, reg & ~0x00002000);
+
+ reg = 0;
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
+ rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
+ rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+
+ rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
+ USB_MODE_RESET, REGISTER_TIMEOUT);
+
+ rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
+
+ return 0;
+}
+
+static int rt2800usb_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg = 0;
+
+ if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev)))
+ return -EIO;
+
+ rt2x00_set_field32(&reg, USB_DMA_CFG_PHY_CLEAR, 0);
+ rt2x00_set_field32(&reg, USB_DMA_CFG_RX_BULK_AGG_EN, 0);
+ rt2x00_set_field32(&reg, USB_DMA_CFG_RX_BULK_AGG_TIMEOUT, 128);
+ /*
+ * Total room for RX frames in kilobytes, PBF might still exceed
+ * this limit so reduce the number to prevent errors.
+ */
+ rt2x00_set_field32(&reg, USB_DMA_CFG_RX_BULK_AGG_LIMIT,
+ ((rt2x00dev->rx->limit * DATA_FRAME_SIZE)
+ / 1024) - 3);
+ rt2x00_set_field32(&reg, USB_DMA_CFG_RX_BULK_EN, 1);
+ rt2x00_set_field32(&reg, USB_DMA_CFG_TX_BULK_EN, 1);
+ rt2x00usb_register_write(rt2x00dev, USB_DMA_CFG, reg);
+
+ return rt2800_enable_radio(rt2x00dev);
+}
+
+static void rt2800usb_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ rt2800_disable_radio(rt2x00dev);
+}
+
+static int rt2800usb_set_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ if (state == STATE_AWAKE)
+ rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 2);
+ else
+ rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2);
+
+ return 0;
+}
+
+static int rt2800usb_set_device_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int retval = 0;
+
+ switch (state) {
+ case STATE_RADIO_ON:
+ /*
+ * Before the radio can be enabled, the device first has
+ * to be woken up. After that it needs a bit of time
+ * to be fully awake and then the radio can be enabled.
+ */
+ rt2800usb_set_state(rt2x00dev, STATE_AWAKE);
+ msleep(1);
+ retval = rt2800usb_enable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_OFF:
+ /*
+ * After the radio has been disabled, the device should
+ * be put to sleep for powersaving.
+ */
+ rt2800usb_disable_radio(rt2x00dev);
+ rt2800usb_set_state(rt2x00dev, STATE_SLEEP);
+ break;
+ case STATE_RADIO_IRQ_ON:
+ case STATE_RADIO_IRQ_OFF:
+ /* No support, but no error either */
+ break;
+ case STATE_DEEP_SLEEP:
+ case STATE_SLEEP:
+ case STATE_STANDBY:
+ case STATE_AWAKE:
+ retval = rt2800usb_set_state(rt2x00dev, state);
+ break;
+ default:
+ retval = -ENOTSUPP;
+ break;
+ }
+
+ if (unlikely(retval))
+ rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+ state, retval);
+
+ return retval;
+}
+
+static unsigned int rt2800usb_get_dma_done(struct data_queue *queue)
+{
+ struct queue_entry *entry;
+
+ entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
+ return entry->entry_idx;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static __le32 *rt2800usb_get_txwi(struct queue_entry *entry)
+{
+ if (entry->queue->qid == QID_BEACON)
+ return (__le32 *) (entry->skb->data);
+ else
+ return (__le32 *) (entry->skb->data + TXINFO_DESC_SIZE);
+}
+
+static void rt2800usb_write_tx_desc(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ __le32 *txi = (__le32 *) entry->skb->data;
+ u32 word;
+
+ /*
+ * Initialize TXINFO descriptor
+ */
+ word = rt2x00_desc_read(txi, 0);
+
+ /*
+ * The size of TXINFO_W0_USB_DMA_TX_PKT_LEN is
+ * TXWI + 802.11 header + L2 pad + payload + pad,
+ * so need to decrease size of TXINFO.
+ */
+ rt2x00_set_field32(&word, TXINFO_W0_USB_DMA_TX_PKT_LEN,
+ roundup(entry->skb->len, 4) - TXINFO_DESC_SIZE);
+ rt2x00_set_field32(&word, TXINFO_W0_WIV,
+ !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
+ rt2x00_set_field32(&word, TXINFO_W0_QSEL, 2);
+ rt2x00_set_field32(&word, TXINFO_W0_SW_USE_LAST_ROUND, 0);
+ rt2x00_set_field32(&word, TXINFO_W0_USB_DMA_NEXT_VALID, 0);
+ rt2x00_set_field32(&word, TXINFO_W0_USB_DMA_TX_BURST,
+ test_bit(ENTRY_TXD_BURST, &txdesc->flags));
+ rt2x00_desc_write(txi, 0, word);
+
+ /*
+ * Register descriptor details in skb frame descriptor.
+ */
+ skbdesc->flags |= SKBDESC_DESC_IN_SKB;
+ skbdesc->desc = txi;
+ skbdesc->desc_len = TXINFO_DESC_SIZE + entry->queue->winfo_size;
+}
+
+/*
+ * TX data initialization
+ */
+static int rt2800usb_get_tx_data_len(struct queue_entry *entry)
+{
+ /*
+ * pad(1~3 bytes) is needed after each 802.11 payload.
+ * USB end pad(4 bytes) is needed at each USB bulk out packet end.
+ * TX frame format is :
+ * | TXINFO | TXWI | 802.11 header | L2 pad | payload | pad | USB end pad |
+ * |<------------- tx_pkt_len ------------->|
+ */
+
+ return roundup(entry->skb->len, 4) + 4;
+}
+
+/*
+ * TX control handlers
+ */
+static void rt2800usb_work_txdone(struct work_struct *work)
+{
+ struct rt2x00_dev *rt2x00dev =
+ container_of(work, struct rt2x00_dev, txdone_work);
+
+ while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
+ rt2800_txstatus_timeout(rt2x00dev)) {
+
+ rt2800_txdone(rt2x00dev, UINT_MAX);
+
+ rt2800_txdone_nostatus(rt2x00dev);
+
+ /*
+ * The hw may delay sending the packet after DMA complete
+ * if the medium is busy, thus the TX_STA_FIFO entry is
+ * also delayed -> use a timer to retrieve it.
+ */
+ if (rt2800_txstatus_pending(rt2x00dev))
+ rt2800usb_async_read_tx_status(rt2x00dev);
+ }
+}
+
+/*
+ * RX control handlers
+ */
+static void rt2800usb_fill_rxdone(struct queue_entry *entry,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ __le32 *rxi = (__le32 *)entry->skb->data;
+ __le32 *rxd;
+ u32 word;
+ int rx_pkt_len;
+
+ /*
+ * Copy descriptor to the skbdesc->desc buffer, making it safe from
+ * moving of frame data in rt2x00usb.
+ */
+ memcpy(skbdesc->desc, rxi, skbdesc->desc_len);
+
+ /*
+ * RX frame format is :
+ * | RXINFO | RXWI | header | L2 pad | payload | pad | RXD | USB pad |
+ * |<------------ rx_pkt_len -------------->|
+ */
+ word = rt2x00_desc_read(rxi, 0);
+ rx_pkt_len = rt2x00_get_field32(word, RXINFO_W0_USB_DMA_RX_PKT_LEN);
+
+ /*
+ * Remove the RXINFO structure from the sbk.
+ */
+ skb_pull(entry->skb, RXINFO_DESC_SIZE);
+
+ /*
+ * Check for rx_pkt_len validity. Return if invalid, leaving
+ * rxdesc->size zeroed out by the upper level.
+ */
+ if (unlikely(rx_pkt_len == 0 ||
+ rx_pkt_len > entry->queue->data_size)) {
+ rt2x00_err(entry->queue->rt2x00dev,
+ "Bad frame size %d, forcing to 0\n", rx_pkt_len);
+ return;
+ }
+
+ rxd = (__le32 *)(entry->skb->data + rx_pkt_len);
+
+ /*
+ * It is now safe to read the descriptor on all architectures.
+ */
+ word = rt2x00_desc_read(rxd, 0);
+
+ if (rt2x00_get_field32(word, RXD_W0_CRC_ERROR))
+ rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+
+ rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W0_CIPHER_ERROR);
+
+ if (rt2x00_get_field32(word, RXD_W0_DECRYPTED)) {
+ /*
+ * Hardware has stripped IV/EIV data from 802.11 frame during
+ * decryption. Unfortunately the descriptor doesn't contain
+ * any fields with the EIV/IV data either, so they can't
+ * be restored by rt2x00lib.
+ */
+ rxdesc->flags |= RX_FLAG_IV_STRIPPED;
+
+ /*
+ * The hardware has already checked the Michael Mic and has
+ * stripped it from the frame. Signal this to mac80211.
+ */
+ rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
+
+ if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
+ rxdesc->flags |= RX_FLAG_DECRYPTED;
+ } else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
+ /*
+ * In order to check the Michael Mic, the packet must have
+ * been decrypted. Mac80211 doesnt check the MMIC failure
+ * flag to initiate MMIC countermeasures if the decoded flag
+ * has not been set.
+ */
+ rxdesc->flags |= RX_FLAG_DECRYPTED;
+
+ rxdesc->flags |= RX_FLAG_MMIC_ERROR;
+ }
+ }
+
+ if (rt2x00_get_field32(word, RXD_W0_MY_BSS))
+ rxdesc->dev_flags |= RXDONE_MY_BSS;
+
+ if (rt2x00_get_field32(word, RXD_W0_L2PAD))
+ rxdesc->dev_flags |= RXDONE_L2PAD;
+
+ /*
+ * Remove RXD descriptor from end of buffer.
+ */
+ skb_trim(entry->skb, rx_pkt_len);
+
+ /*
+ * Process the RXWI structure.
+ */
+ rt2800_process_rxwi(entry, rxdesc);
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt2800usb_efuse_detect(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+
+ retval = rt2800usb_autorun_detect(rt2x00dev);
+ if (retval < 0)
+ return retval;
+ if (retval)
+ return 1;
+ return rt2800_efuse_detect(rt2x00dev);
+}
+
+static int rt2800usb_read_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+
+ retval = rt2800usb_efuse_detect(rt2x00dev);
+ if (retval < 0)
+ return retval;
+ if (retval)
+ retval = rt2800_read_eeprom_efuse(rt2x00dev);
+ else
+ retval = rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom,
+ EEPROM_SIZE);
+
+ return retval;
+}
+
+static int rt2800usb_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+
+ retval = rt2800_probe_hw(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Set txstatus timer function.
+ */
+ rt2x00dev->txstatus_timer.function = rt2800usb_tx_sta_fifo_timeout;
+
+ /*
+ * Overwrite TX done handler
+ */
+ INIT_WORK(&rt2x00dev->txdone_work, rt2800usb_work_txdone);
+
+ return 0;
+}
+
+static const struct ieee80211_ops rt2800usb_mac80211_ops = {
+ .tx = rt2x00mac_tx,
+ .wake_tx_queue = ieee80211_handle_wake_tx_queue,
+ .start = rt2x00mac_start,
+ .stop = rt2x00mac_stop,
+ .add_interface = rt2x00mac_add_interface,
+ .remove_interface = rt2x00mac_remove_interface,
+ .config = rt2x00mac_config,
+ .configure_filter = rt2x00mac_configure_filter,
+ .set_tim = rt2x00mac_set_tim,
+ .set_key = rt2x00mac_set_key,
+ .sw_scan_start = rt2x00mac_sw_scan_start,
+ .sw_scan_complete = rt2x00mac_sw_scan_complete,
+ .get_stats = rt2x00mac_get_stats,
+ .get_key_seq = rt2800_get_key_seq,
+ .set_rts_threshold = rt2800_set_rts_threshold,
+ .sta_add = rt2800_sta_add,
+ .sta_remove = rt2800_sta_remove,
+ .bss_info_changed = rt2x00mac_bss_info_changed,
+ .conf_tx = rt2800_conf_tx,
+ .get_tsf = rt2800_get_tsf,
+ .rfkill_poll = rt2x00mac_rfkill_poll,
+ .ampdu_action = rt2800_ampdu_action,
+ .flush = rt2x00mac_flush,
+ .get_survey = rt2800_get_survey,
+ .get_ringparam = rt2x00mac_get_ringparam,
+ .tx_frames_pending = rt2x00mac_tx_frames_pending,
+ .reconfig_complete = rt2x00mac_reconfig_complete,
+};
+
+static const struct rt2800_ops rt2800usb_rt2800_ops = {
+ .register_read = rt2x00usb_register_read,
+ .register_read_lock = rt2x00usb_register_read_lock,
+ .register_write = rt2x00usb_register_write,
+ .register_write_lock = rt2x00usb_register_write_lock,
+ .register_multiread = rt2x00usb_register_multiread,
+ .register_multiwrite = rt2x00usb_register_multiwrite,
+ .regbusy_read = rt2x00usb_regbusy_read,
+ .read_eeprom = rt2800usb_read_eeprom,
+ .hwcrypt_disabled = rt2800usb_hwcrypt_disabled,
+ .drv_write_firmware = rt2800usb_write_firmware,
+ .drv_init_registers = rt2800usb_init_registers,
+ .drv_get_txwi = rt2800usb_get_txwi,
+ .drv_get_dma_done = rt2800usb_get_dma_done,
+};
+
+static const struct rt2x00lib_ops rt2800usb_rt2x00_ops = {
+ .probe_hw = rt2800usb_probe_hw,
+ .get_firmware_name = rt2800usb_get_firmware_name,
+ .check_firmware = rt2800_check_firmware,
+ .load_firmware = rt2800_load_firmware,
+ .initialize = rt2x00usb_initialize,
+ .uninitialize = rt2x00usb_uninitialize,
+ .clear_entry = rt2x00usb_clear_entry,
+ .set_device_state = rt2800usb_set_device_state,
+ .rfkill_poll = rt2800_rfkill_poll,
+ .link_stats = rt2800_link_stats,
+ .reset_tuner = rt2800_reset_tuner,
+ .link_tuner = rt2800_link_tuner,
+ .gain_calibration = rt2800_gain_calibration,
+ .vco_calibration = rt2800_vco_calibration,
+ .watchdog = rt2800_watchdog,
+ .start_queue = rt2800usb_start_queue,
+ .kick_queue = rt2x00usb_kick_queue,
+ .stop_queue = rt2800usb_stop_queue,
+ .flush_queue = rt2x00usb_flush_queue,
+ .tx_dma_done = rt2800usb_tx_dma_done,
+ .write_tx_desc = rt2800usb_write_tx_desc,
+ .write_tx_data = rt2800_write_tx_data,
+ .write_beacon = rt2800_write_beacon,
+ .clear_beacon = rt2800_clear_beacon,
+ .get_tx_data_len = rt2800usb_get_tx_data_len,
+ .fill_rxdone = rt2800usb_fill_rxdone,
+ .config_shared_key = rt2800_config_shared_key,
+ .config_pairwise_key = rt2800_config_pairwise_key,
+ .config_filter = rt2800_config_filter,
+ .config_intf = rt2800_config_intf,
+ .config_erp = rt2800_config_erp,
+ .config_ant = rt2800_config_ant,
+ .config = rt2800_config,
+ .pre_reset_hw = rt2800_pre_reset_hw,
+};
+
+static void rt2800usb_queue_init(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ unsigned short txwi_size, rxwi_size;
+
+ rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
+
+ switch (queue->qid) {
+ case QID_RX:
+ queue->limit = 128;
+ queue->data_size = AGGREGATION_SIZE;
+ queue->desc_size = RXINFO_DESC_SIZE;
+ queue->winfo_size = rxwi_size;
+ queue->priv_size = sizeof(struct queue_entry_priv_usb);
+ break;
+
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ queue->limit = 16;
+ queue->data_size = AGGREGATION_SIZE;
+ queue->desc_size = TXINFO_DESC_SIZE;
+ queue->winfo_size = txwi_size;
+ queue->priv_size = sizeof(struct queue_entry_priv_usb);
+ break;
+
+ case QID_BEACON:
+ queue->limit = 8;
+ queue->data_size = MGMT_FRAME_SIZE;
+ queue->desc_size = TXINFO_DESC_SIZE;
+ queue->winfo_size = txwi_size;
+ queue->priv_size = sizeof(struct queue_entry_priv_usb);
+ break;
+
+ case QID_ATIM:
+ default:
+ BUG();
+ break;
+ }
+}
+
+static const struct rt2x00_ops rt2800usb_ops = {
+ .name = KBUILD_MODNAME,
+ .drv_data_size = sizeof(struct rt2800_drv_data),
+ .max_ap_intf = 8,
+ .eeprom_size = EEPROM_SIZE,
+ .rf_size = RF_SIZE,
+ .tx_queues = NUM_TX_QUEUES,
+ .queue_init = rt2800usb_queue_init,
+ .lib = &rt2800usb_rt2x00_ops,
+ .drv = &rt2800usb_rt2800_ops,
+ .hw = &rt2800usb_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+ .debugfs = &rt2800_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * rt2800usb module information.
+ */
+static const struct usb_device_id rt2800usb_device_table[] = {
+ /* Abocom */
+ { USB_DEVICE(0x07b8, 0x2870) },
+ { USB_DEVICE(0x07b8, 0x2770) },
+ { USB_DEVICE(0x07b8, 0x3070) },
+ { USB_DEVICE(0x07b8, 0x3071) },
+ { USB_DEVICE(0x07b8, 0x3072) },
+ { USB_DEVICE(0x1482, 0x3c09) },
+ /* AirTies */
+ { USB_DEVICE(0x1eda, 0x2012) },
+ { USB_DEVICE(0x1eda, 0x2210) },
+ { USB_DEVICE(0x1eda, 0x2310) },
+ /* Allwin */
+ { USB_DEVICE(0x8516, 0x2070) },
+ { USB_DEVICE(0x8516, 0x2770) },
+ { USB_DEVICE(0x8516, 0x2870) },
+ { USB_DEVICE(0x8516, 0x3070) },
+ { USB_DEVICE(0x8516, 0x3071) },
+ { USB_DEVICE(0x8516, 0x3072) },
+ /* Alpha Networks */
+ { USB_DEVICE(0x14b2, 0x3c06) },
+ { USB_DEVICE(0x14b2, 0x3c07) },
+ { USB_DEVICE(0x14b2, 0x3c09) },
+ { USB_DEVICE(0x14b2, 0x3c12) },
+ { USB_DEVICE(0x14b2, 0x3c23) },
+ { USB_DEVICE(0x14b2, 0x3c25) },
+ { USB_DEVICE(0x14b2, 0x3c27) },
+ { USB_DEVICE(0x14b2, 0x3c28) },
+ { USB_DEVICE(0x14b2, 0x3c2c) },
+ /* Amit */
+ { USB_DEVICE(0x15c5, 0x0008) },
+ /* Askey */
+ { USB_DEVICE(0x1690, 0x0740) },
+ /* ASUS */
+ { USB_DEVICE(0x0b05, 0x1731) },
+ { USB_DEVICE(0x0b05, 0x1732) },
+ { USB_DEVICE(0x0b05, 0x1742) },
+ { USB_DEVICE(0x0b05, 0x1784) },
+ { USB_DEVICE(0x1761, 0x0b05) },
+ /* AzureWave */
+ { USB_DEVICE(0x13d3, 0x3247) },
+ { USB_DEVICE(0x13d3, 0x3273) },
+ { USB_DEVICE(0x13d3, 0x3305) },
+ { USB_DEVICE(0x13d3, 0x3307) },
+ { USB_DEVICE(0x13d3, 0x3321) },
+ /* Belkin */
+ { USB_DEVICE(0x050d, 0x8053) },
+ { USB_DEVICE(0x050d, 0x805c) },
+ { USB_DEVICE(0x050d, 0x815c) },
+ { USB_DEVICE(0x050d, 0x825a) },
+ { USB_DEVICE(0x050d, 0x825b) },
+ { USB_DEVICE(0x050d, 0x935a) },
+ { USB_DEVICE(0x050d, 0x935b) },
+ /* Buffalo */
+ { USB_DEVICE(0x0411, 0x00e8) },
+ { USB_DEVICE(0x0411, 0x0158) },
+ { USB_DEVICE(0x0411, 0x015d) },
+ { USB_DEVICE(0x0411, 0x016f) },
+ { USB_DEVICE(0x0411, 0x01a2) },
+ { USB_DEVICE(0x0411, 0x01ee) },
+ { USB_DEVICE(0x0411, 0x01a8) },
+ { USB_DEVICE(0x0411, 0x01fd) },
+ /* Corega */
+ { USB_DEVICE(0x07aa, 0x002f) },
+ { USB_DEVICE(0x07aa, 0x003c) },
+ { USB_DEVICE(0x07aa, 0x003f) },
+ { USB_DEVICE(0x18c5, 0x0012) },
+ /* D-Link */
+ { USB_DEVICE(0x07d1, 0x3c09) },
+ { USB_DEVICE(0x07d1, 0x3c0a) },
+ { USB_DEVICE(0x07d1, 0x3c0d) },
+ { USB_DEVICE(0x07d1, 0x3c0e) },
+ { USB_DEVICE(0x07d1, 0x3c0f) },
+ { USB_DEVICE(0x07d1, 0x3c11) },
+ { USB_DEVICE(0x07d1, 0x3c13) },
+ { USB_DEVICE(0x07d1, 0x3c15) },
+ { USB_DEVICE(0x07d1, 0x3c16) },
+ { USB_DEVICE(0x07d1, 0x3c17) },
+ { USB_DEVICE(0x2001, 0x3317) },
+ { USB_DEVICE(0x2001, 0x3c1b) },
+ { USB_DEVICE(0x2001, 0x3c25) },
+ /* Draytek */
+ { USB_DEVICE(0x07fa, 0x7712) },
+ /* DVICO */
+ { USB_DEVICE(0x0fe9, 0xb307) },
+ /* Edimax */
+ { USB_DEVICE(0x7392, 0x4085) },
+ { USB_DEVICE(0x7392, 0x7711) },
+ { USB_DEVICE(0x7392, 0x7717) },
+ { USB_DEVICE(0x7392, 0x7718) },
+ { USB_DEVICE(0x7392, 0x7722) },
+ /* Encore */
+ { USB_DEVICE(0x203d, 0x1480) },
+ { USB_DEVICE(0x203d, 0x14a9) },
+ /* EnGenius */
+ { USB_DEVICE(0x1740, 0x9701) },
+ { USB_DEVICE(0x1740, 0x9702) },
+ { USB_DEVICE(0x1740, 0x9703) },
+ { USB_DEVICE(0x1740, 0x9705) },
+ { USB_DEVICE(0x1740, 0x9706) },
+ { USB_DEVICE(0x1740, 0x9707) },
+ { USB_DEVICE(0x1740, 0x9708) },
+ { USB_DEVICE(0x1740, 0x9709) },
+ /* Gemtek */
+ { USB_DEVICE(0x15a9, 0x0012) },
+ /* Gigabyte */
+ { USB_DEVICE(0x1044, 0x800b) },
+ { USB_DEVICE(0x1044, 0x800d) },
+ /* Hawking */
+ { USB_DEVICE(0x0e66, 0x0001) },
+ { USB_DEVICE(0x0e66, 0x0003) },
+ { USB_DEVICE(0x0e66, 0x0009) },
+ { USB_DEVICE(0x0e66, 0x000b) },
+ { USB_DEVICE(0x0e66, 0x0013) },
+ { USB_DEVICE(0x0e66, 0x0017) },
+ { USB_DEVICE(0x0e66, 0x0018) },
+ /* I-O DATA */
+ { USB_DEVICE(0x04bb, 0x0945) },
+ { USB_DEVICE(0x04bb, 0x0947) },
+ { USB_DEVICE(0x04bb, 0x0948) },
+ /* Linksys */
+ { USB_DEVICE(0x13b1, 0x0031) },
+ { USB_DEVICE(0x1737, 0x0070) },
+ { USB_DEVICE(0x1737, 0x0071) },
+ { USB_DEVICE(0x1737, 0x0077) },
+ { USB_DEVICE(0x1737, 0x0078) },
+ /* Logitec */
+ { USB_DEVICE(0x0789, 0x0162) },
+ { USB_DEVICE(0x0789, 0x0163) },
+ { USB_DEVICE(0x0789, 0x0164) },
+ { USB_DEVICE(0x0789, 0x0166) },
+ /* Motorola */
+ { USB_DEVICE(0x100d, 0x9031) },
+ /* MSI */
+ { USB_DEVICE(0x0db0, 0x3820) },
+ { USB_DEVICE(0x0db0, 0x3821) },
+ { USB_DEVICE(0x0db0, 0x3822) },
+ { USB_DEVICE(0x0db0, 0x3870) },
+ { USB_DEVICE(0x0db0, 0x3871) },
+ { USB_DEVICE(0x0db0, 0x6899) },
+ { USB_DEVICE(0x0db0, 0x821a) },
+ { USB_DEVICE(0x0db0, 0x822a) },
+ { USB_DEVICE(0x0db0, 0x822b) },
+ { USB_DEVICE(0x0db0, 0x822c) },
+ { USB_DEVICE(0x0db0, 0x870a) },
+ { USB_DEVICE(0x0db0, 0x871a) },
+ { USB_DEVICE(0x0db0, 0x871b) },
+ { USB_DEVICE(0x0db0, 0x871c) },
+ { USB_DEVICE(0x0db0, 0x899a) },
+ /* Ovislink */
+ { USB_DEVICE(0x1b75, 0x3070) },
+ { USB_DEVICE(0x1b75, 0x3071) },
+ { USB_DEVICE(0x1b75, 0x3072) },
+ { USB_DEVICE(0x1b75, 0xa200) },
+ /* Para */
+ { USB_DEVICE(0x20b8, 0x8888) },
+ /* Pegatron */
+ { USB_DEVICE(0x1d4d, 0x0002) },
+ { USB_DEVICE(0x1d4d, 0x000c) },
+ { USB_DEVICE(0x1d4d, 0x000e) },
+ { USB_DEVICE(0x1d4d, 0x0011) },
+ /* Philips */
+ { USB_DEVICE(0x0471, 0x200f) },
+ /* Planex */
+ { USB_DEVICE(0x2019, 0x5201) },
+ { USB_DEVICE(0x2019, 0xab25) },
+ { USB_DEVICE(0x2019, 0xed06) },
+ /* Quanta */
+ { USB_DEVICE(0x1a32, 0x0304) },
+ /* Ralink */
+ { USB_DEVICE(0x148f, 0x2070) },
+ { USB_DEVICE(0x148f, 0x2770) },
+ { USB_DEVICE(0x148f, 0x2870) },
+ { USB_DEVICE(0x148f, 0x3070) },
+ { USB_DEVICE(0x148f, 0x3071) },
+ { USB_DEVICE(0x148f, 0x3072) },
+ /* Samsung */
+ { USB_DEVICE(0x04e8, 0x2018) },
+ /* Siemens */
+ { USB_DEVICE(0x129b, 0x1828) },
+ /* Sitecom */
+ { USB_DEVICE(0x0df6, 0x0017) },
+ { USB_DEVICE(0x0df6, 0x002b) },
+ { USB_DEVICE(0x0df6, 0x002c) },
+ { USB_DEVICE(0x0df6, 0x002d) },
+ { USB_DEVICE(0x0df6, 0x0039) },
+ { USB_DEVICE(0x0df6, 0x003b) },
+ { USB_DEVICE(0x0df6, 0x003d) },
+ { USB_DEVICE(0x0df6, 0x003e) },
+ { USB_DEVICE(0x0df6, 0x003f) },
+ { USB_DEVICE(0x0df6, 0x0040) },
+ { USB_DEVICE(0x0df6, 0x0042) },
+ { USB_DEVICE(0x0df6, 0x0047) },
+ { USB_DEVICE(0x0df6, 0x0048) },
+ { USB_DEVICE(0x0df6, 0x0051) },
+ { USB_DEVICE(0x0df6, 0x005f) },
+ { USB_DEVICE(0x0df6, 0x0060) },
+ /* SMC */
+ { USB_DEVICE(0x083a, 0x6618) },
+ { USB_DEVICE(0x083a, 0x7511) },
+ { USB_DEVICE(0x083a, 0x7512) },
+ { USB_DEVICE(0x083a, 0x7522) },
+ { USB_DEVICE(0x083a, 0x8522) },
+ { USB_DEVICE(0x083a, 0xa618) },
+ { USB_DEVICE(0x083a, 0xa701) },
+ { USB_DEVICE(0x083a, 0xa702) },
+ { USB_DEVICE(0x083a, 0xa703) },
+ { USB_DEVICE(0x083a, 0xb522) },
+ /* Sparklan */
+ { USB_DEVICE(0x15a9, 0x0006) },
+ /* Sweex */
+ { USB_DEVICE(0x177f, 0x0153) },
+ { USB_DEVICE(0x177f, 0x0164) },
+ { USB_DEVICE(0x177f, 0x0302) },
+ { USB_DEVICE(0x177f, 0x0313) },
+ { USB_DEVICE(0x177f, 0x0323) },
+ { USB_DEVICE(0x177f, 0x0324) },
+ { USB_DEVICE(0x177f, 0x1163) },
+ /* U-Media */
+ { USB_DEVICE(0x157e, 0x300e) },
+ { USB_DEVICE(0x157e, 0x3013) },
+ /* ZCOM */
+ { USB_DEVICE(0x0cde, 0x0022) },
+ { USB_DEVICE(0x0cde, 0x0025) },
+ /* Zinwell */
+ { USB_DEVICE(0x5a57, 0x0280) },
+ { USB_DEVICE(0x5a57, 0x0282) },
+ { USB_DEVICE(0x5a57, 0x0283) },
+ { USB_DEVICE(0x5a57, 0x5257) },
+ /* Zyxel */
+ { USB_DEVICE(0x0586, 0x3416) },
+ { USB_DEVICE(0x0586, 0x3418) },
+ { USB_DEVICE(0x0586, 0x341a) },
+ { USB_DEVICE(0x0586, 0x341e) },
+ { USB_DEVICE(0x0586, 0x343e) },
+#ifdef CONFIG_RT2800USB_RT33XX
+ /* Belkin */
+ { USB_DEVICE(0x050d, 0x945b) },
+ /* D-Link */
+ { USB_DEVICE(0x2001, 0x3c17) },
+ /* Panasonic */
+ { USB_DEVICE(0x083a, 0xb511) },
+ /* Accton/Arcadyan/Epson */
+ { USB_DEVICE(0x083a, 0xb512) },
+ /* Philips */
+ { USB_DEVICE(0x0471, 0x20dd) },
+ /* Ralink */
+ { USB_DEVICE(0x148f, 0x3370) },
+ { USB_DEVICE(0x148f, 0x8070) },
+ /* Sitecom */
+ { USB_DEVICE(0x0df6, 0x0050) },
+ /* Sweex */
+ { USB_DEVICE(0x177f, 0x0163) },
+ { USB_DEVICE(0x177f, 0x0165) },
+#endif
+#ifdef CONFIG_RT2800USB_RT35XX
+ /* Allwin */
+ { USB_DEVICE(0x8516, 0x3572) },
+ /* Askey */
+ { USB_DEVICE(0x1690, 0x0744) },
+ { USB_DEVICE(0x1690, 0x0761) },
+ { USB_DEVICE(0x1690, 0x0764) },
+ /* ASUS */
+ { USB_DEVICE(0x0b05, 0x179d) },
+ /* Cisco */
+ { USB_DEVICE(0x167b, 0x4001) },
+ /* EnGenius */
+ { USB_DEVICE(0x1740, 0x9801) },
+ /* I-O DATA */
+ { USB_DEVICE(0x04bb, 0x0944) },
+ /* Linksys */
+ { USB_DEVICE(0x13b1, 0x002f) },
+ { USB_DEVICE(0x1737, 0x0079) },
+ /* Logitec */
+ { USB_DEVICE(0x0789, 0x0170) },
+ /* Ralink */
+ { USB_DEVICE(0x148f, 0x3572) },
+ /* Sitecom */
+ { USB_DEVICE(0x0df6, 0x0041) },
+ { USB_DEVICE(0x0df6, 0x0062) },
+ { USB_DEVICE(0x0df6, 0x0065) },
+ { USB_DEVICE(0x0df6, 0x0066) },
+ { USB_DEVICE(0x0df6, 0x0068) },
+ /* Toshiba */
+ { USB_DEVICE(0x0930, 0x0a07) },
+ /* Zinwell */
+ { USB_DEVICE(0x5a57, 0x0284) },
+#endif
+#ifdef CONFIG_RT2800USB_RT3573
+ /* AirLive */
+ { USB_DEVICE(0x1b75, 0x7733) },
+ /* ASUS */
+ { USB_DEVICE(0x0b05, 0x17bc) },
+ { USB_DEVICE(0x0b05, 0x17ad) },
+ /* Belkin */
+ { USB_DEVICE(0x050d, 0x1103) },
+ /* Cameo */
+ { USB_DEVICE(0x148f, 0xf301) },
+ /* D-Link */
+ { USB_DEVICE(0x2001, 0x3c1f) },
+ /* Edimax */
+ { USB_DEVICE(0x7392, 0x7733) },
+ /* Hawking */
+ { USB_DEVICE(0x0e66, 0x0020) },
+ { USB_DEVICE(0x0e66, 0x0021) },
+ /* I-O DATA */
+ { USB_DEVICE(0x04bb, 0x094e) },
+ /* Linksys */
+ { USB_DEVICE(0x13b1, 0x003b) },
+ /* Logitec */
+ { USB_DEVICE(0x0789, 0x016b) },
+ /* NETGEAR */
+ { USB_DEVICE(0x0846, 0x9012) },
+ { USB_DEVICE(0x0846, 0x9013) },
+ { USB_DEVICE(0x0846, 0x9019) },
+ /* Planex */
+ { USB_DEVICE(0x2019, 0xed14) },
+ { USB_DEVICE(0x2019, 0xed19) },
+ /* Ralink */
+ { USB_DEVICE(0x148f, 0x3573) },
+ /* Sitecom */
+ { USB_DEVICE(0x0df6, 0x0067) },
+ { USB_DEVICE(0x0df6, 0x006a) },
+ { USB_DEVICE(0x0df6, 0x006e) },
+ /* ZyXEL */
+ { USB_DEVICE(0x0586, 0x3421) },
+#endif
+#ifdef CONFIG_RT2800USB_RT53XX
+ /* Arcadyan */
+ { USB_DEVICE(0x043e, 0x7a12) },
+ /* ASUS */
+ { USB_DEVICE(0x0b05, 0x17e8) },
+ /* Azurewave */
+ { USB_DEVICE(0x13d3, 0x3329) },
+ { USB_DEVICE(0x13d3, 0x3365) },
+ /* D-Link */
+ { USB_DEVICE(0x2001, 0x3c15) },
+ { USB_DEVICE(0x2001, 0x3c19) },
+ { USB_DEVICE(0x2001, 0x3c1c) },
+ { USB_DEVICE(0x2001, 0x3c1d) },
+ { USB_DEVICE(0x2001, 0x3c1e) },
+ { USB_DEVICE(0x2001, 0x3c20) },
+ { USB_DEVICE(0x2001, 0x3c22) },
+ { USB_DEVICE(0x2001, 0x3c23) },
+ /* LG innotek */
+ { USB_DEVICE(0x043e, 0x7a22) },
+ { USB_DEVICE(0x043e, 0x7a42) },
+ /* Panasonic */
+ { USB_DEVICE(0x04da, 0x1801) },
+ { USB_DEVICE(0x04da, 0x1800) },
+ { USB_DEVICE(0x04da, 0x23f6) },
+ /* Philips */
+ { USB_DEVICE(0x0471, 0x2104) },
+ { USB_DEVICE(0x0471, 0x2126) },
+ { USB_DEVICE(0x0471, 0x2180) },
+ { USB_DEVICE(0x0471, 0x2181) },
+ { USB_DEVICE(0x0471, 0x2182) },
+ /* Ralink */
+ { USB_DEVICE(0x148f, 0x5370) },
+ { USB_DEVICE(0x148f, 0x5372) },
+#endif
+#ifdef CONFIG_RT2800USB_RT55XX
+ /* Arcadyan */
+ { USB_DEVICE(0x043e, 0x7a32) },
+ /* AVM GmbH */
+ { USB_DEVICE(0x057c, 0x8501) },
+ /* Buffalo */
+ { USB_DEVICE(0x0411, 0x0241) },
+ { USB_DEVICE(0x0411, 0x0253) },
+ /* D-Link */
+ { USB_DEVICE(0x2001, 0x3c1a) },
+ { USB_DEVICE(0x2001, 0x3c21) },
+ /* Proware */
+ { USB_DEVICE(0x043e, 0x7a13) },
+ /* Ralink */
+ { USB_DEVICE(0x148f, 0x5572) },
+ /* TRENDnet */
+ { USB_DEVICE(0x20f4, 0x724a) },
+#endif
+#ifdef CONFIG_RT2800USB_UNKNOWN
+ /*
+ * Unclear what kind of devices these are (they aren't supported by the
+ * vendor linux driver).
+ */
+ /* Abocom */
+ { USB_DEVICE(0x07b8, 0x3073) },
+ { USB_DEVICE(0x07b8, 0x3074) },
+ /* Alpha Networks */
+ { USB_DEVICE(0x14b2, 0x3c08) },
+ { USB_DEVICE(0x14b2, 0x3c11) },
+ /* Amigo */
+ { USB_DEVICE(0x0e0b, 0x9031) },
+ { USB_DEVICE(0x0e0b, 0x9041) },
+ /* ASUS */
+ { USB_DEVICE(0x0b05, 0x166a) },
+ { USB_DEVICE(0x0b05, 0x1760) },
+ { USB_DEVICE(0x0b05, 0x1761) },
+ { USB_DEVICE(0x0b05, 0x1790) },
+ { USB_DEVICE(0x0b05, 0x17a7) },
+ /* AzureWave */
+ { USB_DEVICE(0x13d3, 0x3262) },
+ { USB_DEVICE(0x13d3, 0x3284) },
+ { USB_DEVICE(0x13d3, 0x3322) },
+ { USB_DEVICE(0x13d3, 0x3340) },
+ { USB_DEVICE(0x13d3, 0x3399) },
+ { USB_DEVICE(0x13d3, 0x3400) },
+ { USB_DEVICE(0x13d3, 0x3401) },
+ /* Belkin */
+ { USB_DEVICE(0x050d, 0x1003) },
+ /* Buffalo */
+ { USB_DEVICE(0x0411, 0x012e) },
+ { USB_DEVICE(0x0411, 0x0148) },
+ { USB_DEVICE(0x0411, 0x0150) },
+ /* Corega */
+ { USB_DEVICE(0x07aa, 0x0041) },
+ { USB_DEVICE(0x07aa, 0x0042) },
+ { USB_DEVICE(0x18c5, 0x0008) },
+ /* D-Link */
+ { USB_DEVICE(0x07d1, 0x3c0b) },
+ /* Encore */
+ { USB_DEVICE(0x203d, 0x14a1) },
+ /* EnGenius */
+ { USB_DEVICE(0x1740, 0x0600) },
+ { USB_DEVICE(0x1740, 0x0602) },
+ /* Gemtek */
+ { USB_DEVICE(0x15a9, 0x0010) },
+ /* Gigabyte */
+ { USB_DEVICE(0x1044, 0x800c) },
+ /* Hercules */
+ { USB_DEVICE(0x06f8, 0xe036) },
+ /* Huawei */
+ { USB_DEVICE(0x148f, 0xf101) },
+ /* I-O DATA */
+ { USB_DEVICE(0x04bb, 0x094b) },
+ /* LevelOne */
+ { USB_DEVICE(0x1740, 0x0605) },
+ { USB_DEVICE(0x1740, 0x0615) },
+ /* Logitec */
+ { USB_DEVICE(0x0789, 0x0168) },
+ { USB_DEVICE(0x0789, 0x0169) },
+ /* Motorola */
+ { USB_DEVICE(0x100d, 0x9032) },
+ /* Pegatron */
+ { USB_DEVICE(0x05a6, 0x0101) },
+ { USB_DEVICE(0x1d4d, 0x0010) },
+ /* Planex */
+ { USB_DEVICE(0x2019, 0xab24) },
+ { USB_DEVICE(0x2019, 0xab29) },
+ /* Qcom */
+ { USB_DEVICE(0x18e8, 0x6259) },
+ /* RadioShack */
+ { USB_DEVICE(0x08b9, 0x1197) },
+ /* Sitecom */
+ { USB_DEVICE(0x0df6, 0x003c) },
+ { USB_DEVICE(0x0df6, 0x004a) },
+ { USB_DEVICE(0x0df6, 0x004d) },
+ { USB_DEVICE(0x0df6, 0x0053) },
+ { USB_DEVICE(0x0df6, 0x0069) },
+ { USB_DEVICE(0x0df6, 0x006f) },
+ { USB_DEVICE(0x0df6, 0x0078) },
+ /* SMC */
+ { USB_DEVICE(0x083a, 0xa512) },
+ { USB_DEVICE(0x083a, 0xc522) },
+ { USB_DEVICE(0x083a, 0xd522) },
+ { USB_DEVICE(0x083a, 0xf511) },
+ /* Sweex */
+ { USB_DEVICE(0x177f, 0x0254) },
+ /* TP-LINK */
+ { USB_DEVICE(0xf201, 0x5370) },
+#endif
+ { 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2800 USB Wireless LAN driver.");
+MODULE_DEVICE_TABLE(usb, rt2800usb_device_table);
+MODULE_FIRMWARE(FIRMWARE_RT2870);
+MODULE_LICENSE("GPL");
+
+static int rt2800usb_probe(struct usb_interface *usb_intf,
+ const struct usb_device_id *id)
+{
+ return rt2x00usb_probe(usb_intf, &rt2800usb_ops);
+}
+
+static struct usb_driver rt2800usb_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = rt2800usb_device_table,
+ .probe = rt2800usb_probe,
+ .disconnect = rt2x00usb_disconnect,
+ .suspend = rt2x00usb_suspend,
+ .resume = rt2x00usb_resume,
+ .reset_resume = rt2x00usb_resume,
+ .disable_hub_initiated_lpm = 1,
+};
+
+module_usb_driver(rt2800usb_driver);
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2800usb.h b/drivers/net/wireless/ralink/rt2x00/rt2800usb.h
new file mode 100644
index 0000000000..9e180e9e41
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2800usb.h
@@ -0,0 +1,99 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ Copyright (C) 2009 Axel Kollhofer <rain_maker@root-forum.org>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2800usb
+ Abstract: Data structures and registers for the rt2800usb module.
+ Supported chipsets: RT2800U.
+ */
+
+#ifndef RT2800USB_H
+#define RT2800USB_H
+
+/*
+ * 8051 firmware image.
+ */
+#define FIRMWARE_RT2870 "rt2870.bin"
+#define FIRMWARE_IMAGE_BASE 0x3000
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXINFO_DESC_SIZE (1 * sizeof(__le32))
+#define RXINFO_DESC_SIZE (1 * sizeof(__le32))
+
+/*
+ * TX Info structure
+ */
+
+/*
+ * Word0
+ * WIV: Wireless Info Valid. 1: Driver filled WI, 0: DMA needs to copy WI
+ * QSEL: Select on-chip FIFO ID for 2nd-stage output scheduler.
+ * 0:MGMT, 1:HCCA 2:EDCA
+ * USB_DMA_NEXT_VALID: Used ONLY in USB bulk Aggregation, NextValid
+ * DMA_TX_BURST: used ONLY in USB bulk Aggregation.
+ * Force USB DMA transmit frame from current selected endpoint
+ */
+#define TXINFO_W0_USB_DMA_TX_PKT_LEN FIELD32(0x0000ffff)
+#define TXINFO_W0_WIV FIELD32(0x01000000)
+#define TXINFO_W0_QSEL FIELD32(0x06000000)
+#define TXINFO_W0_SW_USE_LAST_ROUND FIELD32(0x08000000)
+#define TXINFO_W0_USB_DMA_NEXT_VALID FIELD32(0x40000000)
+#define TXINFO_W0_USB_DMA_TX_BURST FIELD32(0x80000000)
+
+/*
+ * RX Info structure
+ */
+
+/*
+ * Word 0
+ */
+
+#define RXINFO_W0_USB_DMA_RX_PKT_LEN FIELD32(0x0000ffff)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ * UNICAST_TO_ME: This RX frame is unicast to me.
+ * MULTICAST: This is a multicast frame.
+ * BROADCAST: This is a broadcast frame.
+ * MY_BSS: this frame belongs to the same BSSID.
+ * CRC_ERROR: CRC error.
+ * CIPHER_ERROR: 0: decryption okay, 1:ICV error, 2:MIC error, 3:KEY not valid.
+ * AMSDU: rx with 802.3 header, not 802.11 header.
+ */
+
+#define RXD_W0_BA FIELD32(0x00000001)
+#define RXD_W0_DATA FIELD32(0x00000002)
+#define RXD_W0_NULLDATA FIELD32(0x00000004)
+#define RXD_W0_FRAG FIELD32(0x00000008)
+#define RXD_W0_UNICAST_TO_ME FIELD32(0x00000010)
+#define RXD_W0_MULTICAST FIELD32(0x00000020)
+#define RXD_W0_BROADCAST FIELD32(0x00000040)
+#define RXD_W0_MY_BSS FIELD32(0x00000080)
+#define RXD_W0_CRC_ERROR FIELD32(0x00000100)
+#define RXD_W0_CIPHER_ERROR FIELD32(0x00000600)
+#define RXD_W0_AMSDU FIELD32(0x00000800)
+#define RXD_W0_HTC FIELD32(0x00001000)
+#define RXD_W0_RSSI FIELD32(0x00002000)
+#define RXD_W0_L2PAD FIELD32(0x00004000)
+#define RXD_W0_AMPDU FIELD32(0x00008000)
+#define RXD_W0_DECRYPTED FIELD32(0x00010000)
+#define RXD_W0_PLCP_RSSI FIELD32(0x00020000)
+#define RXD_W0_CIPHER_ALG FIELD32(0x00040000)
+#define RXD_W0_LAST_AMSDU FIELD32(0x00080000)
+#define RXD_W0_PLCP_SIGNAL FIELD32(0xfff00000)
+
+#endif /* RT2800USB_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00.h b/drivers/net/wireless/ralink/rt2x00/rt2x00.h
new file mode 100644
index 0000000000..07a6a5a9ce
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00.h
@@ -0,0 +1,1508 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+ Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00
+ Abstract: rt2x00 global information.
+ */
+
+#ifndef RT2X00_H
+#define RT2X00_H
+
+#include <linux/bitops.h>
+#include <linux/interrupt.h>
+#include <linux/skbuff.h>
+#include <linux/workqueue.h>
+#include <linux/firmware.h>
+#include <linux/leds.h>
+#include <linux/mutex.h>
+#include <linux/etherdevice.h>
+#include <linux/kfifo.h>
+#include <linux/hrtimer.h>
+#include <linux/average.h>
+#include <linux/usb.h>
+#include <linux/clk.h>
+
+#include <net/mac80211.h>
+
+#include "rt2x00debug.h"
+#include "rt2x00dump.h"
+#include "rt2x00leds.h"
+#include "rt2x00reg.h"
+#include "rt2x00queue.h"
+
+/*
+ * Module information.
+ */
+#define DRV_VERSION "2.3.0"
+#define DRV_PROJECT "http://rt2x00.serialmonkey.com"
+
+/* Debug definitions.
+ * Debug output has to be enabled during compile time.
+ */
+#ifdef CONFIG_RT2X00_DEBUG
+#define DEBUG
+#endif /* CONFIG_RT2X00_DEBUG */
+
+/* Utility printing macros
+ * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
+ */
+#define rt2x00_probe_err(fmt, ...) \
+ printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \
+ __func__, ##__VA_ARGS__)
+#define rt2x00_err(dev, fmt, ...) \
+ wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt, \
+ __func__, ##__VA_ARGS__)
+#define rt2x00_warn(dev, fmt, ...) \
+ wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt, \
+ __func__, ##__VA_ARGS__)
+#define rt2x00_info(dev, fmt, ...) \
+ wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \
+ __func__, ##__VA_ARGS__)
+
+/* Various debug levels */
+#define rt2x00_dbg(dev, fmt, ...) \
+ wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \
+ __func__, ##__VA_ARGS__)
+#define rt2x00_eeprom_dbg(dev, fmt, ...) \
+ wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \
+ __func__, ##__VA_ARGS__)
+
+/*
+ * Duration calculations
+ * The rate variable passed is: 100kbs.
+ * To convert from bytes to bits we multiply size with 8,
+ * then the size is multiplied with 10 to make the
+ * real rate -> rate argument correction.
+ */
+#define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate))
+#define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
+
+/*
+ * Determine the number of L2 padding bytes required between the header and
+ * the payload.
+ */
+#define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3)
+
+/*
+ * Determine the alignment requirement,
+ * to make sure the 802.11 payload is padded to a 4-byte boundrary
+ * we must determine the address of the payload and calculate the
+ * amount of bytes needed to move the data.
+ */
+#define ALIGN_SIZE(__skb, __header) \
+ (((unsigned long)((__skb)->data + (__header))) & 3)
+
+/*
+ * Constants for extra TX headroom for alignment purposes.
+ */
+#define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */
+#define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */
+
+/*
+ * Standard timing and size defines.
+ * These values should follow the ieee80211 specifications.
+ */
+#define ACK_SIZE 14
+#define IEEE80211_HEADER 24
+#define PLCP 48
+#define BEACON 100
+#define PREAMBLE 144
+#define SHORT_PREAMBLE 72
+#define SLOT_TIME 20
+#define SHORT_SLOT_TIME 9
+#define SIFS 10
+#define PIFS (SIFS + SLOT_TIME)
+#define SHORT_PIFS (SIFS + SHORT_SLOT_TIME)
+#define DIFS (PIFS + SLOT_TIME)
+#define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME)
+#define EIFS (SIFS + DIFS + \
+ GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
+#define SHORT_EIFS (SIFS + SHORT_DIFS + \
+ GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
+
+enum rt2x00_chip_intf {
+ RT2X00_CHIP_INTF_PCI,
+ RT2X00_CHIP_INTF_PCIE,
+ RT2X00_CHIP_INTF_USB,
+ RT2X00_CHIP_INTF_SOC,
+};
+
+/*
+ * Chipset identification
+ * The chipset on the device is composed of a RT and RF chip.
+ * The chipset combination is important for determining device capabilities.
+ */
+struct rt2x00_chip {
+ u16 rt;
+#define RT2460 0x2460
+#define RT2560 0x2560
+#define RT2570 0x2570
+#define RT2661 0x2661
+#define RT2573 0x2573
+#define RT2860 0x2860 /* 2.4GHz */
+#define RT2872 0x2872 /* WSOC */
+#define RT2883 0x2883 /* WSOC */
+#define RT3070 0x3070
+#define RT3071 0x3071
+#define RT3090 0x3090 /* 2.4GHz PCIe */
+#define RT3290 0x3290
+#define RT3352 0x3352 /* WSOC */
+#define RT3390 0x3390
+#define RT3572 0x3572
+#define RT3593 0x3593
+#define RT3883 0x3883 /* WSOC */
+#define RT5350 0x5350 /* WSOC 2.4GHz */
+#define RT5390 0x5390 /* 2.4GHz */
+#define RT5392 0x5392 /* 2.4GHz */
+#define RT5592 0x5592
+#define RT6352 0x6352 /* WSOC 2.4GHz */
+
+ u16 rf;
+ u16 rev;
+
+ enum rt2x00_chip_intf intf;
+};
+
+/*
+ * RF register values that belong to a particular channel.
+ */
+struct rf_channel {
+ int channel;
+ u32 rf1;
+ u32 rf2;
+ u32 rf3;
+ u32 rf4;
+};
+
+/*
+ * Information structure for channel survey.
+ */
+struct rt2x00_chan_survey {
+ u64 time_idle;
+ u64 time_busy;
+ u64 time_ext_busy;
+};
+
+/*
+ * Channel information structure
+ */
+struct channel_info {
+ unsigned int flags;
+#define GEOGRAPHY_ALLOWED 0x00000001
+
+ short max_power;
+ short default_power1;
+ short default_power2;
+ short default_power3;
+};
+
+/*
+ * Antenna setup values.
+ */
+struct antenna_setup {
+ enum antenna rx;
+ enum antenna tx;
+ u8 rx_chain_num;
+ u8 tx_chain_num;
+};
+
+/*
+ * Quality statistics about the currently active link.
+ */
+struct link_qual {
+ /*
+ * Statistics required for Link tuning by driver
+ * The rssi value is provided by rt2x00lib during the
+ * link_tuner() callback function.
+ * The false_cca field is filled during the link_stats()
+ * callback function and could be used during the
+ * link_tuner() callback function.
+ */
+ int rssi;
+ int false_cca;
+
+ /*
+ * VGC levels
+ * Hardware driver will tune the VGC level during each call
+ * to the link_tuner() callback function. This vgc_level is
+ * determined based on the link quality statistics like
+ * average RSSI and the false CCA count.
+ *
+ * In some cases the drivers need to differentiate between
+ * the currently "desired" VGC level and the level configured
+ * in the hardware. The latter is important to reduce the
+ * number of BBP register reads to reduce register access
+ * overhead. For this reason we store both values here.
+ */
+ u8 vgc_level;
+ u8 vgc_level_reg;
+
+ /*
+ * Statistics required for Signal quality calculation.
+ * These fields might be changed during the link_stats()
+ * callback function.
+ */
+ int rx_success;
+ int rx_failed;
+ int tx_success;
+ int tx_failed;
+};
+
+DECLARE_EWMA(rssi, 10, 8)
+
+/*
+ * Antenna settings about the currently active link.
+ */
+struct link_ant {
+ /*
+ * Antenna flags
+ */
+ unsigned int flags;
+#define ANTENNA_RX_DIVERSITY 0x00000001
+#define ANTENNA_TX_DIVERSITY 0x00000002
+#define ANTENNA_MODE_SAMPLE 0x00000004
+
+ /*
+ * Currently active TX/RX antenna setup.
+ * When software diversity is used, this will indicate
+ * which antenna is actually used at this time.
+ */
+ struct antenna_setup active;
+
+ /*
+ * RSSI history information for the antenna.
+ * Used to determine when to switch antenna
+ * when using software diversity.
+ */
+ int rssi_history;
+
+ /*
+ * Current RSSI average of the currently active antenna.
+ * Similar to the avg_rssi in the link_qual structure
+ * this value is updated by using the walking average.
+ */
+ struct ewma_rssi rssi_ant;
+};
+
+/*
+ * To optimize the quality of the link we need to store
+ * the quality of received frames and periodically
+ * optimize the link.
+ */
+struct link {
+ /*
+ * Link tuner counter
+ * The number of times the link has been tuned
+ * since the radio has been switched on.
+ */
+ u32 count;
+
+ /*
+ * Quality measurement values.
+ */
+ struct link_qual qual;
+
+ /*
+ * TX/RX antenna setup.
+ */
+ struct link_ant ant;
+
+ /*
+ * Currently active average RSSI value
+ */
+ struct ewma_rssi avg_rssi;
+
+ /*
+ * Work structure for scheduling periodic link tuning.
+ */
+ struct delayed_work work;
+
+ /*
+ * Work structure for scheduling periodic watchdog monitoring.
+ * This work must be scheduled on the kernel workqueue, while
+ * all other work structures must be queued on the mac80211
+ * workqueue. This guarantees that the watchdog can schedule
+ * other work structures and wait for their completion in order
+ * to bring the device/driver back into the desired state.
+ */
+ struct delayed_work watchdog_work;
+ unsigned int watchdog_interval;
+ bool watchdog_disabled;
+
+ /*
+ * Work structure for scheduling periodic AGC adjustments.
+ */
+ struct delayed_work agc_work;
+
+ /*
+ * Work structure for scheduling periodic VCO calibration.
+ */
+ struct delayed_work vco_work;
+};
+
+enum rt2x00_delayed_flags {
+ DELAYED_UPDATE_BEACON,
+};
+
+/*
+ * Interface structure
+ * Per interface configuration details, this structure
+ * is allocated as the private data for ieee80211_vif.
+ */
+struct rt2x00_intf {
+ /*
+ * beacon->skb must be protected with the mutex.
+ */
+ struct mutex beacon_skb_mutex;
+
+ /*
+ * Entry in the beacon queue which belongs to
+ * this interface. Each interface has its own
+ * dedicated beacon entry.
+ */
+ struct queue_entry *beacon;
+ bool enable_beacon;
+
+ /*
+ * Actions that needed rescheduling.
+ */
+ unsigned long delayed_flags;
+
+ /*
+ * Software sequence counter, this is only required
+ * for hardware which doesn't support hardware
+ * sequence counting.
+ */
+ atomic_t seqno;
+};
+
+static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
+{
+ return (struct rt2x00_intf *)vif->drv_priv;
+}
+
+/**
+ * struct hw_mode_spec: Hardware specifications structure
+ *
+ * Details about the supported modes, rates and channels
+ * of a particular chipset. This is used by rt2x00lib
+ * to build the ieee80211_hw_mode array for mac80211.
+ *
+ * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
+ * @supported_rates: Rate types which are supported (CCK, OFDM).
+ * @num_channels: Number of supported channels. This is used as array size
+ * for @tx_power_a, @tx_power_bg and @channels.
+ * @channels: Device/chipset specific channel values (See &struct rf_channel).
+ * @channels_info: Additional information for channels (See &struct channel_info).
+ * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
+ */
+struct hw_mode_spec {
+ unsigned int supported_bands;
+#define SUPPORT_BAND_2GHZ 0x00000001
+#define SUPPORT_BAND_5GHZ 0x00000002
+
+ unsigned int supported_rates;
+#define SUPPORT_RATE_CCK 0x00000001
+#define SUPPORT_RATE_OFDM 0x00000002
+
+ unsigned int num_channels;
+ const struct rf_channel *channels;
+ const struct channel_info *channels_info;
+
+ struct ieee80211_sta_ht_cap ht;
+};
+
+/*
+ * Configuration structure wrapper around the
+ * mac80211 configuration structure.
+ * When mac80211 configures the driver, rt2x00lib
+ * can precalculate values which are equal for all
+ * rt2x00 drivers. Those values can be stored in here.
+ */
+struct rt2x00lib_conf {
+ struct ieee80211_conf *conf;
+
+ struct rf_channel rf;
+ struct channel_info channel;
+};
+
+/*
+ * Configuration structure for erp settings.
+ */
+struct rt2x00lib_erp {
+ int short_preamble;
+ int cts_protection;
+
+ u32 basic_rates;
+
+ int slot_time;
+
+ short sifs;
+ short pifs;
+ short difs;
+ short eifs;
+
+ u16 beacon_int;
+ u16 ht_opmode;
+};
+
+/*
+ * Configuration structure for hardware encryption.
+ */
+struct rt2x00lib_crypto {
+ enum cipher cipher;
+
+ enum set_key_cmd cmd;
+ const u8 *address;
+
+ u32 bssidx;
+
+ u8 key[16];
+ u8 tx_mic[8];
+ u8 rx_mic[8];
+
+ int wcid;
+};
+
+/*
+ * Configuration structure wrapper around the
+ * rt2x00 interface configuration handler.
+ */
+struct rt2x00intf_conf {
+ /*
+ * Interface type
+ */
+ enum nl80211_iftype type;
+
+ /*
+ * TSF sync value, this is dependent on the operation type.
+ */
+ enum tsf_sync sync;
+
+ /*
+ * The MAC and BSSID addresses are simple array of bytes,
+ * these arrays are little endian, so when sending the addresses
+ * to the drivers, copy the it into a endian-signed variable.
+ *
+ * Note that all devices (except rt2500usb) have 32 bits
+ * register word sizes. This means that whatever variable we
+ * pass _must_ be a multiple of 32 bits. Otherwise the device
+ * might not accept what we are sending to it.
+ * This will also make it easier for the driver to write
+ * the data to the device.
+ */
+ __le32 mac[2];
+ __le32 bssid[2];
+};
+
+/*
+ * Private structure for storing STA details
+ * wcid: Wireless Client ID
+ */
+struct rt2x00_sta {
+ int wcid;
+};
+
+static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
+{
+ return (struct rt2x00_sta *)sta->drv_priv;
+}
+
+/*
+ * rt2x00lib callback functions.
+ */
+struct rt2x00lib_ops {
+ /*
+ * Interrupt handlers.
+ */
+ irq_handler_t irq_handler;
+
+ /*
+ * TX status tasklet handler.
+ */
+ void (*txstatus_tasklet) (struct tasklet_struct *t);
+ void (*pretbtt_tasklet) (struct tasklet_struct *t);
+ void (*tbtt_tasklet) (struct tasklet_struct *t);
+ void (*rxdone_tasklet) (struct tasklet_struct *t);
+ void (*autowake_tasklet) (struct tasklet_struct *t);
+
+ /*
+ * Device init handlers.
+ */
+ int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
+ char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
+ int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len);
+ int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len);
+
+ /*
+ * Device initialization/deinitialization handlers.
+ */
+ int (*initialize) (struct rt2x00_dev *rt2x00dev);
+ void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
+
+ /*
+ * queue initialization handlers
+ */
+ bool (*get_entry_state) (struct queue_entry *entry);
+ void (*clear_entry) (struct queue_entry *entry);
+
+ /*
+ * Radio control handlers.
+ */
+ int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
+ enum dev_state state);
+ int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
+ void (*link_stats) (struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual);
+ void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual);
+ void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual, const u32 count);
+ void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
+ void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
+
+ /*
+ * Data queue handlers.
+ */
+ void (*watchdog) (struct rt2x00_dev *rt2x00dev);
+ void (*start_queue) (struct data_queue *queue);
+ void (*kick_queue) (struct data_queue *queue);
+ void (*stop_queue) (struct data_queue *queue);
+ void (*flush_queue) (struct data_queue *queue, bool drop);
+ void (*tx_dma_done) (struct queue_entry *entry);
+
+ /*
+ * TX control handlers
+ */
+ void (*write_tx_desc) (struct queue_entry *entry,
+ struct txentry_desc *txdesc);
+ void (*write_tx_data) (struct queue_entry *entry,
+ struct txentry_desc *txdesc);
+ void (*write_beacon) (struct queue_entry *entry,
+ struct txentry_desc *txdesc);
+ void (*clear_beacon) (struct queue_entry *entry);
+ int (*get_tx_data_len) (struct queue_entry *entry);
+
+ /*
+ * RX control handlers
+ */
+ void (*fill_rxdone) (struct queue_entry *entry,
+ struct rxdone_entry_desc *rxdesc);
+
+ /*
+ * Configuration handlers.
+ */
+ int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key);
+ int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key);
+ void (*config_filter) (struct rt2x00_dev *rt2x00dev,
+ const unsigned int filter_flags);
+ void (*config_intf) (struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_intf *intf,
+ struct rt2x00intf_conf *conf,
+ const unsigned int flags);
+#define CONFIG_UPDATE_TYPE ( 1 << 1 )
+#define CONFIG_UPDATE_MAC ( 1 << 2 )
+#define CONFIG_UPDATE_BSSID ( 1 << 3 )
+
+ void (*config_erp) (struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_erp *erp,
+ u32 changed);
+ void (*config_ant) (struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant);
+ void (*config) (struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf,
+ const unsigned int changed_flags);
+ void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev);
+ int (*sta_add) (struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_vif *vif,
+ struct ieee80211_sta *sta);
+ int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_sta *sta);
+};
+
+/*
+ * rt2x00 driver callback operation structure.
+ */
+struct rt2x00_ops {
+ const char *name;
+ const unsigned int drv_data_size;
+ const unsigned int max_ap_intf;
+ const unsigned int eeprom_size;
+ const unsigned int rf_size;
+ const unsigned int tx_queues;
+ void (*queue_init)(struct data_queue *queue);
+ const struct rt2x00lib_ops *lib;
+ const void *drv;
+ const struct ieee80211_ops *hw;
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+ const struct rt2x00debug *debugfs;
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * rt2x00 state flags
+ */
+enum rt2x00_state_flags {
+ /*
+ * Device flags
+ */
+ DEVICE_STATE_PRESENT,
+ DEVICE_STATE_REGISTERED_HW,
+ DEVICE_STATE_INITIALIZED,
+ DEVICE_STATE_STARTED,
+ DEVICE_STATE_ENABLED_RADIO,
+ DEVICE_STATE_SCANNING,
+ DEVICE_STATE_FLUSHING,
+ DEVICE_STATE_RESET,
+
+ /*
+ * Driver configuration
+ */
+ CONFIG_CHANNEL_HT40,
+ CONFIG_POWERSAVING,
+ CONFIG_HT_DISABLED,
+ CONFIG_MONITORING,
+
+ /*
+ * Mark we currently are sequentially reading TX_STA_FIFO register
+ * FIXME: this is for only rt2800usb, should go to private data
+ */
+ TX_STATUS_READING,
+};
+
+/*
+ * rt2x00 capability flags
+ */
+enum rt2x00_capability_flags {
+ /*
+ * Requirements
+ */
+ REQUIRE_FIRMWARE,
+ REQUIRE_BEACON_GUARD,
+ REQUIRE_ATIM_QUEUE,
+ REQUIRE_DMA,
+ REQUIRE_COPY_IV,
+ REQUIRE_L2PAD,
+ REQUIRE_TXSTATUS_FIFO,
+ REQUIRE_TASKLET_CONTEXT,
+ REQUIRE_SW_SEQNO,
+ REQUIRE_HT_TX_DESC,
+ REQUIRE_PS_AUTOWAKE,
+ REQUIRE_DELAYED_RFKILL,
+
+ /*
+ * Capabilities
+ */
+ CAPABILITY_HW_BUTTON,
+ CAPABILITY_HW_CRYPTO,
+ CAPABILITY_POWER_LIMIT,
+ CAPABILITY_CONTROL_FILTERS,
+ CAPABILITY_CONTROL_FILTER_PSPOLL,
+ CAPABILITY_PRE_TBTT_INTERRUPT,
+ CAPABILITY_LINK_TUNING,
+ CAPABILITY_FRAME_TYPE,
+ CAPABILITY_RF_SEQUENCE,
+ CAPABILITY_EXTERNAL_LNA_A,
+ CAPABILITY_EXTERNAL_LNA_BG,
+ CAPABILITY_DOUBLE_ANTENNA,
+ CAPABILITY_BT_COEXIST,
+ CAPABILITY_VCO_RECALIBRATION,
+ CAPABILITY_EXTERNAL_PA_TX0,
+ CAPABILITY_EXTERNAL_PA_TX1,
+ CAPABILITY_RESTART_HW,
+};
+
+/*
+ * Interface combinations
+ */
+enum {
+ IF_COMB_AP = 0,
+ NUM_IF_COMB,
+};
+
+/*
+ * rt2x00 device structure.
+ */
+struct rt2x00_dev {
+ /*
+ * Device structure.
+ * The structure stored in here depends on the
+ * system bus (PCI or USB).
+ * When accessing this variable, the rt2x00dev_{pci,usb}
+ * macros should be used for correct typecasting.
+ */
+ struct device *dev;
+
+ /*
+ * Callback functions.
+ */
+ const struct rt2x00_ops *ops;
+
+ /*
+ * Driver data.
+ */
+ void *drv_data;
+
+ /*
+ * IEEE80211 control structure.
+ */
+ struct ieee80211_hw *hw;
+ struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
+ struct rt2x00_chan_survey *chan_survey;
+ enum nl80211_band curr_band;
+ int curr_freq;
+
+ /*
+ * If enabled, the debugfs interface structures
+ * required for deregistration of debugfs.
+ */
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+ struct rt2x00debug_intf *debugfs_intf;
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+ /*
+ * LED structure for changing the LED status
+ * by mac8011 or the kernel.
+ */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+ struct rt2x00_led led_radio;
+ struct rt2x00_led led_assoc;
+ struct rt2x00_led led_qual;
+ u16 led_mcu_reg;
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+ /*
+ * Device state flags.
+ * In these flags the current status is stored.
+ * Access to these flags should occur atomically.
+ */
+ unsigned long flags;
+
+ /*
+ * Device capabiltiy flags.
+ * In these flags the device/driver capabilities are stored.
+ * Access to these flags should occur non-atomically.
+ */
+ unsigned long cap_flags;
+
+ /*
+ * Device information, Bus IRQ and name (PCI, SoC)
+ */
+ int irq;
+ const char *name;
+
+ /*
+ * Chipset identification.
+ */
+ struct rt2x00_chip chip;
+
+ /*
+ * hw capability specifications.
+ */
+ struct hw_mode_spec spec;
+
+ /*
+ * This is the default TX/RX antenna setup as indicated
+ * by the device's EEPROM.
+ */
+ struct antenna_setup default_ant;
+
+ /*
+ * Register pointers
+ * csr.base: CSR base register address. (PCI)
+ * csr.cache: CSR cache for usb_control_msg. (USB)
+ */
+ union csr {
+ void __iomem *base;
+ void *cache;
+ } csr;
+
+ /*
+ * Mutex to protect register accesses.
+ * For PCI and USB devices it protects against concurrent indirect
+ * register access (BBP, RF, MCU) since accessing those
+ * registers require multiple calls to the CSR registers.
+ * For USB devices it also protects the csr_cache since that
+ * field is used for normal CSR access and it cannot support
+ * multiple callers simultaneously.
+ */
+ struct mutex csr_mutex;
+
+ /*
+ * Mutex to synchronize config and link tuner.
+ */
+ struct mutex conf_mutex;
+ /*
+ * Current packet filter configuration for the device.
+ * This contains all currently active FIF_* flags send
+ * to us by mac80211 during configure_filter().
+ */
+ unsigned int packet_filter;
+
+ /*
+ * Interface details:
+ * - Open ap interface count.
+ * - Open sta interface count.
+ * - Association count.
+ * - Beaconing enabled count.
+ */
+ unsigned int intf_ap_count;
+ unsigned int intf_sta_count;
+ unsigned int intf_associated;
+ unsigned int intf_beaconing;
+
+ /*
+ * Interface combinations
+ */
+ struct ieee80211_iface_limit if_limits_ap;
+ struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
+
+ /*
+ * Link quality
+ */
+ struct link link;
+
+ /*
+ * EEPROM data.
+ */
+ __le16 *eeprom;
+
+ /*
+ * Active RF register values.
+ * These are stored here so we don't need
+ * to read the rf registers and can directly
+ * use this value instead.
+ * This field should be accessed by using
+ * rt2x00_rf_read() and rt2x00_rf_write().
+ */
+ u32 *rf;
+
+ /*
+ * LNA gain
+ */
+ short lna_gain;
+
+ /*
+ * Current TX power value.
+ */
+ u16 tx_power;
+
+ /*
+ * Current retry values.
+ */
+ u8 short_retry;
+ u8 long_retry;
+
+ /*
+ * Rssi <-> Dbm offset
+ */
+ u8 rssi_offset;
+
+ /*
+ * Frequency offset.
+ */
+ u8 freq_offset;
+
+ /*
+ * Association id.
+ */
+ u16 aid;
+
+ /*
+ * Beacon interval.
+ */
+ u16 beacon_int;
+
+ /**
+ * Timestamp of last received beacon
+ */
+ unsigned long last_beacon;
+
+ /*
+ * Low level statistics which will have
+ * to be kept up to date while device is running.
+ */
+ struct ieee80211_low_level_stats low_level_stats;
+
+ /**
+ * Work queue for all work which should not be placed
+ * on the mac80211 workqueue (because of dependencies
+ * between various work structures).
+ */
+ struct workqueue_struct *workqueue;
+
+ /*
+ * Scheduled work.
+ * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
+ * which means it cannot be placed on the hw->workqueue
+ * due to RTNL locking requirements.
+ */
+ struct work_struct intf_work;
+
+ /**
+ * Scheduled work for TX/RX done handling (USB devices)
+ */
+ struct work_struct rxdone_work;
+ struct work_struct txdone_work;
+
+ /*
+ * Powersaving work
+ */
+ struct delayed_work autowakeup_work;
+ struct work_struct sleep_work;
+
+ /*
+ * Data queue arrays for RX, TX, Beacon and ATIM.
+ */
+ unsigned int data_queues;
+ struct data_queue *rx;
+ struct data_queue *tx;
+ struct data_queue *bcn;
+ struct data_queue *atim;
+
+ /*
+ * Firmware image.
+ */
+ const struct firmware *fw;
+
+ /*
+ * FIFO for storing tx status reports between isr and tasklet.
+ */
+ DECLARE_KFIFO_PTR(txstatus_fifo, u32);
+
+ /*
+ * Timer to ensure tx status reports are read (rt2800usb).
+ */
+ struct hrtimer txstatus_timer;
+
+ /*
+ * Tasklet for processing tx status reports (rt2800pci).
+ */
+ struct tasklet_struct txstatus_tasklet;
+ struct tasklet_struct pretbtt_tasklet;
+ struct tasklet_struct tbtt_tasklet;
+ struct tasklet_struct rxdone_tasklet;
+ struct tasklet_struct autowake_tasklet;
+
+ /*
+ * Used for VCO periodic calibration.
+ */
+ int rf_channel;
+
+ /*
+ * Protect the interrupt mask register.
+ */
+ spinlock_t irqmask_lock;
+
+ /*
+ * List of BlockAckReq TX entries that need driver BlockAck processing.
+ */
+ struct list_head bar_list;
+ spinlock_t bar_list_lock;
+
+ /* Extra TX headroom required for alignment purposes. */
+ unsigned int extra_tx_headroom;
+
+ struct usb_anchor *anchor;
+ unsigned int num_proto_errs;
+
+ /* Clock for System On Chip devices. */
+ struct clk *clk;
+};
+
+struct rt2x00_bar_list_entry {
+ struct list_head list;
+ struct rcu_head head;
+
+ struct queue_entry *entry;
+ int block_acked;
+
+ /* Relevant parts of the IEEE80211 BAR header */
+ __u8 ra[6];
+ __u8 ta[6];
+ __le16 control;
+ __le16 start_seq_num;
+};
+
+/*
+ * Register defines.
+ * Some registers require multiple attempts before success,
+ * in those cases REGISTER_BUSY_COUNT attempts should be
+ * taken with a REGISTER_BUSY_DELAY interval. Due to USB
+ * bus delays, we do not have to loop so many times to wait
+ * for valid register value on that bus.
+ */
+#define REGISTER_BUSY_COUNT 100
+#define REGISTER_USB_BUSY_COUNT 20
+#define REGISTER_BUSY_DELAY 100
+
+/*
+ * Generic RF access.
+ * The RF is being accessed by word index.
+ */
+static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word)
+{
+ BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
+ return rt2x00dev->rf[word - 1];
+}
+
+static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, u32 data)
+{
+ BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
+ rt2x00dev->rf[word - 1] = data;
+}
+
+/*
+ * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
+ */
+static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word)
+{
+ return (void *)&rt2x00dev->eeprom[word];
+}
+
+static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word)
+{
+ return le16_to_cpu(rt2x00dev->eeprom[word]);
+}
+
+static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, u16 data)
+{
+ rt2x00dev->eeprom[word] = cpu_to_le16(data);
+}
+
+static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
+ const unsigned int byte)
+{
+ return *(((u8 *)rt2x00dev->eeprom) + byte);
+}
+
+/*
+ * Chipset handlers
+ */
+static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
+ const u16 rt, const u16 rf, const u16 rev)
+{
+ rt2x00dev->chip.rt = rt;
+ rt2x00dev->chip.rf = rf;
+ rt2x00dev->chip.rev = rev;
+
+ rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
+ rt2x00dev->chip.rt, rt2x00dev->chip.rf,
+ rt2x00dev->chip.rev);
+}
+
+static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
+ const u16 rt, const u16 rev)
+{
+ rt2x00dev->chip.rt = rt;
+ rt2x00dev->chip.rev = rev;
+
+ rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
+ rt2x00dev->chip.rt, rt2x00dev->chip.rev);
+}
+
+static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
+{
+ rt2x00dev->chip.rf = rf;
+
+ rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
+ rt2x00dev->chip.rf);
+}
+
+static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
+{
+ return (rt2x00dev->chip.rt == rt);
+}
+
+static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
+{
+ return (rt2x00dev->chip.rf == rf);
+}
+
+static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00dev->chip.rev;
+}
+
+static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
+ const u16 rt, const u16 rev)
+{
+ return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
+}
+
+static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
+ const u16 rt, const u16 rev)
+{
+ return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
+}
+
+static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
+ const u16 rt, const u16 rev)
+{
+ return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
+}
+
+static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
+ enum rt2x00_chip_intf intf)
+{
+ rt2x00dev->chip.intf = intf;
+}
+
+static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
+ enum rt2x00_chip_intf intf)
+{
+ return (rt2x00dev->chip.intf == intf);
+}
+
+static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
+ rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
+}
+
+static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
+}
+
+static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
+}
+
+static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
+}
+
+/* Helpers for capability flags */
+
+static inline bool
+rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
+ enum rt2x00_capability_flags cap_flag)
+{
+ return test_bit(cap_flag, &rt2x00dev->cap_flags);
+}
+
+static inline bool
+rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
+}
+
+static inline bool
+rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
+}
+
+static inline bool
+rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
+}
+
+static inline bool
+rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
+}
+
+static inline bool
+rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
+}
+
+static inline bool
+rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
+}
+
+static inline bool
+rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
+}
+
+static inline bool
+rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
+}
+
+static inline bool
+rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
+}
+
+static inline bool
+rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
+}
+
+static inline bool
+rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
+}
+
+static inline bool
+rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
+}
+
+static inline bool
+rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
+}
+
+static inline bool
+rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev)
+{
+ return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW);
+}
+
+/**
+ * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
+ * @entry: Pointer to &struct queue_entry
+ *
+ * Returns -ENOMEM if mapping fail, 0 otherwise.
+ */
+int rt2x00queue_map_txskb(struct queue_entry *entry);
+
+/**
+ * rt2x00queue_unmap_skb - Unmap a skb from DMA.
+ * @entry: Pointer to &struct queue_entry
+ */
+void rt2x00queue_unmap_skb(struct queue_entry *entry);
+
+/**
+ * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @queue: rt2x00 queue index (see &enum data_queue_qid).
+ *
+ * Returns NULL for non tx queues.
+ */
+static inline struct data_queue *
+rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
+ enum data_queue_qid queue)
+{
+ if (queue >= rt2x00dev->ops->tx_queues && queue < IEEE80211_NUM_ACS)
+ queue = rt2x00dev->ops->tx_queues - 1;
+
+ if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
+ return &rt2x00dev->tx[queue];
+
+ if (queue == QID_ATIM)
+ return rt2x00dev->atim;
+
+ return NULL;
+}
+
+/**
+ * rt2x00queue_get_entry - Get queue entry where the given index points to.
+ * @queue: Pointer to &struct data_queue from where we obtain the entry.
+ * @index: Index identifier for obtaining the correct index.
+ */
+struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
+ enum queue_index index);
+
+/**
+ * rt2x00queue_pause_queue - Pause a data queue
+ * @queue: Pointer to &struct data_queue.
+ *
+ * This function will pause the data queue locally, preventing
+ * new frames to be added to the queue (while the hardware is
+ * still allowed to run).
+ */
+void rt2x00queue_pause_queue(struct data_queue *queue);
+
+/**
+ * rt2x00queue_unpause_queue - unpause a data queue
+ * @queue: Pointer to &struct data_queue.
+ *
+ * This function will unpause the data queue locally, allowing
+ * new frames to be added to the queue again.
+ */
+void rt2x00queue_unpause_queue(struct data_queue *queue);
+
+/**
+ * rt2x00queue_start_queue - Start a data queue
+ * @queue: Pointer to &struct data_queue.
+ *
+ * This function will start handling all pending frames in the queue.
+ */
+void rt2x00queue_start_queue(struct data_queue *queue);
+
+/**
+ * rt2x00queue_stop_queue - Halt a data queue
+ * @queue: Pointer to &struct data_queue.
+ *
+ * This function will stop all pending frames in the queue.
+ */
+void rt2x00queue_stop_queue(struct data_queue *queue);
+
+/**
+ * rt2x00queue_flush_queue - Flush a data queue
+ * @queue: Pointer to &struct data_queue.
+ * @drop: True to drop all pending frames.
+ *
+ * This function will flush the queue. After this call
+ * the queue is guaranteed to be empty.
+ */
+void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
+
+/**
+ * rt2x00queue_start_queues - Start all data queues
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * This function will loop through all available queues to start them
+ */
+void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00queue_stop_queues - Halt all data queues
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * This function will loop through all available queues to stop
+ * any pending frames.
+ */
+void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00queue_flush_queues - Flush all data queues
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @drop: True to drop all pending frames.
+ *
+ * This function will loop through all available queues to flush
+ * any pending frames.
+ */
+void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
+
+/*
+ * Debugfs handlers.
+ */
+/**
+ * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @type: The type of frame that is being dumped.
+ * @entry: The queue entry containing the frame to be dumped.
+ */
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
+ enum rt2x00_dump_type type, struct queue_entry *entry);
+#else
+static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
+ enum rt2x00_dump_type type,
+ struct queue_entry *entry)
+{
+}
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+/*
+ * Utility functions.
+ */
+u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_vif *vif);
+void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
+
+/*
+ * Interrupt context handlers.
+ */
+void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_dmastart(struct queue_entry *entry);
+void rt2x00lib_dmadone(struct queue_entry *entry);
+void rt2x00lib_txdone(struct queue_entry *entry,
+ struct txdone_entry_desc *txdesc);
+void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
+ struct txdone_entry_desc *txdesc);
+void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
+void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
+
+/*
+ * mac80211 handlers.
+ */
+void rt2x00mac_tx(struct ieee80211_hw *hw,
+ struct ieee80211_tx_control *control,
+ struct sk_buff *skb);
+int rt2x00mac_start(struct ieee80211_hw *hw);
+void rt2x00mac_stop(struct ieee80211_hw *hw);
+void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw,
+ enum ieee80211_reconfig_type reconfig_type);
+int rt2x00mac_add_interface(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif);
+void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif);
+int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
+void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
+ unsigned int changed_flags,
+ unsigned int *total_flags,
+ u64 multicast);
+int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
+ bool set);
+#ifdef CONFIG_RT2X00_LIB_CRYPTO
+int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
+ struct ieee80211_vif *vif, struct ieee80211_sta *sta,
+ struct ieee80211_key_conf *key);
+#else
+#define rt2x00mac_set_key NULL
+#endif /* CONFIG_RT2X00_LIB_CRYPTO */
+void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ const u8 *mac_addr);
+void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif);
+int rt2x00mac_get_stats(struct ieee80211_hw *hw,
+ struct ieee80211_low_level_stats *stats);
+void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ struct ieee80211_bss_conf *bss_conf,
+ u64 changes);
+int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ unsigned int link_id, u16 queue,
+ const struct ieee80211_tx_queue_params *params);
+void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
+void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+ u32 queues, bool drop);
+int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
+int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
+void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
+ u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
+bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
+
+/*
+ * Driver allocation handlers.
+ */
+int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
+
+int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev);
+int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
+
+#endif /* RT2X00_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00config.c b/drivers/net/wireless/ralink/rt2x00/rt2x00config.c
new file mode 100644
index 0000000000..f895f560a1
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00config.c
@@ -0,0 +1,280 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00lib
+ Abstract: rt2x00 generic configuration routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+void rt2x00lib_config_intf(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_intf *intf,
+ enum nl80211_iftype type,
+ const u8 *mac, const u8 *bssid)
+{
+ struct rt2x00intf_conf conf;
+ unsigned int flags = 0;
+
+ conf.type = type;
+
+ switch (type) {
+ case NL80211_IFTYPE_ADHOC:
+ conf.sync = TSF_SYNC_ADHOC;
+ break;
+ case NL80211_IFTYPE_AP:
+ case NL80211_IFTYPE_MESH_POINT:
+ conf.sync = TSF_SYNC_AP_NONE;
+ break;
+ case NL80211_IFTYPE_STATION:
+ conf.sync = TSF_SYNC_INFRA;
+ break;
+ default:
+ conf.sync = TSF_SYNC_NONE;
+ break;
+ }
+
+ /*
+ * Note that when NULL is passed as address we will send
+ * 00:00:00:00:00 to the device to clear the address.
+ * This will prevent the device being confused when it wants
+ * to ACK frames or considers itself associated.
+ */
+ memset(conf.mac, 0, sizeof(conf.mac));
+ if (mac)
+ memcpy(conf.mac, mac, ETH_ALEN);
+
+ memset(conf.bssid, 0, sizeof(conf.bssid));
+ if (bssid)
+ memcpy(conf.bssid, bssid, ETH_ALEN);
+
+ flags |= CONFIG_UPDATE_TYPE;
+ if (mac || (!rt2x00dev->intf_ap_count && !rt2x00dev->intf_sta_count))
+ flags |= CONFIG_UPDATE_MAC;
+ if (bssid || (!rt2x00dev->intf_ap_count && !rt2x00dev->intf_sta_count))
+ flags |= CONFIG_UPDATE_BSSID;
+
+ rt2x00dev->ops->lib->config_intf(rt2x00dev, intf, &conf, flags);
+}
+
+void rt2x00lib_config_erp(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_intf *intf,
+ struct ieee80211_bss_conf *bss_conf,
+ u32 changed)
+{
+ struct ieee80211_vif *vif = container_of(bss_conf, struct ieee80211_vif,
+ bss_conf);
+ struct rt2x00lib_erp erp;
+
+ memset(&erp, 0, sizeof(erp));
+
+ erp.short_preamble = bss_conf->use_short_preamble;
+ erp.cts_protection = bss_conf->use_cts_prot;
+
+ erp.slot_time = bss_conf->use_short_slot ? SHORT_SLOT_TIME : SLOT_TIME;
+ erp.sifs = SIFS;
+ erp.pifs = bss_conf->use_short_slot ? SHORT_PIFS : PIFS;
+ erp.difs = bss_conf->use_short_slot ? SHORT_DIFS : DIFS;
+ erp.eifs = bss_conf->use_short_slot ? SHORT_EIFS : EIFS;
+
+ erp.basic_rates = bss_conf->basic_rates;
+ erp.beacon_int = bss_conf->beacon_int;
+
+ /* Update the AID, this is needed for dynamic PS support */
+ rt2x00dev->aid = vif->cfg.assoc ? vif->cfg.aid : 0;
+ rt2x00dev->last_beacon = bss_conf->sync_tsf;
+
+ /* Update global beacon interval time, this is needed for PS support */
+ rt2x00dev->beacon_int = bss_conf->beacon_int;
+
+ if (changed & BSS_CHANGED_HT)
+ erp.ht_opmode = bss_conf->ht_operation_mode;
+
+ rt2x00dev->ops->lib->config_erp(rt2x00dev, &erp, changed);
+}
+
+void rt2x00lib_config_antenna(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup config)
+{
+ struct link_ant *ant = &rt2x00dev->link.ant;
+ struct antenna_setup *def = &rt2x00dev->default_ant;
+ struct antenna_setup *active = &rt2x00dev->link.ant.active;
+
+ /*
+ * When the caller tries to send the SW diversity,
+ * we must update the ANTENNA_RX_DIVERSITY flag to
+ * enable the antenna diversity in the link tuner.
+ *
+ * Secondly, we must guarentee we never send the
+ * software antenna diversity command to the driver.
+ */
+ if (!(ant->flags & ANTENNA_RX_DIVERSITY)) {
+ if (config.rx == ANTENNA_SW_DIVERSITY) {
+ ant->flags |= ANTENNA_RX_DIVERSITY;
+
+ if (def->rx == ANTENNA_SW_DIVERSITY)
+ config.rx = ANTENNA_B;
+ else
+ config.rx = def->rx;
+ }
+ } else if (config.rx == ANTENNA_SW_DIVERSITY)
+ config.rx = active->rx;
+
+ if (!(ant->flags & ANTENNA_TX_DIVERSITY)) {
+ if (config.tx == ANTENNA_SW_DIVERSITY) {
+ ant->flags |= ANTENNA_TX_DIVERSITY;
+
+ if (def->tx == ANTENNA_SW_DIVERSITY)
+ config.tx = ANTENNA_B;
+ else
+ config.tx = def->tx;
+ }
+ } else if (config.tx == ANTENNA_SW_DIVERSITY)
+ config.tx = active->tx;
+
+ /*
+ * Antenna setup changes require the RX to be disabled,
+ * else the changes will be ignored by the device.
+ */
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt2x00queue_stop_queue(rt2x00dev->rx);
+
+ /*
+ * Write new antenna setup to device and reset the link tuner.
+ * The latter is required since we need to recalibrate the
+ * noise-sensitivity ratio for the new setup.
+ */
+ rt2x00dev->ops->lib->config_ant(rt2x00dev, &config);
+
+ rt2x00link_reset_tuner(rt2x00dev, true);
+
+ memcpy(active, &config, sizeof(config));
+
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt2x00queue_start_queue(rt2x00dev->rx);
+}
+
+static u16 rt2x00ht_center_channel(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf)
+{
+ struct hw_mode_spec *spec = &rt2x00dev->spec;
+ int center_channel;
+ u16 i;
+
+ /*
+ * Initialize center channel to current channel.
+ */
+ center_channel = spec->channels[conf->chandef.chan->hw_value].channel;
+
+ /*
+ * Adjust center channel to HT40+ and HT40- operation.
+ */
+ if (conf_is_ht40_plus(conf))
+ center_channel += 2;
+ else if (conf_is_ht40_minus(conf))
+ center_channel -= (center_channel == 14) ? 1 : 2;
+
+ for (i = 0; i < spec->num_channels; i++)
+ if (spec->channels[i].channel == center_channel)
+ return i;
+
+ WARN_ON(1);
+ return conf->chandef.chan->hw_value;
+}
+
+void rt2x00lib_config(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ unsigned int ieee80211_flags)
+{
+ struct rt2x00lib_conf libconf;
+ u16 hw_value;
+ u16 autowake_timeout;
+ u16 beacon_int;
+ u16 beacon_diff;
+
+ memset(&libconf, 0, sizeof(libconf));
+
+ libconf.conf = conf;
+
+ if (ieee80211_flags & IEEE80211_CONF_CHANGE_CHANNEL) {
+ if (!conf_is_ht(conf))
+ set_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags);
+ else
+ clear_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags);
+
+ if (conf_is_ht40(conf)) {
+ set_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags);
+ hw_value = rt2x00ht_center_channel(rt2x00dev, conf);
+ } else {
+ clear_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags);
+ hw_value = conf->chandef.chan->hw_value;
+ }
+
+ memcpy(&libconf.rf,
+ &rt2x00dev->spec.channels[hw_value],
+ sizeof(libconf.rf));
+
+ memcpy(&libconf.channel,
+ &rt2x00dev->spec.channels_info[hw_value],
+ sizeof(libconf.channel));
+
+ /* Used for VCO periodic calibration */
+ rt2x00dev->rf_channel = libconf.rf.channel;
+ }
+
+ if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_PS_AUTOWAKE) &&
+ (ieee80211_flags & IEEE80211_CONF_CHANGE_PS))
+ cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
+
+ /*
+ * Start configuration.
+ */
+ rt2x00dev->ops->lib->config(rt2x00dev, &libconf, ieee80211_flags);
+
+ if (conf->flags & IEEE80211_CONF_PS)
+ set_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
+ else
+ clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
+
+ if (conf->flags & IEEE80211_CONF_MONITOR)
+ set_bit(CONFIG_MONITORING, &rt2x00dev->flags);
+ else
+ clear_bit(CONFIG_MONITORING, &rt2x00dev->flags);
+
+ rt2x00dev->curr_band = conf->chandef.chan->band;
+ rt2x00dev->curr_freq = conf->chandef.chan->center_freq;
+ rt2x00dev->tx_power = conf->power_level;
+ rt2x00dev->short_retry = conf->short_frame_max_tx_count;
+ rt2x00dev->long_retry = conf->long_frame_max_tx_count;
+
+ /*
+ * Some configuration changes affect the link quality
+ * which means we need to reset the link tuner.
+ */
+ if (ieee80211_flags & IEEE80211_CONF_CHANGE_CHANNEL)
+ rt2x00link_reset_tuner(rt2x00dev, false);
+
+ if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
+ rt2x00_has_cap_flag(rt2x00dev, REQUIRE_PS_AUTOWAKE) &&
+ (ieee80211_flags & IEEE80211_CONF_CHANGE_PS) &&
+ (conf->flags & IEEE80211_CONF_PS)) {
+ beacon_diff = (long)jiffies - (long)rt2x00dev->last_beacon;
+ beacon_int = msecs_to_jiffies(rt2x00dev->beacon_int);
+
+ if (beacon_diff > beacon_int)
+ beacon_diff = 0;
+
+ autowake_timeout = (conf->ps_dtim_period * beacon_int) - beacon_diff;
+ queue_delayed_work(rt2x00dev->workqueue,
+ &rt2x00dev->autowakeup_work,
+ autowake_timeout - 15);
+ }
+}
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00crypto.c b/drivers/net/wireless/ralink/rt2x00/rt2x00crypto.c
new file mode 100644
index 0000000000..ad95f9eba3
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00crypto.c
@@ -0,0 +1,245 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00lib
+ Abstract: rt2x00 crypto specific routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+enum cipher rt2x00crypto_key_to_cipher(struct ieee80211_key_conf *key)
+{
+ switch (key->cipher) {
+ case WLAN_CIPHER_SUITE_WEP40:
+ return CIPHER_WEP64;
+ case WLAN_CIPHER_SUITE_WEP104:
+ return CIPHER_WEP128;
+ case WLAN_CIPHER_SUITE_TKIP:
+ return CIPHER_TKIP;
+ case WLAN_CIPHER_SUITE_CCMP:
+ return CIPHER_AES;
+ default:
+ return CIPHER_NONE;
+ }
+}
+
+void rt2x00crypto_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb,
+ struct txentry_desc *txdesc)
+{
+ struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+ struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
+
+ if (!rt2x00_has_cap_hw_crypto(rt2x00dev) || !hw_key)
+ return;
+
+ __set_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags);
+
+ txdesc->cipher = rt2x00crypto_key_to_cipher(hw_key);
+
+ if (hw_key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
+ __set_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags);
+
+ txdesc->key_idx = hw_key->hw_key_idx;
+ txdesc->iv_offset = txdesc->header_length;
+ txdesc->iv_len = hw_key->iv_len;
+
+ if (!(hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV))
+ __set_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags);
+
+ if (!(hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
+ __set_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags);
+}
+
+unsigned int rt2x00crypto_tx_overhead(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb)
+{
+ struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+ struct ieee80211_key_conf *key = tx_info->control.hw_key;
+ unsigned int overhead = 0;
+
+ if (!rt2x00_has_cap_hw_crypto(rt2x00dev) || !key)
+ return overhead;
+
+ /*
+ * Extend frame length to include IV/EIV/ICV/MMIC,
+ * note that these lengths should only be added when
+ * mac80211 does not generate it.
+ */
+ overhead += key->icv_len;
+
+ if (!(key->flags & IEEE80211_KEY_FLAG_GENERATE_IV))
+ overhead += key->iv_len;
+
+ if (!(key->flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)) {
+ if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
+ overhead += 8;
+ }
+
+ return overhead;
+}
+
+void rt2x00crypto_tx_copy_iv(struct sk_buff *skb, struct txentry_desc *txdesc)
+{
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
+
+ if (unlikely(!txdesc->iv_len))
+ return;
+
+ /* Copy IV/EIV data */
+ memcpy(skbdesc->iv, skb->data + txdesc->iv_offset, txdesc->iv_len);
+}
+
+void rt2x00crypto_tx_remove_iv(struct sk_buff *skb, struct txentry_desc *txdesc)
+{
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
+
+ if (unlikely(!txdesc->iv_len))
+ return;
+
+ /* Copy IV/EIV data */
+ memcpy(skbdesc->iv, skb->data + txdesc->iv_offset, txdesc->iv_len);
+
+ /* Move ieee80211 header */
+ memmove(skb->data + txdesc->iv_len, skb->data, txdesc->iv_offset);
+
+ /* Pull buffer to correct size */
+ skb_pull(skb, txdesc->iv_len);
+ txdesc->length -= txdesc->iv_len;
+
+ /* IV/EIV data has officially been stripped */
+ skbdesc->flags |= SKBDESC_IV_STRIPPED;
+}
+
+void rt2x00crypto_tx_insert_iv(struct sk_buff *skb, unsigned int header_length)
+{
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
+ const unsigned int iv_len =
+ ((!!(skbdesc->iv[0])) * 4) + ((!!(skbdesc->iv[1])) * 4);
+
+ if (!(skbdesc->flags & SKBDESC_IV_STRIPPED))
+ return;
+
+ skb_push(skb, iv_len);
+
+ /* Move ieee80211 header */
+ memmove(skb->data, skb->data + iv_len, header_length);
+
+ /* Copy IV/EIV data */
+ memcpy(skb->data + header_length, skbdesc->iv, iv_len);
+
+ /* IV/EIV data has returned into the frame */
+ skbdesc->flags &= ~SKBDESC_IV_STRIPPED;
+}
+
+void rt2x00crypto_rx_insert_iv(struct sk_buff *skb,
+ unsigned int header_length,
+ struct rxdone_entry_desc *rxdesc)
+{
+ unsigned int payload_len = rxdesc->size - header_length;
+ unsigned int align = ALIGN_SIZE(skb, header_length);
+ unsigned int iv_len;
+ unsigned int icv_len;
+ unsigned int transfer = 0;
+
+ /*
+ * WEP64/WEP128: Provides IV & ICV
+ * TKIP: Provides IV/EIV & ICV
+ * AES: Provies IV/EIV & ICV
+ */
+ switch (rxdesc->cipher) {
+ case CIPHER_WEP64:
+ case CIPHER_WEP128:
+ iv_len = 4;
+ icv_len = 4;
+ break;
+ case CIPHER_TKIP:
+ iv_len = 8;
+ icv_len = 4;
+ break;
+ case CIPHER_AES:
+ iv_len = 8;
+ icv_len = 8;
+ break;
+ default:
+ /* Unsupport type */
+ return;
+ }
+
+ /*
+ * Make room for new data. There are 2 possibilities
+ * either the alignment is already present between
+ * the 802.11 header and payload. In that case we
+ * have to move the header less than the iv_len
+ * since we can use the already available l2pad bytes
+ * for the iv data.
+ * When the alignment must be added manually we must
+ * move the header more then iv_len since we must
+ * make room for the payload move as well.
+ */
+ if (rxdesc->dev_flags & RXDONE_L2PAD) {
+ skb_push(skb, iv_len - align);
+ skb_put(skb, icv_len);
+
+ /* Move ieee80211 header */
+ memmove(skb->data + transfer,
+ skb->data + transfer + (iv_len - align),
+ header_length);
+ transfer += header_length;
+ } else {
+ skb_push(skb, iv_len + align);
+ if (align < icv_len)
+ skb_put(skb, icv_len - align);
+ else if (align > icv_len)
+ skb_trim(skb, rxdesc->size + iv_len + icv_len);
+
+ /* Move ieee80211 header */
+ memmove(skb->data + transfer,
+ skb->data + transfer + iv_len + align,
+ header_length);
+ transfer += header_length;
+ }
+
+ /* Copy IV/EIV data */
+ memcpy(skb->data + transfer, rxdesc->iv, iv_len);
+ transfer += iv_len;
+
+ /*
+ * Move payload for alignment purposes. Note that
+ * this is only needed when no l2 padding is present.
+ */
+ if (!(rxdesc->dev_flags & RXDONE_L2PAD)) {
+ memmove(skb->data + transfer,
+ skb->data + transfer + align,
+ payload_len);
+ }
+
+ /*
+ * NOTE: Always count the payload as transferred,
+ * even when alignment was set to zero. This is required
+ * for determining the correct offset for the ICV data.
+ */
+ transfer += payload_len;
+
+ /*
+ * Copy ICV data
+ * AES appends 8 bytes, we can't fill the upper
+ * 4 bytes, but mac80211 doesn't care about what
+ * we provide here anyway and strips it immediately.
+ */
+ memcpy(skb->data + transfer, &rxdesc->icv, 4);
+ transfer += icv_len;
+
+ /* IV/EIV/ICV has been inserted into frame */
+ rxdesc->size = transfer;
+ rxdesc->flags &= ~RX_FLAG_IV_STRIPPED;
+}
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00debug.c b/drivers/net/wireless/ralink/rt2x00/rt2x00debug.c
new file mode 100644
index 0000000000..f2395309ec
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00debug.c
@@ -0,0 +1,723 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00lib
+ Abstract: rt2x00 debugfs specific routines.
+ */
+
+#include <linux/debugfs.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/poll.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/uaccess.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+#include "rt2x00dump.h"
+
+#define MAX_LINE_LENGTH 64
+
+struct rt2x00debug_crypto {
+ unsigned long success;
+ unsigned long icv_error;
+ unsigned long mic_error;
+ unsigned long key_error;
+};
+
+struct rt2x00debug_intf {
+ /*
+ * Pointer to driver structure where
+ * this debugfs entry belongs to.
+ */
+ struct rt2x00_dev *rt2x00dev;
+
+ /*
+ * Reference to the rt2x00debug structure
+ * which can be used to communicate with
+ * the registers.
+ */
+ const struct rt2x00debug *debug;
+
+ /*
+ * Debugfs entries for:
+ * - driver folder
+ * - driver file
+ * - chipset file
+ * - device state flags file
+ * - device capability flags file
+ * - hardware restart file
+ * - register folder
+ * - csr offset/value files
+ * - eeprom offset/value files
+ * - bbp offset/value files
+ * - rf offset/value files
+ * - rfcsr offset/value files
+ * - queue folder
+ * - frame dump file
+ * - queue stats file
+ * - crypto stats file
+ */
+ struct dentry *driver_folder;
+
+ /*
+ * The frame dump file only allows a single reader,
+ * so we need to store the current state here.
+ */
+ unsigned long frame_dump_flags;
+#define FRAME_DUMP_FILE_OPEN 1
+
+ /*
+ * We queue each frame before dumping it to the user,
+ * per read command we will pass a single skb structure
+ * so we should be prepared to queue multiple sk buffers
+ * before sending it to userspace.
+ */
+ struct sk_buff_head frame_dump_skbqueue;
+ wait_queue_head_t frame_dump_waitqueue;
+
+ /*
+ * HW crypto statistics.
+ * All statistics are stored separately per cipher type.
+ */
+ struct rt2x00debug_crypto crypto_stats[CIPHER_MAX];
+
+ /*
+ * Driver and chipset files will use a data buffer
+ * that has been created in advance. This will simplify
+ * the code since we can use the debugfs functions.
+ */
+ struct debugfs_blob_wrapper driver_blob;
+ struct debugfs_blob_wrapper chipset_blob;
+
+ /*
+ * Requested offset for each register type.
+ */
+ unsigned int offset_csr;
+ unsigned int offset_eeprom;
+ unsigned int offset_bbp;
+ unsigned int offset_rf;
+ unsigned int offset_rfcsr;
+};
+
+void rt2x00debug_update_crypto(struct rt2x00_dev *rt2x00dev,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct rt2x00debug_intf *intf = rt2x00dev->debugfs_intf;
+ enum cipher cipher = rxdesc->cipher;
+ enum rx_crypto status = rxdesc->cipher_status;
+
+ if (cipher == CIPHER_TKIP_NO_MIC)
+ cipher = CIPHER_TKIP;
+ if (cipher == CIPHER_NONE || cipher >= CIPHER_MAX)
+ return;
+
+ /* Remove CIPHER_NONE index */
+ cipher--;
+
+ intf->crypto_stats[cipher].success += (status == RX_CRYPTO_SUCCESS);
+ intf->crypto_stats[cipher].icv_error += (status == RX_CRYPTO_FAIL_ICV);
+ intf->crypto_stats[cipher].mic_error += (status == RX_CRYPTO_FAIL_MIC);
+ intf->crypto_stats[cipher].key_error += (status == RX_CRYPTO_FAIL_KEY);
+}
+
+void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
+ enum rt2x00_dump_type type, struct queue_entry *entry)
+{
+ struct rt2x00debug_intf *intf = rt2x00dev->debugfs_intf;
+ struct sk_buff *skb = entry->skb;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
+ struct sk_buff *skbcopy;
+ struct rt2x00dump_hdr *dump_hdr;
+ struct timespec64 timestamp;
+ u32 data_len;
+
+ if (likely(!test_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags)))
+ return;
+
+ ktime_get_ts64(&timestamp);
+
+ if (skb_queue_len(&intf->frame_dump_skbqueue) > 20) {
+ rt2x00_dbg(rt2x00dev, "txrx dump queue length exceeded\n");
+ return;
+ }
+
+ data_len = skb->len;
+ if (skbdesc->flags & SKBDESC_DESC_IN_SKB)
+ data_len -= skbdesc->desc_len;
+
+ skbcopy = alloc_skb(sizeof(*dump_hdr) + skbdesc->desc_len + data_len,
+ GFP_ATOMIC);
+ if (!skbcopy) {
+ rt2x00_dbg(rt2x00dev, "Failed to copy skb for dump\n");
+ return;
+ }
+
+ dump_hdr = skb_put(skbcopy, sizeof(*dump_hdr));
+ dump_hdr->version = cpu_to_le32(DUMP_HEADER_VERSION);
+ dump_hdr->header_length = cpu_to_le32(sizeof(*dump_hdr));
+ dump_hdr->desc_length = cpu_to_le32(skbdesc->desc_len);
+ dump_hdr->data_length = cpu_to_le32(data_len);
+ dump_hdr->chip_rt = cpu_to_le16(rt2x00dev->chip.rt);
+ dump_hdr->chip_rf = cpu_to_le16(rt2x00dev->chip.rf);
+ dump_hdr->chip_rev = cpu_to_le16(rt2x00dev->chip.rev);
+ dump_hdr->type = cpu_to_le16(type);
+ dump_hdr->queue_index = entry->queue->qid;
+ dump_hdr->entry_index = entry->entry_idx;
+ dump_hdr->timestamp_sec = cpu_to_le32(timestamp.tv_sec);
+ dump_hdr->timestamp_usec = cpu_to_le32(timestamp.tv_nsec /
+ NSEC_PER_USEC);
+
+ if (!(skbdesc->flags & SKBDESC_DESC_IN_SKB))
+ skb_put_data(skbcopy, skbdesc->desc, skbdesc->desc_len);
+ skb_put_data(skbcopy, skb->data, skb->len);
+
+ skb_queue_tail(&intf->frame_dump_skbqueue, skbcopy);
+ wake_up_interruptible(&intf->frame_dump_waitqueue);
+
+ /*
+ * Verify that the file has not been closed while we were working.
+ */
+ if (!test_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags))
+ skb_queue_purge(&intf->frame_dump_skbqueue);
+}
+EXPORT_SYMBOL_GPL(rt2x00debug_dump_frame);
+
+static int rt2x00debug_file_open(struct inode *inode, struct file *file)
+{
+ struct rt2x00debug_intf *intf = inode->i_private;
+
+ file->private_data = inode->i_private;
+
+ if (!try_module_get(intf->debug->owner))
+ return -EBUSY;
+
+ return 0;
+}
+
+static int rt2x00debug_file_release(struct inode *inode, struct file *file)
+{
+ struct rt2x00debug_intf *intf = file->private_data;
+
+ module_put(intf->debug->owner);
+
+ return 0;
+}
+
+static int rt2x00debug_open_queue_dump(struct inode *inode, struct file *file)
+{
+ struct rt2x00debug_intf *intf = inode->i_private;
+ int retval;
+
+ retval = rt2x00debug_file_open(inode, file);
+ if (retval)
+ return retval;
+
+ if (test_and_set_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags)) {
+ rt2x00debug_file_release(inode, file);
+ return -EBUSY;
+ }
+
+ return 0;
+}
+
+static int rt2x00debug_release_queue_dump(struct inode *inode, struct file *file)
+{
+ struct rt2x00debug_intf *intf = inode->i_private;
+
+ skb_queue_purge(&intf->frame_dump_skbqueue);
+
+ clear_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags);
+
+ return rt2x00debug_file_release(inode, file);
+}
+
+static ssize_t rt2x00debug_read_queue_dump(struct file *file,
+ char __user *buf,
+ size_t length,
+ loff_t *offset)
+{
+ struct rt2x00debug_intf *intf = file->private_data;
+ struct sk_buff *skb;
+ size_t status;
+ int retval;
+
+ if (file->f_flags & O_NONBLOCK)
+ return -EAGAIN;
+
+ retval =
+ wait_event_interruptible(intf->frame_dump_waitqueue,
+ (skb =
+ skb_dequeue(&intf->frame_dump_skbqueue)));
+ if (retval)
+ return retval;
+
+ status = min_t(size_t, skb->len, length);
+ if (copy_to_user(buf, skb->data, status)) {
+ status = -EFAULT;
+ goto exit;
+ }
+
+ *offset += status;
+
+exit:
+ kfree_skb(skb);
+
+ return status;
+}
+
+static __poll_t rt2x00debug_poll_queue_dump(struct file *file,
+ poll_table *wait)
+{
+ struct rt2x00debug_intf *intf = file->private_data;
+
+ poll_wait(file, &intf->frame_dump_waitqueue, wait);
+
+ if (!skb_queue_empty(&intf->frame_dump_skbqueue))
+ return EPOLLOUT | EPOLLWRNORM;
+
+ return 0;
+}
+
+static const struct file_operations rt2x00debug_fop_queue_dump = {
+ .owner = THIS_MODULE,
+ .read = rt2x00debug_read_queue_dump,
+ .poll = rt2x00debug_poll_queue_dump,
+ .open = rt2x00debug_open_queue_dump,
+ .release = rt2x00debug_release_queue_dump,
+ .llseek = default_llseek,
+};
+
+static ssize_t rt2x00debug_read_queue_stats(struct file *file,
+ char __user *buf,
+ size_t length,
+ loff_t *offset)
+{
+ struct rt2x00debug_intf *intf = file->private_data;
+ struct data_queue *queue;
+ unsigned long irqflags;
+ unsigned int lines = 1 + intf->rt2x00dev->data_queues;
+ size_t size;
+ char *data;
+ char *temp;
+
+ if (*offset)
+ return 0;
+
+ data = kcalloc(lines, MAX_LINE_LENGTH, GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ temp = data +
+ sprintf(data, "qid\tflags\t\tcount\tlimit\tlength\tindex\tdma done\tdone\n");
+
+ queue_for_each(intf->rt2x00dev, queue) {
+ spin_lock_irqsave(&queue->index_lock, irqflags);
+
+ temp += sprintf(temp, "%d\t0x%.8x\t%d\t%d\t%d\t%d\t%d\t\t%d\n",
+ queue->qid, (unsigned int)queue->flags,
+ queue->count, queue->limit, queue->length,
+ queue->index[Q_INDEX],
+ queue->index[Q_INDEX_DMA_DONE],
+ queue->index[Q_INDEX_DONE]);
+
+ spin_unlock_irqrestore(&queue->index_lock, irqflags);
+ }
+
+ size = strlen(data);
+ size = min(size, length);
+
+ if (copy_to_user(buf, data, size)) {
+ kfree(data);
+ return -EFAULT;
+ }
+
+ kfree(data);
+
+ *offset += size;
+ return size;
+}
+
+static const struct file_operations rt2x00debug_fop_queue_stats = {
+ .owner = THIS_MODULE,
+ .read = rt2x00debug_read_queue_stats,
+ .open = rt2x00debug_file_open,
+ .release = rt2x00debug_file_release,
+ .llseek = default_llseek,
+};
+
+#ifdef CONFIG_RT2X00_LIB_CRYPTO
+static ssize_t rt2x00debug_read_crypto_stats(struct file *file,
+ char __user *buf,
+ size_t length,
+ loff_t *offset)
+{
+ struct rt2x00debug_intf *intf = file->private_data;
+ static const char * const name[] = { "WEP64", "WEP128", "TKIP", "AES" };
+ char *data;
+ char *temp;
+ size_t size;
+ unsigned int i;
+
+ if (*offset)
+ return 0;
+
+ data = kcalloc(1 + CIPHER_MAX, MAX_LINE_LENGTH, GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ temp = data;
+ temp += sprintf(data, "cipher\tsuccess\ticv err\tmic err\tkey err\n");
+
+ for (i = 0; i < CIPHER_MAX; i++) {
+ temp += sprintf(temp, "%s\t%lu\t%lu\t%lu\t%lu\n", name[i],
+ intf->crypto_stats[i].success,
+ intf->crypto_stats[i].icv_error,
+ intf->crypto_stats[i].mic_error,
+ intf->crypto_stats[i].key_error);
+ }
+
+ size = strlen(data);
+ size = min(size, length);
+
+ if (copy_to_user(buf, data, size)) {
+ kfree(data);
+ return -EFAULT;
+ }
+
+ kfree(data);
+
+ *offset += size;
+ return size;
+}
+
+static const struct file_operations rt2x00debug_fop_crypto_stats = {
+ .owner = THIS_MODULE,
+ .read = rt2x00debug_read_crypto_stats,
+ .open = rt2x00debug_file_open,
+ .release = rt2x00debug_file_release,
+ .llseek = default_llseek,
+};
+#endif
+
+#define RT2X00DEBUGFS_OPS_READ(__name, __format, __type) \
+static ssize_t rt2x00debug_read_##__name(struct file *file, \
+ char __user *buf, \
+ size_t length, \
+ loff_t *offset) \
+{ \
+ struct rt2x00debug_intf *intf = file->private_data; \
+ const struct rt2x00debug *debug = intf->debug; \
+ char line[16]; \
+ size_t size; \
+ unsigned int index = intf->offset_##__name; \
+ __type value; \
+ \
+ if (*offset) \
+ return 0; \
+ \
+ if (index >= debug->__name.word_count) \
+ return -EINVAL; \
+ \
+ index += (debug->__name.word_base / \
+ debug->__name.word_size); \
+ \
+ if (debug->__name.flags & RT2X00DEBUGFS_OFFSET) \
+ index *= debug->__name.word_size; \
+ \
+ value = debug->__name.read(intf->rt2x00dev, index); \
+ \
+ size = sprintf(line, __format, value); \
+ \
+ return simple_read_from_buffer(buf, length, offset, line, size); \
+}
+
+#define RT2X00DEBUGFS_OPS_WRITE(__name, __type) \
+static ssize_t rt2x00debug_write_##__name(struct file *file, \
+ const char __user *buf,\
+ size_t length, \
+ loff_t *offset) \
+{ \
+ struct rt2x00debug_intf *intf = file->private_data; \
+ const struct rt2x00debug *debug = intf->debug; \
+ char line[17]; \
+ size_t size; \
+ unsigned int index = intf->offset_##__name; \
+ __type value; \
+ \
+ if (*offset) \
+ return 0; \
+ \
+ if (index >= debug->__name.word_count) \
+ return -EINVAL; \
+ \
+ if (length > sizeof(line)) \
+ return -EINVAL; \
+ \
+ if (copy_from_user(line, buf, length)) \
+ return -EFAULT; \
+ line[16] = 0; \
+ \
+ size = strlen(line); \
+ value = simple_strtoul(line, NULL, 0); \
+ \
+ index += (debug->__name.word_base / \
+ debug->__name.word_size); \
+ \
+ if (debug->__name.flags & RT2X00DEBUGFS_OFFSET) \
+ index *= debug->__name.word_size; \
+ \
+ debug->__name.write(intf->rt2x00dev, index, value); \
+ \
+ *offset += size; \
+ return size; \
+}
+
+#define RT2X00DEBUGFS_OPS(__name, __format, __type) \
+RT2X00DEBUGFS_OPS_READ(__name, __format, __type); \
+RT2X00DEBUGFS_OPS_WRITE(__name, __type); \
+ \
+static const struct file_operations rt2x00debug_fop_##__name = {\
+ .owner = THIS_MODULE, \
+ .read = rt2x00debug_read_##__name, \
+ .write = rt2x00debug_write_##__name, \
+ .open = rt2x00debug_file_open, \
+ .release = rt2x00debug_file_release, \
+ .llseek = generic_file_llseek, \
+};
+
+RT2X00DEBUGFS_OPS(csr, "0x%.8x\n", u32);
+RT2X00DEBUGFS_OPS(eeprom, "0x%.4x\n", u16);
+RT2X00DEBUGFS_OPS(bbp, "0x%.2x\n", u8);
+RT2X00DEBUGFS_OPS(rf, "0x%.8x\n", u32);
+RT2X00DEBUGFS_OPS(rfcsr, "0x%.2x\n", u8);
+
+static ssize_t rt2x00debug_read_dev_flags(struct file *file,
+ char __user *buf,
+ size_t length,
+ loff_t *offset)
+{
+ struct rt2x00debug_intf *intf = file->private_data;
+ char line[16];
+ size_t size;
+
+ if (*offset)
+ return 0;
+
+ size = sprintf(line, "0x%.8x\n", (unsigned int)intf->rt2x00dev->flags);
+
+ return simple_read_from_buffer(buf, length, offset, line, size);
+}
+
+static const struct file_operations rt2x00debug_fop_dev_flags = {
+ .owner = THIS_MODULE,
+ .read = rt2x00debug_read_dev_flags,
+ .open = rt2x00debug_file_open,
+ .release = rt2x00debug_file_release,
+ .llseek = default_llseek,
+};
+
+static ssize_t rt2x00debug_read_cap_flags(struct file *file,
+ char __user *buf,
+ size_t length,
+ loff_t *offset)
+{
+ struct rt2x00debug_intf *intf = file->private_data;
+ char line[16];
+ size_t size;
+
+ if (*offset)
+ return 0;
+
+ size = sprintf(line, "0x%.8x\n", (unsigned int)intf->rt2x00dev->cap_flags);
+
+ return simple_read_from_buffer(buf, length, offset, line, size);
+}
+
+static const struct file_operations rt2x00debug_fop_cap_flags = {
+ .owner = THIS_MODULE,
+ .read = rt2x00debug_read_cap_flags,
+ .open = rt2x00debug_file_open,
+ .release = rt2x00debug_file_release,
+ .llseek = default_llseek,
+};
+
+static ssize_t rt2x00debug_write_restart_hw(struct file *file,
+ const char __user *buf,
+ size_t length,
+ loff_t *offset)
+{
+ struct rt2x00debug_intf *intf = file->private_data;
+ struct rt2x00_dev *rt2x00dev = intf->rt2x00dev;
+ static unsigned long last_reset = INITIAL_JIFFIES;
+
+ if (!rt2x00_has_cap_restart_hw(rt2x00dev))
+ return -EOPNOTSUPP;
+
+ if (time_before(jiffies, last_reset + msecs_to_jiffies(2000)))
+ return -EBUSY;
+
+ last_reset = jiffies;
+
+ ieee80211_restart_hw(rt2x00dev->hw);
+ return length;
+}
+
+static const struct file_operations rt2x00debug_restart_hw = {
+ .owner = THIS_MODULE,
+ .write = rt2x00debug_write_restart_hw,
+ .open = simple_open,
+ .llseek = generic_file_llseek,
+};
+
+static void rt2x00debug_create_file_driver(const char *name,
+ struct rt2x00debug_intf *intf,
+ struct debugfs_blob_wrapper *blob)
+{
+ char *data;
+
+ data = kzalloc(3 * MAX_LINE_LENGTH, GFP_KERNEL);
+ if (!data)
+ return;
+
+ blob->data = data;
+ data += sprintf(data, "driver:\t%s\n", intf->rt2x00dev->ops->name);
+ data += sprintf(data, "version:\t%s\n", DRV_VERSION);
+ blob->size = strlen(blob->data);
+
+ debugfs_create_blob(name, 0400, intf->driver_folder, blob);
+}
+
+static void rt2x00debug_create_file_chipset(const char *name,
+ struct rt2x00debug_intf *intf,
+ struct debugfs_blob_wrapper *blob)
+{
+ const struct rt2x00debug *debug = intf->debug;
+ char *data;
+
+ data = kzalloc(9 * MAX_LINE_LENGTH, GFP_KERNEL);
+ if (!data)
+ return;
+
+ blob->data = data;
+ data += sprintf(data, "rt chip:\t%04x\n", intf->rt2x00dev->chip.rt);
+ data += sprintf(data, "rf chip:\t%04x\n", intf->rt2x00dev->chip.rf);
+ data += sprintf(data, "revision:\t%04x\n", intf->rt2x00dev->chip.rev);
+ data += sprintf(data, "\n");
+ data += sprintf(data, "register\tbase\twords\twordsize\n");
+#define RT2X00DEBUGFS_SPRINTF_REGISTER(__name) \
+{ \
+ if (debug->__name.read) \
+ data += sprintf(data, __stringify(__name) \
+ "\t%d\t%d\t%d\n", \
+ debug->__name.word_base, \
+ debug->__name.word_count, \
+ debug->__name.word_size); \
+}
+ RT2X00DEBUGFS_SPRINTF_REGISTER(csr);
+ RT2X00DEBUGFS_SPRINTF_REGISTER(eeprom);
+ RT2X00DEBUGFS_SPRINTF_REGISTER(bbp);
+ RT2X00DEBUGFS_SPRINTF_REGISTER(rf);
+ RT2X00DEBUGFS_SPRINTF_REGISTER(rfcsr);
+#undef RT2X00DEBUGFS_SPRINTF_REGISTER
+
+ blob->size = strlen(blob->data);
+
+ debugfs_create_blob(name, 0400, intf->driver_folder, blob);
+}
+
+void rt2x00debug_register(struct rt2x00_dev *rt2x00dev)
+{
+ const struct rt2x00debug *debug = rt2x00dev->ops->debugfs;
+ struct rt2x00debug_intf *intf;
+ struct dentry *queue_folder;
+ struct dentry *register_folder;
+
+ intf = kzalloc(sizeof(struct rt2x00debug_intf), GFP_KERNEL);
+ if (!intf) {
+ rt2x00_err(rt2x00dev, "Failed to allocate debug handler\n");
+ return;
+ }
+
+ intf->debug = debug;
+ intf->rt2x00dev = rt2x00dev;
+ rt2x00dev->debugfs_intf = intf;
+
+ intf->driver_folder =
+ debugfs_create_dir(intf->rt2x00dev->ops->name,
+ rt2x00dev->hw->wiphy->debugfsdir);
+
+ rt2x00debug_create_file_driver("driver", intf, &intf->driver_blob);
+ rt2x00debug_create_file_chipset("chipset", intf, &intf->chipset_blob);
+ debugfs_create_file("dev_flags", 0400, intf->driver_folder, intf,
+ &rt2x00debug_fop_dev_flags);
+ debugfs_create_file("cap_flags", 0400, intf->driver_folder, intf,
+ &rt2x00debug_fop_cap_flags);
+ debugfs_create_file("restart_hw", 0200, intf->driver_folder, intf,
+ &rt2x00debug_restart_hw);
+
+ register_folder = debugfs_create_dir("register", intf->driver_folder);
+
+#define RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(__intf, __name) \
+({ \
+ if (debug->__name.read) { \
+ debugfs_create_u32(__stringify(__name) "_offset", 0600, \
+ register_folder, \
+ &(__intf)->offset_##__name); \
+ \
+ debugfs_create_file(__stringify(__name) "_value", 0600, \
+ register_folder, (__intf), \
+ &rt2x00debug_fop_##__name); \
+ } \
+})
+
+ RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, csr);
+ RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, eeprom);
+ RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, bbp);
+ RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, rf);
+ RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, rfcsr);
+
+#undef RT2X00DEBUGFS_CREATE_REGISTER_ENTRY
+
+ queue_folder = debugfs_create_dir("queue", intf->driver_folder);
+
+ debugfs_create_file("dump", 0400, queue_folder, intf,
+ &rt2x00debug_fop_queue_dump);
+
+ skb_queue_head_init(&intf->frame_dump_skbqueue);
+ init_waitqueue_head(&intf->frame_dump_waitqueue);
+
+ debugfs_create_file("queue", 0400, queue_folder, intf,
+ &rt2x00debug_fop_queue_stats);
+
+#ifdef CONFIG_RT2X00_LIB_CRYPTO
+ if (rt2x00_has_cap_hw_crypto(rt2x00dev))
+ debugfs_create_file("crypto", 0444, queue_folder, intf,
+ &rt2x00debug_fop_crypto_stats);
+#endif
+
+ return;
+}
+
+void rt2x00debug_deregister(struct rt2x00_dev *rt2x00dev)
+{
+ struct rt2x00debug_intf *intf = rt2x00dev->debugfs_intf;
+
+ if (unlikely(!intf))
+ return;
+
+ skb_queue_purge(&intf->frame_dump_skbqueue);
+
+ debugfs_remove_recursive(intf->driver_folder);
+ kfree(intf->chipset_blob.data);
+ kfree(intf->driver_blob.data);
+ kfree(intf);
+
+ rt2x00dev->debugfs_intf = NULL;
+}
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00debug.h b/drivers/net/wireless/ralink/rt2x00/rt2x00debug.h
new file mode 100644
index 0000000000..86658eca55
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00debug.h
@@ -0,0 +1,58 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00debug
+ Abstract: Data structures for the rt2x00debug.
+ */
+
+#ifndef RT2X00DEBUG_H
+#define RT2X00DEBUG_H
+
+struct rt2x00_dev;
+
+/**
+ * enum rt2x00debugfs_entry_flags: Flags for debugfs registry entry
+ *
+ * @RT2X00DEBUGFS_OFFSET: rt2x00lib should pass the register offset
+ * as argument when using the callback function read()/write()
+ */
+enum rt2x00debugfs_entry_flags {
+ RT2X00DEBUGFS_OFFSET = (1 << 0),
+};
+
+#define RT2X00DEBUGFS_REGISTER_ENTRY(__name, __type) \
+struct reg##__name { \
+ __type (*read)(struct rt2x00_dev *rt2x00dev, \
+ const unsigned int word); \
+ void (*write)(struct rt2x00_dev *rt2x00dev, \
+ const unsigned int word, __type data); \
+ \
+ unsigned int flags; \
+ \
+ unsigned int word_base; \
+ unsigned int word_size; \
+ unsigned int word_count; \
+} __name
+
+struct rt2x00debug {
+ /*
+ * Reference to the modules structure.
+ */
+ struct module *owner;
+
+ /*
+ * Register access entries.
+ */
+ RT2X00DEBUGFS_REGISTER_ENTRY(csr, u32);
+ RT2X00DEBUGFS_REGISTER_ENTRY(eeprom, u16);
+ RT2X00DEBUGFS_REGISTER_ENTRY(bbp, u8);
+ RT2X00DEBUGFS_REGISTER_ENTRY(rf, u32);
+ RT2X00DEBUGFS_REGISTER_ENTRY(rfcsr, u8);
+};
+
+#endif /* RT2X00DEBUG_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00dev.c b/drivers/net/wireless/ralink/rt2x00/rt2x00dev.c
new file mode 100644
index 0000000000..9a9cfd0ce4
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00dev.c
@@ -0,0 +1,1633 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+ Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00lib
+ Abstract: rt2x00 generic device routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/log2.h>
+#include <linux/of.h>
+#include <linux/of_net.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+/*
+ * Utility functions.
+ */
+u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_vif *vif)
+{
+ /*
+ * When in STA mode, bssidx is always 0 otherwise local_address[5]
+ * contains the bss number, see BSS_ID_MASK comments for details.
+ */
+ if (rt2x00dev->intf_sta_count)
+ return 0;
+ return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
+
+/*
+ * Radio control handlers.
+ */
+int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ int status;
+
+ /*
+ * Don't enable the radio twice.
+ * And check if the hardware button has been disabled.
+ */
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return 0;
+
+ /*
+ * Initialize all data queues.
+ */
+ rt2x00queue_init_queues(rt2x00dev);
+
+ /*
+ * Enable radio.
+ */
+ status =
+ rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
+ if (status)
+ return status;
+
+ rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
+
+ rt2x00leds_led_radio(rt2x00dev, true);
+ rt2x00led_led_activity(rt2x00dev, true);
+
+ set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
+
+ /*
+ * Enable queues.
+ */
+ rt2x00queue_start_queues(rt2x00dev);
+ rt2x00link_start_tuner(rt2x00dev);
+
+ /*
+ * Start watchdog monitoring.
+ */
+ rt2x00link_start_watchdog(rt2x00dev);
+
+ return 0;
+}
+
+void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return;
+
+ /*
+ * Stop watchdog monitoring.
+ */
+ rt2x00link_stop_watchdog(rt2x00dev);
+
+ /*
+ * Stop all queues
+ */
+ rt2x00link_stop_tuner(rt2x00dev);
+ rt2x00queue_stop_queues(rt2x00dev);
+ rt2x00queue_flush_queues(rt2x00dev, true);
+
+ /*
+ * Disable radio.
+ */
+ rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
+ rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
+ rt2x00led_led_activity(rt2x00dev, false);
+ rt2x00leds_led_radio(rt2x00dev, false);
+}
+
+static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
+ struct ieee80211_vif *vif)
+{
+ struct rt2x00_dev *rt2x00dev = data;
+ struct rt2x00_intf *intf = vif_to_intf(vif);
+
+ /*
+ * It is possible the radio was disabled while the work had been
+ * scheduled. If that happens we should return here immediately,
+ * note that in the spinlock protected area above the delayed_flags
+ * have been cleared correctly.
+ */
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return;
+
+ if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
+ mutex_lock(&intf->beacon_skb_mutex);
+ rt2x00queue_update_beacon(rt2x00dev, vif);
+ mutex_unlock(&intf->beacon_skb_mutex);
+ }
+}
+
+static void rt2x00lib_intf_scheduled(struct work_struct *work)
+{
+ struct rt2x00_dev *rt2x00dev =
+ container_of(work, struct rt2x00_dev, intf_work);
+
+ /*
+ * Iterate over each interface and perform the
+ * requested configurations.
+ */
+ ieee80211_iterate_active_interfaces(rt2x00dev->hw,
+ IEEE80211_IFACE_ITER_RESUME_ALL,
+ rt2x00lib_intf_scheduled_iter,
+ rt2x00dev);
+}
+
+static void rt2x00lib_autowakeup(struct work_struct *work)
+{
+ struct rt2x00_dev *rt2x00dev =
+ container_of(work, struct rt2x00_dev, autowakeup_work.work);
+
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return;
+
+ if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+ rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
+ clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
+}
+
+/*
+ * Interrupt context handlers.
+ */
+static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
+ struct ieee80211_vif *vif)
+{
+ struct ieee80211_tx_control control = {};
+ struct rt2x00_dev *rt2x00dev = data;
+ struct sk_buff *skb;
+
+ /*
+ * Only AP mode interfaces do broad- and multicast buffering
+ */
+ if (vif->type != NL80211_IFTYPE_AP)
+ return;
+
+ /*
+ * Send out buffered broad- and multicast frames
+ */
+ skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
+ while (skb) {
+ rt2x00mac_tx(rt2x00dev->hw, &control, skb);
+ skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
+ }
+}
+
+static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
+ struct ieee80211_vif *vif)
+{
+ struct rt2x00_dev *rt2x00dev = data;
+
+ if (vif->type != NL80211_IFTYPE_AP &&
+ vif->type != NL80211_IFTYPE_ADHOC &&
+ vif->type != NL80211_IFTYPE_MESH_POINT)
+ return;
+
+ /*
+ * Update the beacon without locking. This is safe on PCI devices
+ * as they only update the beacon periodically here. This should
+ * never be called for USB devices.
+ */
+ WARN_ON(rt2x00_is_usb(rt2x00dev));
+ rt2x00queue_update_beacon(rt2x00dev, vif);
+}
+
+void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
+{
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return;
+
+ /* send buffered bc/mc frames out for every bssid */
+ ieee80211_iterate_active_interfaces_atomic(
+ rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
+ rt2x00lib_bc_buffer_iter, rt2x00dev);
+ /*
+ * Devices with pre tbtt interrupt don't need to update the beacon
+ * here as they will fetch the next beacon directly prior to
+ * transmission.
+ */
+ if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
+ return;
+
+ /* fetch next beacon */
+ ieee80211_iterate_active_interfaces_atomic(
+ rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
+ rt2x00lib_beaconupdate_iter, rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
+
+void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
+{
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return;
+
+ /* fetch next beacon */
+ ieee80211_iterate_active_interfaces_atomic(
+ rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
+ rt2x00lib_beaconupdate_iter, rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
+
+void rt2x00lib_dmastart(struct queue_entry *entry)
+{
+ set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
+ rt2x00queue_index_inc(entry, Q_INDEX);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
+
+void rt2x00lib_dmadone(struct queue_entry *entry)
+{
+ set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
+ clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
+ rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
+
+static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct ieee80211_bar *bar = (void *) entry->skb->data;
+ struct rt2x00_bar_list_entry *bar_entry;
+ int ret;
+
+ if (likely(!ieee80211_is_back_req(bar->frame_control)))
+ return 0;
+
+ /*
+ * Unlike all other frames, the status report for BARs does
+ * not directly come from the hardware as it is incapable of
+ * matching a BA to a previously send BAR. The hardware will
+ * report all BARs as if they weren't acked at all.
+ *
+ * Instead the RX-path will scan for incoming BAs and set the
+ * block_acked flag if it sees one that was likely caused by
+ * a BAR from us.
+ *
+ * Remove remaining BARs here and return their status for
+ * TX done processing.
+ */
+ ret = 0;
+ rcu_read_lock();
+ list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
+ if (bar_entry->entry != entry)
+ continue;
+
+ spin_lock_bh(&rt2x00dev->bar_list_lock);
+ /* Return whether this BAR was blockacked or not */
+ ret = bar_entry->block_acked;
+ /* Remove the BAR from our checklist */
+ list_del_rcu(&bar_entry->list);
+ spin_unlock_bh(&rt2x00dev->bar_list_lock);
+ kfree_rcu(bar_entry, head);
+
+ break;
+ }
+ rcu_read_unlock();
+
+ return ret;
+}
+
+static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_tx_info *tx_info,
+ struct skb_frame_desc *skbdesc,
+ struct txdone_entry_desc *txdesc,
+ bool success)
+{
+ u8 rate_idx, rate_flags, retry_rates;
+ int i;
+
+ rate_idx = skbdesc->tx_rate_idx;
+ rate_flags = skbdesc->tx_rate_flags;
+ retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
+ (txdesc->retry + 1) : 1;
+
+ /*
+ * Initialize TX status
+ */
+ memset(&tx_info->status, 0, sizeof(tx_info->status));
+ tx_info->status.ack_signal = 0;
+
+ /*
+ * Frame was send with retries, hardware tried
+ * different rates to send out the frame, at each
+ * retry it lowered the rate 1 step except when the
+ * lowest rate was used.
+ */
+ for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
+ tx_info->status.rates[i].idx = rate_idx - i;
+ tx_info->status.rates[i].flags = rate_flags;
+
+ if (rate_idx - i == 0) {
+ /*
+ * The lowest rate (index 0) was used until the
+ * number of max retries was reached.
+ */
+ tx_info->status.rates[i].count = retry_rates - i;
+ i++;
+ break;
+ }
+ tx_info->status.rates[i].count = 1;
+ }
+ if (i < (IEEE80211_TX_MAX_RATES - 1))
+ tx_info->status.rates[i].idx = -1; /* terminate */
+
+ if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
+ tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
+
+ if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
+ if (success)
+ tx_info->flags |= IEEE80211_TX_STAT_ACK;
+ else
+ rt2x00dev->low_level_stats.dot11ACKFailureCount++;
+ }
+
+ /*
+ * Every single frame has it's own tx status, hence report
+ * every frame as ampdu of size 1.
+ *
+ * TODO: if we can find out how many frames were aggregated
+ * by the hw we could provide the real ampdu_len to mac80211
+ * which would allow the rc algorithm to better decide on
+ * which rates are suitable.
+ */
+ if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
+ tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
+ tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
+ IEEE80211_TX_CTL_AMPDU;
+ tx_info->status.ampdu_len = 1;
+ tx_info->status.ampdu_ack_len = success ? 1 : 0;
+ }
+
+ if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
+ if (success)
+ rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
+ else
+ rt2x00dev->low_level_stats.dot11RTSFailureCount++;
+ }
+}
+
+static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
+ struct queue_entry *entry)
+{
+ /*
+ * Make this entry available for reuse.
+ */
+ entry->skb = NULL;
+ entry->flags = 0;
+
+ rt2x00dev->ops->lib->clear_entry(entry);
+
+ rt2x00queue_index_inc(entry, Q_INDEX_DONE);
+
+ /*
+ * If the data queue was below the threshold before the txdone
+ * handler we must make sure the packet queue in the mac80211 stack
+ * is reenabled when the txdone handler has finished. This has to be
+ * serialized with rt2x00mac_tx(), otherwise we can wake up queue
+ * before it was stopped.
+ */
+ spin_lock_bh(&entry->queue->tx_lock);
+ if (!rt2x00queue_threshold(entry->queue))
+ rt2x00queue_unpause_queue(entry->queue);
+ spin_unlock_bh(&entry->queue->tx_lock);
+}
+
+void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
+ struct txdone_entry_desc *txdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ struct ieee80211_tx_info txinfo = {};
+ bool success;
+
+ /*
+ * Unmap the skb.
+ */
+ rt2x00queue_unmap_skb(entry);
+
+ /*
+ * Signal that the TX descriptor is no longer in the skb.
+ */
+ skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
+
+ /*
+ * Send frame to debugfs immediately, after this call is completed
+ * we are going to overwrite the skb->cb array.
+ */
+ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
+
+ /*
+ * Determine if the frame has been successfully transmitted and
+ * remove BARs from our check list while checking for their
+ * TX status.
+ */
+ success =
+ rt2x00lib_txdone_bar_status(entry) ||
+ test_bit(TXDONE_SUCCESS, &txdesc->flags);
+
+ if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
+ /*
+ * Update TX statistics.
+ */
+ rt2x00dev->link.qual.tx_success += success;
+ rt2x00dev->link.qual.tx_failed += !success;
+
+ rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
+ success);
+ ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
+ }
+
+ dev_kfree_skb_any(entry->skb);
+ rt2x00lib_clear_entry(rt2x00dev, entry);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
+
+void rt2x00lib_txdone(struct queue_entry *entry,
+ struct txdone_entry_desc *txdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ u8 skbdesc_flags = skbdesc->flags;
+ unsigned int header_length;
+ bool success;
+
+ /*
+ * Unmap the skb.
+ */
+ rt2x00queue_unmap_skb(entry);
+
+ /*
+ * Remove the extra tx headroom from the skb.
+ */
+ skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
+
+ /*
+ * Signal that the TX descriptor is no longer in the skb.
+ */
+ skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
+
+ /*
+ * Determine the length of 802.11 header.
+ */
+ header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
+
+ /*
+ * Remove L2 padding which was added during
+ */
+ if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
+ rt2x00queue_remove_l2pad(entry->skb, header_length);
+
+ /*
+ * If the IV/EIV data was stripped from the frame before it was
+ * passed to the hardware, we should now reinsert it again because
+ * mac80211 will expect the same data to be present it the
+ * frame as it was passed to us.
+ */
+ if (rt2x00_has_cap_hw_crypto(rt2x00dev))
+ rt2x00crypto_tx_insert_iv(entry->skb, header_length);
+
+ /*
+ * Send frame to debugfs immediately, after this call is completed
+ * we are going to overwrite the skb->cb array.
+ */
+ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
+
+ /*
+ * Determine if the frame has been successfully transmitted and
+ * remove BARs from our check list while checking for their
+ * TX status.
+ */
+ success =
+ rt2x00lib_txdone_bar_status(entry) ||
+ test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
+ test_bit(TXDONE_UNKNOWN, &txdesc->flags);
+
+ /*
+ * Update TX statistics.
+ */
+ rt2x00dev->link.qual.tx_success += success;
+ rt2x00dev->link.qual.tx_failed += !success;
+
+ rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
+
+ /*
+ * Only send the status report to mac80211 when it's a frame
+ * that originated in mac80211. If this was a extra frame coming
+ * through a mac80211 library call (RTS/CTS) then we should not
+ * send the status report back.
+ */
+ if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
+ if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
+ ieee80211_tx_status(rt2x00dev->hw, entry->skb);
+ else
+ ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
+ } else {
+ dev_kfree_skb_any(entry->skb);
+ }
+
+ rt2x00lib_clear_entry(rt2x00dev, entry);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
+
+void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
+{
+ struct txdone_entry_desc txdesc;
+
+ txdesc.flags = 0;
+ __set_bit(status, &txdesc.flags);
+ txdesc.retry = 0;
+
+ rt2x00lib_txdone(entry, &txdesc);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
+
+static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
+{
+ struct ieee80211_mgmt *mgmt = (void *)data;
+ u8 *pos, *end;
+
+ pos = (u8 *)mgmt->u.beacon.variable;
+ end = data + len;
+ while (pos < end) {
+ if (pos + 2 + pos[1] > end)
+ return NULL;
+
+ if (pos[0] == ie)
+ return pos;
+
+ pos += 2 + pos[1];
+ }
+
+ return NULL;
+}
+
+static void rt2x00lib_sleep(struct work_struct *work)
+{
+ struct rt2x00_dev *rt2x00dev =
+ container_of(work, struct rt2x00_dev, sleep_work);
+
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return;
+
+ /*
+ * Check again is powersaving is enabled, to prevent races from delayed
+ * work execution.
+ */
+ if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
+ rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
+ IEEE80211_CONF_CHANGE_PS);
+}
+
+static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct rt2x00_bar_list_entry *entry;
+ struct ieee80211_bar *ba = (void *)skb->data;
+
+ if (likely(!ieee80211_is_back(ba->frame_control)))
+ return;
+
+ if (rxdesc->size < sizeof(*ba) + FCS_LEN)
+ return;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
+
+ if (ba->start_seq_num != entry->start_seq_num)
+ continue;
+
+#define TID_CHECK(a, b) ( \
+ ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
+ ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
+
+ if (!TID_CHECK(ba->control, entry->control))
+ continue;
+
+#undef TID_CHECK
+
+ if (!ether_addr_equal_64bits(ba->ra, entry->ta))
+ continue;
+
+ if (!ether_addr_equal_64bits(ba->ta, entry->ra))
+ continue;
+
+ /* Mark BAR since we received the according BA */
+ spin_lock_bh(&rt2x00dev->bar_list_lock);
+ entry->block_acked = 1;
+ spin_unlock_bh(&rt2x00dev->bar_list_lock);
+ break;
+ }
+ rcu_read_unlock();
+
+}
+
+static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct ieee80211_hdr *hdr = (void *) skb->data;
+ struct ieee80211_tim_ie *tim_ie;
+ u8 *tim;
+ u8 tim_len;
+ bool cam;
+
+ /* If this is not a beacon, or if mac80211 has no powersaving
+ * configured, or if the device is already in powersaving mode
+ * we can exit now. */
+ if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
+ !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
+ return;
+
+ /* min. beacon length + FCS_LEN */
+ if (skb->len <= 40 + FCS_LEN)
+ return;
+
+ /* and only beacons from the associated BSSID, please */
+ if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
+ !rt2x00dev->aid)
+ return;
+
+ rt2x00dev->last_beacon = jiffies;
+
+ tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
+ if (!tim)
+ return;
+
+ if (tim[1] < sizeof(*tim_ie))
+ return;
+
+ tim_len = tim[1];
+ tim_ie = (struct ieee80211_tim_ie *) &tim[2];
+
+ /* Check whenever the PHY can be turned off again. */
+
+ /* 1. What about buffered unicast traffic for our AID? */
+ cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
+
+ /* 2. Maybe the AP wants to send multicast/broadcast data? */
+ cam |= (tim_ie->bitmap_ctrl & 0x01);
+
+ if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
+ queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
+}
+
+static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct ieee80211_supported_band *sband;
+ const struct rt2x00_rate *rate;
+ unsigned int i;
+ int signal = rxdesc->signal;
+ int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
+
+ switch (rxdesc->rate_mode) {
+ case RATE_MODE_CCK:
+ case RATE_MODE_OFDM:
+ /*
+ * For non-HT rates the MCS value needs to contain the
+ * actually used rate modulation (CCK or OFDM).
+ */
+ if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
+ signal = RATE_MCS(rxdesc->rate_mode, signal);
+
+ sband = &rt2x00dev->bands[rt2x00dev->curr_band];
+ for (i = 0; i < sband->n_bitrates; i++) {
+ rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
+ if (((type == RXDONE_SIGNAL_PLCP) &&
+ (rate->plcp == signal)) ||
+ ((type == RXDONE_SIGNAL_BITRATE) &&
+ (rate->bitrate == signal)) ||
+ ((type == RXDONE_SIGNAL_MCS) &&
+ (rate->mcs == signal))) {
+ return i;
+ }
+ }
+ break;
+ case RATE_MODE_HT_MIX:
+ case RATE_MODE_HT_GREENFIELD:
+ if (signal >= 0 && signal <= 76)
+ return signal;
+ break;
+ default:
+ break;
+ }
+
+ rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
+ rxdesc->rate_mode, signal, type);
+ return 0;
+}
+
+void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct rxdone_entry_desc rxdesc;
+ struct sk_buff *skb;
+ struct ieee80211_rx_status *rx_status;
+ unsigned int header_length;
+ int rate_idx;
+
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
+ !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ goto submit_entry;
+
+ if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
+ goto submit_entry;
+
+ /*
+ * Allocate a new sk_buffer. If no new buffer available, drop the
+ * received frame and reuse the existing buffer.
+ */
+ skb = rt2x00queue_alloc_rxskb(entry, gfp);
+ if (!skb)
+ goto submit_entry;
+
+ /*
+ * Unmap the skb.
+ */
+ rt2x00queue_unmap_skb(entry);
+
+ /*
+ * Extract the RXD details.
+ */
+ memset(&rxdesc, 0, sizeof(rxdesc));
+ rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
+
+ /*
+ * Check for valid size in case we get corrupted descriptor from
+ * hardware.
+ */
+ if (unlikely(rxdesc.size == 0 ||
+ rxdesc.size > entry->queue->data_size)) {
+ rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
+ rxdesc.size, entry->queue->data_size);
+ dev_kfree_skb(entry->skb);
+ goto renew_skb;
+ }
+
+ /*
+ * The data behind the ieee80211 header must be
+ * aligned on a 4 byte boundary.
+ */
+ header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
+
+ /*
+ * Hardware might have stripped the IV/EIV/ICV data,
+ * in that case it is possible that the data was
+ * provided separately (through hardware descriptor)
+ * in which case we should reinsert the data into the frame.
+ */
+ if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
+ (rxdesc.flags & RX_FLAG_IV_STRIPPED))
+ rt2x00crypto_rx_insert_iv(entry->skb, header_length,
+ &rxdesc);
+ else if (header_length &&
+ (rxdesc.size > header_length) &&
+ (rxdesc.dev_flags & RXDONE_L2PAD))
+ rt2x00queue_remove_l2pad(entry->skb, header_length);
+
+ /* Trim buffer to correct size */
+ skb_trim(entry->skb, rxdesc.size);
+
+ /*
+ * Translate the signal to the correct bitrate index.
+ */
+ rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
+ if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
+ rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
+ rxdesc.encoding = RX_ENC_HT;
+
+ /*
+ * Check if this is a beacon, and more frames have been
+ * buffered while we were in powersaving mode.
+ */
+ rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
+
+ /*
+ * Check for incoming BlockAcks to match to the BlockAckReqs
+ * we've send out.
+ */
+ rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
+
+ /*
+ * Update extra components
+ */
+ rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
+ rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
+ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
+
+ /*
+ * Initialize RX status information, and send frame
+ * to mac80211.
+ */
+ rx_status = IEEE80211_SKB_RXCB(entry->skb);
+
+ /* Ensure that all fields of rx_status are initialized
+ * properly. The skb->cb array was used for driver
+ * specific informations, so rx_status might contain
+ * garbage.
+ */
+ memset(rx_status, 0, sizeof(*rx_status));
+
+ rx_status->mactime = rxdesc.timestamp;
+ rx_status->band = rt2x00dev->curr_band;
+ rx_status->freq = rt2x00dev->curr_freq;
+ rx_status->rate_idx = rate_idx;
+ rx_status->signal = rxdesc.rssi;
+ rx_status->flag = rxdesc.flags;
+ rx_status->enc_flags = rxdesc.enc_flags;
+ rx_status->encoding = rxdesc.encoding;
+ rx_status->bw = rxdesc.bw;
+ rx_status->antenna = rt2x00dev->link.ant.active.rx;
+
+ ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
+
+renew_skb:
+ /*
+ * Replace the skb with the freshly allocated one.
+ */
+ entry->skb = skb;
+
+submit_entry:
+ entry->flags = 0;
+ rt2x00queue_index_inc(entry, Q_INDEX_DONE);
+ if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
+ test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt2x00dev->ops->lib->clear_entry(entry);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
+
+/*
+ * Driver initialization handlers.
+ */
+const struct rt2x00_rate rt2x00_supported_rates[12] = {
+ {
+ .flags = DEV_RATE_CCK,
+ .bitrate = 10,
+ .ratemask = BIT(0),
+ .plcp = 0x00,
+ .mcs = RATE_MCS(RATE_MODE_CCK, 0),
+ },
+ {
+ .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
+ .bitrate = 20,
+ .ratemask = BIT(1),
+ .plcp = 0x01,
+ .mcs = RATE_MCS(RATE_MODE_CCK, 1),
+ },
+ {
+ .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
+ .bitrate = 55,
+ .ratemask = BIT(2),
+ .plcp = 0x02,
+ .mcs = RATE_MCS(RATE_MODE_CCK, 2),
+ },
+ {
+ .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
+ .bitrate = 110,
+ .ratemask = BIT(3),
+ .plcp = 0x03,
+ .mcs = RATE_MCS(RATE_MODE_CCK, 3),
+ },
+ {
+ .flags = DEV_RATE_OFDM,
+ .bitrate = 60,
+ .ratemask = BIT(4),
+ .plcp = 0x0b,
+ .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
+ },
+ {
+ .flags = DEV_RATE_OFDM,
+ .bitrate = 90,
+ .ratemask = BIT(5),
+ .plcp = 0x0f,
+ .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
+ },
+ {
+ .flags = DEV_RATE_OFDM,
+ .bitrate = 120,
+ .ratemask = BIT(6),
+ .plcp = 0x0a,
+ .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
+ },
+ {
+ .flags = DEV_RATE_OFDM,
+ .bitrate = 180,
+ .ratemask = BIT(7),
+ .plcp = 0x0e,
+ .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
+ },
+ {
+ .flags = DEV_RATE_OFDM,
+ .bitrate = 240,
+ .ratemask = BIT(8),
+ .plcp = 0x09,
+ .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
+ },
+ {
+ .flags = DEV_RATE_OFDM,
+ .bitrate = 360,
+ .ratemask = BIT(9),
+ .plcp = 0x0d,
+ .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
+ },
+ {
+ .flags = DEV_RATE_OFDM,
+ .bitrate = 480,
+ .ratemask = BIT(10),
+ .plcp = 0x08,
+ .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
+ },
+ {
+ .flags = DEV_RATE_OFDM,
+ .bitrate = 540,
+ .ratemask = BIT(11),
+ .plcp = 0x0c,
+ .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
+ },
+};
+
+static void rt2x00lib_channel(struct ieee80211_channel *entry,
+ const int channel, const int tx_power,
+ const int value)
+{
+ /* XXX: this assumption about the band is wrong for 802.11j */
+ entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
+ entry->center_freq = ieee80211_channel_to_frequency(channel,
+ entry->band);
+ entry->hw_value = value;
+ entry->max_power = tx_power;
+ entry->max_antenna_gain = 0xff;
+}
+
+static void rt2x00lib_rate(struct ieee80211_rate *entry,
+ const u16 index, const struct rt2x00_rate *rate)
+{
+ entry->flags = 0;
+ entry->bitrate = rate->bitrate;
+ entry->hw_value = index;
+ entry->hw_value_short = index;
+
+ if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
+ entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
+}
+
+void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
+{
+ of_get_mac_address(rt2x00dev->dev->of_node, eeprom_mac_addr);
+
+ if (!is_valid_ether_addr(eeprom_mac_addr)) {
+ eth_random_addr(eeprom_mac_addr);
+ rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
+ }
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
+
+static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
+ struct hw_mode_spec *spec)
+{
+ struct ieee80211_hw *hw = rt2x00dev->hw;
+ struct ieee80211_channel *channels;
+ struct ieee80211_rate *rates;
+ unsigned int num_rates;
+ unsigned int i;
+
+ num_rates = 0;
+ if (spec->supported_rates & SUPPORT_RATE_CCK)
+ num_rates += 4;
+ if (spec->supported_rates & SUPPORT_RATE_OFDM)
+ num_rates += 8;
+
+ channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
+ if (!channels)
+ return -ENOMEM;
+
+ rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
+ if (!rates)
+ goto exit_free_channels;
+
+ /*
+ * Initialize Rate list.
+ */
+ for (i = 0; i < num_rates; i++)
+ rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
+
+ /*
+ * Initialize Channel list.
+ */
+ for (i = 0; i < spec->num_channels; i++) {
+ rt2x00lib_channel(&channels[i],
+ spec->channels[i].channel,
+ spec->channels_info[i].max_power, i);
+ }
+
+ /*
+ * Intitialize 802.11b, 802.11g
+ * Rates: CCK, OFDM.
+ * Channels: 2.4 GHz
+ */
+ if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
+ rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
+ rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
+ rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
+ rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
+ hw->wiphy->bands[NL80211_BAND_2GHZ] =
+ &rt2x00dev->bands[NL80211_BAND_2GHZ];
+ memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
+ &spec->ht, sizeof(spec->ht));
+ }
+
+ /*
+ * Intitialize 802.11a
+ * Rates: OFDM.
+ * Channels: OFDM, UNII, HiperLAN2.
+ */
+ if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
+ rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
+ spec->num_channels - 14;
+ rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
+ num_rates - 4;
+ rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
+ rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
+ hw->wiphy->bands[NL80211_BAND_5GHZ] =
+ &rt2x00dev->bands[NL80211_BAND_5GHZ];
+ memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
+ &spec->ht, sizeof(spec->ht));
+ }
+
+ return 0;
+
+ exit_free_channels:
+ kfree(channels);
+ rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
+ return -ENOMEM;
+}
+
+static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
+{
+ if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
+ ieee80211_unregister_hw(rt2x00dev->hw);
+
+ if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
+ kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
+ kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
+ rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
+ rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
+ }
+
+ kfree(rt2x00dev->spec.channels_info);
+ kfree(rt2x00dev->chan_survey);
+}
+
+static const struct ieee80211_tpt_blink rt2x00_tpt_blink[] = {
+ { .throughput = 0 * 1024, .blink_time = 334 },
+ { .throughput = 1 * 1024, .blink_time = 260 },
+ { .throughput = 2 * 1024, .blink_time = 220 },
+ { .throughput = 5 * 1024, .blink_time = 190 },
+ { .throughput = 10 * 1024, .blink_time = 170 },
+ { .throughput = 25 * 1024, .blink_time = 150 },
+ { .throughput = 54 * 1024, .blink_time = 130 },
+ { .throughput = 120 * 1024, .blink_time = 110 },
+ { .throughput = 265 * 1024, .blink_time = 80 },
+ { .throughput = 586 * 1024, .blink_time = 50 },
+};
+
+static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+ struct hw_mode_spec *spec = &rt2x00dev->spec;
+ int status;
+
+ if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
+ return 0;
+
+ /*
+ * Initialize HW modes.
+ */
+ status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
+ if (status)
+ return status;
+
+ /*
+ * Initialize HW fields.
+ */
+ rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
+
+ /*
+ * Initialize extra TX headroom required.
+ */
+ rt2x00dev->hw->extra_tx_headroom =
+ max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
+ rt2x00dev->extra_tx_headroom);
+
+ /*
+ * Take TX headroom required for alignment into account.
+ */
+ if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
+ rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
+ else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
+ rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
+
+ /*
+ * Tell mac80211 about the size of our private STA structure.
+ */
+ rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
+
+ /*
+ * Allocate tx status FIFO for driver use.
+ */
+ if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
+ /*
+ * Allocate the txstatus fifo. In the worst case the tx
+ * status fifo has to hold the tx status of all entries
+ * in all tx queues. Hence, calculate the kfifo size as
+ * tx_queues * entry_num and round up to the nearest
+ * power of 2.
+ */
+ int kfifo_size =
+ roundup_pow_of_two(rt2x00dev->ops->tx_queues *
+ rt2x00dev->tx->limit *
+ sizeof(u32));
+
+ status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
+ GFP_KERNEL);
+ if (status)
+ return status;
+ }
+
+ /*
+ * Initialize tasklets if used by the driver. Tasklets are
+ * disabled until the interrupts are turned on. The driver
+ * has to handle that.
+ */
+#define RT2X00_TASKLET_INIT(taskletname) \
+ if (rt2x00dev->ops->lib->taskletname) { \
+ tasklet_setup(&rt2x00dev->taskletname, \
+ rt2x00dev->ops->lib->taskletname); \
+ }
+
+ RT2X00_TASKLET_INIT(txstatus_tasklet);
+ RT2X00_TASKLET_INIT(pretbtt_tasklet);
+ RT2X00_TASKLET_INIT(tbtt_tasklet);
+ RT2X00_TASKLET_INIT(rxdone_tasklet);
+ RT2X00_TASKLET_INIT(autowake_tasklet);
+
+#undef RT2X00_TASKLET_INIT
+
+ ieee80211_create_tpt_led_trigger(rt2x00dev->hw,
+ IEEE80211_TPT_LEDTRIG_FL_RADIO,
+ rt2x00_tpt_blink,
+ ARRAY_SIZE(rt2x00_tpt_blink));
+
+ /*
+ * Register HW.
+ */
+ status = ieee80211_register_hw(rt2x00dev->hw);
+ if (status)
+ return status;
+
+ set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
+
+ return 0;
+}
+
+/*
+ * Initialization/uninitialization handlers.
+ */
+static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
+{
+ if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
+ return;
+
+ /*
+ * Stop rfkill polling.
+ */
+ if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
+ rt2x00rfkill_unregister(rt2x00dev);
+
+ /*
+ * Allow the HW to uninitialize.
+ */
+ rt2x00dev->ops->lib->uninitialize(rt2x00dev);
+
+ /*
+ * Free allocated queue entries.
+ */
+ rt2x00queue_uninitialize(rt2x00dev);
+}
+
+static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
+{
+ int status;
+
+ if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
+ return 0;
+
+ /*
+ * Allocate all queue entries.
+ */
+ status = rt2x00queue_initialize(rt2x00dev);
+ if (status)
+ return status;
+
+ /*
+ * Initialize the device.
+ */
+ status = rt2x00dev->ops->lib->initialize(rt2x00dev);
+ if (status) {
+ rt2x00queue_uninitialize(rt2x00dev);
+ return status;
+ }
+
+ set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
+
+ /*
+ * Start rfkill polling.
+ */
+ if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
+ rt2x00rfkill_register(rt2x00dev);
+
+ return 0;
+}
+
+int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
+{
+ int retval = 0;
+
+ /*
+ * If this is the first interface which is added,
+ * we should load the firmware now.
+ */
+ retval = rt2x00lib_load_firmware(rt2x00dev);
+ if (retval)
+ goto out;
+
+ /*
+ * Initialize the device.
+ */
+ retval = rt2x00lib_initialize(rt2x00dev);
+ if (retval)
+ goto out;
+
+ rt2x00dev->intf_ap_count = 0;
+ rt2x00dev->intf_sta_count = 0;
+ rt2x00dev->intf_associated = 0;
+
+ /* Enable the radio */
+ retval = rt2x00lib_enable_radio(rt2x00dev);
+ if (retval)
+ goto out;
+
+ set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
+
+out:
+ return retval;
+}
+
+void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
+{
+ if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
+ return;
+
+ /*
+ * Perhaps we can add something smarter here,
+ * but for now just disabling the radio should do.
+ */
+ rt2x00lib_disable_radio(rt2x00dev);
+
+ rt2x00dev->intf_ap_count = 0;
+ rt2x00dev->intf_sta_count = 0;
+ rt2x00dev->intf_associated = 0;
+}
+
+static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
+{
+ struct ieee80211_iface_limit *if_limit;
+ struct ieee80211_iface_combination *if_combination;
+
+ if (rt2x00dev->ops->max_ap_intf < 2)
+ return;
+
+ /*
+ * Build up AP interface limits structure.
+ */
+ if_limit = &rt2x00dev->if_limits_ap;
+ if_limit->max = rt2x00dev->ops->max_ap_intf;
+ if_limit->types = BIT(NL80211_IFTYPE_AP);
+#ifdef CONFIG_MAC80211_MESH
+ if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
+#endif
+
+ /*
+ * Build up AP interface combinations structure.
+ */
+ if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
+ if_combination->limits = if_limit;
+ if_combination->n_limits = 1;
+ if_combination->max_interfaces = if_limit->max;
+ if_combination->num_different_channels = 1;
+
+ /*
+ * Finally, specify the possible combinations to mac80211.
+ */
+ rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
+ rt2x00dev->hw->wiphy->n_iface_combinations = 1;
+}
+
+static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
+{
+ if (WARN_ON(!rt2x00dev->tx))
+ return 0;
+
+ if (rt2x00_is_usb(rt2x00dev))
+ return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
+
+ return rt2x00dev->tx[0].winfo_size;
+}
+
+/*
+ * driver allocation handlers.
+ */
+int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
+{
+ int retval = -ENOMEM;
+
+ /*
+ * Set possible interface combinations.
+ */
+ rt2x00lib_set_if_combinations(rt2x00dev);
+
+ /*
+ * Allocate the driver data memory, if necessary.
+ */
+ if (rt2x00dev->ops->drv_data_size > 0) {
+ rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
+ GFP_KERNEL);
+ if (!rt2x00dev->drv_data) {
+ retval = -ENOMEM;
+ goto exit;
+ }
+ }
+
+ spin_lock_init(&rt2x00dev->irqmask_lock);
+ mutex_init(&rt2x00dev->csr_mutex);
+ mutex_init(&rt2x00dev->conf_mutex);
+ INIT_LIST_HEAD(&rt2x00dev->bar_list);
+ spin_lock_init(&rt2x00dev->bar_list_lock);
+ hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
+ HRTIMER_MODE_REL);
+
+ set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+
+ /*
+ * Make room for rt2x00_intf inside the per-interface
+ * structure ieee80211_vif.
+ */
+ rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
+
+ /*
+ * rt2x00 devices can only use the last n bits of the MAC address
+ * for virtual interfaces.
+ */
+ rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
+ (rt2x00dev->ops->max_ap_intf - 1);
+
+ /*
+ * Initialize work.
+ */
+ rt2x00dev->workqueue =
+ alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
+ if (!rt2x00dev->workqueue) {
+ retval = -ENOMEM;
+ goto exit;
+ }
+
+ INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
+ INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
+ INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
+
+ /*
+ * Let the driver probe the device to detect the capabilities.
+ */
+ retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
+ if (retval) {
+ rt2x00_err(rt2x00dev, "Failed to allocate device\n");
+ goto exit;
+ }
+
+ /*
+ * Allocate queue array.
+ */
+ retval = rt2x00queue_allocate(rt2x00dev);
+ if (retval)
+ goto exit;
+
+ /* Cache TX headroom value */
+ rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
+
+ /*
+ * Determine which operating modes are supported, all modes
+ * which require beaconing, depend on the availability of
+ * beacon entries.
+ */
+ rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
+ if (rt2x00dev->bcn->limit > 0)
+ rt2x00dev->hw->wiphy->interface_modes |=
+ BIT(NL80211_IFTYPE_ADHOC) |
+#ifdef CONFIG_MAC80211_MESH
+ BIT(NL80211_IFTYPE_MESH_POINT) |
+#endif
+ BIT(NL80211_IFTYPE_AP);
+
+ rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
+
+ wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
+ NL80211_EXT_FEATURE_CQM_RSSI_LIST);
+
+ /*
+ * Initialize ieee80211 structure.
+ */
+ retval = rt2x00lib_probe_hw(rt2x00dev);
+ if (retval) {
+ rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
+ goto exit;
+ }
+
+ /*
+ * Register extra components.
+ */
+ rt2x00link_register(rt2x00dev);
+ rt2x00leds_register(rt2x00dev);
+ rt2x00debug_register(rt2x00dev);
+
+ /*
+ * Start rfkill polling.
+ */
+ if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
+ rt2x00rfkill_register(rt2x00dev);
+
+ return 0;
+
+exit:
+ rt2x00lib_remove_dev(rt2x00dev);
+
+ return retval;
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
+
+void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
+{
+ clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+
+ /*
+ * Stop rfkill polling.
+ */
+ if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
+ rt2x00rfkill_unregister(rt2x00dev);
+
+ /*
+ * Disable radio.
+ */
+ rt2x00lib_disable_radio(rt2x00dev);
+
+ /*
+ * Stop all work.
+ */
+ cancel_work_sync(&rt2x00dev->intf_work);
+ cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
+ cancel_work_sync(&rt2x00dev->sleep_work);
+
+ hrtimer_cancel(&rt2x00dev->txstatus_timer);
+
+ /*
+ * Kill the tx status tasklet.
+ */
+ tasklet_kill(&rt2x00dev->txstatus_tasklet);
+ tasklet_kill(&rt2x00dev->pretbtt_tasklet);
+ tasklet_kill(&rt2x00dev->tbtt_tasklet);
+ tasklet_kill(&rt2x00dev->rxdone_tasklet);
+ tasklet_kill(&rt2x00dev->autowake_tasklet);
+
+ /*
+ * Uninitialize device.
+ */
+ rt2x00lib_uninitialize(rt2x00dev);
+
+ if (rt2x00dev->workqueue)
+ destroy_workqueue(rt2x00dev->workqueue);
+
+ /*
+ * Free the tx status fifo.
+ */
+ kfifo_free(&rt2x00dev->txstatus_fifo);
+
+ /*
+ * Free extra components
+ */
+ rt2x00debug_deregister(rt2x00dev);
+ rt2x00leds_unregister(rt2x00dev);
+
+ /*
+ * Free ieee80211_hw memory.
+ */
+ rt2x00lib_remove_hw(rt2x00dev);
+
+ /*
+ * Free firmware image.
+ */
+ rt2x00lib_free_firmware(rt2x00dev);
+
+ /*
+ * Free queue structures.
+ */
+ rt2x00queue_free(rt2x00dev);
+
+ /*
+ * Free the driver data.
+ */
+ kfree(rt2x00dev->drv_data);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
+
+/*
+ * Device state handlers
+ */
+int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev)
+{
+ rt2x00_dbg(rt2x00dev, "Going to sleep\n");
+
+ /*
+ * Prevent mac80211 from accessing driver while suspended.
+ */
+ if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return 0;
+
+ /*
+ * Cleanup as much as possible.
+ */
+ rt2x00lib_uninitialize(rt2x00dev);
+
+ /*
+ * Suspend/disable extra components.
+ */
+ rt2x00leds_suspend(rt2x00dev);
+ rt2x00debug_deregister(rt2x00dev);
+
+ /*
+ * Set device mode to sleep for power management,
+ * on some hardware this call seems to consistently fail.
+ * From the specifications it is hard to tell why it fails,
+ * and if this is a "bad thing".
+ * Overall it is safe to just ignore the failure and
+ * continue suspending. The only downside is that the
+ * device will not be in optimal power save mode, but with
+ * the radio and the other components already disabled the
+ * device is as good as disabled.
+ */
+ if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
+ rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
+
+int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
+{
+ rt2x00_dbg(rt2x00dev, "Waking up\n");
+
+ /*
+ * Restore/enable extra components.
+ */
+ rt2x00debug_register(rt2x00dev);
+ rt2x00leds_resume(rt2x00dev);
+
+ /*
+ * We are ready again to receive requests from mac80211.
+ */
+ set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_resume);
+
+/*
+ * rt2x00lib module information.
+ */
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2x00 library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00dump.h b/drivers/net/wireless/ralink/rt2x00/rt2x00dump.h
new file mode 100644
index 0000000000..9f9915857e
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00dump.h
@@ -0,0 +1,116 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00dump
+ Abstract:
+ Data structures for the rt2x00debug & userspace.
+
+ The declarations in this file can be used by both rt2x00
+ and userspace and therefore should be kept together in
+ this file.
+ */
+
+#ifndef RT2X00DUMP_H
+#define RT2X00DUMP_H
+
+/**
+ * DOC: Introduction
+ *
+ * This header is intended to be exported to userspace,
+ * to make the structures and enumerations available to userspace
+ * applications. This means that all data types should be exportable.
+ *
+ * When rt2x00 is compiled with debugfs support enabled,
+ * it is possible to capture all data coming in and out of the device
+ * by reading the frame dump file. This file can have only a single reader.
+ * The following frames will be reported:
+ * - All incoming frames (rx)
+ * - All outgoing frames (tx, including beacon and atim)
+ * - All completed frames (txdone including atim)
+ *
+ * The data is send to the file using the following format:
+ *
+ * [rt2x00dump header][hardware descriptor][ieee802.11 frame]
+ *
+ * rt2x00dump header: The description of the dumped frame, as well as
+ * additional information useful for debugging. See &rt2x00dump_hdr.
+ * hardware descriptor: Descriptor that was used to receive or transmit
+ * the frame.
+ * ieee802.11 frame: The actual frame that was received or transmitted.
+ */
+
+/**
+ * enum rt2x00_dump_type - Frame type
+ *
+ * These values are used for the @type member of &rt2x00dump_hdr.
+ * @DUMP_FRAME_RXDONE: This frame has been received by the hardware.
+ * @DUMP_FRAME_TX: This frame is queued for transmission to the hardware.
+ * @DUMP_FRAME_TXDONE: This frame indicates the device has handled
+ * the tx event which has either succeeded or failed. A frame
+ * with this type should also have been reported with as a
+ * %DUMP_FRAME_TX frame.
+ * @DUMP_FRAME_BEACON: This beacon frame is queued for transmission to the
+ * hardware.
+ */
+enum rt2x00_dump_type {
+ DUMP_FRAME_RXDONE = 1,
+ DUMP_FRAME_TX = 2,
+ DUMP_FRAME_TXDONE = 3,
+ DUMP_FRAME_BEACON = 4,
+};
+
+/**
+ * struct rt2x00dump_hdr - Dump frame header
+ *
+ * Each frame dumped to the debugfs file starts with this header
+ * attached. This header contains the description of the actual
+ * frame which was dumped.
+ *
+ * New fields inside the structure must be appended to the end of
+ * the structure. This way userspace tools compiled for earlier
+ * header versions can still correctly handle the frame dump
+ * (although they will not handle all data passed to them in the dump).
+ *
+ * @version: Header version should always be set to %DUMP_HEADER_VERSION.
+ * This field must be checked by userspace to determine if it can
+ * handle this frame.
+ * @header_length: The length of the &rt2x00dump_hdr structure. This is
+ * used for compatibility reasons so userspace can easily determine
+ * the location of the next field in the dump.
+ * @desc_length: The length of the device descriptor.
+ * @data_length: The length of the frame data (including the ieee802.11 header.
+ * @chip_rt: RT chipset
+ * @chip_rf: RF chipset
+ * @chip_rev: Chipset revision
+ * @type: The frame type (&rt2x00_dump_type)
+ * @queue_index: The index number of the data queue.
+ * @entry_index: The index number of the entry inside the data queue.
+ * @timestamp_sec: Timestamp - seconds
+ * @timestamp_usec: Timestamp - microseconds
+ */
+struct rt2x00dump_hdr {
+ __le32 version;
+#define DUMP_HEADER_VERSION 3
+
+ __le32 header_length;
+ __le32 desc_length;
+ __le32 data_length;
+
+ __le16 chip_rt;
+ __le16 chip_rf;
+ __le16 chip_rev;
+
+ __le16 type;
+ __u8 queue_index;
+ __u8 entry_index;
+
+ __le32 timestamp_sec;
+ __le32 timestamp_usec;
+};
+
+#endif /* RT2X00DUMP_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00firmware.c b/drivers/net/wireless/ralink/rt2x00/rt2x00firmware.c
new file mode 100644
index 0000000000..c20886b02e
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00firmware.c
@@ -0,0 +1,118 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00lib
+ Abstract: rt2x00 firmware loading routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+static int rt2x00lib_request_firmware(struct rt2x00_dev *rt2x00dev)
+{
+ struct device *device = wiphy_dev(rt2x00dev->hw->wiphy);
+ const struct firmware *fw;
+ char *fw_name;
+ int retval;
+
+ /*
+ * Read correct firmware from harddisk.
+ */
+ fw_name = rt2x00dev->ops->lib->get_firmware_name(rt2x00dev);
+ if (!fw_name) {
+ rt2x00_err(rt2x00dev,
+ "Invalid firmware filename\n"
+ "Please file bug report to %s\n", DRV_PROJECT);
+ return -EINVAL;
+ }
+
+ rt2x00_info(rt2x00dev, "Loading firmware file '%s'\n", fw_name);
+
+ retval = request_firmware(&fw, fw_name, device);
+ if (retval) {
+ rt2x00_err(rt2x00dev, "Failed to request Firmware\n");
+ return retval;
+ }
+
+ if (!fw || !fw->size || !fw->data) {
+ rt2x00_err(rt2x00dev, "Failed to read Firmware\n");
+ release_firmware(fw);
+ return -ENOENT;
+ }
+
+ rt2x00_info(rt2x00dev, "Firmware detected - version: %d.%d\n",
+ fw->data[fw->size - 4], fw->data[fw->size - 3]);
+ snprintf(rt2x00dev->hw->wiphy->fw_version,
+ sizeof(rt2x00dev->hw->wiphy->fw_version), "%d.%d",
+ fw->data[fw->size - 4], fw->data[fw->size - 3]);
+
+ retval = rt2x00dev->ops->lib->check_firmware(rt2x00dev, fw->data, fw->size);
+ switch (retval) {
+ case FW_OK:
+ break;
+ case FW_BAD_CRC:
+ rt2x00_err(rt2x00dev, "Firmware checksum error\n");
+ goto exit;
+ case FW_BAD_LENGTH:
+ rt2x00_err(rt2x00dev, "Invalid firmware file length (len=%zu)\n",
+ fw->size);
+ goto exit;
+ case FW_BAD_VERSION:
+ rt2x00_err(rt2x00dev, "Current firmware does not support detected chipset\n");
+ goto exit;
+ }
+
+ rt2x00dev->fw = fw;
+
+ return 0;
+
+exit:
+ release_firmware(fw);
+
+ return -ENOENT;
+}
+
+int rt2x00lib_load_firmware(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+
+ if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_FIRMWARE))
+ return 0;
+
+ if (!rt2x00dev->fw) {
+ retval = rt2x00lib_request_firmware(rt2x00dev);
+ if (retval)
+ return retval;
+ }
+
+ /*
+ * Send firmware to the device.
+ */
+ retval = rt2x00dev->ops->lib->load_firmware(rt2x00dev,
+ rt2x00dev->fw->data,
+ rt2x00dev->fw->size);
+
+ /*
+ * When the firmware is uploaded to the hardware the LED
+ * association status might have been triggered, for correct
+ * LED handling it should now be reset.
+ */
+ rt2x00leds_led_assoc(rt2x00dev, false);
+
+ return retval;
+}
+
+void rt2x00lib_free_firmware(struct rt2x00_dev *rt2x00dev)
+{
+ release_firmware(rt2x00dev->fw);
+ rt2x00dev->fw = NULL;
+}
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00leds.c b/drivers/net/wireless/ralink/rt2x00/rt2x00leds.c
new file mode 100644
index 0000000000..f5361d582d
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00leds.c
@@ -0,0 +1,233 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00lib
+ Abstract: rt2x00 led specific routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+void rt2x00leds_led_quality(struct rt2x00_dev *rt2x00dev, int rssi)
+{
+ struct rt2x00_led *led = &rt2x00dev->led_qual;
+ unsigned int brightness;
+
+ if ((led->type != LED_TYPE_QUALITY) || !(led->flags & LED_REGISTERED))
+ return;
+
+ /*
+ * Led handling requires a positive value for the rssi,
+ * to do that correctly we need to add the correction.
+ */
+ rssi += rt2x00dev->rssi_offset;
+
+ /*
+ * Get the rssi level, this is used to convert the rssi
+ * to a LED value inside the range LED_OFF - LED_FULL.
+ */
+ if (rssi <= 30)
+ rssi = 0;
+ else if (rssi <= 39)
+ rssi = 1;
+ else if (rssi <= 49)
+ rssi = 2;
+ else if (rssi <= 53)
+ rssi = 3;
+ else if (rssi <= 63)
+ rssi = 4;
+ else
+ rssi = 5;
+
+ /*
+ * Note that we must _not_ send LED_OFF since the driver
+ * is going to calculate the value and might use it in a
+ * division.
+ */
+ brightness = ((LED_FULL / 6) * rssi) + 1;
+ if (brightness != led->led_dev.brightness) {
+ led->led_dev.brightness_set(&led->led_dev, brightness);
+ led->led_dev.brightness = brightness;
+ }
+}
+
+static void rt2x00led_led_simple(struct rt2x00_led *led, bool enabled)
+{
+ unsigned int brightness = enabled ? LED_FULL : LED_OFF;
+
+ if (!(led->flags & LED_REGISTERED))
+ return;
+
+ led->led_dev.brightness_set(&led->led_dev, brightness);
+ led->led_dev.brightness = brightness;
+}
+
+void rt2x00led_led_activity(struct rt2x00_dev *rt2x00dev, bool enabled)
+{
+ if (rt2x00dev->led_qual.type == LED_TYPE_ACTIVITY)
+ rt2x00led_led_simple(&rt2x00dev->led_qual, enabled);
+}
+
+void rt2x00leds_led_assoc(struct rt2x00_dev *rt2x00dev, bool enabled)
+{
+ if (rt2x00dev->led_assoc.type == LED_TYPE_ASSOC)
+ rt2x00led_led_simple(&rt2x00dev->led_assoc, enabled);
+}
+
+void rt2x00leds_led_radio(struct rt2x00_dev *rt2x00dev, bool enabled)
+{
+ if (rt2x00dev->led_radio.type == LED_TYPE_RADIO)
+ rt2x00led_led_simple(&rt2x00dev->led_radio, enabled);
+}
+
+static int rt2x00leds_register_led(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_led *led,
+ const char *name)
+{
+ struct device *device = wiphy_dev(rt2x00dev->hw->wiphy);
+ int retval;
+
+ led->led_dev.name = name;
+ led->led_dev.brightness = LED_OFF;
+
+ retval = led_classdev_register(device, &led->led_dev);
+ if (retval) {
+ rt2x00_err(rt2x00dev, "Failed to register led handler\n");
+ return retval;
+ }
+
+ led->flags |= LED_REGISTERED;
+
+ return 0;
+}
+
+void rt2x00leds_register(struct rt2x00_dev *rt2x00dev)
+{
+ char name[36];
+ int retval;
+ unsigned long on_period;
+ unsigned long off_period;
+ const char *phy_name = wiphy_name(rt2x00dev->hw->wiphy);
+
+ if (rt2x00dev->led_radio.flags & LED_INITIALIZED) {
+ snprintf(name, sizeof(name), "%s-%s::radio",
+ rt2x00dev->ops->name, phy_name);
+
+ retval = rt2x00leds_register_led(rt2x00dev,
+ &rt2x00dev->led_radio,
+ name);
+ if (retval)
+ goto exit_fail;
+ }
+
+ if (rt2x00dev->led_assoc.flags & LED_INITIALIZED) {
+ snprintf(name, sizeof(name), "%s-%s::assoc",
+ rt2x00dev->ops->name, phy_name);
+
+ retval = rt2x00leds_register_led(rt2x00dev,
+ &rt2x00dev->led_assoc,
+ name);
+ if (retval)
+ goto exit_fail;
+ }
+
+ if (rt2x00dev->led_qual.flags & LED_INITIALIZED) {
+ snprintf(name, sizeof(name), "%s-%s::quality",
+ rt2x00dev->ops->name, phy_name);
+
+ retval = rt2x00leds_register_led(rt2x00dev,
+ &rt2x00dev->led_qual,
+ name);
+ if (retval)
+ goto exit_fail;
+ }
+
+ /*
+ * Initialize blink time to default value:
+ * On period: 70ms
+ * Off period: 30ms
+ */
+ if (rt2x00dev->led_radio.led_dev.blink_set) {
+ on_period = 70;
+ off_period = 30;
+ rt2x00dev->led_radio.led_dev.blink_set(
+ &rt2x00dev->led_radio.led_dev, &on_period, &off_period);
+ }
+
+ return;
+
+exit_fail:
+ rt2x00leds_unregister(rt2x00dev);
+}
+
+static void rt2x00leds_unregister_led(struct rt2x00_led *led)
+{
+ led_classdev_unregister(&led->led_dev);
+
+ /*
+ * This might look weird, but when we are unregistering while
+ * suspended the led is already off, and since we haven't
+ * fully resumed yet, access to the device might not be
+ * possible yet.
+ */
+ if (!(led->led_dev.flags & LED_SUSPENDED))
+ led->led_dev.brightness_set(&led->led_dev, LED_OFF);
+
+ led->flags &= ~LED_REGISTERED;
+}
+
+void rt2x00leds_unregister(struct rt2x00_dev *rt2x00dev)
+{
+ if (rt2x00dev->led_qual.flags & LED_REGISTERED)
+ rt2x00leds_unregister_led(&rt2x00dev->led_qual);
+ if (rt2x00dev->led_assoc.flags & LED_REGISTERED)
+ rt2x00leds_unregister_led(&rt2x00dev->led_assoc);
+ if (rt2x00dev->led_radio.flags & LED_REGISTERED)
+ rt2x00leds_unregister_led(&rt2x00dev->led_radio);
+}
+
+static inline void rt2x00leds_suspend_led(struct rt2x00_led *led)
+{
+ led_classdev_suspend(&led->led_dev);
+
+ /* This shouldn't be needed, but just to be safe */
+ led->led_dev.brightness_set(&led->led_dev, LED_OFF);
+ led->led_dev.brightness = LED_OFF;
+}
+
+void rt2x00leds_suspend(struct rt2x00_dev *rt2x00dev)
+{
+ if (rt2x00dev->led_qual.flags & LED_REGISTERED)
+ rt2x00leds_suspend_led(&rt2x00dev->led_qual);
+ if (rt2x00dev->led_assoc.flags & LED_REGISTERED)
+ rt2x00leds_suspend_led(&rt2x00dev->led_assoc);
+ if (rt2x00dev->led_radio.flags & LED_REGISTERED)
+ rt2x00leds_suspend_led(&rt2x00dev->led_radio);
+}
+
+static inline void rt2x00leds_resume_led(struct rt2x00_led *led)
+{
+ led_classdev_resume(&led->led_dev);
+
+ /* Device might have enabled the LEDS during resume */
+ led->led_dev.brightness_set(&led->led_dev, LED_OFF);
+ led->led_dev.brightness = LED_OFF;
+}
+
+void rt2x00leds_resume(struct rt2x00_dev *rt2x00dev)
+{
+ if (rt2x00dev->led_radio.flags & LED_REGISTERED)
+ rt2x00leds_resume_led(&rt2x00dev->led_radio);
+ if (rt2x00dev->led_assoc.flags & LED_REGISTERED)
+ rt2x00leds_resume_led(&rt2x00dev->led_assoc);
+ if (rt2x00dev->led_qual.flags & LED_REGISTERED)
+ rt2x00leds_resume_led(&rt2x00dev->led_qual);
+}
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00leds.h b/drivers/net/wireless/ralink/rt2x00/rt2x00leds.h
new file mode 100644
index 0000000000..826058d419
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00leds.h
@@ -0,0 +1,33 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00lib
+ Abstract: rt2x00 led datastructures and routines
+ */
+
+#ifndef RT2X00LEDS_H
+#define RT2X00LEDS_H
+
+enum led_type {
+ LED_TYPE_RADIO,
+ LED_TYPE_ASSOC,
+ LED_TYPE_ACTIVITY,
+ LED_TYPE_QUALITY,
+};
+
+struct rt2x00_led {
+ struct rt2x00_dev *rt2x00dev;
+ struct led_classdev led_dev;
+
+ enum led_type type;
+ unsigned int flags;
+#define LED_INITIALIZED ( 1 << 0 )
+#define LED_REGISTERED ( 1 << 1 )
+};
+
+#endif /* RT2X00LEDS_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00lib.h b/drivers/net/wireless/ralink/rt2x00/rt2x00lib.h
new file mode 100644
index 0000000000..2f1385baa7
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00lib.h
@@ -0,0 +1,434 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00lib
+ Abstract: Data structures and definitions for the rt2x00lib module.
+ */
+
+#ifndef RT2X00LIB_H
+#define RT2X00LIB_H
+
+/*
+ * Interval defines
+ */
+#define WATCHDOG_INTERVAL round_jiffies_relative(HZ)
+#define LINK_TUNE_SECONDS 1
+#define LINK_TUNE_INTERVAL round_jiffies_relative(LINK_TUNE_SECONDS * HZ)
+#define AGC_SECONDS 4
+#define VCO_SECONDS 10
+
+/*
+ * rt2x00_rate: Per rate device information
+ */
+struct rt2x00_rate {
+ unsigned short flags;
+#define DEV_RATE_CCK 0x0001
+#define DEV_RATE_OFDM 0x0002
+#define DEV_RATE_SHORT_PREAMBLE 0x0004
+
+ unsigned short bitrate; /* In 100kbit/s */
+ unsigned short ratemask;
+
+ unsigned short plcp;
+ unsigned short mcs;
+};
+
+extern const struct rt2x00_rate rt2x00_supported_rates[12];
+
+static inline const struct rt2x00_rate *rt2x00_get_rate(const u16 hw_value)
+{
+ return &rt2x00_supported_rates[hw_value & 0xff];
+}
+
+#define RATE_MCS(__mode, __mcs) \
+ ((((__mode) & 0x00ff) << 8) | ((__mcs) & 0x00ff))
+
+static inline int rt2x00_get_rate_mcs(const u16 mcs_value)
+{
+ return (mcs_value & 0x00ff);
+}
+
+/*
+ * Radio control handlers.
+ */
+int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev);
+
+/*
+ * Initialization handlers.
+ */
+int rt2x00lib_start(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev);
+
+/*
+ * Configuration handlers.
+ */
+void rt2x00lib_config_intf(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_intf *intf,
+ enum nl80211_iftype type,
+ const u8 *mac, const u8 *bssid);
+void rt2x00lib_config_erp(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_intf *intf,
+ struct ieee80211_bss_conf *conf,
+ u32 changed);
+void rt2x00lib_config_antenna(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup ant);
+void rt2x00lib_config(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_conf *conf,
+ const unsigned int changed_flags);
+
+/**
+ * DOC: Queue handlers
+ */
+
+/**
+ * rt2x00queue_alloc_rxskb - allocate a skb for RX purposes.
+ * @entry: The entry for which the skb will be applicable.
+ */
+struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp);
+
+/**
+ * rt2x00queue_free_skb - free a skb
+ * @entry: The entry for which the skb will be applicable.
+ */
+void rt2x00queue_free_skb(struct queue_entry *entry);
+
+/**
+ * rt2x00queue_align_frame - Align 802.11 frame to 4-byte boundary
+ * @skb: The skb to align
+ *
+ * Align the start of the 802.11 frame to a 4-byte boundary, this could
+ * mean the payload is not aligned properly though.
+ */
+void rt2x00queue_align_frame(struct sk_buff *skb);
+
+/**
+ * rt2x00queue_insert_l2pad - Align 802.11 header & payload to 4-byte boundary
+ * @skb: The skb to align
+ * @header_length: Length of 802.11 header
+ *
+ * Apply L2 padding to align both header and payload to 4-byte boundary
+ */
+void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length);
+
+/**
+ * rt2x00queue_insert_l2pad - Remove L2 padding from 802.11 frame
+ * @skb: The skb to align
+ * @header_length: Length of 802.11 header
+ *
+ * Remove L2 padding used to align both header and payload to 4-byte boundary,
+ * by removing the L2 padding the header will no longer be 4-byte aligned.
+ */
+void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length);
+
+/**
+ * rt2x00queue_write_tx_frame - Write TX frame to hardware
+ * @queue: Queue over which the frame should be send
+ * @skb: The skb to send
+ * @local: frame is not from mac80211
+ */
+int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
+ struct ieee80211_sta *sta, bool local);
+
+/**
+ * rt2x00queue_update_beacon - Send new beacon from mac80211
+ * to hardware. Handles locking by itself (mutex).
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @vif: Interface for which the beacon should be updated.
+ */
+int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_vif *vif);
+
+/**
+ * rt2x00queue_update_beacon_locked - Send new beacon from mac80211
+ * to hardware. Caller needs to ensure locking.
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @vif: Interface for which the beacon should be updated.
+ */
+int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_vif *vif);
+
+/**
+ * rt2x00queue_clear_beacon - Clear beacon in hardware
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @vif: Interface for which the beacon should be updated.
+ */
+int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_vif *vif);
+
+/**
+ * rt2x00queue_index_inc - Index incrementation function
+ * @entry: Queue entry (&struct queue_entry) to perform the action on.
+ * @index: Index type (&enum queue_index) to perform the action on.
+ *
+ * This function will increase the requested index on the entry's queue,
+ * it will grab the appropriate locks and handle queue overflow events by
+ * resetting the index to the start of the queue.
+ */
+void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index);
+
+/**
+ * rt2x00queue_init_queues - Initialize all data queues
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * This function will loop through all available queues to clear all
+ * index numbers and set the queue entry to the correct initialization
+ * state.
+ */
+void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev);
+
+int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev);
+void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev);
+int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev);
+void rt2x00queue_free(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_update_stats - Update link statistics from RX frame
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @skb: Received frame
+ * @rxdesc: Received frame descriptor
+ *
+ * Update link statistics based on the information from the
+ * received frame descriptor.
+ */
+void rt2x00link_update_stats(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb,
+ struct rxdone_entry_desc *rxdesc);
+
+/**
+ * rt2x00link_start_tuner - Start periodic link tuner work
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * This start the link tuner periodic work, this work will
+ * be executed periodically until &rt2x00link_stop_tuner has
+ * been called.
+ */
+void rt2x00link_start_tuner(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_stop_tuner - Stop periodic link tuner work
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * After this function completed the link tuner will not
+ * be running until &rt2x00link_start_tuner is called.
+ */
+void rt2x00link_stop_tuner(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_reset_tuner - Reset periodic link tuner work
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @antenna: Should the antenna tuning also be reset
+ *
+ * The VGC limit configured in the hardware will be reset to 0
+ * which forces the driver to rediscover the correct value for
+ * the current association. This is needed when configuration
+ * options have changed which could drastically change the
+ * SNR level or link quality (i.e. changing the antenna setting).
+ *
+ * Resetting the link tuner will also cause the periodic work counter
+ * to be reset. Any driver which has a fixed limit on the number
+ * of rounds the link tuner is supposed to work will accept the
+ * tuner actions again if this limit was previously reached.
+ *
+ * If @antenna is set to true a the software antenna diversity
+ * tuning will also be reset.
+ */
+void rt2x00link_reset_tuner(struct rt2x00_dev *rt2x00dev, bool antenna);
+
+/**
+ * rt2x00link_start_watchdog - Start periodic watchdog monitoring
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * This start the watchdog periodic work, this work will
+ *be executed periodically until &rt2x00link_stop_watchdog has
+ * been called.
+ */
+void rt2x00link_start_watchdog(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_stop_watchdog - Stop periodic watchdog monitoring
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * After this function completed the watchdog monitoring will not
+ * be running until &rt2x00link_start_watchdog is called.
+ */
+void rt2x00link_stop_watchdog(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_register - Initialize link tuning & watchdog functionality
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * Initialize work structure and all link tuning and watchdog related
+ * parameters. This will not start the periodic work itself.
+ */
+void rt2x00link_register(struct rt2x00_dev *rt2x00dev);
+
+/*
+ * Firmware handlers.
+ */
+#ifdef CONFIG_RT2X00_LIB_FIRMWARE
+int rt2x00lib_load_firmware(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_free_firmware(struct rt2x00_dev *rt2x00dev);
+#else
+static inline int rt2x00lib_load_firmware(struct rt2x00_dev *rt2x00dev)
+{
+ return 0;
+}
+static inline void rt2x00lib_free_firmware(struct rt2x00_dev *rt2x00dev)
+{
+}
+#endif /* CONFIG_RT2X00_LIB_FIRMWARE */
+
+/*
+ * Debugfs handlers.
+ */
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+void rt2x00debug_register(struct rt2x00_dev *rt2x00dev);
+void rt2x00debug_deregister(struct rt2x00_dev *rt2x00dev);
+void rt2x00debug_update_crypto(struct rt2x00_dev *rt2x00dev,
+ struct rxdone_entry_desc *rxdesc);
+#else
+static inline void rt2x00debug_register(struct rt2x00_dev *rt2x00dev)
+{
+}
+
+static inline void rt2x00debug_deregister(struct rt2x00_dev *rt2x00dev)
+{
+}
+
+static inline void rt2x00debug_update_crypto(struct rt2x00_dev *rt2x00dev,
+ struct rxdone_entry_desc *rxdesc)
+{
+}
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+/*
+ * Crypto handlers.
+ */
+#ifdef CONFIG_RT2X00_LIB_CRYPTO
+enum cipher rt2x00crypto_key_to_cipher(struct ieee80211_key_conf *key);
+void rt2x00crypto_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb,
+ struct txentry_desc *txdesc);
+unsigned int rt2x00crypto_tx_overhead(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb);
+void rt2x00crypto_tx_copy_iv(struct sk_buff *skb,
+ struct txentry_desc *txdesc);
+void rt2x00crypto_tx_remove_iv(struct sk_buff *skb,
+ struct txentry_desc *txdesc);
+void rt2x00crypto_tx_insert_iv(struct sk_buff *skb, unsigned int header_length);
+void rt2x00crypto_rx_insert_iv(struct sk_buff *skb,
+ unsigned int header_length,
+ struct rxdone_entry_desc *rxdesc);
+#else
+static inline enum cipher rt2x00crypto_key_to_cipher(struct ieee80211_key_conf *key)
+{
+ return CIPHER_NONE;
+}
+
+static inline void rt2x00crypto_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb,
+ struct txentry_desc *txdesc)
+{
+}
+
+static inline unsigned int rt2x00crypto_tx_overhead(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb)
+{
+ return 0;
+}
+
+static inline void rt2x00crypto_tx_copy_iv(struct sk_buff *skb,
+ struct txentry_desc *txdesc)
+{
+}
+
+static inline void rt2x00crypto_tx_remove_iv(struct sk_buff *skb,
+ struct txentry_desc *txdesc)
+{
+}
+
+static inline void rt2x00crypto_tx_insert_iv(struct sk_buff *skb,
+ unsigned int header_length)
+{
+}
+
+static inline void rt2x00crypto_rx_insert_iv(struct sk_buff *skb,
+ unsigned int header_length,
+ struct rxdone_entry_desc *rxdesc)
+{
+}
+#endif /* CONFIG_RT2X00_LIB_CRYPTO */
+
+/*
+ * RFkill handlers.
+ */
+static inline void rt2x00rfkill_register(struct rt2x00_dev *rt2x00dev)
+{
+ if (test_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags))
+ wiphy_rfkill_start_polling(rt2x00dev->hw->wiphy);
+}
+
+static inline void rt2x00rfkill_unregister(struct rt2x00_dev *rt2x00dev)
+{
+ if (test_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags))
+ wiphy_rfkill_stop_polling(rt2x00dev->hw->wiphy);
+}
+
+/*
+ * LED handlers
+ */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+void rt2x00leds_led_quality(struct rt2x00_dev *rt2x00dev, int rssi);
+void rt2x00led_led_activity(struct rt2x00_dev *rt2x00dev, bool enabled);
+void rt2x00leds_led_assoc(struct rt2x00_dev *rt2x00dev, bool enabled);
+void rt2x00leds_led_radio(struct rt2x00_dev *rt2x00dev, bool enabled);
+void rt2x00leds_register(struct rt2x00_dev *rt2x00dev);
+void rt2x00leds_unregister(struct rt2x00_dev *rt2x00dev);
+void rt2x00leds_suspend(struct rt2x00_dev *rt2x00dev);
+void rt2x00leds_resume(struct rt2x00_dev *rt2x00dev);
+#else
+static inline void rt2x00leds_led_quality(struct rt2x00_dev *rt2x00dev,
+ int rssi)
+{
+}
+
+static inline void rt2x00led_led_activity(struct rt2x00_dev *rt2x00dev,
+ bool enabled)
+{
+}
+
+static inline void rt2x00leds_led_assoc(struct rt2x00_dev *rt2x00dev,
+ bool enabled)
+{
+}
+
+static inline void rt2x00leds_led_radio(struct rt2x00_dev *rt2x00dev,
+ bool enabled)
+{
+}
+
+static inline void rt2x00leds_register(struct rt2x00_dev *rt2x00dev)
+{
+}
+
+static inline void rt2x00leds_unregister(struct rt2x00_dev *rt2x00dev)
+{
+}
+
+static inline void rt2x00leds_suspend(struct rt2x00_dev *rt2x00dev)
+{
+}
+
+static inline void rt2x00leds_resume(struct rt2x00_dev *rt2x00dev)
+{
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+#endif /* RT2X00LIB_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00link.c b/drivers/net/wireless/ralink/rt2x00/rt2x00link.c
new file mode 100644
index 0000000000..6cf7e7c997
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00link.c
@@ -0,0 +1,428 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00lib
+ Abstract: rt2x00 generic link tuning routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+/*
+ * When we lack RSSI information return something less then -80 to
+ * tell the driver to tune the device to maximum sensitivity.
+ */
+#define DEFAULT_RSSI -128
+
+static inline int rt2x00link_get_avg_rssi(struct ewma_rssi *ewma)
+{
+ unsigned long avg;
+
+ avg = ewma_rssi_read(ewma);
+ if (avg)
+ return -avg;
+
+ return DEFAULT_RSSI;
+}
+
+static int rt2x00link_antenna_get_link_rssi(struct rt2x00_dev *rt2x00dev)
+{
+ struct link_ant *ant = &rt2x00dev->link.ant;
+
+ if (rt2x00dev->link.qual.rx_success)
+ return rt2x00link_get_avg_rssi(&ant->rssi_ant);
+
+ return DEFAULT_RSSI;
+}
+
+static int rt2x00link_antenna_get_rssi_history(struct rt2x00_dev *rt2x00dev)
+{
+ struct link_ant *ant = &rt2x00dev->link.ant;
+
+ if (ant->rssi_history)
+ return ant->rssi_history;
+ return DEFAULT_RSSI;
+}
+
+static void rt2x00link_antenna_update_rssi_history(struct rt2x00_dev *rt2x00dev,
+ int rssi)
+{
+ struct link_ant *ant = &rt2x00dev->link.ant;
+ ant->rssi_history = rssi;
+}
+
+static void rt2x00link_antenna_reset(struct rt2x00_dev *rt2x00dev)
+{
+ ewma_rssi_init(&rt2x00dev->link.ant.rssi_ant);
+}
+
+static void rt2x00lib_antenna_diversity_sample(struct rt2x00_dev *rt2x00dev)
+{
+ struct link_ant *ant = &rt2x00dev->link.ant;
+ struct antenna_setup new_ant;
+ int other_antenna;
+
+ int sample_current = rt2x00link_antenna_get_link_rssi(rt2x00dev);
+ int sample_other = rt2x00link_antenna_get_rssi_history(rt2x00dev);
+
+ memcpy(&new_ant, &ant->active, sizeof(new_ant));
+
+ /*
+ * We are done sampling. Now we should evaluate the results.
+ */
+ ant->flags &= ~ANTENNA_MODE_SAMPLE;
+
+ /*
+ * During the last period we have sampled the RSSI
+ * from both antennas. It now is time to determine
+ * which antenna demonstrated the best performance.
+ * When we are already on the antenna with the best
+ * performance, just create a good starting point
+ * for the history and we are done.
+ */
+ if (sample_current >= sample_other) {
+ rt2x00link_antenna_update_rssi_history(rt2x00dev,
+ sample_current);
+ return;
+ }
+
+ other_antenna = (ant->active.rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
+
+ if (ant->flags & ANTENNA_RX_DIVERSITY)
+ new_ant.rx = other_antenna;
+
+ if (ant->flags & ANTENNA_TX_DIVERSITY)
+ new_ant.tx = other_antenna;
+
+ rt2x00lib_config_antenna(rt2x00dev, new_ant);
+}
+
+static void rt2x00lib_antenna_diversity_eval(struct rt2x00_dev *rt2x00dev)
+{
+ struct link_ant *ant = &rt2x00dev->link.ant;
+ struct antenna_setup new_ant;
+ int rssi_curr;
+ int rssi_old;
+
+ memcpy(&new_ant, &ant->active, sizeof(new_ant));
+
+ /*
+ * Get current RSSI value along with the historical value,
+ * after that update the history with the current value.
+ */
+ rssi_curr = rt2x00link_antenna_get_link_rssi(rt2x00dev);
+ rssi_old = rt2x00link_antenna_get_rssi_history(rt2x00dev);
+ rt2x00link_antenna_update_rssi_history(rt2x00dev, rssi_curr);
+
+ /*
+ * Legacy driver indicates that we should swap antenna's
+ * when the difference in RSSI is greater that 5. This
+ * also should be done when the RSSI was actually better
+ * then the previous sample.
+ * When the difference exceeds the threshold we should
+ * sample the rssi from the other antenna to make a valid
+ * comparison between the 2 antennas.
+ */
+ if (abs(rssi_curr - rssi_old) < 5)
+ return;
+
+ ant->flags |= ANTENNA_MODE_SAMPLE;
+
+ if (ant->flags & ANTENNA_RX_DIVERSITY)
+ new_ant.rx = (new_ant.rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
+
+ if (ant->flags & ANTENNA_TX_DIVERSITY)
+ new_ant.tx = (new_ant.tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
+
+ rt2x00lib_config_antenna(rt2x00dev, new_ant);
+}
+
+static bool rt2x00lib_antenna_diversity(struct rt2x00_dev *rt2x00dev)
+{
+ struct link_ant *ant = &rt2x00dev->link.ant;
+
+ /*
+ * Determine if software diversity is enabled for
+ * either the TX or RX antenna (or both).
+ */
+ if (!(ant->flags & ANTENNA_RX_DIVERSITY) &&
+ !(ant->flags & ANTENNA_TX_DIVERSITY)) {
+ ant->flags = 0;
+ return true;
+ }
+
+ /*
+ * If we have only sampled the data over the last period
+ * we should now harvest the data. Otherwise just evaluate
+ * the data. The latter should only be performed once
+ * every 2 seconds.
+ */
+ if (ant->flags & ANTENNA_MODE_SAMPLE) {
+ rt2x00lib_antenna_diversity_sample(rt2x00dev);
+ return true;
+ } else if (rt2x00dev->link.count & 1) {
+ rt2x00lib_antenna_diversity_eval(rt2x00dev);
+ return true;
+ }
+
+ return false;
+}
+
+void rt2x00link_update_stats(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct link *link = &rt2x00dev->link;
+ struct link_qual *qual = &rt2x00dev->link.qual;
+ struct link_ant *ant = &rt2x00dev->link.ant;
+ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
+
+ /*
+ * No need to update the stats for !=STA interfaces
+ */
+ if (!rt2x00dev->intf_sta_count)
+ return;
+
+ /*
+ * Frame was received successfully since non-successful
+ * frames would have been dropped by the hardware.
+ */
+ qual->rx_success++;
+
+ /*
+ * We are only interested in quality statistics from
+ * beacons which came from the BSS which we are
+ * associated with.
+ */
+ if (!ieee80211_is_beacon(hdr->frame_control) ||
+ !(rxdesc->dev_flags & RXDONE_MY_BSS))
+ return;
+
+ /*
+ * Update global RSSI
+ */
+ ewma_rssi_add(&link->avg_rssi, -rxdesc->rssi);
+
+ /*
+ * Update antenna RSSI
+ */
+ ewma_rssi_add(&ant->rssi_ant, -rxdesc->rssi);
+}
+
+void rt2x00link_start_tuner(struct rt2x00_dev *rt2x00dev)
+{
+ struct link *link = &rt2x00dev->link;
+
+ /*
+ * Single monitor mode interfaces should never have
+ * work with link tuners.
+ */
+ if (!rt2x00dev->intf_ap_count && !rt2x00dev->intf_sta_count)
+ return;
+
+ /*
+ * While scanning, link tuning is disabled. By default
+ * the most sensitive settings will be used to make sure
+ * that all beacons and probe responses will be received
+ * during the scan.
+ */
+ if (test_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags))
+ return;
+
+ rt2x00link_reset_tuner(rt2x00dev, false);
+
+ if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ ieee80211_queue_delayed_work(rt2x00dev->hw,
+ &link->work, LINK_TUNE_INTERVAL);
+}
+
+void rt2x00link_stop_tuner(struct rt2x00_dev *rt2x00dev)
+{
+ cancel_delayed_work_sync(&rt2x00dev->link.work);
+}
+
+void rt2x00link_reset_tuner(struct rt2x00_dev *rt2x00dev, bool antenna)
+{
+ struct link_qual *qual = &rt2x00dev->link.qual;
+ u8 vgc_level = qual->vgc_level_reg;
+
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return;
+
+ /*
+ * Reset link information.
+ * Both the currently active vgc level as well as
+ * the link tuner counter should be reset. Resetting
+ * the counter is important for devices where the
+ * device should only perform link tuning during the
+ * first minute after being enabled.
+ */
+ rt2x00dev->link.count = 0;
+ memset(qual, 0, sizeof(*qual));
+ ewma_rssi_init(&rt2x00dev->link.avg_rssi);
+
+ /*
+ * Restore the VGC level as stored in the registers,
+ * the driver can use this to determine if the register
+ * must be updated during reset or not.
+ */
+ qual->vgc_level_reg = vgc_level;
+
+ /*
+ * Reset the link tuner.
+ */
+ rt2x00dev->ops->lib->reset_tuner(rt2x00dev, qual);
+
+ if (antenna)
+ rt2x00link_antenna_reset(rt2x00dev);
+}
+
+static void rt2x00link_reset_qual(struct rt2x00_dev *rt2x00dev)
+{
+ struct link_qual *qual = &rt2x00dev->link.qual;
+
+ qual->rx_success = 0;
+ qual->rx_failed = 0;
+ qual->tx_success = 0;
+ qual->tx_failed = 0;
+}
+
+static void rt2x00link_tuner_sta(struct rt2x00_dev *rt2x00dev, struct link *link)
+{
+ struct link_qual *qual = &rt2x00dev->link.qual;
+
+ /*
+ * Update statistics.
+ */
+ rt2x00dev->ops->lib->link_stats(rt2x00dev, qual);
+ rt2x00dev->low_level_stats.dot11FCSErrorCount += qual->rx_failed;
+
+ /*
+ * Update quality RSSI for link tuning,
+ * when we have received some frames and we managed to
+ * collect the RSSI data we could use this. Otherwise we
+ * must fallback to the default RSSI value.
+ */
+ if (!qual->rx_success)
+ qual->rssi = DEFAULT_RSSI;
+ else
+ qual->rssi = rt2x00link_get_avg_rssi(&link->avg_rssi);
+
+ /*
+ * Check if link tuning is supported by the hardware, some hardware
+ * do not support link tuning at all, while other devices can disable
+ * the feature from the EEPROM.
+ */
+ if (rt2x00_has_cap_link_tuning(rt2x00dev))
+ rt2x00dev->ops->lib->link_tuner(rt2x00dev, qual, link->count);
+
+ /*
+ * Send a signal to the led to update the led signal strength.
+ */
+ rt2x00leds_led_quality(rt2x00dev, qual->rssi);
+
+ /*
+ * Evaluate antenna setup, make this the last step when
+ * rt2x00lib_antenna_diversity made changes the quality
+ * statistics will be reset.
+ */
+ if (rt2x00lib_antenna_diversity(rt2x00dev))
+ rt2x00link_reset_qual(rt2x00dev);
+}
+
+static void rt2x00link_tuner(struct work_struct *work)
+{
+ struct rt2x00_dev *rt2x00dev =
+ container_of(work, struct rt2x00_dev, link.work.work);
+ struct link *link = &rt2x00dev->link;
+
+ /*
+ * When the radio is shutting down we should
+ * immediately cease all link tuning.
+ */
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
+ test_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags))
+ return;
+
+ /* Do not race with rt2x00mac_config(). */
+ mutex_lock(&rt2x00dev->conf_mutex);
+
+ if (rt2x00dev->intf_sta_count)
+ rt2x00link_tuner_sta(rt2x00dev, link);
+
+ if (rt2x00dev->ops->lib->gain_calibration &&
+ (link->count % (AGC_SECONDS / LINK_TUNE_SECONDS)) == 0)
+ rt2x00dev->ops->lib->gain_calibration(rt2x00dev);
+
+ if (rt2x00dev->ops->lib->vco_calibration &&
+ rt2x00_has_cap_vco_recalibration(rt2x00dev) &&
+ (link->count % (VCO_SECONDS / LINK_TUNE_SECONDS)) == 0)
+ rt2x00dev->ops->lib->vco_calibration(rt2x00dev);
+
+ mutex_unlock(&rt2x00dev->conf_mutex);
+
+ /*
+ * Increase tuner counter, and reschedule the next link tuner run.
+ */
+ link->count++;
+
+ if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ ieee80211_queue_delayed_work(rt2x00dev->hw,
+ &link->work, LINK_TUNE_INTERVAL);
+}
+
+void rt2x00link_start_watchdog(struct rt2x00_dev *rt2x00dev)
+{
+ struct link *link = &rt2x00dev->link;
+
+ if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
+ rt2x00dev->ops->lib->watchdog && !link->watchdog_disabled)
+ ieee80211_queue_delayed_work(rt2x00dev->hw,
+ &link->watchdog_work,
+ link->watchdog_interval);
+}
+
+void rt2x00link_stop_watchdog(struct rt2x00_dev *rt2x00dev)
+{
+ cancel_delayed_work_sync(&rt2x00dev->link.watchdog_work);
+}
+
+static void rt2x00link_watchdog(struct work_struct *work)
+{
+ struct rt2x00_dev *rt2x00dev =
+ container_of(work, struct rt2x00_dev, link.watchdog_work.work);
+ struct link *link = &rt2x00dev->link;
+
+ /*
+ * When the radio is shutting down we should
+ * immediately cease the watchdog monitoring.
+ */
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return;
+
+ rt2x00dev->ops->lib->watchdog(rt2x00dev);
+
+ if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ ieee80211_queue_delayed_work(rt2x00dev->hw,
+ &link->watchdog_work,
+ link->watchdog_interval);
+}
+
+void rt2x00link_register(struct rt2x00_dev *rt2x00dev)
+{
+ struct link *link = &rt2x00dev->link;
+
+ INIT_DELAYED_WORK(&link->work, rt2x00link_tuner);
+ INIT_DELAYED_WORK(&link->watchdog_work, rt2x00link_watchdog);
+
+ if (link->watchdog_interval == 0)
+ link->watchdog_interval = WATCHDOG_INTERVAL;
+}
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00mac.c b/drivers/net/wireless/ralink/rt2x00/rt2x00mac.c
new file mode 100644
index 0000000000..4202c65177
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00mac.c
@@ -0,0 +1,827 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00mac
+ Abstract: rt2x00 generic mac80211 routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+static int rt2x00mac_tx_rts_cts(struct rt2x00_dev *rt2x00dev,
+ struct data_queue *queue,
+ struct sk_buff *frag_skb)
+{
+ struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(frag_skb);
+ struct ieee80211_tx_info *rts_info;
+ struct sk_buff *skb;
+ unsigned int data_length;
+ int retval = 0;
+
+ if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
+ data_length = sizeof(struct ieee80211_cts);
+ else
+ data_length = sizeof(struct ieee80211_rts);
+
+ skb = dev_alloc_skb(data_length + rt2x00dev->hw->extra_tx_headroom);
+ if (unlikely(!skb)) {
+ rt2x00_warn(rt2x00dev, "Failed to create RTS/CTS frame\n");
+ return -ENOMEM;
+ }
+
+ skb_reserve(skb, rt2x00dev->hw->extra_tx_headroom);
+ skb_put(skb, data_length);
+
+ /*
+ * Copy TX information over from original frame to
+ * RTS/CTS frame. Note that we set the no encryption flag
+ * since we don't want this frame to be encrypted.
+ * RTS frames should be acked, while CTS-to-self frames
+ * should not. The ready for TX flag is cleared to prevent
+ * it being automatically send when the descriptor is
+ * written to the hardware.
+ */
+ memcpy(skb->cb, frag_skb->cb, sizeof(skb->cb));
+ rts_info = IEEE80211_SKB_CB(skb);
+ rts_info->control.rates[0].flags &= ~IEEE80211_TX_RC_USE_RTS_CTS;
+ rts_info->control.rates[0].flags &= ~IEEE80211_TX_RC_USE_CTS_PROTECT;
+
+ if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
+ rts_info->flags |= IEEE80211_TX_CTL_NO_ACK;
+ else
+ rts_info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
+
+ /* Disable hardware encryption */
+ rts_info->control.hw_key = NULL;
+
+ /*
+ * RTS/CTS frame should use the length of the frame plus any
+ * encryption overhead that will be added by the hardware.
+ */
+ data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
+
+ if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
+ ieee80211_ctstoself_get(rt2x00dev->hw, tx_info->control.vif,
+ frag_skb->data, data_length, tx_info,
+ (struct ieee80211_cts *)(skb->data));
+ else
+ ieee80211_rts_get(rt2x00dev->hw, tx_info->control.vif,
+ frag_skb->data, data_length, tx_info,
+ (struct ieee80211_rts *)(skb->data));
+
+ retval = rt2x00queue_write_tx_frame(queue, skb, NULL, true);
+ if (retval) {
+ dev_kfree_skb_any(skb);
+ rt2x00_warn(rt2x00dev, "Failed to send RTS/CTS frame\n");
+ }
+
+ return retval;
+}
+
+void rt2x00mac_tx(struct ieee80211_hw *hw,
+ struct ieee80211_tx_control *control,
+ struct sk_buff *skb)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+ enum data_queue_qid qid = skb_get_queue_mapping(skb);
+ struct data_queue *queue = NULL;
+
+ /*
+ * Mac80211 might be calling this function while we are trying
+ * to remove the device or perhaps suspending it.
+ * Note that we can only stop the TX queues inside the TX path
+ * due to possible race conditions in mac80211.
+ */
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ goto exit_free_skb;
+
+ /*
+ * Use the ATIM queue if appropriate and present.
+ */
+ if (tx_info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM &&
+ rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE))
+ qid = QID_ATIM;
+
+ queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
+ if (unlikely(!queue)) {
+ rt2x00_err(rt2x00dev,
+ "Attempt to send packet over invalid queue %d\n"
+ "Please file bug report to %s\n", qid, DRV_PROJECT);
+ goto exit_free_skb;
+ }
+
+ /*
+ * If CTS/RTS is required. create and queue that frame first.
+ * Make sure we have at least enough entries available to send
+ * this CTS/RTS frame as well as the data frame.
+ * Note that when the driver has set the set_rts_threshold()
+ * callback function it doesn't need software generation of
+ * either RTS or CTS-to-self frame and handles everything
+ * inside the hardware.
+ */
+ if (!rt2x00dev->ops->hw->set_rts_threshold &&
+ (tx_info->control.rates[0].flags & (IEEE80211_TX_RC_USE_RTS_CTS |
+ IEEE80211_TX_RC_USE_CTS_PROTECT))) {
+ if (rt2x00queue_available(queue) <= 1) {
+ /*
+ * Recheck for full queue under lock to avoid race
+ * conditions with rt2x00lib_txdone().
+ */
+ spin_lock(&queue->tx_lock);
+ if (rt2x00queue_threshold(queue))
+ rt2x00queue_pause_queue(queue);
+ spin_unlock(&queue->tx_lock);
+
+ goto exit_free_skb;
+ }
+
+ if (rt2x00mac_tx_rts_cts(rt2x00dev, queue, skb))
+ goto exit_free_skb;
+ }
+
+ if (unlikely(rt2x00queue_write_tx_frame(queue, skb, control->sta, false)))
+ goto exit_free_skb;
+
+ return;
+
+ exit_free_skb:
+ ieee80211_free_txskb(hw, skb);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_tx);
+
+int rt2x00mac_start(struct ieee80211_hw *hw)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return 0;
+
+ if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) {
+ /*
+ * This is special case for ieee80211_restart_hw(), otherwise
+ * mac80211 never call start() two times in row without stop();
+ */
+ set_bit(DEVICE_STATE_RESET, &rt2x00dev->flags);
+ rt2x00dev->ops->lib->pre_reset_hw(rt2x00dev);
+ rt2x00lib_stop(rt2x00dev);
+ }
+ return rt2x00lib_start(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_start);
+
+void rt2x00mac_stop(struct ieee80211_hw *hw)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return;
+
+ rt2x00lib_stop(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_stop);
+
+void
+rt2x00mac_reconfig_complete(struct ieee80211_hw *hw,
+ enum ieee80211_reconfig_type reconfig_type)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ if (reconfig_type == IEEE80211_RECONFIG_TYPE_RESTART)
+ clear_bit(DEVICE_STATE_RESET, &rt2x00dev->flags);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_reconfig_complete);
+
+int rt2x00mac_add_interface(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct rt2x00_intf *intf = vif_to_intf(vif);
+ struct data_queue *queue = rt2x00dev->bcn;
+ struct queue_entry *entry = NULL;
+ unsigned int i;
+
+ /*
+ * Don't allow interfaces to be added
+ * the device has disappeared.
+ */
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
+ !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
+ return -ENODEV;
+
+ /*
+ * Loop through all beacon queues to find a free
+ * entry. Since there are as much beacon entries
+ * as the maximum interfaces, this search shouldn't
+ * fail.
+ */
+ for (i = 0; i < queue->limit; i++) {
+ entry = &queue->entries[i];
+ if (!test_and_set_bit(ENTRY_BCN_ASSIGNED, &entry->flags))
+ break;
+ }
+
+ if (unlikely(i == queue->limit))
+ return -ENOBUFS;
+
+ /*
+ * We are now absolutely sure the interface can be created,
+ * increase interface count and start initialization.
+ */
+
+ if (vif->type == NL80211_IFTYPE_AP)
+ rt2x00dev->intf_ap_count++;
+ else
+ rt2x00dev->intf_sta_count++;
+
+ mutex_init(&intf->beacon_skb_mutex);
+ intf->beacon = entry;
+
+ /*
+ * The MAC address must be configured after the device
+ * has been initialized. Otherwise the device can reset
+ * the MAC registers.
+ * The BSSID address must only be configured in AP mode,
+ * however we should not send an empty BSSID address for
+ * STA interfaces at this time, since this can cause
+ * invalid behavior in the device.
+ */
+ rt2x00lib_config_intf(rt2x00dev, intf, vif->type,
+ vif->addr, NULL);
+
+ /*
+ * Some filters depend on the current working mode. We can force
+ * an update during the next configure_filter() run by mac80211 by
+ * resetting the current packet_filter state.
+ */
+ rt2x00dev->packet_filter = 0;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_add_interface);
+
+void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct rt2x00_intf *intf = vif_to_intf(vif);
+
+ /*
+ * Don't allow interfaces to be remove while
+ * either the device has disappeared or when
+ * no interface is present.
+ */
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
+ (vif->type == NL80211_IFTYPE_AP && !rt2x00dev->intf_ap_count) ||
+ (vif->type != NL80211_IFTYPE_AP && !rt2x00dev->intf_sta_count))
+ return;
+
+ if (vif->type == NL80211_IFTYPE_AP)
+ rt2x00dev->intf_ap_count--;
+ else
+ rt2x00dev->intf_sta_count--;
+
+ /*
+ * Release beacon entry so it is available for
+ * new interfaces again.
+ */
+ clear_bit(ENTRY_BCN_ASSIGNED, &intf->beacon->flags);
+
+ /*
+ * Make sure the bssid and mac address registers
+ * are cleared to prevent false ACKing of frames.
+ */
+ rt2x00lib_config_intf(rt2x00dev, intf,
+ NL80211_IFTYPE_UNSPECIFIED, NULL, NULL);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_remove_interface);
+
+int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct ieee80211_conf *conf = &hw->conf;
+
+ /*
+ * mac80211 might be calling this function while we are trying
+ * to remove the device or perhaps suspending it.
+ */
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return 0;
+
+ /*
+ * Some configuration parameters (e.g. channel and antenna values) can
+ * only be set when the radio is enabled, but do require the RX to
+ * be off. During this period we should keep link tuning enabled,
+ * if for any reason the link tuner must be reset, this will be
+ * handled by rt2x00lib_config().
+ */
+ rt2x00queue_stop_queue(rt2x00dev->rx);
+
+ /* Do not race with link tuner. */
+ mutex_lock(&rt2x00dev->conf_mutex);
+
+ /*
+ * When we've just turned on the radio, we want to reprogram
+ * everything to ensure a consistent state
+ */
+ rt2x00lib_config(rt2x00dev, conf, changed);
+
+ /*
+ * After the radio has been enabled we need to configure
+ * the antenna to the default settings. rt2x00lib_config_antenna()
+ * should determine if any action should be taken based on
+ * checking if diversity has been enabled or no antenna changes
+ * have been made since the last configuration change.
+ */
+ rt2x00lib_config_antenna(rt2x00dev, rt2x00dev->default_ant);
+
+ mutex_unlock(&rt2x00dev->conf_mutex);
+
+ /* Turn RX back on */
+ rt2x00queue_start_queue(rt2x00dev->rx);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_config);
+
+void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
+ unsigned int changed_flags,
+ unsigned int *total_flags,
+ u64 multicast)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ /*
+ * Mask off any flags we are going to ignore
+ * from the total_flags field.
+ */
+ *total_flags &=
+ FIF_ALLMULTI |
+ FIF_FCSFAIL |
+ FIF_PLCPFAIL |
+ FIF_CONTROL |
+ FIF_PSPOLL |
+ FIF_OTHER_BSS;
+
+ /*
+ * Apply some rules to the filters:
+ * - Some filters imply different filters to be set.
+ * - Some things we can't filter out at all.
+ * - Multicast filter seems to kill broadcast traffic so never use it.
+ */
+ *total_flags |= FIF_ALLMULTI;
+
+ /*
+ * If the device has a single filter for all control frames,
+ * FIF_CONTROL and FIF_PSPOLL flags imply each other.
+ * And if the device has more than one filter for control frames
+ * of different types, but has no a separate filter for PS Poll frames,
+ * FIF_CONTROL flag implies FIF_PSPOLL.
+ */
+ if (!rt2x00_has_cap_control_filters(rt2x00dev)) {
+ if (*total_flags & FIF_CONTROL || *total_flags & FIF_PSPOLL)
+ *total_flags |= FIF_CONTROL | FIF_PSPOLL;
+ }
+ if (!rt2x00_has_cap_control_filter_pspoll(rt2x00dev)) {
+ if (*total_flags & FIF_CONTROL)
+ *total_flags |= FIF_PSPOLL;
+ }
+
+ rt2x00dev->packet_filter = *total_flags;
+
+ rt2x00dev->ops->lib->config_filter(rt2x00dev, *total_flags);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_configure_filter);
+
+static void rt2x00mac_set_tim_iter(void *data, u8 *mac,
+ struct ieee80211_vif *vif)
+{
+ struct rt2x00_intf *intf = vif_to_intf(vif);
+
+ if (vif->type != NL80211_IFTYPE_AP &&
+ vif->type != NL80211_IFTYPE_ADHOC &&
+ vif->type != NL80211_IFTYPE_MESH_POINT)
+ return;
+
+ set_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags);
+}
+
+int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
+ bool set)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return 0;
+
+ ieee80211_iterate_active_interfaces_atomic(
+ rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
+ rt2x00mac_set_tim_iter, rt2x00dev);
+
+ /* queue work to upodate the beacon template */
+ ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_set_tim);
+
+#ifdef CONFIG_RT2X00_LIB_CRYPTO
+static void memcpy_tkip(struct rt2x00lib_crypto *crypto, u8 *key, u8 key_len)
+{
+ if (key_len > NL80211_TKIP_DATA_OFFSET_ENCR_KEY)
+ memcpy(crypto->key,
+ &key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY],
+ sizeof(crypto->key));
+
+ if (key_len > NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY)
+ memcpy(crypto->tx_mic,
+ &key[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY],
+ sizeof(crypto->tx_mic));
+
+ if (key_len > NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY)
+ memcpy(crypto->rx_mic,
+ &key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY],
+ sizeof(crypto->rx_mic));
+}
+
+int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
+ struct ieee80211_vif *vif, struct ieee80211_sta *sta,
+ struct ieee80211_key_conf *key)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ int (*set_key) (struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key);
+ struct rt2x00lib_crypto crypto;
+ static const u8 bcast_addr[ETH_ALEN] =
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, };
+ struct rt2x00_sta *sta_priv = NULL;
+
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return 0;
+
+ /* The hardware can't do MFP */
+ if (!rt2x00_has_cap_hw_crypto(rt2x00dev) || (sta && sta->mfp))
+ return -EOPNOTSUPP;
+
+ /*
+ * To support IBSS RSN, don't program group keys in IBSS, the
+ * hardware will then not attempt to decrypt the frames.
+ */
+ if (vif->type == NL80211_IFTYPE_ADHOC &&
+ !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
+ return -EOPNOTSUPP;
+
+ if (key->keylen > 32)
+ return -ENOSPC;
+
+ memset(&crypto, 0, sizeof(crypto));
+
+ crypto.bssidx = rt2x00lib_get_bssidx(rt2x00dev, vif);
+ crypto.cipher = rt2x00crypto_key_to_cipher(key);
+ if (crypto.cipher == CIPHER_NONE)
+ return -EOPNOTSUPP;
+ if (crypto.cipher == CIPHER_TKIP && rt2x00_is_usb(rt2x00dev))
+ return -EOPNOTSUPP;
+
+ crypto.cmd = cmd;
+
+ if (sta) {
+ crypto.address = sta->addr;
+ sta_priv = sta_to_rt2x00_sta(sta);
+ crypto.wcid = sta_priv->wcid;
+ } else
+ crypto.address = bcast_addr;
+
+ if (crypto.cipher == CIPHER_TKIP)
+ memcpy_tkip(&crypto, &key->key[0], key->keylen);
+ else
+ memcpy(crypto.key, &key->key[0], key->keylen);
+ /*
+ * Each BSS has a maximum of 4 shared keys.
+ * Shared key index values:
+ * 0) BSS0 key0
+ * 1) BSS0 key1
+ * ...
+ * 4) BSS1 key0
+ * ...
+ * 8) BSS2 key0
+ * ...
+ * Both pairwise as shared key indeces are determined by
+ * driver. This is required because the hardware requires
+ * keys to be assigned in correct order (When key 1 is
+ * provided but key 0 is not, then the key is not found
+ * by the hardware during RX).
+ */
+ if (cmd == SET_KEY)
+ key->hw_key_idx = 0;
+
+ if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
+ set_key = rt2x00dev->ops->lib->config_pairwise_key;
+ else
+ set_key = rt2x00dev->ops->lib->config_shared_key;
+
+ if (!set_key)
+ return -EOPNOTSUPP;
+
+ return set_key(rt2x00dev, &crypto, key);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_set_key);
+#endif /* CONFIG_RT2X00_LIB_CRYPTO */
+
+void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ const u8 *mac_addr)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ set_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags);
+ rt2x00link_stop_tuner(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_sw_scan_start);
+
+void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ clear_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags);
+ rt2x00link_start_tuner(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_sw_scan_complete);
+
+int rt2x00mac_get_stats(struct ieee80211_hw *hw,
+ struct ieee80211_low_level_stats *stats)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ /*
+ * The dot11ACKFailureCount, dot11RTSFailureCount and
+ * dot11RTSSuccessCount are updated in interrupt time.
+ * dot11FCSErrorCount is updated in the link tuner.
+ */
+ memcpy(stats, &rt2x00dev->low_level_stats, sizeof(*stats));
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_get_stats);
+
+void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ struct ieee80211_bss_conf *bss_conf,
+ u64 changes)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct rt2x00_intf *intf = vif_to_intf(vif);
+
+ /*
+ * mac80211 might be calling this function while we are trying
+ * to remove the device or perhaps suspending it.
+ */
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return;
+
+ /*
+ * Update the BSSID.
+ */
+ if (changes & BSS_CHANGED_BSSID)
+ rt2x00lib_config_intf(rt2x00dev, intf, vif->type, NULL,
+ bss_conf->bssid);
+
+ /*
+ * Start/stop beaconing.
+ */
+ if (changes & BSS_CHANGED_BEACON_ENABLED) {
+ mutex_lock(&intf->beacon_skb_mutex);
+ if (!bss_conf->enable_beacon && intf->enable_beacon) {
+ rt2x00dev->intf_beaconing--;
+ intf->enable_beacon = false;
+
+ if (rt2x00dev->intf_beaconing == 0) {
+ /*
+ * Last beaconing interface disabled
+ * -> stop beacon queue.
+ */
+ rt2x00queue_stop_queue(rt2x00dev->bcn);
+ }
+ /*
+ * Clear beacon in the H/W for this vif. This is needed
+ * to disable beaconing on this particular interface
+ * and keep it running on other interfaces.
+ */
+ rt2x00queue_clear_beacon(rt2x00dev, vif);
+ } else if (bss_conf->enable_beacon && !intf->enable_beacon) {
+ rt2x00dev->intf_beaconing++;
+ intf->enable_beacon = true;
+ /*
+ * Upload beacon to the H/W. This is only required on
+ * USB devices. PCI devices fetch beacons periodically.
+ */
+ if (rt2x00_is_usb(rt2x00dev))
+ rt2x00queue_update_beacon(rt2x00dev, vif);
+
+ if (rt2x00dev->intf_beaconing == 1) {
+ /*
+ * First beaconing interface enabled
+ * -> start beacon queue.
+ */
+ rt2x00queue_start_queue(rt2x00dev->bcn);
+ }
+ }
+ mutex_unlock(&intf->beacon_skb_mutex);
+ }
+
+ /*
+ * When the association status has changed we must reset the link
+ * tuner counter. This is because some drivers determine if they
+ * should perform link tuning based on the number of seconds
+ * while associated or not associated.
+ */
+ if (changes & BSS_CHANGED_ASSOC) {
+ rt2x00dev->link.count = 0;
+
+ if (vif->cfg.assoc)
+ rt2x00dev->intf_associated++;
+ else
+ rt2x00dev->intf_associated--;
+
+ rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
+ }
+
+ /*
+ * When the erp information has changed, we should perform
+ * additional configuration steps. For all other changes we are done.
+ */
+ if (changes & (BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_ERP_PREAMBLE |
+ BSS_CHANGED_ERP_SLOT | BSS_CHANGED_BASIC_RATES |
+ BSS_CHANGED_BEACON_INT | BSS_CHANGED_HT))
+ rt2x00lib_config_erp(rt2x00dev, intf, bss_conf, changes);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_bss_info_changed);
+
+int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ unsigned int link_id, u16 queue_idx,
+ const struct ieee80211_tx_queue_params *params)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct data_queue *queue;
+
+ queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+ if (unlikely(!queue))
+ return -EINVAL;
+
+ /*
+ * The passed variables are stored as real value ((2^n)-1).
+ * Ralink registers require to know the bit number 'n'.
+ */
+ if (params->cw_min > 0)
+ queue->cw_min = fls(params->cw_min);
+ else
+ queue->cw_min = 5; /* cw_min: 2^5 = 32. */
+
+ if (params->cw_max > 0)
+ queue->cw_max = fls(params->cw_max);
+ else
+ queue->cw_max = 10; /* cw_min: 2^10 = 1024. */
+
+ queue->aifs = params->aifs;
+ queue->txop = params->txop;
+
+ rt2x00_dbg(rt2x00dev,
+ "Configured TX queue %d - CWmin: %d, CWmax: %d, Aifs: %d, TXop: %d\n",
+ queue_idx, queue->cw_min, queue->cw_max, queue->aifs,
+ queue->txop);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_conf_tx);
+
+void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ bool active = !!rt2x00dev->ops->lib->rfkill_poll(rt2x00dev);
+
+ wiphy_rfkill_set_hw_state(hw->wiphy, !active);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_rfkill_poll);
+
+void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+ u32 queues, bool drop)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct data_queue *queue;
+
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return;
+
+ set_bit(DEVICE_STATE_FLUSHING, &rt2x00dev->flags);
+
+ tx_queue_for_each(rt2x00dev, queue)
+ rt2x00queue_flush_queue(queue, drop);
+
+ clear_bit(DEVICE_STATE_FLUSHING, &rt2x00dev->flags);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_flush);
+
+int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct link_ant *ant = &rt2x00dev->link.ant;
+ struct antenna_setup *def = &rt2x00dev->default_ant;
+ struct antenna_setup setup;
+
+ // The antenna value is not supposed to be 0,
+ // or exceed the maximum number of antenna's.
+ if (!tx_ant || (tx_ant & ~3) || !rx_ant || (rx_ant & ~3))
+ return -EINVAL;
+
+ // When the client tried to configure the antenna to or from
+ // diversity mode, we must reset the default antenna as well
+ // as that controls the diversity switch.
+ if (ant->flags & ANTENNA_TX_DIVERSITY && tx_ant != 3)
+ ant->flags &= ~ANTENNA_TX_DIVERSITY;
+ if (ant->flags & ANTENNA_RX_DIVERSITY && rx_ant != 3)
+ ant->flags &= ~ANTENNA_RX_DIVERSITY;
+
+ // If diversity is being enabled, check if we need hardware
+ // or software diversity. In the latter case, reset the value,
+ // and make sure we update the antenna flags to have the
+ // link tuner pick up the diversity tuning.
+ if (tx_ant == 3 && def->tx == ANTENNA_SW_DIVERSITY) {
+ tx_ant = ANTENNA_SW_DIVERSITY;
+ ant->flags |= ANTENNA_TX_DIVERSITY;
+ }
+
+ if (rx_ant == 3 && def->rx == ANTENNA_SW_DIVERSITY) {
+ rx_ant = ANTENNA_SW_DIVERSITY;
+ ant->flags |= ANTENNA_RX_DIVERSITY;
+ }
+
+ setup.tx = tx_ant;
+ setup.rx = rx_ant;
+ setup.rx_chain_num = 0;
+ setup.tx_chain_num = 0;
+
+ rt2x00lib_config_antenna(rt2x00dev, setup);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_set_antenna);
+
+int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct link_ant *ant = &rt2x00dev->link.ant;
+ struct antenna_setup *active = &rt2x00dev->link.ant.active;
+
+ // When software diversity is active, we must report this to the
+ // client and not the current active antenna state.
+ if (ant->flags & ANTENNA_TX_DIVERSITY)
+ *tx_ant = ANTENNA_HW_DIVERSITY;
+ else
+ *tx_ant = active->tx;
+
+ if (ant->flags & ANTENNA_RX_DIVERSITY)
+ *rx_ant = ANTENNA_HW_DIVERSITY;
+ else
+ *rx_ant = active->rx;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_get_antenna);
+
+void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
+ u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct data_queue *queue;
+
+ tx_queue_for_each(rt2x00dev, queue) {
+ *tx += queue->length;
+ *tx_max += queue->limit;
+ }
+
+ *rx = rt2x00dev->rx->length;
+ *rx_max = rt2x00dev->rx->limit;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_get_ringparam);
+
+bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct data_queue *queue;
+
+ tx_queue_for_each(rt2x00dev, queue) {
+ if (!rt2x00queue_empty(queue))
+ return true;
+ }
+
+ return false;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_tx_frames_pending);
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00mmio.c b/drivers/net/wireless/ralink/rt2x00/rt2x00mmio.c
new file mode 100644
index 0000000000..93f76acf3d
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00mmio.c
@@ -0,0 +1,201 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00mmio
+ Abstract: rt2x00 generic mmio device routines.
+ */
+
+#include <linux/dma-mapping.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+
+/*
+ * Register access.
+ */
+int rt2x00mmio_regbusy_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ const struct rt2x00_field32 field,
+ u32 *reg)
+{
+ unsigned int i;
+
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return 0;
+
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ *reg = rt2x00mmio_register_read(rt2x00dev, offset);
+ if (!rt2x00_get_field32(*reg, field))
+ return 1;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ printk_once(KERN_ERR "%s() Indirect register access failed: "
+ "offset=0x%.08x, value=0x%.08x\n", __func__, offset, *reg);
+ *reg = ~0;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mmio_regbusy_read);
+
+bool rt2x00mmio_rxdone(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue = rt2x00dev->rx;
+ struct queue_entry *entry;
+ struct queue_entry_priv_mmio *entry_priv;
+ struct skb_frame_desc *skbdesc;
+ int max_rx = 16;
+
+ while (--max_rx) {
+ entry = rt2x00queue_get_entry(queue, Q_INDEX);
+ entry_priv = entry->priv_data;
+
+ if (rt2x00dev->ops->lib->get_entry_state(entry))
+ break;
+
+ /*
+ * Fill in desc fields of the skb descriptor
+ */
+ skbdesc = get_skb_frame_desc(entry->skb);
+ skbdesc->desc = entry_priv->desc;
+ skbdesc->desc_len = entry->queue->desc_size;
+
+ /*
+ * DMA is already done, notify rt2x00lib that
+ * it finished successfully.
+ */
+ rt2x00lib_dmastart(entry);
+ rt2x00lib_dmadone(entry);
+
+ /*
+ * Send the frame to rt2x00lib for further processing.
+ */
+ rt2x00lib_rxdone(entry, GFP_ATOMIC);
+ }
+
+ return !max_rx;
+}
+EXPORT_SYMBOL_GPL(rt2x00mmio_rxdone);
+
+void rt2x00mmio_flush_queue(struct data_queue *queue, bool drop)
+{
+ unsigned int i;
+
+ for (i = 0; !rt2x00queue_empty(queue) && i < 10; i++)
+ msleep(50);
+}
+EXPORT_SYMBOL_GPL(rt2x00mmio_flush_queue);
+
+/*
+ * Device initialization handlers.
+ */
+static int rt2x00mmio_alloc_queue_dma(struct rt2x00_dev *rt2x00dev,
+ struct data_queue *queue)
+{
+ struct queue_entry_priv_mmio *entry_priv;
+ void *addr;
+ dma_addr_t dma;
+ unsigned int i;
+
+ /*
+ * Allocate DMA memory for descriptor and buffer.
+ */
+ addr = dma_alloc_coherent(rt2x00dev->dev,
+ queue->limit * queue->desc_size, &dma,
+ GFP_KERNEL);
+ if (!addr)
+ return -ENOMEM;
+
+ /*
+ * Initialize all queue entries to contain valid addresses.
+ */
+ for (i = 0; i < queue->limit; i++) {
+ entry_priv = queue->entries[i].priv_data;
+ entry_priv->desc = addr + i * queue->desc_size;
+ entry_priv->desc_dma = dma + i * queue->desc_size;
+ }
+
+ return 0;
+}
+
+static void rt2x00mmio_free_queue_dma(struct rt2x00_dev *rt2x00dev,
+ struct data_queue *queue)
+{
+ struct queue_entry_priv_mmio *entry_priv =
+ queue->entries[0].priv_data;
+
+ if (entry_priv->desc)
+ dma_free_coherent(rt2x00dev->dev,
+ queue->limit * queue->desc_size,
+ entry_priv->desc, entry_priv->desc_dma);
+ entry_priv->desc = NULL;
+}
+
+int rt2x00mmio_initialize(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+ int status;
+
+ /*
+ * Allocate DMA
+ */
+ queue_for_each(rt2x00dev, queue) {
+ status = rt2x00mmio_alloc_queue_dma(rt2x00dev, queue);
+ if (status)
+ goto exit;
+ }
+
+ /*
+ * Register interrupt handler.
+ */
+ status = request_irq(rt2x00dev->irq,
+ rt2x00dev->ops->lib->irq_handler,
+ IRQF_SHARED, rt2x00dev->name, rt2x00dev);
+ if (status) {
+ rt2x00_err(rt2x00dev, "IRQ %d allocation failed (error %d)\n",
+ rt2x00dev->irq, status);
+ goto exit;
+ }
+
+ return 0;
+
+exit:
+ queue_for_each(rt2x00dev, queue)
+ rt2x00mmio_free_queue_dma(rt2x00dev, queue);
+
+ return status;
+}
+EXPORT_SYMBOL_GPL(rt2x00mmio_initialize);
+
+void rt2x00mmio_uninitialize(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+
+ /*
+ * Free irq line.
+ */
+ free_irq(rt2x00dev->irq, rt2x00dev);
+
+ /*
+ * Free DMA
+ */
+ queue_for_each(rt2x00dev, queue)
+ rt2x00mmio_free_queue_dma(rt2x00dev, queue);
+}
+EXPORT_SYMBOL_GPL(rt2x00mmio_uninitialize);
+
+/*
+ * rt2x00mmio module information.
+ */
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2x00 mmio library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00mmio.h b/drivers/net/wireless/ralink/rt2x00/rt2x00mmio.h
new file mode 100644
index 0000000000..9c7e31c455
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00mmio.h
@@ -0,0 +1,103 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00mmio
+ Abstract: Data structures for the rt2x00mmio module.
+ */
+
+#ifndef RT2X00MMIO_H
+#define RT2X00MMIO_H
+
+#include <linux/io.h>
+
+/*
+ * Register access.
+ */
+static inline u32 rt2x00mmio_register_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset)
+{
+ return readl(rt2x00dev->csr.base + offset);
+}
+
+static inline void rt2x00mmio_register_multiread(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ void *value, const u32 length)
+{
+ memcpy_fromio(value, rt2x00dev->csr.base + offset, length);
+}
+
+static inline void rt2x00mmio_register_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ u32 value)
+{
+ writel(value, rt2x00dev->csr.base + offset);
+}
+
+static inline void rt2x00mmio_register_multiwrite(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ const void *value,
+ const u32 length)
+{
+ __iowrite32_copy(rt2x00dev->csr.base + offset, value, length >> 2);
+}
+
+/**
+ * rt2x00mmio_regbusy_read - Read from register with busy check
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @field: Field to check if register is busy
+ * @reg: Pointer to where register contents should be stored
+ *
+ * This function will read the given register, and checks if the
+ * register is busy. If it is, it will sleep for a couple of
+ * microseconds before reading the register again. If the register
+ * is not read after a certain timeout, this function will return
+ * FALSE.
+ */
+int rt2x00mmio_regbusy_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ const struct rt2x00_field32 field,
+ u32 *reg);
+
+/**
+ * struct queue_entry_priv_mmio: Per entry PCI specific information
+ *
+ * @desc: Pointer to device descriptor
+ * @desc_dma: DMA pointer to &desc.
+ */
+struct queue_entry_priv_mmio {
+ __le32 *desc;
+ dma_addr_t desc_dma;
+};
+
+/**
+ * rt2x00mmio_rxdone - Handle RX done events
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ *
+ * Returns true if there are still rx frames pending and false if all
+ * pending rx frames were processed.
+ */
+bool rt2x00mmio_rxdone(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00mmio_flush_queue - Flush data queue
+ * @queue: Data queue to stop
+ * @drop: True to drop all pending frames.
+ *
+ * This will wait for a maximum of 100ms, waiting for the queues
+ * to become empty.
+ */
+void rt2x00mmio_flush_queue(struct data_queue *queue, bool drop);
+
+/*
+ * Device initialization handlers.
+ */
+int rt2x00mmio_initialize(struct rt2x00_dev *rt2x00dev);
+void rt2x00mmio_uninitialize(struct rt2x00_dev *rt2x00dev);
+
+#endif /* RT2X00MMIO_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00pci.c b/drivers/net/wireless/ralink/rt2x00/rt2x00pci.c
new file mode 100644
index 0000000000..cabeef0dde
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00pci.c
@@ -0,0 +1,197 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00pci
+ Abstract: rt2x00 generic pci device routines.
+ */
+
+#include <linux/dma-mapping.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2x00pci.h"
+
+/*
+ * PCI driver handlers.
+ */
+static void rt2x00pci_free_reg(struct rt2x00_dev *rt2x00dev)
+{
+ kfree(rt2x00dev->rf);
+ rt2x00dev->rf = NULL;
+
+ kfree(rt2x00dev->eeprom);
+ rt2x00dev->eeprom = NULL;
+
+ if (rt2x00dev->csr.base) {
+ iounmap(rt2x00dev->csr.base);
+ rt2x00dev->csr.base = NULL;
+ }
+}
+
+static int rt2x00pci_alloc_reg(struct rt2x00_dev *rt2x00dev)
+{
+ struct pci_dev *pci_dev = to_pci_dev(rt2x00dev->dev);
+
+ rt2x00dev->csr.base = pci_ioremap_bar(pci_dev, 0);
+ if (!rt2x00dev->csr.base)
+ goto exit;
+
+ rt2x00dev->eeprom = kzalloc(rt2x00dev->ops->eeprom_size, GFP_KERNEL);
+ if (!rt2x00dev->eeprom)
+ goto exit;
+
+ rt2x00dev->rf = kzalloc(rt2x00dev->ops->rf_size, GFP_KERNEL);
+ if (!rt2x00dev->rf)
+ goto exit;
+
+ return 0;
+
+exit:
+ rt2x00_probe_err("Failed to allocate registers\n");
+
+ rt2x00pci_free_reg(rt2x00dev);
+
+ return -ENOMEM;
+}
+
+int rt2x00pci_probe(struct pci_dev *pci_dev, const struct rt2x00_ops *ops)
+{
+ struct ieee80211_hw *hw;
+ struct rt2x00_dev *rt2x00dev;
+ int retval;
+ u16 chip;
+
+ retval = pci_enable_device(pci_dev);
+ if (retval) {
+ rt2x00_probe_err("Enable device failed\n");
+ return retval;
+ }
+
+ retval = pci_request_regions(pci_dev, pci_name(pci_dev));
+ if (retval) {
+ rt2x00_probe_err("PCI request regions failed\n");
+ goto exit_disable_device;
+ }
+
+ pci_set_master(pci_dev);
+
+ if (pci_set_mwi(pci_dev))
+ rt2x00_probe_err("MWI not available\n");
+
+ if (dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32))) {
+ rt2x00_probe_err("PCI DMA not supported\n");
+ retval = -EIO;
+ goto exit_release_regions;
+ }
+
+ hw = ieee80211_alloc_hw(sizeof(struct rt2x00_dev), ops->hw);
+ if (!hw) {
+ rt2x00_probe_err("Failed to allocate hardware\n");
+ retval = -ENOMEM;
+ goto exit_release_regions;
+ }
+
+ pci_set_drvdata(pci_dev, hw);
+
+ rt2x00dev = hw->priv;
+ rt2x00dev->dev = &pci_dev->dev;
+ rt2x00dev->ops = ops;
+ rt2x00dev->hw = hw;
+ rt2x00dev->irq = pci_dev->irq;
+ rt2x00dev->name = ops->name;
+
+ if (pci_is_pcie(pci_dev))
+ rt2x00_set_chip_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
+ else
+ rt2x00_set_chip_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI);
+
+ retval = rt2x00pci_alloc_reg(rt2x00dev);
+ if (retval)
+ goto exit_free_device;
+
+ /*
+ * Because rt3290 chip use different efuse offset to read efuse data.
+ * So before read efuse it need to indicate it is the
+ * rt3290 or not.
+ */
+ pci_read_config_word(pci_dev, PCI_DEVICE_ID, &chip);
+ rt2x00dev->chip.rt = chip;
+
+ retval = rt2x00lib_probe_dev(rt2x00dev);
+ if (retval)
+ goto exit_free_reg;
+
+ return 0;
+
+exit_free_reg:
+ rt2x00pci_free_reg(rt2x00dev);
+
+exit_free_device:
+ ieee80211_free_hw(hw);
+
+exit_release_regions:
+ pci_clear_mwi(pci_dev);
+ pci_release_regions(pci_dev);
+
+exit_disable_device:
+ pci_disable_device(pci_dev);
+
+ return retval;
+}
+EXPORT_SYMBOL_GPL(rt2x00pci_probe);
+
+void rt2x00pci_remove(struct pci_dev *pci_dev)
+{
+ struct ieee80211_hw *hw = pci_get_drvdata(pci_dev);
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ /*
+ * Free all allocated data.
+ */
+ rt2x00lib_remove_dev(rt2x00dev);
+ rt2x00pci_free_reg(rt2x00dev);
+ ieee80211_free_hw(hw);
+
+ /*
+ * Free the PCI device data.
+ */
+ pci_clear_mwi(pci_dev);
+ pci_disable_device(pci_dev);
+ pci_release_regions(pci_dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00pci_remove);
+
+static int __maybe_unused rt2x00pci_suspend(struct device *dev)
+{
+ struct ieee80211_hw *hw = dev_get_drvdata(dev);
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ return rt2x00lib_suspend(rt2x00dev);
+}
+
+static int __maybe_unused rt2x00pci_resume(struct device *dev)
+{
+ struct ieee80211_hw *hw = dev_get_drvdata(dev);
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ return rt2x00lib_resume(rt2x00dev);
+}
+
+SIMPLE_DEV_PM_OPS(rt2x00pci_pm_ops, rt2x00pci_suspend, rt2x00pci_resume);
+EXPORT_SYMBOL_GPL(rt2x00pci_pm_ops);
+
+/*
+ * rt2x00pci module information.
+ */
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2x00 pci library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00pci.h b/drivers/net/wireless/ralink/rt2x00/rt2x00pci.h
new file mode 100644
index 0000000000..27f7b2bd26
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00pci.h
@@ -0,0 +1,27 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00pci
+ Abstract: Data structures for the rt2x00pci module.
+ */
+
+#ifndef RT2X00PCI_H
+#define RT2X00PCI_H
+
+#include <linux/io.h>
+#include <linux/pci.h>
+
+/*
+ * PCI driver handlers.
+ */
+int rt2x00pci_probe(struct pci_dev *pci_dev, const struct rt2x00_ops *ops);
+void rt2x00pci_remove(struct pci_dev *pci_dev);
+
+extern const struct dev_pm_ops rt2x00pci_pm_ops;
+
+#endif /* RT2X00PCI_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00queue.c b/drivers/net/wireless/ralink/rt2x00/rt2x00queue.c
new file mode 100644
index 0000000000..98df0aef81
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00queue.c
@@ -0,0 +1,1290 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+ Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00lib
+ Abstract: rt2x00 queue specific routines.
+ */
+
+#include <linux/slab.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/dma-mapping.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
+{
+ struct data_queue *queue = entry->queue;
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ struct sk_buff *skb;
+ struct skb_frame_desc *skbdesc;
+ unsigned int frame_size;
+ unsigned int head_size = 0;
+ unsigned int tail_size = 0;
+
+ /*
+ * The frame size includes descriptor size, because the
+ * hardware directly receive the frame into the skbuffer.
+ */
+ frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
+
+ /*
+ * The payload should be aligned to a 4-byte boundary,
+ * this means we need at least 3 bytes for moving the frame
+ * into the correct offset.
+ */
+ head_size = 4;
+
+ /*
+ * For IV/EIV/ICV assembly we must make sure there is
+ * at least 8 bytes bytes available in headroom for IV/EIV
+ * and 8 bytes for ICV data as tailroon.
+ */
+ if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
+ head_size += 8;
+ tail_size += 8;
+ }
+
+ /*
+ * Allocate skbuffer.
+ */
+ skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
+ if (!skb)
+ return NULL;
+
+ /*
+ * Make sure we not have a frame with the requested bytes
+ * available in the head and tail.
+ */
+ skb_reserve(skb, head_size);
+ skb_put(skb, frame_size);
+
+ /*
+ * Populate skbdesc.
+ */
+ skbdesc = get_skb_frame_desc(skb);
+ memset(skbdesc, 0, sizeof(*skbdesc));
+
+ if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
+ dma_addr_t skb_dma;
+
+ skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
+ DMA_FROM_DEVICE);
+ if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
+ dev_kfree_skb_any(skb);
+ return NULL;
+ }
+
+ skbdesc->skb_dma = skb_dma;
+ skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
+ }
+
+ return skb;
+}
+
+int rt2x00queue_map_txskb(struct queue_entry *entry)
+{
+ struct device *dev = entry->queue->rt2x00dev->dev;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+
+ skbdesc->skb_dma =
+ dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
+
+ if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
+ return -ENOMEM;
+
+ skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
+ rt2x00lib_dmadone(entry);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
+
+void rt2x00queue_unmap_skb(struct queue_entry *entry)
+{
+ struct device *dev = entry->queue->rt2x00dev->dev;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+
+ if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
+ dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
+ DMA_FROM_DEVICE);
+ skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
+ } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
+ dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
+ DMA_TO_DEVICE);
+ skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
+ }
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
+
+void rt2x00queue_free_skb(struct queue_entry *entry)
+{
+ if (!entry->skb)
+ return;
+
+ rt2x00queue_unmap_skb(entry);
+ dev_kfree_skb_any(entry->skb);
+ entry->skb = NULL;
+}
+
+void rt2x00queue_align_frame(struct sk_buff *skb)
+{
+ unsigned int frame_length = skb->len;
+ unsigned int align = ALIGN_SIZE(skb, 0);
+
+ if (!align)
+ return;
+
+ skb_push(skb, align);
+ memmove(skb->data, skb->data + align, frame_length);
+ skb_trim(skb, frame_length);
+}
+
+/*
+ * H/W needs L2 padding between the header and the paylod if header size
+ * is not 4 bytes aligned.
+ */
+void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
+{
+ unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
+
+ if (!l2pad)
+ return;
+
+ skb_push(skb, l2pad);
+ memmove(skb->data, skb->data + l2pad, hdr_len);
+}
+
+void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
+{
+ unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
+
+ if (!l2pad)
+ return;
+
+ memmove(skb->data + l2pad, skb->data, hdr_len);
+ skb_pull(skb, l2pad);
+}
+
+static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb,
+ struct txentry_desc *txdesc)
+{
+ struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
+ struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
+ u16 seqno;
+
+ if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
+ return;
+
+ __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
+
+ if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
+ /*
+ * rt2800 has a H/W (or F/W) bug, device incorrectly increase
+ * seqno on retransmitted data (non-QOS) and management frames.
+ * To workaround the problem let's generate seqno in software.
+ * Except for beacons which are transmitted periodically by H/W
+ * hence hardware has to assign seqno for them.
+ */
+ if (ieee80211_is_beacon(hdr->frame_control)) {
+ __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
+ /* H/W will generate sequence number */
+ return;
+ }
+
+ __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
+ }
+
+ /*
+ * The hardware is not able to insert a sequence number. Assign a
+ * software generated one here.
+ *
+ * This is wrong because beacons are not getting sequence
+ * numbers assigned properly.
+ *
+ * A secondary problem exists for drivers that cannot toggle
+ * sequence counting per-frame, since those will override the
+ * sequence counter given by mac80211.
+ */
+ if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
+ seqno = atomic_add_return(0x10, &intf->seqno);
+ else
+ seqno = atomic_read(&intf->seqno);
+
+ hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
+ hdr->seq_ctrl |= cpu_to_le16(seqno);
+}
+
+static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb,
+ struct txentry_desc *txdesc,
+ const struct rt2x00_rate *hwrate)
+{
+ struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+ struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
+ unsigned int data_length;
+ unsigned int duration;
+ unsigned int residual;
+
+ /*
+ * Determine with what IFS priority this frame should be send.
+ * Set ifs to IFS_SIFS when the this is not the first fragment,
+ * or this fragment came after RTS/CTS.
+ */
+ if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
+ txdesc->u.plcp.ifs = IFS_BACKOFF;
+ else
+ txdesc->u.plcp.ifs = IFS_SIFS;
+
+ /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
+ data_length = skb->len + 4;
+ data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
+
+ /*
+ * PLCP setup
+ * Length calculation depends on OFDM/CCK rate.
+ */
+ txdesc->u.plcp.signal = hwrate->plcp;
+ txdesc->u.plcp.service = 0x04;
+
+ if (hwrate->flags & DEV_RATE_OFDM) {
+ txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
+ txdesc->u.plcp.length_low = data_length & 0x3f;
+ } else {
+ /*
+ * Convert length to microseconds.
+ */
+ residual = GET_DURATION_RES(data_length, hwrate->bitrate);
+ duration = GET_DURATION(data_length, hwrate->bitrate);
+
+ if (residual != 0) {
+ duration++;
+
+ /*
+ * Check if we need to set the Length Extension
+ */
+ if (hwrate->bitrate == 110 && residual <= 30)
+ txdesc->u.plcp.service |= 0x80;
+ }
+
+ txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
+ txdesc->u.plcp.length_low = duration & 0xff;
+
+ /*
+ * When preamble is enabled we should set the
+ * preamble bit for the signal.
+ */
+ if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
+ txdesc->u.plcp.signal |= 0x08;
+ }
+}
+
+static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb,
+ struct txentry_desc *txdesc,
+ struct ieee80211_sta *sta,
+ const struct rt2x00_rate *hwrate)
+{
+ struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+ struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
+ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
+ struct rt2x00_sta *sta_priv = NULL;
+ u8 density = 0;
+
+ if (sta) {
+ sta_priv = sta_to_rt2x00_sta(sta);
+ txdesc->u.ht.wcid = sta_priv->wcid;
+ density = sta->deflink.ht_cap.ampdu_density;
+ }
+
+ /*
+ * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
+ * mcs rate to be used
+ */
+ if (txrate->flags & IEEE80211_TX_RC_MCS) {
+ txdesc->u.ht.mcs = txrate->idx;
+
+ /*
+ * MIMO PS should be set to 1 for STA's using dynamic SM PS
+ * when using more then one tx stream (>MCS7).
+ */
+ if (sta && txdesc->u.ht.mcs > 7 &&
+ sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC)
+ __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
+ } else {
+ txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
+ if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
+ txdesc->u.ht.mcs |= 0x08;
+ }
+
+ if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
+ if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
+ txdesc->u.ht.txop = TXOP_SIFS;
+ else
+ txdesc->u.ht.txop = TXOP_BACKOFF;
+
+ /* Left zero on all other settings. */
+ return;
+ }
+
+ /*
+ * Only one STBC stream is supported for now.
+ */
+ if (tx_info->flags & IEEE80211_TX_CTL_STBC)
+ txdesc->u.ht.stbc = 1;
+
+ /*
+ * This frame is eligible for an AMPDU, however, don't aggregate
+ * frames that are intended to probe a specific tx rate.
+ */
+ if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
+ !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
+ __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
+ txdesc->u.ht.mpdu_density = density;
+ txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
+ }
+
+ /*
+ * Set 40Mhz mode if necessary (for legacy rates this will
+ * duplicate the frame to both channels).
+ */
+ if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
+ txrate->flags & IEEE80211_TX_RC_DUP_DATA)
+ __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
+ if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
+ __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
+
+ /*
+ * Determine IFS values
+ * - Use TXOP_BACKOFF for management frames except beacons
+ * - Use TXOP_SIFS for fragment bursts
+ * - Use TXOP_HTTXOP for everything else
+ *
+ * Note: rt2800 devices won't use CTS protection (if used)
+ * for frames not transmitted with TXOP_HTTXOP
+ */
+ if (ieee80211_is_mgmt(hdr->frame_control) &&
+ !ieee80211_is_beacon(hdr->frame_control))
+ txdesc->u.ht.txop = TXOP_BACKOFF;
+ else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
+ txdesc->u.ht.txop = TXOP_SIFS;
+ else
+ txdesc->u.ht.txop = TXOP_HTTXOP;
+}
+
+static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
+ struct sk_buff *skb,
+ struct txentry_desc *txdesc,
+ struct ieee80211_sta *sta)
+{
+ struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
+ struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
+ struct ieee80211_rate *rate;
+ const struct rt2x00_rate *hwrate = NULL;
+
+ memset(txdesc, 0, sizeof(*txdesc));
+
+ /*
+ * Header and frame information.
+ */
+ txdesc->length = skb->len;
+ txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
+
+ /*
+ * Check whether this frame is to be acked.
+ */
+ if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
+ __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
+
+ /*
+ * Check if this is a RTS/CTS frame
+ */
+ if (ieee80211_is_rts(hdr->frame_control) ||
+ ieee80211_is_cts(hdr->frame_control)) {
+ __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
+ if (ieee80211_is_rts(hdr->frame_control))
+ __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
+ else
+ __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
+ if (tx_info->control.rts_cts_rate_idx >= 0)
+ rate =
+ ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
+ }
+
+ /*
+ * Determine retry information.
+ */
+ txdesc->retry_limit = tx_info->control.rates[0].count - 1;
+ if (txdesc->retry_limit >= rt2x00dev->long_retry)
+ __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
+
+ /*
+ * Check if more fragments are pending
+ */
+ if (ieee80211_has_morefrags(hdr->frame_control)) {
+ __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
+ __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
+ }
+
+ /*
+ * Check if more frames (!= fragments) are pending
+ */
+ if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
+ __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
+
+ /*
+ * Beacons and probe responses require the tsf timestamp
+ * to be inserted into the frame.
+ */
+ if ((ieee80211_is_beacon(hdr->frame_control) ||
+ ieee80211_is_probe_resp(hdr->frame_control)) &&
+ !(tx_info->flags & IEEE80211_TX_CTL_INJECTED))
+ __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
+
+ if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
+ !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
+ __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
+
+ /*
+ * Determine rate modulation.
+ */
+ if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
+ txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
+ else if (txrate->flags & IEEE80211_TX_RC_MCS)
+ txdesc->rate_mode = RATE_MODE_HT_MIX;
+ else {
+ rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
+ hwrate = rt2x00_get_rate(rate->hw_value);
+ if (hwrate->flags & DEV_RATE_OFDM)
+ txdesc->rate_mode = RATE_MODE_OFDM;
+ else
+ txdesc->rate_mode = RATE_MODE_CCK;
+ }
+
+ /*
+ * Apply TX descriptor handling by components
+ */
+ rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
+ rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
+
+ if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
+ rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
+ sta, hwrate);
+ else
+ rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
+ hwrate);
+}
+
+static int rt2x00queue_write_tx_data(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+
+ /*
+ * This should not happen, we already checked the entry
+ * was ours. When the hardware disagrees there has been
+ * a queue corruption!
+ */
+ if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
+ rt2x00dev->ops->lib->get_entry_state(entry))) {
+ rt2x00_err(rt2x00dev,
+ "Corrupt queue %d, accessing entry which is not ours\n"
+ "Please file bug report to %s\n",
+ entry->queue->qid, DRV_PROJECT);
+ return -EINVAL;
+ }
+
+ /*
+ * Add the requested extra tx headroom in front of the skb.
+ */
+ skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
+ memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
+
+ /*
+ * Call the driver's write_tx_data function, if it exists.
+ */
+ if (rt2x00dev->ops->lib->write_tx_data)
+ rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
+
+ /*
+ * Map the skb to DMA.
+ */
+ if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
+ rt2x00queue_map_txskb(entry))
+ return -ENOMEM;
+
+ return 0;
+}
+
+static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct data_queue *queue = entry->queue;
+
+ queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
+
+ /*
+ * All processing on the frame has been completed, this means
+ * it is now ready to be dumped to userspace through debugfs.
+ */
+ rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
+}
+
+static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
+ struct txentry_desc *txdesc)
+{
+ /*
+ * Check if we need to kick the queue, there are however a few rules
+ * 1) Don't kick unless this is the last in frame in a burst.
+ * When the burst flag is set, this frame is always followed
+ * by another frame which in some way are related to eachother.
+ * This is true for fragments, RTS or CTS-to-self frames.
+ * 2) Rule 1 can be broken when the available entries
+ * in the queue are less then a certain threshold.
+ */
+ if (rt2x00queue_threshold(queue) ||
+ !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
+ queue->rt2x00dev->ops->lib->kick_queue(queue);
+}
+
+static void rt2x00queue_bar_check(struct queue_entry *entry)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct ieee80211_bar *bar = (void *) (entry->skb->data +
+ rt2x00dev->extra_tx_headroom);
+ struct rt2x00_bar_list_entry *bar_entry;
+
+ if (likely(!ieee80211_is_back_req(bar->frame_control)))
+ return;
+
+ bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
+
+ /*
+ * If the alloc fails we still send the BAR out but just don't track
+ * it in our bar list. And as a result we will report it to mac80211
+ * back as failed.
+ */
+ if (!bar_entry)
+ return;
+
+ bar_entry->entry = entry;
+ bar_entry->block_acked = 0;
+
+ /*
+ * Copy the relevant parts of the 802.11 BAR into out check list
+ * such that we can use RCU for less-overhead in the RX path since
+ * sending BARs and processing the according BlockAck should be
+ * the exception.
+ */
+ memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
+ memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
+ bar_entry->control = bar->control;
+ bar_entry->start_seq_num = bar->start_seq_num;
+
+ /*
+ * Insert BAR into our BAR check list.
+ */
+ spin_lock_bh(&rt2x00dev->bar_list_lock);
+ list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
+ spin_unlock_bh(&rt2x00dev->bar_list_lock);
+}
+
+int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
+ struct ieee80211_sta *sta, bool local)
+{
+ struct ieee80211_tx_info *tx_info;
+ struct queue_entry *entry;
+ struct txentry_desc txdesc;
+ struct skb_frame_desc *skbdesc;
+ u8 rate_idx, rate_flags;
+ int ret = 0;
+
+ /*
+ * Copy all TX descriptor information into txdesc,
+ * after that we are free to use the skb->cb array
+ * for our information.
+ */
+ rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
+
+ /*
+ * All information is retrieved from the skb->cb array,
+ * now we should claim ownership of the driver part of that
+ * array, preserving the bitrate index and flags.
+ */
+ tx_info = IEEE80211_SKB_CB(skb);
+ rate_idx = tx_info->control.rates[0].idx;
+ rate_flags = tx_info->control.rates[0].flags;
+ skbdesc = get_skb_frame_desc(skb);
+ memset(skbdesc, 0, sizeof(*skbdesc));
+ skbdesc->tx_rate_idx = rate_idx;
+ skbdesc->tx_rate_flags = rate_flags;
+
+ if (local)
+ skbdesc->flags |= SKBDESC_NOT_MAC80211;
+
+ /*
+ * When hardware encryption is supported, and this frame
+ * is to be encrypted, we should strip the IV/EIV data from
+ * the frame so we can provide it to the driver separately.
+ */
+ if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
+ !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
+ if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
+ rt2x00crypto_tx_copy_iv(skb, &txdesc);
+ else
+ rt2x00crypto_tx_remove_iv(skb, &txdesc);
+ }
+
+ /*
+ * When DMA allocation is required we should guarantee to the
+ * driver that the DMA is aligned to a 4-byte boundary.
+ * However some drivers require L2 padding to pad the payload
+ * rather then the header. This could be a requirement for
+ * PCI and USB devices, while header alignment only is valid
+ * for PCI devices.
+ */
+ if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
+ rt2x00queue_insert_l2pad(skb, txdesc.header_length);
+ else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
+ rt2x00queue_align_frame(skb);
+
+ /*
+ * That function must be called with bh disabled.
+ */
+ spin_lock(&queue->tx_lock);
+
+ if (unlikely(rt2x00queue_full(queue))) {
+ rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
+ queue->qid);
+ ret = -ENOBUFS;
+ goto out;
+ }
+
+ entry = rt2x00queue_get_entry(queue, Q_INDEX);
+
+ if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
+ &entry->flags))) {
+ rt2x00_err(queue->rt2x00dev,
+ "Arrived at non-free entry in the non-full queue %d\n"
+ "Please file bug report to %s\n",
+ queue->qid, DRV_PROJECT);
+ ret = -EINVAL;
+ goto out;
+ }
+
+ entry->skb = skb;
+
+ /*
+ * It could be possible that the queue was corrupted and this
+ * call failed. Since we always return NETDEV_TX_OK to mac80211,
+ * this frame will simply be dropped.
+ */
+ if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
+ clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
+ entry->skb = NULL;
+ ret = -EIO;
+ goto out;
+ }
+
+ /*
+ * Put BlockAckReqs into our check list for driver BA processing.
+ */
+ rt2x00queue_bar_check(entry);
+
+ set_bit(ENTRY_DATA_PENDING, &entry->flags);
+
+ rt2x00queue_index_inc(entry, Q_INDEX);
+ rt2x00queue_write_tx_descriptor(entry, &txdesc);
+ rt2x00queue_kick_tx_queue(queue, &txdesc);
+
+out:
+ /*
+ * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
+ * do this under queue->tx_lock. Bottom halve was already disabled
+ * before ieee80211_xmit() call.
+ */
+ if (rt2x00queue_threshold(queue))
+ rt2x00queue_pause_queue(queue);
+
+ spin_unlock(&queue->tx_lock);
+ return ret;
+}
+
+int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_vif *vif)
+{
+ struct rt2x00_intf *intf = vif_to_intf(vif);
+
+ if (unlikely(!intf->beacon))
+ return -ENOBUFS;
+
+ /*
+ * Clean up the beacon skb.
+ */
+ rt2x00queue_free_skb(intf->beacon);
+
+ /*
+ * Clear beacon (single bssid devices don't need to clear the beacon
+ * since the beacon queue will get stopped anyway).
+ */
+ if (rt2x00dev->ops->lib->clear_beacon)
+ rt2x00dev->ops->lib->clear_beacon(intf->beacon);
+
+ return 0;
+}
+
+int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
+ struct ieee80211_vif *vif)
+{
+ struct rt2x00_intf *intf = vif_to_intf(vif);
+ struct skb_frame_desc *skbdesc;
+ struct txentry_desc txdesc;
+
+ if (unlikely(!intf->beacon))
+ return -ENOBUFS;
+
+ /*
+ * Clean up the beacon skb.
+ */
+ rt2x00queue_free_skb(intf->beacon);
+
+ intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif, 0);
+ if (!intf->beacon->skb)
+ return -ENOMEM;
+
+ /*
+ * Copy all TX descriptor information into txdesc,
+ * after that we are free to use the skb->cb array
+ * for our information.
+ */
+ rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
+
+ /*
+ * Fill in skb descriptor
+ */
+ skbdesc = get_skb_frame_desc(intf->beacon->skb);
+ memset(skbdesc, 0, sizeof(*skbdesc));
+
+ /*
+ * Send beacon to hardware.
+ */
+ rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
+
+ return 0;
+
+}
+
+bool rt2x00queue_for_each_entry(struct data_queue *queue,
+ enum queue_index start,
+ enum queue_index end,
+ void *data,
+ bool (*fn)(struct queue_entry *entry,
+ void *data))
+{
+ unsigned long irqflags;
+ unsigned int index_start;
+ unsigned int index_end;
+ unsigned int i;
+
+ if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
+ rt2x00_err(queue->rt2x00dev,
+ "Entry requested from invalid index range (%d - %d)\n",
+ start, end);
+ return true;
+ }
+
+ /*
+ * Only protect the range we are going to loop over,
+ * if during our loop a extra entry is set to pending
+ * it should not be kicked during this run, since it
+ * is part of another TX operation.
+ */
+ spin_lock_irqsave(&queue->index_lock, irqflags);
+ index_start = queue->index[start];
+ index_end = queue->index[end];
+ spin_unlock_irqrestore(&queue->index_lock, irqflags);
+
+ /*
+ * Start from the TX done pointer, this guarantees that we will
+ * send out all frames in the correct order.
+ */
+ if (index_start < index_end) {
+ for (i = index_start; i < index_end; i++) {
+ if (fn(&queue->entries[i], data))
+ return true;
+ }
+ } else {
+ for (i = index_start; i < queue->limit; i++) {
+ if (fn(&queue->entries[i], data))
+ return true;
+ }
+
+ for (i = 0; i < index_end; i++) {
+ if (fn(&queue->entries[i], data))
+ return true;
+ }
+ }
+
+ return false;
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
+
+struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
+ enum queue_index index)
+{
+ struct queue_entry *entry;
+ unsigned long irqflags;
+
+ if (unlikely(index >= Q_INDEX_MAX)) {
+ rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
+ index);
+ return NULL;
+ }
+
+ spin_lock_irqsave(&queue->index_lock, irqflags);
+
+ entry = &queue->entries[queue->index[index]];
+
+ spin_unlock_irqrestore(&queue->index_lock, irqflags);
+
+ return entry;
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
+
+void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
+{
+ struct data_queue *queue = entry->queue;
+ unsigned long irqflags;
+
+ if (unlikely(index >= Q_INDEX_MAX)) {
+ rt2x00_err(queue->rt2x00dev,
+ "Index change on invalid index type (%d)\n", index);
+ return;
+ }
+
+ spin_lock_irqsave(&queue->index_lock, irqflags);
+
+ queue->index[index]++;
+ if (queue->index[index] >= queue->limit)
+ queue->index[index] = 0;
+
+ entry->last_action = jiffies;
+
+ if (index == Q_INDEX) {
+ queue->length++;
+ } else if (index == Q_INDEX_DONE) {
+ queue->length--;
+ queue->count++;
+ }
+
+ spin_unlock_irqrestore(&queue->index_lock, irqflags);
+}
+
+static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
+{
+ switch (queue->qid) {
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ /*
+ * For TX queues, we have to disable the queue
+ * inside mac80211.
+ */
+ ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
+ break;
+ default:
+ break;
+ }
+}
+void rt2x00queue_pause_queue(struct data_queue *queue)
+{
+ if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
+ !test_bit(QUEUE_STARTED, &queue->flags) ||
+ test_and_set_bit(QUEUE_PAUSED, &queue->flags))
+ return;
+
+ rt2x00queue_pause_queue_nocheck(queue);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
+
+void rt2x00queue_unpause_queue(struct data_queue *queue)
+{
+ if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
+ !test_bit(QUEUE_STARTED, &queue->flags) ||
+ !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
+ return;
+
+ switch (queue->qid) {
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ /*
+ * For TX queues, we have to enable the queue
+ * inside mac80211.
+ */
+ ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
+ break;
+ case QID_RX:
+ /*
+ * For RX we need to kick the queue now in order to
+ * receive frames.
+ */
+ queue->rt2x00dev->ops->lib->kick_queue(queue);
+ break;
+ default:
+ break;
+ }
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
+
+void rt2x00queue_start_queue(struct data_queue *queue)
+{
+ mutex_lock(&queue->status_lock);
+
+ if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
+ test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
+ mutex_unlock(&queue->status_lock);
+ return;
+ }
+
+ set_bit(QUEUE_PAUSED, &queue->flags);
+
+ queue->rt2x00dev->ops->lib->start_queue(queue);
+
+ rt2x00queue_unpause_queue(queue);
+
+ mutex_unlock(&queue->status_lock);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
+
+void rt2x00queue_stop_queue(struct data_queue *queue)
+{
+ mutex_lock(&queue->status_lock);
+
+ if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
+ mutex_unlock(&queue->status_lock);
+ return;
+ }
+
+ rt2x00queue_pause_queue_nocheck(queue);
+
+ queue->rt2x00dev->ops->lib->stop_queue(queue);
+
+ mutex_unlock(&queue->status_lock);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
+
+void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
+{
+ bool tx_queue =
+ (queue->qid == QID_AC_VO) ||
+ (queue->qid == QID_AC_VI) ||
+ (queue->qid == QID_AC_BE) ||
+ (queue->qid == QID_AC_BK);
+
+ if (rt2x00queue_empty(queue))
+ return;
+
+ /*
+ * If we are not supposed to drop any pending
+ * frames, this means we must force a start (=kick)
+ * to the queue to make sure the hardware will
+ * start transmitting.
+ */
+ if (!drop && tx_queue)
+ queue->rt2x00dev->ops->lib->kick_queue(queue);
+
+ /*
+ * Check if driver supports flushing, if that is the case we can
+ * defer the flushing to the driver. Otherwise we must use the
+ * alternative which just waits for the queue to become empty.
+ */
+ if (likely(queue->rt2x00dev->ops->lib->flush_queue))
+ queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
+
+ /*
+ * The queue flush has failed...
+ */
+ if (unlikely(!rt2x00queue_empty(queue)))
+ rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
+ queue->qid);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
+
+void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+
+ /*
+ * rt2x00queue_start_queue will call ieee80211_wake_queue
+ * for each queue after is has been properly initialized.
+ */
+ tx_queue_for_each(rt2x00dev, queue)
+ rt2x00queue_start_queue(queue);
+
+ rt2x00queue_start_queue(rt2x00dev->rx);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
+
+void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+
+ /*
+ * rt2x00queue_stop_queue will call ieee80211_stop_queue
+ * as well, but we are completely shutting doing everything
+ * now, so it is much safer to stop all TX queues at once,
+ * and use rt2x00queue_stop_queue for cleaning up.
+ */
+ ieee80211_stop_queues(rt2x00dev->hw);
+
+ tx_queue_for_each(rt2x00dev, queue)
+ rt2x00queue_stop_queue(queue);
+
+ rt2x00queue_stop_queue(rt2x00dev->rx);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
+
+void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
+{
+ struct data_queue *queue;
+
+ tx_queue_for_each(rt2x00dev, queue)
+ rt2x00queue_flush_queue(queue, drop);
+
+ rt2x00queue_flush_queue(rt2x00dev->rx, drop);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
+
+static void rt2x00queue_reset(struct data_queue *queue)
+{
+ unsigned long irqflags;
+ unsigned int i;
+
+ spin_lock_irqsave(&queue->index_lock, irqflags);
+
+ queue->count = 0;
+ queue->length = 0;
+
+ for (i = 0; i < Q_INDEX_MAX; i++)
+ queue->index[i] = 0;
+
+ spin_unlock_irqrestore(&queue->index_lock, irqflags);
+}
+
+void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+ unsigned int i;
+
+ queue_for_each(rt2x00dev, queue) {
+ rt2x00queue_reset(queue);
+
+ for (i = 0; i < queue->limit; i++)
+ rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
+ }
+}
+
+static int rt2x00queue_alloc_entries(struct data_queue *queue)
+{
+ struct queue_entry *entries;
+ unsigned int entry_size;
+ unsigned int i;
+
+ rt2x00queue_reset(queue);
+
+ /*
+ * Allocate all queue entries.
+ */
+ entry_size = sizeof(*entries) + queue->priv_size;
+ entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
+ if (!entries)
+ return -ENOMEM;
+
+#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
+ (((char *)(__base)) + ((__limit) * (__esize)) + \
+ ((__index) * (__psize)))
+
+ for (i = 0; i < queue->limit; i++) {
+ entries[i].flags = 0;
+ entries[i].queue = queue;
+ entries[i].skb = NULL;
+ entries[i].entry_idx = i;
+ entries[i].priv_data =
+ QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
+ sizeof(*entries), queue->priv_size);
+ }
+
+#undef QUEUE_ENTRY_PRIV_OFFSET
+
+ queue->entries = entries;
+
+ return 0;
+}
+
+static void rt2x00queue_free_skbs(struct data_queue *queue)
+{
+ unsigned int i;
+
+ if (!queue->entries)
+ return;
+
+ for (i = 0; i < queue->limit; i++) {
+ rt2x00queue_free_skb(&queue->entries[i]);
+ }
+}
+
+static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
+{
+ unsigned int i;
+ struct sk_buff *skb;
+
+ for (i = 0; i < queue->limit; i++) {
+ skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
+ if (!skb)
+ return -ENOMEM;
+ queue->entries[i].skb = skb;
+ }
+
+ return 0;
+}
+
+int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+ int status;
+
+ status = rt2x00queue_alloc_entries(rt2x00dev->rx);
+ if (status)
+ goto exit;
+
+ tx_queue_for_each(rt2x00dev, queue) {
+ status = rt2x00queue_alloc_entries(queue);
+ if (status)
+ goto exit;
+ }
+
+ status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
+ if (status)
+ goto exit;
+
+ if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
+ status = rt2x00queue_alloc_entries(rt2x00dev->atim);
+ if (status)
+ goto exit;
+ }
+
+ status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
+ if (status)
+ goto exit;
+
+ return 0;
+
+exit:
+ rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
+
+ rt2x00queue_uninitialize(rt2x00dev);
+
+ return status;
+}
+
+void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+
+ rt2x00queue_free_skbs(rt2x00dev->rx);
+
+ queue_for_each(rt2x00dev, queue) {
+ kfree(queue->entries);
+ queue->entries = NULL;
+ }
+}
+
+static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
+ struct data_queue *queue, enum data_queue_qid qid)
+{
+ mutex_init(&queue->status_lock);
+ spin_lock_init(&queue->tx_lock);
+ spin_lock_init(&queue->index_lock);
+
+ queue->rt2x00dev = rt2x00dev;
+ queue->qid = qid;
+ queue->txop = 0;
+ queue->aifs = 2;
+ queue->cw_min = 5;
+ queue->cw_max = 10;
+
+ rt2x00dev->ops->queue_init(queue);
+
+ queue->threshold = DIV_ROUND_UP(queue->limit, 10);
+}
+
+int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+ enum data_queue_qid qid;
+ unsigned int req_atim =
+ rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
+
+ /*
+ * We need the following queues:
+ * RX: 1
+ * TX: ops->tx_queues
+ * Beacon: 1
+ * Atim: 1 (if required)
+ */
+ rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
+
+ queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
+ if (!queue)
+ return -ENOMEM;
+
+ /*
+ * Initialize pointers
+ */
+ rt2x00dev->rx = queue;
+ rt2x00dev->tx = &queue[1];
+ rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
+ rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
+
+ /*
+ * Initialize queue parameters.
+ * RX: qid = QID_RX
+ * TX: qid = QID_AC_VO + index
+ * TX: cw_min: 2^5 = 32.
+ * TX: cw_max: 2^10 = 1024.
+ * BCN: qid = QID_BEACON
+ * ATIM: qid = QID_ATIM
+ */
+ rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
+
+ qid = QID_AC_VO;
+ tx_queue_for_each(rt2x00dev, queue)
+ rt2x00queue_init(rt2x00dev, queue, qid++);
+
+ rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
+ if (req_atim)
+ rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
+
+ return 0;
+}
+
+void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
+{
+ kfree(rt2x00dev->rx);
+ rt2x00dev->rx = NULL;
+ rt2x00dev->tx = NULL;
+ rt2x00dev->bcn = NULL;
+}
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00queue.h b/drivers/net/wireless/ralink/rt2x00/rt2x00queue.h
new file mode 100644
index 0000000000..23739dd0bc
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00queue.h
@@ -0,0 +1,677 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00
+ Abstract: rt2x00 queue datastructures and routines
+ */
+
+#ifndef RT2X00QUEUE_H
+#define RT2X00QUEUE_H
+
+#include <linux/prefetch.h>
+
+/**
+ * DOC: Entry frame size
+ *
+ * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes,
+ * for USB devices this restriction does not apply, but the value of
+ * 2432 makes sense since it is big enough to contain the maximum fragment
+ * size according to the ieee802.11 specs.
+ * The aggregation size depends on support from the driver, but should
+ * be something around 3840 bytes.
+ */
+#define DATA_FRAME_SIZE 2432
+#define MGMT_FRAME_SIZE 256
+#define AGGREGATION_SIZE 3840
+
+/**
+ * enum data_queue_qid: Queue identification
+ *
+ * @QID_AC_VO: AC VO queue
+ * @QID_AC_VI: AC VI queue
+ * @QID_AC_BE: AC BE queue
+ * @QID_AC_BK: AC BK queue
+ * @QID_HCCA: HCCA queue
+ * @QID_MGMT: MGMT queue (prio queue)
+ * @QID_RX: RX queue
+ * @QID_OTHER: None of the above (don't use, only present for completeness)
+ * @QID_BEACON: Beacon queue (value unspecified, don't send it to device)
+ * @QID_ATIM: Atim queue (value unspecified, don't send it to device)
+ */
+enum data_queue_qid {
+ QID_AC_VO = 0,
+ QID_AC_VI = 1,
+ QID_AC_BE = 2,
+ QID_AC_BK = 3,
+ QID_HCCA = 4,
+ QID_MGMT = 13,
+ QID_RX = 14,
+ QID_OTHER = 15,
+ QID_BEACON,
+ QID_ATIM,
+};
+
+/**
+ * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc
+ *
+ * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX
+ * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX
+ * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by
+ * mac80211 but was stripped for processing by the driver.
+ * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211,
+ * don't try to pass it back.
+ * @SKBDESC_DESC_IN_SKB: The descriptor is at the start of the
+ * skb, instead of in the desc field.
+ */
+enum skb_frame_desc_flags {
+ SKBDESC_DMA_MAPPED_RX = 1 << 0,
+ SKBDESC_DMA_MAPPED_TX = 1 << 1,
+ SKBDESC_IV_STRIPPED = 1 << 2,
+ SKBDESC_NOT_MAC80211 = 1 << 3,
+ SKBDESC_DESC_IN_SKB = 1 << 4,
+};
+
+/**
+ * struct skb_frame_desc: Descriptor information for the skb buffer
+ *
+ * This structure is placed over the driver_data array, this means that
+ * this structure should not exceed the size of that array (40 bytes).
+ *
+ * @flags: Frame flags, see &enum skb_frame_desc_flags.
+ * @desc_len: Length of the frame descriptor.
+ * @tx_rate_idx: the index of the TX rate, used for TX status reporting
+ * @tx_rate_flags: the TX rate flags, used for TX status reporting
+ * @desc: Pointer to descriptor part of the frame.
+ * Note that this pointer could point to something outside
+ * of the scope of the skb->data pointer.
+ * @iv: IV/EIV data used during encryption/decryption.
+ * @skb_dma: (PCI-only) the DMA address associated with the sk buffer.
+ * @sta: The station where sk buffer was sent.
+ */
+struct skb_frame_desc {
+ u8 flags;
+
+ u8 desc_len;
+ u8 tx_rate_idx;
+ u8 tx_rate_flags;
+
+ void *desc;
+
+ __le32 iv[2];
+
+ dma_addr_t skb_dma;
+ struct ieee80211_sta *sta;
+};
+
+/**
+ * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff.
+ * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc
+ */
+static inline struct skb_frame_desc* get_skb_frame_desc(struct sk_buff *skb)
+{
+ BUILD_BUG_ON(sizeof(struct skb_frame_desc) >
+ IEEE80211_TX_INFO_DRIVER_DATA_SIZE);
+ return (struct skb_frame_desc *)&IEEE80211_SKB_CB(skb)->driver_data;
+}
+
+/**
+ * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc
+ *
+ * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value.
+ * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value.
+ * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value.
+ * @RXDONE_MY_BSS: Does this frame originate from device's BSS.
+ * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data.
+ * @RXDONE_CRYPTO_ICV: Driver provided ICV data.
+ * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary.
+ */
+enum rxdone_entry_desc_flags {
+ RXDONE_SIGNAL_PLCP = BIT(0),
+ RXDONE_SIGNAL_BITRATE = BIT(1),
+ RXDONE_SIGNAL_MCS = BIT(2),
+ RXDONE_MY_BSS = BIT(3),
+ RXDONE_CRYPTO_IV = BIT(4),
+ RXDONE_CRYPTO_ICV = BIT(5),
+ RXDONE_L2PAD = BIT(6),
+};
+
+/**
+ * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags
+ * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags
+ * from &rxdone_entry_desc to a signal value type.
+ */
+#define RXDONE_SIGNAL_MASK \
+ ( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS )
+
+/**
+ * struct rxdone_entry_desc: RX Entry descriptor
+ *
+ * Summary of information that has been read from the RX frame descriptor.
+ *
+ * @timestamp: RX Timestamp
+ * @signal: Signal of the received frame.
+ * @rssi: RSSI of the received frame.
+ * @size: Data size of the received frame.
+ * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags).
+ * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags).
+ * @rate_mode: Rate mode (See @enum rate_modulation).
+ * @cipher: Cipher type used during decryption.
+ * @cipher_status: Decryption status.
+ * @iv: IV/EIV data used during decryption.
+ * @icv: ICV data used during decryption.
+ */
+struct rxdone_entry_desc {
+ u64 timestamp;
+ int signal;
+ int rssi;
+ int size;
+ int flags;
+ int dev_flags;
+ u16 rate_mode;
+ u16 enc_flags;
+ enum mac80211_rx_encoding encoding;
+ enum rate_info_bw bw;
+ u8 cipher;
+ u8 cipher_status;
+
+ __le32 iv[2];
+ __le32 icv;
+};
+
+/**
+ * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc
+ *
+ * Every txdone report has to contain the basic result of the
+ * transmission, either &TXDONE_UNKNOWN, &TXDONE_SUCCESS or
+ * &TXDONE_FAILURE. The flag &TXDONE_FALLBACK can be used in
+ * conjunction with all of these flags but should only be set
+ * if retires > 0. The flag &TXDONE_EXCESSIVE_RETRY can only be used
+ * in conjunction with &TXDONE_FAILURE.
+ *
+ * @TXDONE_UNKNOWN: Hardware could not determine success of transmission.
+ * @TXDONE_SUCCESS: Frame was successfully send
+ * @TXDONE_FALLBACK: Hardware used fallback rates for retries
+ * @TXDONE_FAILURE: Frame was not successfully send
+ * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the
+ * frame transmission failed due to excessive retries.
+ */
+enum txdone_entry_desc_flags {
+ TXDONE_UNKNOWN,
+ TXDONE_SUCCESS,
+ TXDONE_FALLBACK,
+ TXDONE_FAILURE,
+ TXDONE_EXCESSIVE_RETRY,
+ TXDONE_AMPDU,
+ TXDONE_NO_ACK_REQ,
+};
+
+/**
+ * struct txdone_entry_desc: TX done entry descriptor
+ *
+ * Summary of information that has been read from the TX frame descriptor
+ * after the device is done with transmission.
+ *
+ * @flags: TX done flags (See &enum txdone_entry_desc_flags).
+ * @retry: Retry count.
+ */
+struct txdone_entry_desc {
+ unsigned long flags;
+ int retry;
+};
+
+/**
+ * enum txentry_desc_flags: Status flags for TX entry descriptor
+ *
+ * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame.
+ * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame.
+ * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter.
+ * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame.
+ * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment.
+ * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted.
+ * @ENTRY_TXD_BURST: This frame belongs to the same burst event.
+ * @ENTRY_TXD_ACK: An ACK is required for this frame.
+ * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used.
+ * @ENTRY_TXD_ENCRYPT: This frame should be encrypted.
+ * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared).
+ * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware.
+ * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware.
+ * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU.
+ * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth.
+ * @ENTRY_TXD_HT_SHORT_GI: Use short GI.
+ * @ENTRY_TXD_HT_MIMO_PS: The receiving STA is in dynamic SM PS mode.
+ */
+enum txentry_desc_flags {
+ ENTRY_TXD_RTS_FRAME,
+ ENTRY_TXD_CTS_FRAME,
+ ENTRY_TXD_GENERATE_SEQ,
+ ENTRY_TXD_FIRST_FRAGMENT,
+ ENTRY_TXD_MORE_FRAG,
+ ENTRY_TXD_REQ_TIMESTAMP,
+ ENTRY_TXD_BURST,
+ ENTRY_TXD_ACK,
+ ENTRY_TXD_RETRY_MODE,
+ ENTRY_TXD_ENCRYPT,
+ ENTRY_TXD_ENCRYPT_PAIRWISE,
+ ENTRY_TXD_ENCRYPT_IV,
+ ENTRY_TXD_ENCRYPT_MMIC,
+ ENTRY_TXD_HT_AMPDU,
+ ENTRY_TXD_HT_BW_40,
+ ENTRY_TXD_HT_SHORT_GI,
+ ENTRY_TXD_HT_MIMO_PS,
+};
+
+/**
+ * struct txentry_desc: TX Entry descriptor
+ *
+ * Summary of information for the frame descriptor before sending a TX frame.
+ *
+ * @flags: Descriptor flags (See &enum queue_entry_flags).
+ * @length: Length of the entire frame.
+ * @header_length: Length of 802.11 header.
+ * @length_high: PLCP length high word.
+ * @length_low: PLCP length low word.
+ * @signal: PLCP signal.
+ * @service: PLCP service.
+ * @msc: MCS.
+ * @stbc: Use Space Time Block Coding (only available for MCS rates < 8).
+ * @ba_size: Size of the recepients RX reorder buffer - 1.
+ * @rate_mode: Rate mode (See @enum rate_modulation).
+ * @mpdu_density: MDPU density.
+ * @retry_limit: Max number of retries.
+ * @ifs: IFS value.
+ * @txop: IFS value for 11n capable chips.
+ * @cipher: Cipher type used for encryption.
+ * @key_idx: Key index used for encryption.
+ * @iv_offset: Position where IV should be inserted by hardware.
+ * @iv_len: Length of IV data.
+ */
+struct txentry_desc {
+ unsigned long flags;
+
+ u16 length;
+ u16 header_length;
+
+ union {
+ struct {
+ u16 length_high;
+ u16 length_low;
+ u16 signal;
+ u16 service;
+ enum ifs ifs;
+ } plcp;
+
+ struct {
+ u16 mcs;
+ u8 stbc;
+ u8 ba_size;
+ u8 mpdu_density;
+ enum txop txop;
+ int wcid;
+ } ht;
+ } u;
+
+ enum rate_modulation rate_mode;
+
+ short retry_limit;
+
+ enum cipher cipher;
+ u16 key_idx;
+ u16 iv_offset;
+ u16 iv_len;
+};
+
+/**
+ * enum queue_entry_flags: Status flags for queue entry
+ *
+ * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface.
+ * As long as this bit is set, this entry may only be touched
+ * through the interface structure.
+ * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data
+ * transfer (either TX or RX depending on the queue). The entry should
+ * only be touched after the device has signaled it is done with it.
+ * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting
+ * for the signal to start sending.
+ * @ENTRY_DATA_IO_FAILED: Hardware indicated that an IO error occurred
+ * while transferring the data to the hardware. No TX status report will
+ * be expected from the hardware.
+ * @ENTRY_DATA_STATUS_PENDING: The entry has been send to the device and
+ * returned. It is now waiting for the status reporting before the
+ * entry can be reused again.
+ */
+enum queue_entry_flags {
+ ENTRY_BCN_ASSIGNED,
+ ENTRY_BCN_ENABLED,
+ ENTRY_OWNER_DEVICE_DATA,
+ ENTRY_DATA_PENDING,
+ ENTRY_DATA_IO_FAILED,
+ ENTRY_DATA_STATUS_PENDING,
+};
+
+/**
+ * struct queue_entry: Entry inside the &struct data_queue
+ *
+ * @flags: Entry flags, see &enum queue_entry_flags.
+ * @last_action: Timestamp of last change.
+ * @queue: The data queue (&struct data_queue) to which this entry belongs.
+ * @skb: The buffer which is currently being transmitted (for TX queue),
+ * or used to directly receive data in (for RX queue).
+ * @entry_idx: The entry index number.
+ * @priv_data: Private data belonging to this queue entry. The pointer
+ * points to data specific to a particular driver and queue type.
+ * @status: Device specific status
+ */
+struct queue_entry {
+ unsigned long flags;
+ unsigned long last_action;
+
+ struct data_queue *queue;
+
+ struct sk_buff *skb;
+
+ unsigned int entry_idx;
+
+ void *priv_data;
+};
+
+/**
+ * enum queue_index: Queue index type
+ *
+ * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is
+ * owned by the hardware then the queue is considered to be full.
+ * @Q_INDEX_DMA_DONE: Index pointer for the next entry which will have been
+ * transferred to the hardware.
+ * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by
+ * the hardware and for which we need to run the txdone handler. If this
+ * entry is not owned by the hardware the queue is considered to be empty.
+ * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size
+ * of the index array.
+ */
+enum queue_index {
+ Q_INDEX,
+ Q_INDEX_DMA_DONE,
+ Q_INDEX_DONE,
+ Q_INDEX_MAX,
+};
+
+/**
+ * enum data_queue_flags: Status flags for data queues
+ *
+ * @QUEUE_STARTED: The queue has been started. Fox RX queues this means the
+ * device might be DMA'ing skbuffers. TX queues will accept skbuffers to
+ * be transmitted and beacon queues will start beaconing the configured
+ * beacons.
+ * @QUEUE_PAUSED: The queue has been started but is currently paused.
+ * When this bit is set, the queue has been stopped in mac80211,
+ * preventing new frames to be enqueued. However, a few frames
+ * might still appear shortly after the pausing...
+ */
+enum data_queue_flags {
+ QUEUE_STARTED,
+ QUEUE_PAUSED,
+};
+
+/**
+ * struct data_queue: Data queue
+ *
+ * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to.
+ * @entries: Base address of the &struct queue_entry which are
+ * part of this queue.
+ * @qid: The queue identification, see &enum data_queue_qid.
+ * @flags: Entry flags, see &enum queue_entry_flags.
+ * @status_lock: The mutex for protecting the start/stop/flush
+ * handling on this queue.
+ * @tx_lock: Spinlock to serialize tx operations on this queue.
+ * @index_lock: Spinlock to protect index handling. Whenever @index, @index_done or
+ * @index_crypt needs to be changed this lock should be grabbed to prevent
+ * index corruption due to concurrency.
+ * @count: Number of frames handled in the queue.
+ * @limit: Maximum number of entries in the queue.
+ * @threshold: Minimum number of free entries before queue is kicked by force.
+ * @length: Number of frames in queue.
+ * @index: Index pointers to entry positions in the queue,
+ * use &enum queue_index to get a specific index field.
+ * @wd_count: watchdog counter number of times entry does change
+ * in the queue
+ * @wd_idx: index of queue entry saved by watchdog
+ * @txop: maximum burst time.
+ * @aifs: The aifs value for outgoing frames (field ignored in RX queue).
+ * @cw_min: The cw min value for outgoing frames (field ignored in RX queue).
+ * @cw_max: The cw max value for outgoing frames (field ignored in RX queue).
+ * @data_size: Maximum data size for the frames in this queue.
+ * @desc_size: Hardware descriptor size for the data in this queue.
+ * @priv_size: Size of per-queue_entry private data.
+ * @usb_endpoint: Device endpoint used for communication (USB only)
+ * @usb_maxpacket: Max packet size for given endpoint (USB only)
+ */
+struct data_queue {
+ struct rt2x00_dev *rt2x00dev;
+ struct queue_entry *entries;
+
+ enum data_queue_qid qid;
+ unsigned long flags;
+
+ struct mutex status_lock;
+ spinlock_t tx_lock;
+ spinlock_t index_lock;
+
+ unsigned int count;
+ unsigned short limit;
+ unsigned short threshold;
+ unsigned short length;
+ unsigned short index[Q_INDEX_MAX];
+
+ unsigned short wd_count;
+ unsigned int wd_idx;
+
+ unsigned short txop;
+ unsigned short aifs;
+ unsigned short cw_min;
+ unsigned short cw_max;
+
+ unsigned short data_size;
+ unsigned char desc_size;
+ unsigned char winfo_size;
+ unsigned short priv_size;
+
+ unsigned short usb_endpoint;
+ unsigned short usb_maxpacket;
+};
+
+/**
+ * queue_end - Return pointer to the last queue (HELPER MACRO).
+ * @__dev: Pointer to &struct rt2x00_dev
+ *
+ * Using the base rx pointer and the maximum number of available queues,
+ * this macro will return the address of 1 position beyond the end of the
+ * queues array.
+ */
+#define queue_end(__dev) \
+ &(__dev)->rx[(__dev)->data_queues]
+
+/**
+ * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO).
+ * @__dev: Pointer to &struct rt2x00_dev
+ *
+ * Using the base tx pointer and the maximum number of available TX
+ * queues, this macro will return the address of 1 position beyond
+ * the end of the TX queue array.
+ */
+#define tx_queue_end(__dev) \
+ &(__dev)->tx[(__dev)->ops->tx_queues]
+
+/**
+ * queue_next - Return pointer to next queue in list (HELPER MACRO).
+ * @__queue: Current queue for which we need the next queue
+ *
+ * Using the current queue address we take the address directly
+ * after the queue to take the next queue. Note that this macro
+ * should be used carefully since it does not protect against
+ * moving past the end of the list. (See macros &queue_end and
+ * &tx_queue_end for determining the end of the queue).
+ */
+#define queue_next(__queue) \
+ &(__queue)[1]
+
+/**
+ * queue_loop - Loop through the queues within a specific range (HELPER MACRO).
+ * @__entry: Pointer where the current queue entry will be stored in.
+ * @__start: Start queue pointer.
+ * @__end: End queue pointer.
+ *
+ * This macro will loop through all queues between &__start and &__end.
+ */
+#define queue_loop(__entry, __start, __end) \
+ for ((__entry) = (__start); \
+ prefetch(queue_next(__entry)), (__entry) != (__end);\
+ (__entry) = queue_next(__entry))
+
+/**
+ * queue_for_each - Loop through all queues
+ * @__dev: Pointer to &struct rt2x00_dev
+ * @__entry: Pointer where the current queue entry will be stored in.
+ *
+ * This macro will loop through all available queues.
+ */
+#define queue_for_each(__dev, __entry) \
+ queue_loop(__entry, (__dev)->rx, queue_end(__dev))
+
+/**
+ * tx_queue_for_each - Loop through the TX queues
+ * @__dev: Pointer to &struct rt2x00_dev
+ * @__entry: Pointer where the current queue entry will be stored in.
+ *
+ * This macro will loop through all TX related queues excluding
+ * the Beacon and Atim queues.
+ */
+#define tx_queue_for_each(__dev, __entry) \
+ queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev))
+
+/**
+ * txall_queue_for_each - Loop through all TX related queues
+ * @__dev: Pointer to &struct rt2x00_dev
+ * @__entry: Pointer where the current queue entry will be stored in.
+ *
+ * This macro will loop through all TX related queues including
+ * the Beacon and Atim queues.
+ */
+#define txall_queue_for_each(__dev, __entry) \
+ queue_loop(__entry, (__dev)->tx, queue_end(__dev))
+
+/**
+ * rt2x00queue_for_each_entry - Loop through all entries in the queue
+ * @queue: Pointer to @data_queue
+ * @start: &enum queue_index Pointer to start index
+ * @end: &enum queue_index Pointer to end index
+ * @data: Data to pass to the callback function
+ * @fn: The function to call for each &struct queue_entry
+ *
+ * This will walk through all entries in the queue, in chronological
+ * order. This means it will start at the current @start pointer
+ * and will walk through the queue until it reaches the @end pointer.
+ *
+ * If fn returns true for an entry rt2x00queue_for_each_entry will stop
+ * processing and return true as well.
+ */
+bool rt2x00queue_for_each_entry(struct data_queue *queue,
+ enum queue_index start,
+ enum queue_index end,
+ void *data,
+ bool (*fn)(struct queue_entry *entry,
+ void *data));
+
+/**
+ * rt2x00queue_empty - Check if the queue is empty.
+ * @queue: Queue to check if empty.
+ */
+static inline int rt2x00queue_empty(struct data_queue *queue)
+{
+ return queue->length == 0;
+}
+
+/**
+ * rt2x00queue_full - Check if the queue is full.
+ * @queue: Queue to check if full.
+ */
+static inline int rt2x00queue_full(struct data_queue *queue)
+{
+ return queue->length == queue->limit;
+}
+
+/**
+ * rt2x00queue_free - Check the number of available entries in queue.
+ * @queue: Queue to check.
+ */
+static inline int rt2x00queue_available(struct data_queue *queue)
+{
+ return queue->limit - queue->length;
+}
+
+/**
+ * rt2x00queue_threshold - Check if the queue is below threshold
+ * @queue: Queue to check.
+ */
+static inline int rt2x00queue_threshold(struct data_queue *queue)
+{
+ return rt2x00queue_available(queue) < queue->threshold;
+}
+/**
+ * rt2x00queue_dma_timeout - Check if a timeout occurred for DMA transfers
+ * @entry: Queue entry to check.
+ */
+static inline int rt2x00queue_dma_timeout(struct queue_entry *entry)
+{
+ if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
+ return false;
+ return time_after(jiffies, entry->last_action + msecs_to_jiffies(100));
+}
+
+/**
+ * _rt2x00_desc_read - Read a word from the hardware descriptor.
+ * @desc: Base descriptor address
+ * @word: Word index from where the descriptor should be read.
+ */
+static inline __le32 _rt2x00_desc_read(__le32 *desc, const u8 word)
+{
+ return desc[word];
+}
+
+/**
+ * rt2x00_desc_read - Read a word from the hardware descriptor, this
+ * function will take care of the byte ordering.
+ * @desc: Base descriptor address
+ * @word: Word index from where the descriptor should be read.
+ */
+static inline u32 rt2x00_desc_read(__le32 *desc, const u8 word)
+{
+ return le32_to_cpu(_rt2x00_desc_read(desc, word));
+}
+
+/**
+ * rt2x00_desc_write - write a word to the hardware descriptor, this
+ * function will take care of the byte ordering.
+ * @desc: Base descriptor address
+ * @word: Word index from where the descriptor should be written.
+ * @value: Value that should be written into the descriptor.
+ */
+static inline void _rt2x00_desc_write(__le32 *desc, const u8 word, __le32 value)
+{
+ desc[word] = value;
+}
+
+/**
+ * rt2x00_desc_write - write a word to the hardware descriptor.
+ * @desc: Base descriptor address
+ * @word: Word index from where the descriptor should be written.
+ * @value: Value that should be written into the descriptor.
+ */
+static inline void rt2x00_desc_write(__le32 *desc, const u8 word, u32 value)
+{
+ _rt2x00_desc_write(desc, word, cpu_to_le32(value));
+}
+
+#endif /* RT2X00QUEUE_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00reg.h b/drivers/net/wireless/ralink/rt2x00/rt2x00reg.h
new file mode 100644
index 0000000000..ffe802b42b
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00reg.h
@@ -0,0 +1,266 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00
+ Abstract: rt2x00 generic register information.
+ */
+
+#ifndef RT2X00REG_H
+#define RT2X00REG_H
+
+/*
+ * RX crypto status
+ */
+enum rx_crypto {
+ RX_CRYPTO_SUCCESS = 0,
+ RX_CRYPTO_FAIL_ICV = 1,
+ RX_CRYPTO_FAIL_MIC = 2,
+ RX_CRYPTO_FAIL_KEY = 3,
+};
+
+/*
+ * Antenna values
+ */
+enum antenna {
+ ANTENNA_SW_DIVERSITY = 0,
+ ANTENNA_A = 1,
+ ANTENNA_B = 2,
+ ANTENNA_HW_DIVERSITY = 3,
+};
+
+/*
+ * Led mode values.
+ */
+enum led_mode {
+ LED_MODE_DEFAULT = 0,
+ LED_MODE_TXRX_ACTIVITY = 1,
+ LED_MODE_SIGNAL_STRENGTH = 2,
+ LED_MODE_ASUS = 3,
+ LED_MODE_ALPHA = 4,
+};
+
+/*
+ * TSF sync values
+ */
+enum tsf_sync {
+ TSF_SYNC_NONE = 0,
+ TSF_SYNC_INFRA = 1,
+ TSF_SYNC_ADHOC = 2,
+ TSF_SYNC_AP_NONE = 3,
+};
+
+/*
+ * Device states
+ */
+enum dev_state {
+ STATE_DEEP_SLEEP = 0,
+ STATE_SLEEP = 1,
+ STATE_STANDBY = 2,
+ STATE_AWAKE = 3,
+
+/*
+ * Additional device states, these values are
+ * not strict since they are not directly passed
+ * into the device.
+ */
+ STATE_RADIO_ON,
+ STATE_RADIO_OFF,
+ STATE_RADIO_IRQ_ON,
+ STATE_RADIO_IRQ_OFF,
+};
+
+/*
+ * IFS backoff values
+ */
+enum ifs {
+ IFS_BACKOFF = 0,
+ IFS_SIFS = 1,
+ IFS_NEW_BACKOFF = 2,
+ IFS_NONE = 3,
+};
+
+/*
+ * IFS backoff values for HT devices
+ */
+enum txop {
+ TXOP_HTTXOP = 0,
+ TXOP_PIFS = 1,
+ TXOP_SIFS = 2,
+ TXOP_BACKOFF = 3,
+};
+
+/*
+ * Cipher types for hardware encryption
+ */
+enum cipher {
+ CIPHER_NONE = 0,
+ CIPHER_WEP64 = 1,
+ CIPHER_WEP128 = 2,
+ CIPHER_TKIP = 3,
+ CIPHER_AES = 4,
+/*
+ * The following fields were added by rt61pci and rt73usb.
+ */
+ CIPHER_CKIP64 = 5,
+ CIPHER_CKIP128 = 6,
+ CIPHER_TKIP_NO_MIC = 7, /* Don't send to device */
+
+/*
+ * Max cipher type.
+ * Note that CIPHER_NONE isn't counted, and CKIP64 and CKIP128
+ * are excluded due to limitations in mac80211.
+ */
+ CIPHER_MAX = 4,
+};
+
+/*
+ * Rate modulations
+ */
+enum rate_modulation {
+ RATE_MODE_CCK = 0,
+ RATE_MODE_OFDM = 1,
+ RATE_MODE_HT_MIX = 2,
+ RATE_MODE_HT_GREENFIELD = 3,
+};
+
+/*
+ * Firmware validation error codes
+ */
+enum firmware_errors {
+ FW_OK,
+ FW_BAD_CRC,
+ FW_BAD_LENGTH,
+ FW_BAD_VERSION,
+};
+
+/*
+ * Register handlers.
+ * We store the position of a register field inside a field structure,
+ * This will simplify the process of setting and reading a certain field
+ * inside the register while making sure the process remains byte order safe.
+ */
+struct rt2x00_field8 {
+ u8 bit_offset;
+ u8 bit_mask;
+};
+
+struct rt2x00_field16 {
+ u16 bit_offset;
+ u16 bit_mask;
+};
+
+struct rt2x00_field32 {
+ u32 bit_offset;
+ u32 bit_mask;
+};
+
+/*
+ * Power of two check, this will check
+ * if the mask that has been given contains and contiguous set of bits.
+ * Note that we cannot use the is_power_of_2() function since this
+ * check must be done at compile-time.
+ */
+#define is_power_of_two(x) ( !((x) & ((x)-1)) )
+#define low_bit_mask(x) ( ((x)-1) & ~(x) )
+#define is_valid_mask(x) is_power_of_two(1LU + (x) + low_bit_mask(x))
+
+/*
+ * Macros to find first set bit in a variable.
+ * These macros behave the same as the __ffs() functions but
+ * the most important difference that this is done during
+ * compile-time rather then run-time.
+ */
+#define compile_ffs2(__x) \
+ __builtin_choose_expr(((__x) & 0x1), 0, 1)
+
+#define compile_ffs4(__x) \
+ __builtin_choose_expr(((__x) & 0x3), \
+ (compile_ffs2((__x))), \
+ (compile_ffs2((__x) >> 2) + 2))
+
+#define compile_ffs8(__x) \
+ __builtin_choose_expr(((__x) & 0xf), \
+ (compile_ffs4((__x))), \
+ (compile_ffs4((__x) >> 4) + 4))
+
+#define compile_ffs16(__x) \
+ __builtin_choose_expr(((__x) & 0xff), \
+ (compile_ffs8((__x))), \
+ (compile_ffs8((__x) >> 8) + 8))
+
+#define compile_ffs32(__x) \
+ __builtin_choose_expr(((__x) & 0xffff), \
+ (compile_ffs16((__x))), \
+ (compile_ffs16((__x) >> 16) + 16))
+
+/*
+ * This macro will check the requirements for the FIELD{8,16,32} macros
+ * The mask should be a constant non-zero contiguous set of bits which
+ * does not exceed the given typelimit.
+ */
+#define FIELD_CHECK(__mask, __type) \
+ BUILD_BUG_ON(!(__mask) || \
+ !is_valid_mask(__mask) || \
+ (__mask) != (__type)(__mask)) \
+
+#define FIELD8(__mask) \
+({ \
+ FIELD_CHECK(__mask, u8); \
+ (struct rt2x00_field8) { \
+ compile_ffs8(__mask), (__mask) \
+ }; \
+})
+
+#define FIELD16(__mask) \
+({ \
+ FIELD_CHECK(__mask, u16); \
+ (struct rt2x00_field16) { \
+ compile_ffs16(__mask), (__mask) \
+ }; \
+})
+
+#define FIELD32(__mask) \
+({ \
+ FIELD_CHECK(__mask, u32); \
+ (struct rt2x00_field32) { \
+ compile_ffs32(__mask), (__mask) \
+ }; \
+})
+
+#define SET_FIELD(__reg, __type, __field, __value)\
+({ \
+ typecheck(__type, __field); \
+ *(__reg) &= ~((__field).bit_mask); \
+ *(__reg) |= ((__value) << \
+ ((__field).bit_offset)) & \
+ ((__field).bit_mask); \
+})
+
+#define GET_FIELD(__reg, __type, __field) \
+({ \
+ typecheck(__type, __field); \
+ ((__reg) & ((__field).bit_mask)) >> \
+ ((__field).bit_offset); \
+})
+
+#define rt2x00_set_field32(__reg, __field, __value) \
+ SET_FIELD(__reg, struct rt2x00_field32, __field, __value)
+#define rt2x00_get_field32(__reg, __field) \
+ GET_FIELD(__reg, struct rt2x00_field32, __field)
+
+#define rt2x00_set_field16(__reg, __field, __value) \
+ SET_FIELD(__reg, struct rt2x00_field16, __field, __value)
+#define rt2x00_get_field16(__reg, __field) \
+ GET_FIELD(__reg, struct rt2x00_field16, __field)
+
+#define rt2x00_set_field8(__reg, __field, __value) \
+ SET_FIELD(__reg, struct rt2x00_field8, __field, __value)
+#define rt2x00_get_field8(__reg, __field) \
+ GET_FIELD(__reg, struct rt2x00_field8, __field)
+
+#endif /* RT2X00REG_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00soc.c b/drivers/net/wireless/ralink/rt2x00/rt2x00soc.c
new file mode 100644
index 0000000000..eface61017
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00soc.c
@@ -0,0 +1,153 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ Copyright (C) 2004 - 2009 Felix Fietkau <nbd@openwrt.org>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00soc
+ Abstract: rt2x00 generic soc device routines.
+ */
+
+#include <linux/bug.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2x00soc.h"
+
+static void rt2x00soc_free_reg(struct rt2x00_dev *rt2x00dev)
+{
+ kfree(rt2x00dev->rf);
+ rt2x00dev->rf = NULL;
+
+ kfree(rt2x00dev->eeprom);
+ rt2x00dev->eeprom = NULL;
+
+ iounmap(rt2x00dev->csr.base);
+}
+
+static int rt2x00soc_alloc_reg(struct rt2x00_dev *rt2x00dev)
+{
+ struct platform_device *pdev = to_platform_device(rt2x00dev->dev);
+ struct resource *res;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res)
+ return -ENODEV;
+
+ rt2x00dev->csr.base = ioremap(res->start, resource_size(res));
+ if (!rt2x00dev->csr.base)
+ return -ENOMEM;
+
+ rt2x00dev->eeprom = kzalloc(rt2x00dev->ops->eeprom_size, GFP_KERNEL);
+ if (!rt2x00dev->eeprom)
+ goto exit;
+
+ rt2x00dev->rf = kzalloc(rt2x00dev->ops->rf_size, GFP_KERNEL);
+ if (!rt2x00dev->rf)
+ goto exit;
+
+ return 0;
+
+exit:
+ rt2x00_probe_err("Failed to allocate registers\n");
+ rt2x00soc_free_reg(rt2x00dev);
+
+ return -ENOMEM;
+}
+
+int rt2x00soc_probe(struct platform_device *pdev, const struct rt2x00_ops *ops)
+{
+ struct ieee80211_hw *hw;
+ struct rt2x00_dev *rt2x00dev;
+ int retval;
+
+ hw = ieee80211_alloc_hw(sizeof(struct rt2x00_dev), ops->hw);
+ if (!hw) {
+ rt2x00_probe_err("Failed to allocate hardware\n");
+ return -ENOMEM;
+ }
+
+ platform_set_drvdata(pdev, hw);
+
+ rt2x00dev = hw->priv;
+ rt2x00dev->dev = &pdev->dev;
+ rt2x00dev->ops = ops;
+ rt2x00dev->hw = hw;
+ rt2x00dev->irq = platform_get_irq(pdev, 0);
+ rt2x00dev->name = pdev->dev.driver->name;
+
+ rt2x00dev->clk = clk_get(&pdev->dev, NULL);
+ if (IS_ERR(rt2x00dev->clk))
+ rt2x00dev->clk = NULL;
+
+ rt2x00_set_chip_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
+
+ retval = rt2x00soc_alloc_reg(rt2x00dev);
+ if (retval)
+ goto exit_free_device;
+
+ retval = rt2x00lib_probe_dev(rt2x00dev);
+ if (retval)
+ goto exit_free_reg;
+
+ return 0;
+
+exit_free_reg:
+ rt2x00soc_free_reg(rt2x00dev);
+
+exit_free_device:
+ ieee80211_free_hw(hw);
+
+ return retval;
+}
+EXPORT_SYMBOL_GPL(rt2x00soc_probe);
+
+int rt2x00soc_remove(struct platform_device *pdev)
+{
+ struct ieee80211_hw *hw = platform_get_drvdata(pdev);
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ /*
+ * Free all allocated data.
+ */
+ rt2x00lib_remove_dev(rt2x00dev);
+ rt2x00soc_free_reg(rt2x00dev);
+ ieee80211_free_hw(hw);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00soc_remove);
+
+#ifdef CONFIG_PM
+int rt2x00soc_suspend(struct platform_device *pdev, pm_message_t state)
+{
+ struct ieee80211_hw *hw = platform_get_drvdata(pdev);
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ return rt2x00lib_suspend(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00soc_suspend);
+
+int rt2x00soc_resume(struct platform_device *pdev)
+{
+ struct ieee80211_hw *hw = platform_get_drvdata(pdev);
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ return rt2x00lib_resume(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00soc_resume);
+#endif /* CONFIG_PM */
+
+/*
+ * rt2x00soc module information.
+ */
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2x00 soc library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00soc.h b/drivers/net/wireless/ralink/rt2x00/rt2x00soc.h
new file mode 100644
index 0000000000..021fd06b36
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00soc.h
@@ -0,0 +1,29 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00soc
+ Abstract: Data structures for the rt2x00soc module.
+ */
+
+#ifndef RT2X00SOC_H
+#define RT2X00SOC_H
+
+/*
+ * SoC driver handlers.
+ */
+int rt2x00soc_probe(struct platform_device *pdev, const struct rt2x00_ops *ops);
+int rt2x00soc_remove(struct platform_device *pdev);
+#ifdef CONFIG_PM
+int rt2x00soc_suspend(struct platform_device *pdev, pm_message_t state);
+int rt2x00soc_resume(struct platform_device *pdev);
+#else
+#define rt2x00soc_suspend NULL
+#define rt2x00soc_resume NULL
+#endif /* CONFIG_PM */
+
+#endif /* RT2X00SOC_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00usb.c b/drivers/net/wireless/ralink/rt2x00/rt2x00usb.c
new file mode 100644
index 0000000000..8fd22c6985
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00usb.c
@@ -0,0 +1,912 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+ Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00usb
+ Abstract: rt2x00 generic usb device routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/usb.h>
+#include <linux/bug.h>
+
+#include "rt2x00.h"
+#include "rt2x00usb.h"
+
+static bool rt2x00usb_check_usb_error(struct rt2x00_dev *rt2x00dev, int status)
+{
+ if (status == -ENODEV || status == -ENOENT)
+ return true;
+
+ if (!test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
+ return false;
+
+ if (status == -EPROTO || status == -ETIMEDOUT)
+ rt2x00dev->num_proto_errs++;
+ else
+ rt2x00dev->num_proto_errs = 0;
+
+ if (rt2x00dev->num_proto_errs > 3)
+ return true;
+
+ return false;
+}
+
+/*
+ * Interfacing with the HW.
+ */
+int rt2x00usb_vendor_request(struct rt2x00_dev *rt2x00dev,
+ const u8 request, const u8 requesttype,
+ const u16 offset, const u16 value,
+ void *buffer, const u16 buffer_length,
+ const int timeout)
+{
+ struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
+ int status;
+ unsigned int pipe =
+ (requesttype == USB_VENDOR_REQUEST_IN) ?
+ usb_rcvctrlpipe(usb_dev, 0) : usb_sndctrlpipe(usb_dev, 0);
+ unsigned long expire = jiffies + msecs_to_jiffies(timeout);
+
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return -ENODEV;
+
+ do {
+ status = usb_control_msg(usb_dev, pipe, request, requesttype,
+ value, offset, buffer, buffer_length,
+ timeout / 2);
+ if (status >= 0)
+ return 0;
+
+ if (rt2x00usb_check_usb_error(rt2x00dev, status)) {
+ /* Device has disappeared. */
+ clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+ break;
+ }
+ } while (time_before(jiffies, expire));
+
+ rt2x00_err(rt2x00dev,
+ "Vendor Request 0x%02x failed for offset 0x%04x with error %d\n",
+ request, offset, status);
+
+ return status;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_vendor_request);
+
+int rt2x00usb_vendor_req_buff_lock(struct rt2x00_dev *rt2x00dev,
+ const u8 request, const u8 requesttype,
+ const u16 offset, void *buffer,
+ const u16 buffer_length, const int timeout)
+{
+ int status;
+
+ BUG_ON(!mutex_is_locked(&rt2x00dev->csr_mutex));
+
+ /*
+ * Check for Cache availability.
+ */
+ if (unlikely(!rt2x00dev->csr.cache || buffer_length > CSR_CACHE_SIZE)) {
+ rt2x00_err(rt2x00dev, "CSR cache not available\n");
+ return -ENOMEM;
+ }
+
+ if (requesttype == USB_VENDOR_REQUEST_OUT)
+ memcpy(rt2x00dev->csr.cache, buffer, buffer_length);
+
+ status = rt2x00usb_vendor_request(rt2x00dev, request, requesttype,
+ offset, 0, rt2x00dev->csr.cache,
+ buffer_length, timeout);
+
+ if (!status && requesttype == USB_VENDOR_REQUEST_IN)
+ memcpy(buffer, rt2x00dev->csr.cache, buffer_length);
+
+ return status;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_vendor_req_buff_lock);
+
+int rt2x00usb_vendor_request_buff(struct rt2x00_dev *rt2x00dev,
+ const u8 request, const u8 requesttype,
+ const u16 offset, void *buffer,
+ const u16 buffer_length)
+{
+ int status = 0;
+ u8 *tb;
+ u16 off, len, bsize;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ tb = (u8 *)buffer;
+ off = offset;
+ len = buffer_length;
+ while (len && !status) {
+ bsize = min_t(u16, CSR_CACHE_SIZE, len);
+ status = rt2x00usb_vendor_req_buff_lock(rt2x00dev, request,
+ requesttype, off, tb,
+ bsize, REGISTER_TIMEOUT);
+
+ tb += bsize;
+ len -= bsize;
+ off += bsize;
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+
+ return status;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_vendor_request_buff);
+
+int rt2x00usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ const struct rt2x00_field32 field,
+ u32 *reg)
+{
+ unsigned int i;
+
+ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+ return -ENODEV;
+
+ for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
+ *reg = rt2x00usb_register_read_lock(rt2x00dev, offset);
+ if (!rt2x00_get_field32(*reg, field))
+ return 1;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
+ offset, *reg);
+ *reg = ~0;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_regbusy_read);
+
+
+struct rt2x00_async_read_data {
+ __le32 reg;
+ struct usb_ctrlrequest cr;
+ struct rt2x00_dev *rt2x00dev;
+ bool (*callback)(struct rt2x00_dev *, int, u32);
+};
+
+static void rt2x00usb_register_read_async_cb(struct urb *urb)
+{
+ struct rt2x00_async_read_data *rd = urb->context;
+ if (rd->callback(rd->rt2x00dev, urb->status, le32_to_cpu(rd->reg))) {
+ usb_anchor_urb(urb, rd->rt2x00dev->anchor);
+ if (usb_submit_urb(urb, GFP_ATOMIC) < 0) {
+ usb_unanchor_urb(urb);
+ kfree(rd);
+ }
+ } else
+ kfree(rd);
+}
+
+void rt2x00usb_register_read_async(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ bool (*callback)(struct rt2x00_dev*, int, u32))
+{
+ struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
+ struct urb *urb;
+ struct rt2x00_async_read_data *rd;
+
+ rd = kmalloc(sizeof(*rd), GFP_ATOMIC);
+ if (!rd)
+ return;
+
+ urb = usb_alloc_urb(0, GFP_ATOMIC);
+ if (!urb) {
+ kfree(rd);
+ return;
+ }
+
+ rd->rt2x00dev = rt2x00dev;
+ rd->callback = callback;
+ rd->cr.bRequestType = USB_VENDOR_REQUEST_IN;
+ rd->cr.bRequest = USB_MULTI_READ;
+ rd->cr.wValue = 0;
+ rd->cr.wIndex = cpu_to_le16(offset);
+ rd->cr.wLength = cpu_to_le16(sizeof(u32));
+
+ usb_fill_control_urb(urb, usb_dev, usb_rcvctrlpipe(usb_dev, 0),
+ (u8 *)(&rd->cr), &rd->reg, sizeof(rd->reg),
+ rt2x00usb_register_read_async_cb, rd);
+ usb_anchor_urb(urb, rt2x00dev->anchor);
+ if (usb_submit_urb(urb, GFP_ATOMIC) < 0) {
+ usb_unanchor_urb(urb);
+ kfree(rd);
+ }
+ usb_free_urb(urb);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_register_read_async);
+
+/*
+ * TX data handlers.
+ */
+static void rt2x00usb_work_txdone_entry(struct queue_entry *entry)
+{
+ /*
+ * If the transfer to hardware succeeded, it does not mean the
+ * frame was send out correctly. It only means the frame
+ * was successfully pushed to the hardware, we have no
+ * way to determine the transmission status right now.
+ * (Only indirectly by looking at the failed TX counters
+ * in the register).
+ */
+ if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
+ rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE);
+ else
+ rt2x00lib_txdone_noinfo(entry, TXDONE_UNKNOWN);
+}
+
+static void rt2x00usb_work_txdone(struct work_struct *work)
+{
+ struct rt2x00_dev *rt2x00dev =
+ container_of(work, struct rt2x00_dev, txdone_work);
+ struct data_queue *queue;
+ struct queue_entry *entry;
+
+ tx_queue_for_each(rt2x00dev, queue) {
+ while (!rt2x00queue_empty(queue)) {
+ entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+
+ if (test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) ||
+ !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
+ break;
+
+ rt2x00usb_work_txdone_entry(entry);
+ }
+ }
+}
+
+static void rt2x00usb_interrupt_txdone(struct urb *urb)
+{
+ struct queue_entry *entry = (struct queue_entry *)urb->context;
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+
+ if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
+ return;
+ /*
+ * Check if the frame was correctly uploaded
+ */
+ if (urb->status)
+ set_bit(ENTRY_DATA_IO_FAILED, &entry->flags);
+ /*
+ * Report the frame as DMA done
+ */
+ rt2x00lib_dmadone(entry);
+
+ if (rt2x00dev->ops->lib->tx_dma_done)
+ rt2x00dev->ops->lib->tx_dma_done(entry);
+ /*
+ * Schedule the delayed work for reading the TX status
+ * from the device.
+ */
+ if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO) ||
+ !kfifo_is_empty(&rt2x00dev->txstatus_fifo))
+ queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
+}
+
+static bool rt2x00usb_kick_tx_entry(struct queue_entry *entry, void *data)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
+ struct queue_entry_priv_usb *entry_priv = entry->priv_data;
+ u32 length;
+ int status;
+
+ if (!test_and_clear_bit(ENTRY_DATA_PENDING, &entry->flags) ||
+ test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
+ return false;
+
+ /*
+ * USB devices require certain padding at the end of each frame
+ * and urb. Those paddings are not included in skbs. Pass entry
+ * to the driver to determine what the overall length should be.
+ */
+ length = rt2x00dev->ops->lib->get_tx_data_len(entry);
+
+ status = skb_padto(entry->skb, length);
+ if (unlikely(status)) {
+ /* TODO: report something more appropriate than IO_FAILED. */
+ rt2x00_warn(rt2x00dev, "TX SKB padding error, out of memory\n");
+ set_bit(ENTRY_DATA_IO_FAILED, &entry->flags);
+ rt2x00lib_dmadone(entry);
+
+ return false;
+ }
+
+ usb_fill_bulk_urb(entry_priv->urb, usb_dev,
+ usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint),
+ entry->skb->data, length,
+ rt2x00usb_interrupt_txdone, entry);
+
+ status = usb_submit_urb(entry_priv->urb, GFP_ATOMIC);
+ if (status) {
+ if (rt2x00usb_check_usb_error(rt2x00dev, status))
+ clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+ set_bit(ENTRY_DATA_IO_FAILED, &entry->flags);
+ rt2x00lib_dmadone(entry);
+ }
+
+ return false;
+}
+
+/*
+ * RX data handlers.
+ */
+static void rt2x00usb_work_rxdone(struct work_struct *work)
+{
+ struct rt2x00_dev *rt2x00dev =
+ container_of(work, struct rt2x00_dev, rxdone_work);
+ struct queue_entry *entry;
+ struct skb_frame_desc *skbdesc;
+ u8 rxd[32];
+
+ while (!rt2x00queue_empty(rt2x00dev->rx)) {
+ entry = rt2x00queue_get_entry(rt2x00dev->rx, Q_INDEX_DONE);
+
+ if (test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
+ break;
+
+ /*
+ * Fill in desc fields of the skb descriptor
+ */
+ skbdesc = get_skb_frame_desc(entry->skb);
+ skbdesc->desc = rxd;
+ skbdesc->desc_len = entry->queue->desc_size;
+
+ /*
+ * Send the frame to rt2x00lib for further processing.
+ */
+ rt2x00lib_rxdone(entry, GFP_KERNEL);
+ }
+}
+
+static void rt2x00usb_interrupt_rxdone(struct urb *urb)
+{
+ struct queue_entry *entry = (struct queue_entry *)urb->context;
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+
+ if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
+ return;
+
+ /*
+ * Check if the received data is simply too small
+ * to be actually valid, or if the urb is signaling
+ * a problem.
+ */
+ if (urb->actual_length < entry->queue->desc_size || urb->status)
+ set_bit(ENTRY_DATA_IO_FAILED, &entry->flags);
+
+ /*
+ * Report the frame as DMA done
+ */
+ rt2x00lib_dmadone(entry);
+
+ /*
+ * Schedule the delayed work for processing RX data
+ */
+ queue_work(rt2x00dev->workqueue, &rt2x00dev->rxdone_work);
+}
+
+static bool rt2x00usb_kick_rx_entry(struct queue_entry *entry, void *data)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
+ struct queue_entry_priv_usb *entry_priv = entry->priv_data;
+ int status;
+
+ if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
+ return false;
+
+ rt2x00lib_dmastart(entry);
+
+ usb_fill_bulk_urb(entry_priv->urb, usb_dev,
+ usb_rcvbulkpipe(usb_dev, entry->queue->usb_endpoint),
+ entry->skb->data, entry->skb->len,
+ rt2x00usb_interrupt_rxdone, entry);
+
+ status = usb_submit_urb(entry_priv->urb, GFP_ATOMIC);
+ if (status) {
+ if (rt2x00usb_check_usb_error(rt2x00dev, status))
+ clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+ set_bit(ENTRY_DATA_IO_FAILED, &entry->flags);
+ rt2x00lib_dmadone(entry);
+ }
+
+ return false;
+}
+
+void rt2x00usb_kick_queue(struct data_queue *queue)
+{
+ switch (queue->qid) {
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ if (!rt2x00queue_empty(queue))
+ rt2x00queue_for_each_entry(queue,
+ Q_INDEX_DONE,
+ Q_INDEX,
+ NULL,
+ rt2x00usb_kick_tx_entry);
+ break;
+ case QID_RX:
+ if (!rt2x00queue_full(queue))
+ rt2x00queue_for_each_entry(queue,
+ Q_INDEX,
+ Q_INDEX_DONE,
+ NULL,
+ rt2x00usb_kick_rx_entry);
+ break;
+ default:
+ break;
+ }
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_kick_queue);
+
+static bool rt2x00usb_flush_entry(struct queue_entry *entry, void *data)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct queue_entry_priv_usb *entry_priv = entry->priv_data;
+ struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
+
+ if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
+ return false;
+
+ usb_kill_urb(entry_priv->urb);
+
+ /*
+ * Kill guardian urb (if required by driver).
+ */
+ if ((entry->queue->qid == QID_BEACON) &&
+ (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_BEACON_GUARD)))
+ usb_kill_urb(bcn_priv->guardian_urb);
+
+ return false;
+}
+
+void rt2x00usb_flush_queue(struct data_queue *queue, bool drop)
+{
+ struct work_struct *completion;
+ unsigned int i;
+
+ if (drop)
+ rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, Q_INDEX, NULL,
+ rt2x00usb_flush_entry);
+
+ /*
+ * Obtain the queue completion handler
+ */
+ switch (queue->qid) {
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ completion = &queue->rt2x00dev->txdone_work;
+ break;
+ case QID_RX:
+ completion = &queue->rt2x00dev->rxdone_work;
+ break;
+ default:
+ return;
+ }
+
+ for (i = 0; i < 10; i++) {
+ /*
+ * Check if the driver is already done, otherwise we
+ * have to sleep a little while to give the driver/hw
+ * the oppurtunity to complete interrupt process itself.
+ */
+ if (rt2x00queue_empty(queue))
+ break;
+
+ /*
+ * Schedule the completion handler manually, when this
+ * worker function runs, it should cleanup the queue.
+ */
+ queue_work(queue->rt2x00dev->workqueue, completion);
+
+ /*
+ * Wait for a little while to give the driver
+ * the oppurtunity to recover itself.
+ */
+ msleep(50);
+ }
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_flush_queue);
+
+static void rt2x00usb_watchdog_tx_dma(struct data_queue *queue)
+{
+ rt2x00_warn(queue->rt2x00dev, "TX queue %d DMA timed out, invoke forced reset\n",
+ queue->qid);
+
+ rt2x00queue_stop_queue(queue);
+ rt2x00queue_flush_queue(queue, true);
+ rt2x00queue_start_queue(queue);
+}
+
+static int rt2x00usb_dma_timeout(struct data_queue *queue)
+{
+ struct queue_entry *entry;
+
+ entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
+ return rt2x00queue_dma_timeout(entry);
+}
+
+void rt2x00usb_watchdog(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+
+ tx_queue_for_each(rt2x00dev, queue) {
+ if (!rt2x00queue_empty(queue)) {
+ if (rt2x00usb_dma_timeout(queue))
+ rt2x00usb_watchdog_tx_dma(queue);
+ }
+ }
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_watchdog);
+
+/*
+ * Radio handlers
+ */
+void rt2x00usb_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ rt2x00usb_vendor_request_sw(rt2x00dev, USB_RX_CONTROL, 0, 0,
+ REGISTER_TIMEOUT);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_disable_radio);
+
+/*
+ * Device initialization handlers.
+ */
+void rt2x00usb_clear_entry(struct queue_entry *entry)
+{
+ entry->flags = 0;
+
+ if (entry->queue->qid == QID_RX)
+ rt2x00usb_kick_rx_entry(entry, NULL);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_clear_entry);
+
+static void rt2x00usb_assign_endpoint(struct data_queue *queue,
+ struct usb_endpoint_descriptor *ep_desc)
+{
+ struct usb_device *usb_dev = to_usb_device_intf(queue->rt2x00dev->dev);
+ int pipe;
+
+ queue->usb_endpoint = usb_endpoint_num(ep_desc);
+
+ if (queue->qid == QID_RX) {
+ pipe = usb_rcvbulkpipe(usb_dev, queue->usb_endpoint);
+ queue->usb_maxpacket = usb_maxpacket(usb_dev, pipe);
+ } else {
+ pipe = usb_sndbulkpipe(usb_dev, queue->usb_endpoint);
+ queue->usb_maxpacket = usb_maxpacket(usb_dev, pipe);
+ }
+
+ if (!queue->usb_maxpacket)
+ queue->usb_maxpacket = 1;
+}
+
+static int rt2x00usb_find_endpoints(struct rt2x00_dev *rt2x00dev)
+{
+ struct usb_interface *intf = to_usb_interface(rt2x00dev->dev);
+ struct usb_host_interface *intf_desc = intf->cur_altsetting;
+ struct usb_endpoint_descriptor *ep_desc;
+ struct data_queue *queue = rt2x00dev->tx;
+ struct usb_endpoint_descriptor *tx_ep_desc = NULL;
+ unsigned int i;
+
+ /*
+ * Walk through all available endpoints to search for "bulk in"
+ * and "bulk out" endpoints. When we find such endpoints collect
+ * the information we need from the descriptor and assign it
+ * to the queue.
+ */
+ for (i = 0; i < intf_desc->desc.bNumEndpoints; i++) {
+ ep_desc = &intf_desc->endpoint[i].desc;
+
+ if (usb_endpoint_is_bulk_in(ep_desc)) {
+ rt2x00usb_assign_endpoint(rt2x00dev->rx, ep_desc);
+ } else if (usb_endpoint_is_bulk_out(ep_desc) &&
+ (queue != queue_end(rt2x00dev))) {
+ rt2x00usb_assign_endpoint(queue, ep_desc);
+ queue = queue_next(queue);
+
+ tx_ep_desc = ep_desc;
+ }
+ }
+
+ /*
+ * At least 1 endpoint for RX and 1 endpoint for TX must be available.
+ */
+ if (!rt2x00dev->rx->usb_endpoint || !rt2x00dev->tx->usb_endpoint) {
+ rt2x00_err(rt2x00dev, "Bulk-in/Bulk-out endpoints not found\n");
+ return -EPIPE;
+ }
+
+ /*
+ * It might be possible not all queues have a dedicated endpoint.
+ * Loop through all TX queues and copy the endpoint information
+ * which we have gathered from already assigned endpoints.
+ */
+ txall_queue_for_each(rt2x00dev, queue) {
+ if (!queue->usb_endpoint)
+ rt2x00usb_assign_endpoint(queue, tx_ep_desc);
+ }
+
+ return 0;
+}
+
+static int rt2x00usb_alloc_entries(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ struct queue_entry_priv_usb *entry_priv;
+ struct queue_entry_priv_usb_bcn *bcn_priv;
+ unsigned int i;
+
+ for (i = 0; i < queue->limit; i++) {
+ entry_priv = queue->entries[i].priv_data;
+ entry_priv->urb = usb_alloc_urb(0, GFP_KERNEL);
+ if (!entry_priv->urb)
+ return -ENOMEM;
+ }
+
+ /*
+ * If this is not the beacon queue or
+ * no guardian byte was required for the beacon,
+ * then we are done.
+ */
+ if (queue->qid != QID_BEACON ||
+ !rt2x00_has_cap_flag(rt2x00dev, REQUIRE_BEACON_GUARD))
+ return 0;
+
+ for (i = 0; i < queue->limit; i++) {
+ bcn_priv = queue->entries[i].priv_data;
+ bcn_priv->guardian_urb = usb_alloc_urb(0, GFP_KERNEL);
+ if (!bcn_priv->guardian_urb)
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static void rt2x00usb_free_entries(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ struct queue_entry_priv_usb *entry_priv;
+ struct queue_entry_priv_usb_bcn *bcn_priv;
+ unsigned int i;
+
+ if (!queue->entries)
+ return;
+
+ for (i = 0; i < queue->limit; i++) {
+ entry_priv = queue->entries[i].priv_data;
+ usb_kill_urb(entry_priv->urb);
+ usb_free_urb(entry_priv->urb);
+ }
+
+ /*
+ * If this is not the beacon queue or
+ * no guardian byte was required for the beacon,
+ * then we are done.
+ */
+ if (queue->qid != QID_BEACON ||
+ !rt2x00_has_cap_flag(rt2x00dev, REQUIRE_BEACON_GUARD))
+ return;
+
+ for (i = 0; i < queue->limit; i++) {
+ bcn_priv = queue->entries[i].priv_data;
+ usb_kill_urb(bcn_priv->guardian_urb);
+ usb_free_urb(bcn_priv->guardian_urb);
+ }
+}
+
+int rt2x00usb_initialize(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+ int status;
+
+ /*
+ * Find endpoints for each queue
+ */
+ status = rt2x00usb_find_endpoints(rt2x00dev);
+ if (status)
+ goto exit;
+
+ /*
+ * Allocate DMA
+ */
+ queue_for_each(rt2x00dev, queue) {
+ status = rt2x00usb_alloc_entries(queue);
+ if (status)
+ goto exit;
+ }
+
+ return 0;
+
+exit:
+ rt2x00usb_uninitialize(rt2x00dev);
+
+ return status;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_initialize);
+
+void rt2x00usb_uninitialize(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+
+ usb_kill_anchored_urbs(rt2x00dev->anchor);
+ hrtimer_cancel(&rt2x00dev->txstatus_timer);
+ cancel_work_sync(&rt2x00dev->rxdone_work);
+ cancel_work_sync(&rt2x00dev->txdone_work);
+
+ queue_for_each(rt2x00dev, queue)
+ rt2x00usb_free_entries(queue);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_uninitialize);
+
+/*
+ * USB driver handlers.
+ */
+static void rt2x00usb_free_reg(struct rt2x00_dev *rt2x00dev)
+{
+ kfree(rt2x00dev->rf);
+ rt2x00dev->rf = NULL;
+
+ kfree(rt2x00dev->eeprom);
+ rt2x00dev->eeprom = NULL;
+
+ kfree(rt2x00dev->csr.cache);
+ rt2x00dev->csr.cache = NULL;
+}
+
+static int rt2x00usb_alloc_reg(struct rt2x00_dev *rt2x00dev)
+{
+ rt2x00dev->csr.cache = kzalloc(CSR_CACHE_SIZE, GFP_KERNEL);
+ if (!rt2x00dev->csr.cache)
+ goto exit;
+
+ rt2x00dev->eeprom = kzalloc(rt2x00dev->ops->eeprom_size, GFP_KERNEL);
+ if (!rt2x00dev->eeprom)
+ goto exit;
+
+ rt2x00dev->rf = kzalloc(rt2x00dev->ops->rf_size, GFP_KERNEL);
+ if (!rt2x00dev->rf)
+ goto exit;
+
+ return 0;
+
+exit:
+ rt2x00_probe_err("Failed to allocate registers\n");
+
+ rt2x00usb_free_reg(rt2x00dev);
+
+ return -ENOMEM;
+}
+
+int rt2x00usb_probe(struct usb_interface *usb_intf,
+ const struct rt2x00_ops *ops)
+{
+ struct usb_device *usb_dev = interface_to_usbdev(usb_intf);
+ struct ieee80211_hw *hw;
+ struct rt2x00_dev *rt2x00dev;
+ int retval;
+
+ usb_dev = usb_get_dev(usb_dev);
+ usb_reset_device(usb_dev);
+
+ hw = ieee80211_alloc_hw(sizeof(struct rt2x00_dev), ops->hw);
+ if (!hw) {
+ rt2x00_probe_err("Failed to allocate hardware\n");
+ retval = -ENOMEM;
+ goto exit_put_device;
+ }
+
+ usb_set_intfdata(usb_intf, hw);
+
+ rt2x00dev = hw->priv;
+ rt2x00dev->dev = &usb_intf->dev;
+ rt2x00dev->ops = ops;
+ rt2x00dev->hw = hw;
+
+ rt2x00_set_chip_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
+
+ INIT_WORK(&rt2x00dev->rxdone_work, rt2x00usb_work_rxdone);
+ INIT_WORK(&rt2x00dev->txdone_work, rt2x00usb_work_txdone);
+ hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
+ HRTIMER_MODE_REL);
+
+ retval = rt2x00usb_alloc_reg(rt2x00dev);
+ if (retval)
+ goto exit_free_device;
+
+ rt2x00dev->anchor = devm_kmalloc(&usb_dev->dev,
+ sizeof(struct usb_anchor),
+ GFP_KERNEL);
+ if (!rt2x00dev->anchor) {
+ retval = -ENOMEM;
+ goto exit_free_reg;
+ }
+ init_usb_anchor(rt2x00dev->anchor);
+
+ retval = rt2x00lib_probe_dev(rt2x00dev);
+ if (retval)
+ goto exit_free_anchor;
+
+ return 0;
+
+exit_free_anchor:
+ usb_kill_anchored_urbs(rt2x00dev->anchor);
+
+exit_free_reg:
+ rt2x00usb_free_reg(rt2x00dev);
+
+exit_free_device:
+ ieee80211_free_hw(hw);
+
+exit_put_device:
+ usb_put_dev(usb_dev);
+
+ usb_set_intfdata(usb_intf, NULL);
+
+ return retval;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_probe);
+
+void rt2x00usb_disconnect(struct usb_interface *usb_intf)
+{
+ struct ieee80211_hw *hw = usb_get_intfdata(usb_intf);
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ /*
+ * Free all allocated data.
+ */
+ rt2x00lib_remove_dev(rt2x00dev);
+ rt2x00usb_free_reg(rt2x00dev);
+ ieee80211_free_hw(hw);
+
+ /*
+ * Free the USB device data.
+ */
+ usb_set_intfdata(usb_intf, NULL);
+ usb_put_dev(interface_to_usbdev(usb_intf));
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_disconnect);
+
+#ifdef CONFIG_PM
+int rt2x00usb_suspend(struct usb_interface *usb_intf, pm_message_t state)
+{
+ struct ieee80211_hw *hw = usb_get_intfdata(usb_intf);
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ return rt2x00lib_suspend(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_suspend);
+
+int rt2x00usb_resume(struct usb_interface *usb_intf)
+{
+ struct ieee80211_hw *hw = usb_get_intfdata(usb_intf);
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+
+ return rt2x00lib_resume(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_resume);
+#endif /* CONFIG_PM */
+
+/*
+ * rt2x00usb module information.
+ */
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2x00 usb library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2x00usb.h b/drivers/net/wireless/ralink/rt2x00/rt2x00usb.h
new file mode 100644
index 0000000000..f14e16a6a9
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt2x00usb.h
@@ -0,0 +1,409 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt2x00usb
+ Abstract: Data structures for the rt2x00usb module.
+ */
+
+#ifndef RT2X00USB_H
+#define RT2X00USB_H
+
+#include <linux/usb.h>
+
+#define to_usb_device_intf(d) \
+({ \
+ struct usb_interface *intf = to_usb_interface(d); \
+ interface_to_usbdev(intf); \
+})
+
+/*
+ * For USB vendor requests we need to pass a timeout time in ms, for this we
+ * use the REGISTER_TIMEOUT, however when loading firmware or read EEPROM
+ * a higher value is required. In that case we use the REGISTER_TIMEOUT_FIRMWARE
+ * and EEPROM_TIMEOUT.
+ */
+#define REGISTER_TIMEOUT 100
+#define REGISTER_TIMEOUT_FIRMWARE 1000
+#define EEPROM_TIMEOUT 2000
+
+/*
+ * Cache size
+ */
+#define CSR_CACHE_SIZE 64
+
+/*
+ * USB request types.
+ */
+#define USB_VENDOR_REQUEST ( USB_TYPE_VENDOR | USB_RECIP_DEVICE )
+#define USB_VENDOR_REQUEST_IN ( USB_DIR_IN | USB_VENDOR_REQUEST )
+#define USB_VENDOR_REQUEST_OUT ( USB_DIR_OUT | USB_VENDOR_REQUEST )
+
+/**
+ * enum rt2x00usb_vendor_request: USB vendor commands.
+ */
+enum rt2x00usb_vendor_request {
+ USB_DEVICE_MODE = 1,
+ USB_SINGLE_WRITE = 2,
+ USB_SINGLE_READ = 3,
+ USB_MULTI_WRITE = 6,
+ USB_MULTI_READ = 7,
+ USB_EEPROM_WRITE = 8,
+ USB_EEPROM_READ = 9,
+ USB_LED_CONTROL = 10, /* RT73USB */
+ USB_RX_CONTROL = 12,
+};
+
+/**
+ * enum rt2x00usb_mode_offset: Device modes offset.
+ */
+enum rt2x00usb_mode_offset {
+ USB_MODE_RESET = 1,
+ USB_MODE_UNPLUG = 2,
+ USB_MODE_FUNCTION = 3,
+ USB_MODE_TEST = 4,
+ USB_MODE_SLEEP = 7, /* RT73USB */
+ USB_MODE_FIRMWARE = 8, /* RT73USB */
+ USB_MODE_WAKEUP = 9, /* RT73USB */
+ USB_MODE_AUTORUN = 17, /* RT2800USB */
+};
+
+/**
+ * rt2x00usb_vendor_request - Send register command to device
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
+ * @requesttype: Request type &USB_VENDOR_REQUEST_*
+ * @offset: Register offset to perform action on
+ * @value: Value to write to device
+ * @buffer: Buffer where information will be read/written to by device
+ * @buffer_length: Size of &buffer
+ * @timeout: Operation timeout
+ *
+ * This is the main function to communicate with the device,
+ * the &buffer argument _must_ either be NULL or point to
+ * a buffer allocated by kmalloc. Failure to do so can lead
+ * to unexpected behavior depending on the architecture.
+ */
+int rt2x00usb_vendor_request(struct rt2x00_dev *rt2x00dev,
+ const u8 request, const u8 requesttype,
+ const u16 offset, const u16 value,
+ void *buffer, const u16 buffer_length,
+ const int timeout);
+
+/**
+ * rt2x00usb_vendor_request_buff - Send register command to device (buffered)
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
+ * @requesttype: Request type &USB_VENDOR_REQUEST_*
+ * @offset: Register offset to perform action on
+ * @buffer: Buffer where information will be read/written to by device
+ * @buffer_length: Size of &buffer
+ *
+ * This function will use a previously with kmalloc allocated cache
+ * to communicate with the device. The contents of the buffer pointer
+ * will be copied to this cache when writing, or read from the cache
+ * when reading.
+ * Buffers send to &rt2x00usb_vendor_request _must_ be allocated with
+ * kmalloc. Hence the reason for using a previously allocated cache
+ * which has been allocated properly.
+ */
+int rt2x00usb_vendor_request_buff(struct rt2x00_dev *rt2x00dev,
+ const u8 request, const u8 requesttype,
+ const u16 offset, void *buffer,
+ const u16 buffer_length);
+
+/**
+ * rt2x00usb_vendor_request_buff - Send register command to device (buffered)
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
+ * @requesttype: Request type &USB_VENDOR_REQUEST_*
+ * @offset: Register offset to perform action on
+ * @buffer: Buffer where information will be read/written to by device
+ * @buffer_length: Size of &buffer
+ * @timeout: Operation timeout
+ *
+ * A version of &rt2x00usb_vendor_request_buff which must be called
+ * if the usb_cache_mutex is already held.
+ */
+int rt2x00usb_vendor_req_buff_lock(struct rt2x00_dev *rt2x00dev,
+ const u8 request, const u8 requesttype,
+ const u16 offset, void *buffer,
+ const u16 buffer_length, const int timeout);
+
+/**
+ * rt2x00usb_vendor_request_sw - Send single register command to device
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
+ * @offset: Register offset to perform action on
+ * @value: Value to write to device
+ * @timeout: Operation timeout
+ *
+ * Simple wrapper around rt2x00usb_vendor_request to write a single
+ * command to the device. Since we don't use the buffer argument we
+ * don't have to worry about kmalloc here.
+ */
+static inline int rt2x00usb_vendor_request_sw(struct rt2x00_dev *rt2x00dev,
+ const u8 request,
+ const u16 offset,
+ const u16 value,
+ const int timeout)
+{
+ return rt2x00usb_vendor_request(rt2x00dev, request,
+ USB_VENDOR_REQUEST_OUT, offset,
+ value, NULL, 0, timeout);
+}
+
+/**
+ * rt2x00usb_eeprom_read - Read eeprom from device
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ * @eeprom: Pointer to eeprom array to store the information in
+ * @length: Number of bytes to read from the eeprom
+ *
+ * Simple wrapper around rt2x00usb_vendor_request to read the eeprom
+ * from the device. Note that the eeprom argument _must_ be allocated using
+ * kmalloc for correct handling inside the kernel USB layer.
+ */
+static inline int rt2x00usb_eeprom_read(struct rt2x00_dev *rt2x00dev,
+ __le16 *eeprom, const u16 length)
+{
+ return rt2x00usb_vendor_request(rt2x00dev, USB_EEPROM_READ,
+ USB_VENDOR_REQUEST_IN, 0, 0,
+ eeprom, length, EEPROM_TIMEOUT);
+}
+
+/**
+ * rt2x00usb_register_read - Read 32bit register word
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_request_buff().
+ */
+static inline u32 rt2x00usb_register_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset)
+{
+ __le32 reg = 0;
+ rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
+ USB_VENDOR_REQUEST_IN, offset,
+ &reg, sizeof(reg));
+ return le32_to_cpu(reg);
+}
+
+/**
+ * rt2x00usb_register_read_lock - Read 32bit register word
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_req_buff_lock().
+ */
+static inline u32 rt2x00usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset)
+{
+ __le32 reg = 0;
+ rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
+ USB_VENDOR_REQUEST_IN, offset,
+ &reg, sizeof(reg), REGISTER_TIMEOUT);
+ return le32_to_cpu(reg);
+}
+
+/**
+ * rt2x00usb_register_multiread - Read 32bit register words
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @value: Pointer to where register contents should be stored
+ * @length: Length of the data
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_request_buff().
+ */
+static inline void rt2x00usb_register_multiread(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ void *value, const u32 length)
+{
+ rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
+ USB_VENDOR_REQUEST_IN, offset,
+ value, length);
+}
+
+/**
+ * rt2x00usb_register_write - Write 32bit register word
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @value: Data which should be written
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_request_buff().
+ */
+static inline void rt2x00usb_register_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ u32 value)
+{
+ __le32 reg = cpu_to_le32(value);
+ rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
+ USB_VENDOR_REQUEST_OUT, offset,
+ &reg, sizeof(reg));
+}
+
+/**
+ * rt2x00usb_register_write_lock - Write 32bit register word
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @value: Data which should be written
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_req_buff_lock().
+ */
+static inline void rt2x00usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ u32 value)
+{
+ __le32 reg = cpu_to_le32(value);
+ rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
+ USB_VENDOR_REQUEST_OUT, offset,
+ &reg, sizeof(reg), REGISTER_TIMEOUT);
+}
+
+/**
+ * rt2x00usb_register_multiwrite - Write 32bit register words
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @value: Data which should be written
+ * @length: Length of the data
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_request_buff().
+ */
+static inline void rt2x00usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ const void *value,
+ const u32 length)
+{
+ rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
+ USB_VENDOR_REQUEST_OUT, offset,
+ (void *)value, length);
+}
+
+/**
+ * rt2x00usb_regbusy_read - Read from register with busy check
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @field: Field to check if register is busy
+ * @reg: Pointer to where register contents should be stored
+ *
+ * This function will read the given register, and checks if the
+ * register is busy. If it is, it will sleep for a couple of
+ * microseconds before reading the register again. If the register
+ * is not read after a certain timeout, this function will return
+ * FALSE.
+ */
+int rt2x00usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ const struct rt2x00_field32 field,
+ u32 *reg);
+
+/**
+ * rt2x00usb_register_read_async - Asynchronously read 32bit register word
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @callback: Functon to call when read completes.
+ *
+ * Submit a control URB to read a 32bit register. This safe to
+ * be called from atomic context. The callback will be called
+ * when the URB completes. Otherwise the function is similar
+ * to rt2x00usb_register_read().
+ * When the callback function returns false, the memory will be cleaned up,
+ * when it returns true, the urb will be fired again.
+ */
+void rt2x00usb_register_read_async(struct rt2x00_dev *rt2x00dev,
+ const unsigned int offset,
+ bool (*callback)(struct rt2x00_dev*, int, u32));
+
+/*
+ * Radio handlers
+ */
+void rt2x00usb_disable_radio(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * struct queue_entry_priv_usb: Per entry USB specific information
+ *
+ * @urb: Urb structure used for device communication.
+ */
+struct queue_entry_priv_usb {
+ struct urb *urb;
+};
+
+/**
+ * struct queue_entry_priv_usb_bcn: Per TX entry USB specific information
+ *
+ * The first section should match &struct queue_entry_priv_usb exactly.
+ * rt2500usb can use this structure to send a guardian byte when working
+ * with beacons.
+ *
+ * @urb: Urb structure used for device communication.
+ * @guardian_data: Set to 0, used for sending the guardian data.
+ * @guardian_urb: Urb structure used to send the guardian data.
+ */
+struct queue_entry_priv_usb_bcn {
+ struct urb *urb;
+
+ unsigned int guardian_data;
+ struct urb *guardian_urb;
+};
+
+/**
+ * rt2x00usb_kick_queue - Kick data queue
+ * @queue: Data queue to kick
+ *
+ * This will walk through all entries of the queue and push all pending
+ * frames to the hardware as a single burst.
+ */
+void rt2x00usb_kick_queue(struct data_queue *queue);
+
+/**
+ * rt2x00usb_flush_queue - Flush data queue
+ * @queue: Data queue to stop
+ * @drop: True to drop all pending frames.
+ *
+ * This will walk through all entries of the queue and will optionally
+ * kill all URB's which were send to the device, or at least wait until
+ * they have been returned from the device..
+ */
+void rt2x00usb_flush_queue(struct data_queue *queue, bool drop);
+
+/**
+ * rt2x00usb_watchdog - Watchdog for USB communication
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ *
+ * Check the health of the USB communication and determine
+ * if timeouts have occurred. If this is the case, this function
+ * will reset all communication to restore functionality again.
+ */
+void rt2x00usb_watchdog(struct rt2x00_dev *rt2x00dev);
+
+/*
+ * Device initialization handlers.
+ */
+void rt2x00usb_clear_entry(struct queue_entry *entry);
+int rt2x00usb_initialize(struct rt2x00_dev *rt2x00dev);
+void rt2x00usb_uninitialize(struct rt2x00_dev *rt2x00dev);
+
+/*
+ * USB driver handlers.
+ */
+int rt2x00usb_probe(struct usb_interface *usb_intf,
+ const struct rt2x00_ops *ops);
+void rt2x00usb_disconnect(struct usb_interface *usb_intf);
+#ifdef CONFIG_PM
+int rt2x00usb_suspend(struct usb_interface *usb_intf, pm_message_t state);
+int rt2x00usb_resume(struct usb_interface *usb_intf);
+#else
+#define rt2x00usb_suspend NULL
+#define rt2x00usb_resume NULL
+#endif /* CONFIG_PM */
+
+#endif /* RT2X00USB_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt61pci.c b/drivers/net/wireless/ralink/rt2x00/rt61pci.c
new file mode 100644
index 0000000000..483723bf51
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt61pci.c
@@ -0,0 +1,3018 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt61pci
+ Abstract: rt61pci device specific routines.
+ Supported chipsets: RT2561, RT2561s, RT2661.
+ */
+
+#include <linux/crc-itu-t.h>
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/pci.h>
+#include <linux/eeprom_93cx6.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2x00pci.h"
+#include "rt61pci.h"
+
+/*
+ * Allow hardware encryption to be disabled.
+ */
+static bool modparam_nohwcrypt = false;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+/*
+ * Register access.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attempt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+ rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+ rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
+#define WAIT_FOR_MCU(__dev, __reg) \
+ rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
+ H2M_MAILBOX_CSR_OWNER, (__reg))
+
+static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u8 value)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
+ rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
+ rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
+ rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
+
+ rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word)
+{
+ u32 reg;
+ u8 value;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the read request into the register.
+ * After the data has been written, we wait until hardware
+ * returns the correct value, if at any time the register
+ * doesn't become available in time, reg will be 0xffffffff
+ * which means we return 0xff to the caller.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
+ rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
+ rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
+
+ rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
+
+ WAIT_FOR_BBP(rt2x00dev, &reg);
+ }
+
+ value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+
+ return value;
+}
+
+static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u32 value)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the RF becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
+ rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
+ rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
+ rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
+
+ rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
+ rt2x00_rf_write(rt2x00dev, word, value);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
+ const u8 command, const u8 token,
+ const u8 arg0, const u8 arg1)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the MCU becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
+ rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
+ rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
+ rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
+ rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
+ rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR);
+ rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
+ rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
+ rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+
+}
+
+static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
+{
+ struct rt2x00_dev *rt2x00dev = eeprom->data;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
+
+ eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
+ eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
+ eeprom->reg_data_clock =
+ !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
+ eeprom->reg_chip_select =
+ !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
+}
+
+static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
+{
+ struct rt2x00_dev *rt2x00dev = eeprom->data;
+ u32 reg = 0;
+
+ rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
+ rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
+ rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
+ !!eeprom->reg_data_clock);
+ rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
+ !!eeprom->reg_chip_select);
+
+ rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static const struct rt2x00debug rt61pci_rt2x00debug = {
+ .owner = THIS_MODULE,
+ .csr = {
+ .read = rt2x00mmio_register_read,
+ .write = rt2x00mmio_register_write,
+ .flags = RT2X00DEBUGFS_OFFSET,
+ .word_base = CSR_REG_BASE,
+ .word_size = sizeof(u32),
+ .word_count = CSR_REG_SIZE / sizeof(u32),
+ },
+ .eeprom = {
+ .read = rt2x00_eeprom_read,
+ .write = rt2x00_eeprom_write,
+ .word_base = EEPROM_BASE,
+ .word_size = sizeof(u16),
+ .word_count = EEPROM_SIZE / sizeof(u16),
+ },
+ .bbp = {
+ .read = rt61pci_bbp_read,
+ .write = rt61pci_bbp_write,
+ .word_base = BBP_BASE,
+ .word_size = sizeof(u8),
+ .word_count = BBP_SIZE / sizeof(u8),
+ },
+ .rf = {
+ .read = rt2x00_rf_read,
+ .write = rt61pci_rf_write,
+ .word_base = RF_BASE,
+ .word_size = sizeof(u32),
+ .word_count = RF_SIZE / sizeof(u32),
+ },
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
+ return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
+}
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt61pci_brightness_set(struct led_classdev *led_cdev,
+ enum led_brightness brightness)
+{
+ struct rt2x00_led *led =
+ container_of(led_cdev, struct rt2x00_led, led_dev);
+ unsigned int enabled = brightness != LED_OFF;
+ unsigned int a_mode =
+ (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
+ unsigned int bg_mode =
+ (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
+
+ if (led->type == LED_TYPE_RADIO) {
+ rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+ MCU_LEDCS_RADIO_STATUS, enabled);
+
+ rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
+ (led->rt2x00dev->led_mcu_reg & 0xff),
+ ((led->rt2x00dev->led_mcu_reg >> 8)));
+ } else if (led->type == LED_TYPE_ASSOC) {
+ rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+ MCU_LEDCS_LINK_BG_STATUS, bg_mode);
+ rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+ MCU_LEDCS_LINK_A_STATUS, a_mode);
+
+ rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
+ (led->rt2x00dev->led_mcu_reg & 0xff),
+ ((led->rt2x00dev->led_mcu_reg >> 8)));
+ } else if (led->type == LED_TYPE_QUALITY) {
+ /*
+ * The brightness is divided into 6 levels (0 - 5),
+ * this means we need to convert the brightness
+ * argument into the matching level within that range.
+ */
+ rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
+ brightness / (LED_FULL / 6), 0);
+ }
+}
+
+static int rt61pci_blink_set(struct led_classdev *led_cdev,
+ unsigned long *delay_on,
+ unsigned long *delay_off)
+{
+ struct rt2x00_led *led =
+ container_of(led_cdev, struct rt2x00_led, led_dev);
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14);
+ rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
+ rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
+ rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
+
+ return 0;
+}
+
+static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_led *led,
+ enum led_type type)
+{
+ led->rt2x00dev = rt2x00dev;
+ led->type = type;
+ led->led_dev.brightness_set = rt61pci_brightness_set;
+ led->led_dev.blink_set = rt61pci_blink_set;
+ led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key)
+{
+ /*
+ * Let the software handle the shared keys,
+ * since the hardware decryption does not work reliably,
+ * because the firmware does not know the key's keyidx.
+ */
+ return -EOPNOTSUPP;
+}
+
+static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key)
+{
+ struct hw_pairwise_ta_entry addr_entry;
+ struct hw_key_entry key_entry;
+ u32 mask;
+ u32 reg;
+
+ if (crypto->cmd == SET_KEY) {
+ /*
+ * rt2x00lib can't determine the correct free
+ * key_idx for pairwise keys. We have 2 registers
+ * with key valid bits. The goal is simple: read
+ * the first register. If that is full, move to
+ * the next register.
+ * When both registers are full, we drop the key.
+ * Otherwise, we use the first invalid entry.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
+ if (reg && reg == ~0) {
+ key->hw_key_idx = 32;
+ reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
+ if (reg && reg == ~0)
+ return -ENOSPC;
+ }
+
+ key->hw_key_idx += reg ? ffz(reg) : 0;
+
+ /*
+ * Upload key to hardware
+ */
+ memcpy(key_entry.key, crypto->key,
+ sizeof(key_entry.key));
+ memcpy(key_entry.tx_mic, crypto->tx_mic,
+ sizeof(key_entry.tx_mic));
+ memcpy(key_entry.rx_mic, crypto->rx_mic,
+ sizeof(key_entry.rx_mic));
+
+ memset(&addr_entry, 0, sizeof(addr_entry));
+ memcpy(&addr_entry, crypto->address, ETH_ALEN);
+ addr_entry.cipher = crypto->cipher;
+
+ reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
+ rt2x00mmio_register_multiwrite(rt2x00dev, reg,
+ &key_entry, sizeof(key_entry));
+
+ reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
+ rt2x00mmio_register_multiwrite(rt2x00dev, reg,
+ &addr_entry, sizeof(addr_entry));
+
+ /*
+ * Enable pairwise lookup table for given BSS idx.
+ * Without this, received frames will not be decrypted
+ * by the hardware.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4);
+ reg |= (1 << crypto->bssidx);
+ rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
+
+ /*
+ * The driver does not support the IV/EIV generation
+ * in hardware. However it doesn't support the IV/EIV
+ * inside the ieee80211 frame either, but requires it
+ * to be provided separately for the descriptor.
+ * rt2x00lib will cut the IV/EIV data out of all frames
+ * given to us by mac80211, but we must tell mac80211
+ * to generate the IV/EIV data.
+ */
+ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
+ }
+
+ /*
+ * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
+ * a particular key is valid. Because using the FIELD32()
+ * defines directly will cause a lot of overhead, we use
+ * a calculation to determine the correct bit directly.
+ */
+ if (key->hw_key_idx < 32) {
+ mask = 1 << key->hw_key_idx;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
+ if (crypto->cmd == SET_KEY)
+ reg |= mask;
+ else if (crypto->cmd == DISABLE_KEY)
+ reg &= ~mask;
+ rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
+ } else {
+ mask = 1 << (key->hw_key_idx - 32);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
+ if (crypto->cmd == SET_KEY)
+ reg |= mask;
+ else if (crypto->cmd == DISABLE_KEY)
+ reg &= ~mask;
+ rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
+ }
+
+ return 0;
+}
+
+static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
+ const unsigned int filter_flags)
+{
+ u32 reg;
+
+ /*
+ * Start configuration steps.
+ * Note that the version error will always be dropped
+ * and broadcast frames will always be accepted since
+ * there is no filter for it at this time.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
+ !(filter_flags & FIF_FCSFAIL));
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
+ !(filter_flags & FIF_PLCPFAIL));
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
+ !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
+ !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
+ !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
+ !rt2x00dev->intf_ap_count);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
+ !(filter_flags & FIF_ALLMULTI));
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
+}
+
+static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_intf *intf,
+ struct rt2x00intf_conf *conf,
+ const unsigned int flags)
+{
+ u32 reg;
+
+ if (flags & CONFIG_UPDATE_TYPE) {
+ /*
+ * Enable synchronisation.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+ }
+
+ if (flags & CONFIG_UPDATE_MAC) {
+ reg = le32_to_cpu(conf->mac[1]);
+ rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
+ conf->mac[1] = cpu_to_le32(reg);
+
+ rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
+ conf->mac, sizeof(conf->mac));
+ }
+
+ if (flags & CONFIG_UPDATE_BSSID) {
+ reg = le32_to_cpu(conf->bssid[1]);
+ rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
+ conf->bssid[1] = cpu_to_le32(reg);
+
+ rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
+ conf->bssid,
+ sizeof(conf->bssid));
+ }
+}
+
+static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_erp *erp,
+ u32 changed)
+{
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
+ rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+ if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
+ rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
+ !!erp->short_preamble);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
+ }
+
+ if (changed & BSS_CHANGED_BASIC_RATES)
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
+ erp->basic_rates);
+
+ if (changed & BSS_CHANGED_BEACON_INT) {
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
+ erp->beacon_int * 16);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+ }
+
+ if (changed & BSS_CHANGED_ERP_SLOT) {
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
+ rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8);
+ rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
+ rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
+ rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
+ }
+}
+
+static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant)
+{
+ u8 r3;
+ u8 r4;
+ u8 r77;
+
+ r3 = rt61pci_bbp_read(rt2x00dev, 3);
+ r4 = rt61pci_bbp_read(rt2x00dev, 4);
+ r77 = rt61pci_bbp_read(rt2x00dev, 77);
+
+ rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
+
+ /*
+ * Configure the RX antenna.
+ */
+ switch (ant->rx) {
+ case ANTENNA_HW_DIVERSITY:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
+ rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
+ (rt2x00dev->curr_band != NL80211_BAND_5GHZ));
+ break;
+ case ANTENNA_A:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+ rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
+ if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+ else
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+ break;
+ case ANTENNA_B:
+ default:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+ rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
+ if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+ else
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+ break;
+ }
+
+ rt61pci_bbp_write(rt2x00dev, 77, r77);
+ rt61pci_bbp_write(rt2x00dev, 3, r3);
+ rt61pci_bbp_write(rt2x00dev, 4, r4);
+}
+
+static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant)
+{
+ u8 r3;
+ u8 r4;
+ u8 r77;
+
+ r3 = rt61pci_bbp_read(rt2x00dev, 3);
+ r4 = rt61pci_bbp_read(rt2x00dev, 4);
+ r77 = rt61pci_bbp_read(rt2x00dev, 77);
+
+ rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
+ rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
+ !rt2x00_has_cap_frame_type(rt2x00dev));
+
+ /*
+ * Configure the RX antenna.
+ */
+ switch (ant->rx) {
+ case ANTENNA_HW_DIVERSITY:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
+ break;
+ case ANTENNA_A:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+ break;
+ case ANTENNA_B:
+ default:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+ break;
+ }
+
+ rt61pci_bbp_write(rt2x00dev, 77, r77);
+ rt61pci_bbp_write(rt2x00dev, 3, r3);
+ rt61pci_bbp_write(rt2x00dev, 4, r4);
+}
+
+static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
+ const int p1, const int p2)
+{
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
+
+ rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
+ rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
+
+ rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
+ rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
+
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
+}
+
+static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant)
+{
+ u8 r3;
+ u8 r4;
+ u8 r77;
+
+ r3 = rt61pci_bbp_read(rt2x00dev, 3);
+ r4 = rt61pci_bbp_read(rt2x00dev, 4);
+ r77 = rt61pci_bbp_read(rt2x00dev, 77);
+
+ /*
+ * Configure the RX antenna.
+ */
+ switch (ant->rx) {
+ case ANTENNA_A:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+ rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
+ break;
+ case ANTENNA_HW_DIVERSITY:
+ /*
+ * FIXME: Antenna selection for the rf 2529 is very confusing
+ * in the legacy driver. Just default to antenna B until the
+ * legacy code can be properly translated into rt2x00 code.
+ */
+ case ANTENNA_B:
+ default:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+ rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
+ break;
+ }
+
+ rt61pci_bbp_write(rt2x00dev, 77, r77);
+ rt61pci_bbp_write(rt2x00dev, 3, r3);
+ rt61pci_bbp_write(rt2x00dev, 4, r4);
+}
+
+struct antenna_sel {
+ u8 word;
+ /*
+ * value[0] -> non-LNA
+ * value[1] -> LNA
+ */
+ u8 value[2];
+};
+
+static const struct antenna_sel antenna_sel_a[] = {
+ { 96, { 0x58, 0x78 } },
+ { 104, { 0x38, 0x48 } },
+ { 75, { 0xfe, 0x80 } },
+ { 86, { 0xfe, 0x80 } },
+ { 88, { 0xfe, 0x80 } },
+ { 35, { 0x60, 0x60 } },
+ { 97, { 0x58, 0x58 } },
+ { 98, { 0x58, 0x58 } },
+};
+
+static const struct antenna_sel antenna_sel_bg[] = {
+ { 96, { 0x48, 0x68 } },
+ { 104, { 0x2c, 0x3c } },
+ { 75, { 0xfe, 0x80 } },
+ { 86, { 0xfe, 0x80 } },
+ { 88, { 0xfe, 0x80 } },
+ { 35, { 0x50, 0x50 } },
+ { 97, { 0x48, 0x48 } },
+ { 98, { 0x48, 0x48 } },
+};
+
+static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant)
+{
+ const struct antenna_sel *sel;
+ unsigned int lna;
+ unsigned int i;
+ u32 reg;
+
+ /*
+ * We should never come here because rt2x00lib is supposed
+ * to catch this and send us the correct antenna explicitely.
+ */
+ BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
+ ant->tx == ANTENNA_SW_DIVERSITY);
+
+ if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
+ sel = antenna_sel_a;
+ lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
+ } else {
+ sel = antenna_sel_bg;
+ lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
+ }
+
+ for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
+ rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0);
+
+ rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
+ rt2x00dev->curr_band == NL80211_BAND_2GHZ);
+ rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
+ rt2x00dev->curr_band == NL80211_BAND_5GHZ);
+
+ rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
+
+ if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
+ rt61pci_config_antenna_5x(rt2x00dev, ant);
+ else if (rt2x00_rf(rt2x00dev, RF2527))
+ rt61pci_config_antenna_2x(rt2x00dev, ant);
+ else if (rt2x00_rf(rt2x00dev, RF2529)) {
+ if (rt2x00_has_cap_double_antenna(rt2x00dev))
+ rt61pci_config_antenna_2x(rt2x00dev, ant);
+ else
+ rt61pci_config_antenna_2529(rt2x00dev, ant);
+ }
+}
+
+static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ u16 eeprom;
+ short lna_gain = 0;
+
+ if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
+ if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
+ lna_gain += 14;
+
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
+ lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
+ } else {
+ if (rt2x00_has_cap_external_lna_a(rt2x00dev))
+ lna_gain += 14;
+
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
+ lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
+ }
+
+ rt2x00dev->lna_gain = lna_gain;
+}
+
+static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
+ struct rf_channel *rf, const int txpower)
+{
+ u8 r3;
+ u8 r94;
+ u8 smart;
+
+ rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+ rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
+
+ smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
+
+ r3 = rt61pci_bbp_read(rt2x00dev, 3);
+ rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
+ rt61pci_bbp_write(rt2x00dev, 3, r3);
+
+ r94 = 6;
+ if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
+ r94 += txpower - MAX_TXPOWER;
+ else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
+ r94 += txpower;
+ rt61pci_bbp_write(rt2x00dev, 94, r94);
+
+ rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
+ rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
+ rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+ rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
+
+ udelay(200);
+
+ rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
+ rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
+ rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
+ rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
+
+ udelay(200);
+
+ rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
+ rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
+ rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+ rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
+
+ msleep(1);
+}
+
+static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
+ const int txpower)
+{
+ struct rf_channel rf;
+
+ rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
+ rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
+ rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
+ rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
+
+ rt61pci_config_channel(rt2x00dev, &rf, txpower);
+}
+
+static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
+ rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
+ libconf->conf->long_frame_max_tx_count);
+ rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
+ libconf->conf->short_frame_max_tx_count);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
+}
+
+static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ enum dev_state state =
+ (libconf->conf->flags & IEEE80211_CONF_PS) ?
+ STATE_SLEEP : STATE_AWAKE;
+ u32 reg;
+
+ if (state == STATE_SLEEP) {
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
+ rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
+ rt2x00dev->beacon_int - 10);
+ rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
+ libconf->conf->listen_interval - 1);
+ rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
+
+ /* We must first disable autowake before it can be enabled */
+ rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
+
+ rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
+
+ rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
+ 0x00000005);
+ rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
+ rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
+
+ rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
+ } else {
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
+ rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
+ rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
+ rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
+ rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
+
+ rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
+ 0x00000007);
+ rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
+ rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
+
+ rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
+ }
+}
+
+static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf,
+ const unsigned int flags)
+{
+ /* Always recalculate LNA gain before changing configuration */
+ rt61pci_config_lna_gain(rt2x00dev, libconf);
+
+ if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
+ rt61pci_config_channel(rt2x00dev, &libconf->rf,
+ libconf->conf->power_level);
+ if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
+ !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
+ rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
+ if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+ rt61pci_config_retry_limit(rt2x00dev, libconf);
+ if (flags & IEEE80211_CONF_CHANGE_PS)
+ rt61pci_config_ps(rt2x00dev, libconf);
+}
+
+/*
+ * Link tuning
+ */
+static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual)
+{
+ u32 reg;
+
+ /*
+ * Update FCS error count from register.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
+ qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
+
+ /*
+ * Update False CCA count from register.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
+ qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
+}
+
+static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual, u8 vgc_level)
+{
+ if (qual->vgc_level != vgc_level) {
+ rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
+ qual->vgc_level = vgc_level;
+ qual->vgc_level_reg = vgc_level;
+ }
+}
+
+static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual)
+{
+ rt61pci_set_vgc(rt2x00dev, qual, 0x20);
+}
+
+static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual, const u32 count)
+{
+ u8 up_bound;
+ u8 low_bound;
+
+ /*
+ * Determine r17 bounds.
+ */
+ if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
+ low_bound = 0x28;
+ up_bound = 0x48;
+ if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
+ low_bound += 0x10;
+ up_bound += 0x10;
+ }
+ } else {
+ low_bound = 0x20;
+ up_bound = 0x40;
+ if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
+ low_bound += 0x10;
+ up_bound += 0x10;
+ }
+ }
+
+ /*
+ * If we are not associated, we should go straight to the
+ * dynamic CCA tuning.
+ */
+ if (!rt2x00dev->intf_associated)
+ goto dynamic_cca_tune;
+
+ /*
+ * Special big-R17 for very short distance
+ */
+ if (qual->rssi >= -35) {
+ rt61pci_set_vgc(rt2x00dev, qual, 0x60);
+ return;
+ }
+
+ /*
+ * Special big-R17 for short distance
+ */
+ if (qual->rssi >= -58) {
+ rt61pci_set_vgc(rt2x00dev, qual, up_bound);
+ return;
+ }
+
+ /*
+ * Special big-R17 for middle-short distance
+ */
+ if (qual->rssi >= -66) {
+ rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
+ return;
+ }
+
+ /*
+ * Special mid-R17 for middle distance
+ */
+ if (qual->rssi >= -74) {
+ rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
+ return;
+ }
+
+ /*
+ * Special case: Change up_bound based on the rssi.
+ * Lower up_bound when rssi is weaker then -74 dBm.
+ */
+ up_bound -= 2 * (-74 - qual->rssi);
+ if (low_bound > up_bound)
+ up_bound = low_bound;
+
+ if (qual->vgc_level > up_bound) {
+ rt61pci_set_vgc(rt2x00dev, qual, up_bound);
+ return;
+ }
+
+dynamic_cca_tune:
+
+ /*
+ * r17 does not yet exceed upper limit, continue and base
+ * the r17 tuning on the false CCA count.
+ */
+ if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
+ rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
+ else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
+ rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt61pci_start_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_RX:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+static void rt61pci_kick_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_AC_VO:
+ reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
+ rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
+ rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+ break;
+ case QID_AC_VI:
+ reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
+ rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
+ rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+ break;
+ case QID_AC_BE:
+ reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
+ rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
+ rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+ break;
+ case QID_AC_BK:
+ reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
+ rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
+ rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+static void rt61pci_stop_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_AC_VO:
+ reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
+ rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
+ rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+ break;
+ case QID_AC_VI:
+ reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
+ rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
+ rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+ break;
+ case QID_AC_BE:
+ reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
+ rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
+ rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+ break;
+ case QID_AC_BK:
+ reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
+ rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
+ rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+ break;
+ case QID_RX:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+ /*
+ * Wait for possibly running tbtt tasklets.
+ */
+ tasklet_kill(&rt2x00dev->tbtt_tasklet);
+ break;
+ default:
+ break;
+ }
+}
+
+/*
+ * Firmware functions
+ */
+static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
+{
+ u16 chip;
+ char *fw_name;
+
+ pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
+ switch (chip) {
+ case RT2561_PCI_ID:
+ fw_name = FIRMWARE_RT2561;
+ break;
+ case RT2561s_PCI_ID:
+ fw_name = FIRMWARE_RT2561s;
+ break;
+ case RT2661_PCI_ID:
+ fw_name = FIRMWARE_RT2661;
+ break;
+ default:
+ fw_name = NULL;
+ break;
+ }
+
+ return fw_name;
+}
+
+static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ u16 fw_crc;
+ u16 crc;
+
+ /*
+ * Only support 8kb firmware files.
+ */
+ if (len != 8192)
+ return FW_BAD_LENGTH;
+
+ /*
+ * The last 2 bytes in the firmware array are the crc checksum itself.
+ * This means that we should never pass those 2 bytes to the crc
+ * algorithm.
+ */
+ fw_crc = (data[len - 2] << 8 | data[len - 1]);
+
+ /*
+ * Use the crc itu-t algorithm.
+ */
+ crc = crc_itu_t(0, data, len - 2);
+ crc = crc_itu_t_byte(crc, 0);
+ crc = crc_itu_t_byte(crc, 0);
+
+ return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
+}
+
+static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ int i;
+ u32 reg;
+
+ /*
+ * Wait for stable hardware.
+ */
+ for (i = 0; i < 100; i++) {
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
+ if (reg)
+ break;
+ msleep(1);
+ }
+
+ if (!reg) {
+ rt2x00_err(rt2x00dev, "Unstable hardware\n");
+ return -EBUSY;
+ }
+
+ /*
+ * Prepare MCU and mailbox for firmware loading.
+ */
+ reg = 0;
+ rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
+ rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
+ rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
+ rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+ rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
+
+ /*
+ * Write firmware to device.
+ */
+ reg = 0;
+ rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
+ rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
+ rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
+
+ rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
+ data, len);
+
+ rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
+ rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
+
+ rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
+ rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
+
+ for (i = 0; i < 100; i++) {
+ reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR);
+ if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
+ break;
+ msleep(1);
+ }
+
+ if (i == 100) {
+ rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
+ return -EBUSY;
+ }
+
+ /*
+ * Hardware needs another millisecond before it is ready.
+ */
+ msleep(1);
+
+ /*
+ * Reset MAC and BBP registers.
+ */
+ reg = 0;
+ rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
+ rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
+ rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
+ rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
+ rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ return 0;
+}
+
+/*
+ * Initialization functions.
+ */
+static bool rt61pci_get_entry_state(struct queue_entry *entry)
+{
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ u32 word;
+
+ if (entry->queue->qid == QID_RX) {
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+
+ return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
+ } else {
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+
+ return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+ rt2x00_get_field32(word, TXD_W0_VALID));
+ }
+}
+
+static void rt61pci_clear_entry(struct queue_entry *entry)
+{
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ u32 word;
+
+ if (entry->queue->qid == QID_RX) {
+ word = rt2x00_desc_read(entry_priv->desc, 5);
+ rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
+ skbdesc->skb_dma);
+ rt2x00_desc_write(entry_priv->desc, 5, word);
+
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+ rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
+ rt2x00_desc_write(entry_priv->desc, 0, word);
+ } else {
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+ rt2x00_set_field32(&word, TXD_W0_VALID, 0);
+ rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
+ rt2x00_desc_write(entry_priv->desc, 0, word);
+ }
+}
+
+static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
+{
+ struct queue_entry_priv_mmio *entry_priv;
+ u32 reg;
+
+ /*
+ * Initialize registers.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0);
+ rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
+ rt2x00dev->tx[0].limit);
+ rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
+ rt2x00dev->tx[1].limit);
+ rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
+ rt2x00dev->tx[2].limit);
+ rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
+ rt2x00dev->tx[3].limit);
+ rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1);
+ rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
+ rt2x00dev->tx[0].desc_size / 4);
+ rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
+
+ entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR);
+ rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
+
+ entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR);
+ rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
+
+ entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR);
+ rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
+
+ entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR);
+ rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR);
+ rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
+ rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
+ rt2x00dev->rx->desc_size / 4);
+ rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
+ rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
+
+ entry_priv = rt2x00dev->rx->entries[0].priv_data;
+ reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR);
+ rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
+ entry_priv->desc_dma);
+ rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR);
+ rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
+ rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
+ rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
+ rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
+ rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR);
+ rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
+ rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
+ rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
+ rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
+ rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
+ rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
+ rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
+
+ return 0;
+}
+
+static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1);
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
+
+ /*
+ * CCK TXD BBP registers
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
+
+ /*
+ * OFDM TXD BBP registers
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7);
+ rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
+ rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
+ rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
+ rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8);
+ rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
+ rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
+ rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
+ rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
+
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
+ rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
+
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
+
+ if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+ return -EBUSY;
+
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
+
+ /*
+ * Invalidate all Shared Keys (SEC_CSR0),
+ * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
+ */
+ rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
+ rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
+ rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
+
+ rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
+ rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
+ rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
+ rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
+
+ rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
+
+ rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
+
+ rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
+
+ /*
+ * Clear all beacons
+ * For the Beacon base registers we only need to clear
+ * the first byte since that byte contains the VALID and OWNER
+ * bits which (when set to 0) will invalidate the entire beacon.
+ */
+ rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
+ rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
+ rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
+ rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
+
+ /*
+ * We must clear the error counters.
+ * These registers are cleared on read,
+ * so we may pass a useless variable to store the value.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
+ reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
+ reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2);
+
+ /*
+ * Reset MAC and BBP registers.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
+ rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
+ rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
+ rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
+ rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
+ rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ return 0;
+}
+
+static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u8 value;
+
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ value = rt61pci_bbp_read(rt2x00dev, 0);
+ if ((value != 0xff) && (value != 0x00))
+ return 0;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+ return -EACCES;
+}
+
+static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u16 eeprom;
+ u8 reg_id;
+ u8 value;
+
+ if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
+ return -EACCES;
+
+ rt61pci_bbp_write(rt2x00dev, 3, 0x00);
+ rt61pci_bbp_write(rt2x00dev, 15, 0x30);
+ rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
+ rt61pci_bbp_write(rt2x00dev, 22, 0x38);
+ rt61pci_bbp_write(rt2x00dev, 23, 0x06);
+ rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
+ rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
+ rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
+ rt61pci_bbp_write(rt2x00dev, 34, 0x12);
+ rt61pci_bbp_write(rt2x00dev, 37, 0x07);
+ rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
+ rt61pci_bbp_write(rt2x00dev, 41, 0x60);
+ rt61pci_bbp_write(rt2x00dev, 53, 0x10);
+ rt61pci_bbp_write(rt2x00dev, 54, 0x18);
+ rt61pci_bbp_write(rt2x00dev, 60, 0x10);
+ rt61pci_bbp_write(rt2x00dev, 61, 0x04);
+ rt61pci_bbp_write(rt2x00dev, 62, 0x04);
+ rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
+ rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
+ rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
+ rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
+ rt61pci_bbp_write(rt2x00dev, 99, 0x00);
+ rt61pci_bbp_write(rt2x00dev, 102, 0x16);
+ rt61pci_bbp_write(rt2x00dev, 107, 0x04);
+
+ for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
+
+ if (eeprom != 0xffff && eeprom != 0x0000) {
+ reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+ value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+ rt61pci_bbp_write(rt2x00dev, reg_id, value);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int mask = (state == STATE_RADIO_IRQ_OFF);
+ u32 reg;
+ unsigned long flags;
+
+ /*
+ * When interrupts are being enabled, the interrupt registers
+ * should clear the register to assure a clean state.
+ */
+ if (state == STATE_RADIO_IRQ_ON) {
+ reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
+ rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
+ rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
+ }
+
+ /*
+ * Only toggle the interrupts bits we are going to use.
+ * Non-checked interrupt bits are disabled by default.
+ */
+ spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
+ rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
+ rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
+ rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
+ rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
+ rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
+ rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
+ rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
+ rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
+ rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
+ rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
+ rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
+ rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
+ rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
+ rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
+ rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
+ rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
+
+ spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
+
+ if (state == STATE_RADIO_IRQ_OFF) {
+ /*
+ * Ensure that all tasklets are finished.
+ */
+ tasklet_kill(&rt2x00dev->txstatus_tasklet);
+ tasklet_kill(&rt2x00dev->rxdone_tasklet);
+ tasklet_kill(&rt2x00dev->autowake_tasklet);
+ tasklet_kill(&rt2x00dev->tbtt_tasklet);
+ }
+}
+
+static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ /*
+ * Initialize all registers.
+ */
+ if (unlikely(rt61pci_init_queues(rt2x00dev) ||
+ rt61pci_init_registers(rt2x00dev) ||
+ rt61pci_init_bbp(rt2x00dev)))
+ return -EIO;
+
+ /*
+ * Enable RX.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
+ rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
+ rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
+
+ return 0;
+}
+
+static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ /*
+ * Disable power
+ */
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
+}
+
+static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
+{
+ u32 reg, reg2;
+ unsigned int i;
+ bool put_to_sleep;
+
+ put_to_sleep = (state != STATE_AWAKE);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
+ rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
+ rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
+
+ /*
+ * Device is not guaranteed to be in the requested state yet.
+ * We must wait until the register indicates that the
+ * device has entered the correct state.
+ */
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
+ state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
+ if (state == !put_to_sleep)
+ return 0;
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
+ msleep(10);
+ }
+
+ return -EBUSY;
+}
+
+static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int retval = 0;
+
+ switch (state) {
+ case STATE_RADIO_ON:
+ retval = rt61pci_enable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_OFF:
+ rt61pci_disable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_IRQ_ON:
+ case STATE_RADIO_IRQ_OFF:
+ rt61pci_toggle_irq(rt2x00dev, state);
+ break;
+ case STATE_DEEP_SLEEP:
+ case STATE_SLEEP:
+ case STATE_STANDBY:
+ case STATE_AWAKE:
+ retval = rt61pci_set_state(rt2x00dev, state);
+ break;
+ default:
+ retval = -ENOTSUPP;
+ break;
+ }
+
+ if (unlikely(retval))
+ rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+ state, retval);
+
+ return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt61pci_write_tx_desc(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ __le32 *txd = entry_priv->desc;
+ u32 word;
+
+ /*
+ * Start writing the descriptor words.
+ */
+ word = rt2x00_desc_read(txd, 1);
+ rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
+ rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
+ rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
+ rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
+ rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
+ rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
+ test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
+ rt2x00_desc_write(txd, 1, word);
+
+ word = rt2x00_desc_read(txd, 2);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
+ txdesc->u.plcp.length_low);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
+ txdesc->u.plcp.length_high);
+ rt2x00_desc_write(txd, 2, word);
+
+ if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
+ _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
+ _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
+ }
+
+ word = rt2x00_desc_read(txd, 5);
+ rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
+ rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
+ rt2x00_set_field32(&word, TXD_W5_TX_POWER,
+ TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
+ rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
+ rt2x00_desc_write(txd, 5, word);
+
+ if (entry->queue->qid != QID_BEACON) {
+ word = rt2x00_desc_read(txd, 6);
+ rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
+ skbdesc->skb_dma);
+ rt2x00_desc_write(txd, 6, word);
+
+ word = rt2x00_desc_read(txd, 11);
+ rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
+ txdesc->length);
+ rt2x00_desc_write(txd, 11, word);
+ }
+
+ /*
+ * Writing TXD word 0 must the last to prevent a race condition with
+ * the device, whereby the device may take hold of the TXD before we
+ * finished updating it.
+ */
+ word = rt2x00_desc_read(txd, 0);
+ rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
+ rt2x00_set_field32(&word, TXD_W0_VALID, 1);
+ rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+ test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_ACK,
+ test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+ test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_OFDM,
+ (txdesc->rate_mode == RATE_MODE_OFDM));
+ rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
+ rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
+ test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
+ test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
+ test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
+ rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
+ rt2x00_set_field32(&word, TXD_W0_BURST,
+ test_bit(ENTRY_TXD_BURST, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
+ rt2x00_desc_write(txd, 0, word);
+
+ /*
+ * Register descriptor details in skb frame descriptor.
+ */
+ skbdesc->desc = txd;
+ skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
+ TXD_DESC_SIZE;
+}
+
+/*
+ * TX data initialization
+ */
+static void rt61pci_write_beacon(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ unsigned int beacon_base;
+ unsigned int padding_len;
+ u32 orig_reg, reg;
+
+ /*
+ * Disable beaconing while we are reloading the beacon data,
+ * otherwise we might be sending out invalid data.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
+ orig_reg = reg;
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+ /*
+ * Write the TX descriptor for the beacon.
+ */
+ rt61pci_write_tx_desc(entry, txdesc);
+
+ /*
+ * Dump beacon to userspace through debugfs.
+ */
+ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
+
+ /*
+ * Write entire beacon with descriptor and padding to register.
+ */
+ padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
+ if (padding_len && skb_pad(entry->skb, padding_len)) {
+ rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
+ /* skb freed by skb_pad() on failure */
+ entry->skb = NULL;
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
+ return;
+ }
+
+ beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
+ rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
+ entry_priv->desc, TXINFO_SIZE);
+ rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
+ entry->skb->data,
+ entry->skb->len + padding_len);
+
+ /*
+ * Enable beaconing again.
+ *
+ * For Wi-Fi faily generated beacons between participating
+ * stations. Set TBTT phase adaptive adjustment step to 8us.
+ */
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
+
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+ /*
+ * Clean up beacon skb.
+ */
+ dev_kfree_skb_any(entry->skb);
+ entry->skb = NULL;
+}
+
+static void rt61pci_clear_beacon(struct queue_entry *entry)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ u32 orig_reg, reg;
+
+ /*
+ * Disable beaconing while we are reloading the beacon data,
+ * otherwise we might be sending out invalid data.
+ */
+ orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
+ reg = orig_reg;
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+ /*
+ * Clear beacon.
+ */
+ rt2x00mmio_register_write(rt2x00dev,
+ HW_BEACON_OFFSET(entry->entry_idx), 0);
+
+ /*
+ * Restore global beaconing state.
+ */
+ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
+}
+
+/*
+ * RX control handlers
+ */
+static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
+{
+ u8 offset = rt2x00dev->lna_gain;
+ u8 lna;
+
+ lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
+ switch (lna) {
+ case 3:
+ offset += 90;
+ break;
+ case 2:
+ offset += 74;
+ break;
+ case 1:
+ offset += 64;
+ break;
+ default:
+ return 0;
+ }
+
+ if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
+ if (lna == 3 || lna == 2)
+ offset += 10;
+ }
+
+ return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
+}
+
+static void rt61pci_fill_rxdone(struct queue_entry *entry,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+ u32 word0;
+ u32 word1;
+
+ word0 = rt2x00_desc_read(entry_priv->desc, 0);
+ word1 = rt2x00_desc_read(entry_priv->desc, 1);
+
+ if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
+ rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+
+ rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
+ rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
+
+ if (rxdesc->cipher != CIPHER_NONE) {
+ rxdesc->iv[0] = _rt2x00_desc_read(entry_priv->desc, 2);
+ rxdesc->iv[1] = _rt2x00_desc_read(entry_priv->desc, 3);
+ rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
+
+ rxdesc->icv = _rt2x00_desc_read(entry_priv->desc, 4);
+ rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
+
+ /*
+ * Hardware has stripped IV/EIV data from 802.11 frame during
+ * decryption. It has provided the data separately but rt2x00lib
+ * should decide if it should be reinserted.
+ */
+ rxdesc->flags |= RX_FLAG_IV_STRIPPED;
+
+ /*
+ * The hardware has already checked the Michael Mic and has
+ * stripped it from the frame. Signal this to mac80211.
+ */
+ rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
+
+ if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
+ rxdesc->flags |= RX_FLAG_DECRYPTED;
+ else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
+ rxdesc->flags |= RX_FLAG_MMIC_ERROR;
+ }
+
+ /*
+ * Obtain the status about this packet.
+ * When frame was received with an OFDM bitrate,
+ * the signal is the PLCP value. If it was received with
+ * a CCK bitrate the signal is the rate in 100kbit/s.
+ */
+ rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
+ rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
+ rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+
+ if (rt2x00_get_field32(word0, RXD_W0_OFDM))
+ rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
+ else
+ rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
+ if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
+ rxdesc->dev_flags |= RXDONE_MY_BSS;
+}
+
+/*
+ * Interrupt functions.
+ */
+static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
+{
+ struct data_queue *queue;
+ struct queue_entry *entry;
+ struct queue_entry *entry_done;
+ struct queue_entry_priv_mmio *entry_priv;
+ struct txdone_entry_desc txdesc;
+ u32 word;
+ u32 reg;
+ int type;
+ int index;
+ int i;
+
+ /*
+ * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
+ * at most X times and also stop processing once the TX_STA_FIFO_VALID
+ * flag is not set anymore.
+ *
+ * The legacy drivers use X=TX_RING_SIZE but state in a comment
+ * that the TX_STA_FIFO stack has a size of 16. We stick to our
+ * tx ring size for now.
+ */
+ for (i = 0; i < rt2x00dev->tx->limit; i++) {
+ reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4);
+ if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
+ break;
+
+ /*
+ * Skip this entry when it contains an invalid
+ * queue identication number.
+ */
+ type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
+ queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
+ if (unlikely(!queue))
+ continue;
+
+ /*
+ * Skip this entry when it contains an invalid
+ * index number.
+ */
+ index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
+ if (unlikely(index >= queue->limit))
+ continue;
+
+ entry = &queue->entries[index];
+ entry_priv = entry->priv_data;
+ word = rt2x00_desc_read(entry_priv->desc, 0);
+
+ if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+ !rt2x00_get_field32(word, TXD_W0_VALID))
+ return;
+
+ entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+ while (entry != entry_done) {
+ /* Catch up.
+ * Just report any entries we missed as failed.
+ */
+ rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
+ entry_done->entry_idx);
+
+ rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
+ entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+ }
+
+ /*
+ * Obtain the status about this packet.
+ */
+ txdesc.flags = 0;
+ switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
+ case 0: /* Success, maybe with retry */
+ __set_bit(TXDONE_SUCCESS, &txdesc.flags);
+ break;
+ case 6: /* Failure, excessive retries */
+ __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
+ fallthrough; /* this is a failed frame! */
+ default: /* Failure */
+ __set_bit(TXDONE_FAILURE, &txdesc.flags);
+ }
+ txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
+
+ /*
+ * the frame was retried at least once
+ * -> hw used fallback rates
+ */
+ if (txdesc.retry)
+ __set_bit(TXDONE_FALLBACK, &txdesc.flags);
+
+ rt2x00lib_txdone(entry, &txdesc);
+ }
+}
+
+static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
+{
+ struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
+
+ rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
+}
+
+static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_field32 irq_field)
+{
+ u32 reg;
+
+ /*
+ * Enable a single interrupt. The interrupt mask register
+ * access needs locking.
+ */
+ spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
+ rt2x00_set_field32(&reg, irq_field, 0);
+ rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+
+ spin_unlock_irq(&rt2x00dev->irqmask_lock);
+}
+
+static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_field32 irq_field)
+{
+ u32 reg;
+
+ /*
+ * Enable a single MCU interrupt. The interrupt mask register
+ * access needs locking.
+ */
+ spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
+ rt2x00_set_field32(&reg, irq_field, 0);
+ rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
+
+ spin_unlock_irq(&rt2x00dev->irqmask_lock);
+}
+
+static void rt61pci_txstatus_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
+ txstatus_tasklet);
+
+ rt61pci_txdone(rt2x00dev);
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
+}
+
+static void rt61pci_tbtt_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
+ rt2x00lib_beacondone(rt2x00dev);
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
+}
+
+static void rt61pci_rxdone_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
+ rxdone_tasklet);
+ if (rt2x00mmio_rxdone(rt2x00dev))
+ tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+ else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
+}
+
+static void rt61pci_autowake_tasklet(struct tasklet_struct *t)
+{
+ struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
+ autowake_tasklet);
+ rt61pci_wakeup(rt2x00dev);
+ rt2x00mmio_register_write(rt2x00dev,
+ M2H_CMD_DONE_CSR, 0xffffffff);
+ if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
+}
+
+static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
+{
+ struct rt2x00_dev *rt2x00dev = dev_instance;
+ u32 reg_mcu, mask_mcu;
+ u32 reg, mask;
+
+ /*
+ * Get the interrupt sources & saved to local variable.
+ * Write register value back to clear pending interrupts.
+ */
+ reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
+ rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
+ rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
+
+ if (!reg && !reg_mcu)
+ return IRQ_NONE;
+
+ if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+ return IRQ_HANDLED;
+
+ /*
+ * Schedule tasklets for interrupt handling.
+ */
+ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
+ tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+
+ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
+ tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+
+ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
+ tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
+
+ if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
+ tasklet_schedule(&rt2x00dev->autowake_tasklet);
+
+ /*
+ * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
+ * for interrupts and interrupt masks we can just use the value of
+ * INT_SOURCE_CSR to create the interrupt mask.
+ */
+ mask = reg;
+ mask_mcu = reg_mcu;
+
+ /*
+ * Disable all interrupts for which a tasklet was scheduled right now,
+ * the tasklet will reenable the appropriate interrupts.
+ */
+ spin_lock(&rt2x00dev->irqmask_lock);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
+ reg |= mask;
+ rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
+ reg |= mask_mcu;
+ rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
+
+ spin_unlock(&rt2x00dev->irqmask_lock);
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ struct eeprom_93cx6 eeprom;
+ u32 reg;
+ u16 word;
+ u8 *mac;
+ s8 value;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
+
+ eeprom.data = rt2x00dev;
+ eeprom.register_read = rt61pci_eepromregister_read;
+ eeprom.register_write = rt61pci_eepromregister_write;
+ eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
+ PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
+ eeprom.reg_data_in = 0;
+ eeprom.reg_data_out = 0;
+ eeprom.reg_data_clock = 0;
+ eeprom.reg_chip_select = 0;
+
+ eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
+ EEPROM_SIZE / sizeof(u16));
+
+ /*
+ * Start validation of the data that has been read.
+ */
+ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+ rt2x00lib_set_mac_address(rt2x00dev, mac);
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
+ ANTENNA_B);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
+ ANTENNA_B);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
+ rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
+ LED_MODE_DEFAULT);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
+ rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
+ } else {
+ value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
+ if (value < -10 || value > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
+ value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
+ if (value < -10 || value > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
+ } else {
+ value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
+ if (value < -10 || value > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
+ value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
+ if (value < -10 || value > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
+ }
+
+ return 0;
+}
+
+static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+ u16 value;
+ u16 eeprom;
+
+ /*
+ * Read EEPROM word for configuration.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
+
+ /*
+ * Identify RF chipset.
+ */
+ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
+ rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
+ value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
+
+ if (!rt2x00_rf(rt2x00dev, RF5225) &&
+ !rt2x00_rf(rt2x00dev, RF5325) &&
+ !rt2x00_rf(rt2x00dev, RF2527) &&
+ !rt2x00_rf(rt2x00dev, RF2529)) {
+ rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
+ return -ENODEV;
+ }
+
+ /*
+ * Determine number of antennas.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
+ __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
+
+ /*
+ * Identify default antenna configuration.
+ */
+ rt2x00dev->default_ant.tx =
+ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
+ rt2x00dev->default_ant.rx =
+ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
+
+ /*
+ * Read the Frame type.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
+ __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
+
+ /*
+ * Detect if this device has a hardware controlled radio.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
+ __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+
+ /*
+ * Read frequency offset and RF programming sequence.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
+ if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
+ __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
+
+ rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
+
+ /*
+ * Read external LNA informations.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
+
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
+ __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
+ __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
+
+ /*
+ * When working with a RF2529 chip without double antenna,
+ * the antenna settings should be gathered from the NIC
+ * eeprom word.
+ */
+ if (rt2x00_rf(rt2x00dev, RF2529) &&
+ !rt2x00_has_cap_double_antenna(rt2x00dev)) {
+ rt2x00dev->default_ant.rx =
+ ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
+ rt2x00dev->default_ant.tx =
+ ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
+
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
+ rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
+ rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
+ }
+
+ /*
+ * Store led settings, for correct led behaviour.
+ * If the eeprom value is invalid,
+ * switch to default led mode.
+ */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
+ value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
+
+ rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+ rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
+ if (value == LED_MODE_SIGNAL_STRENGTH)
+ rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
+ LED_TYPE_QUALITY);
+
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_GPIO_0));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_GPIO_1));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_GPIO_2));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_GPIO_3));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_GPIO_4));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
+ rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_RDY_G));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_RDY_A));
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+ return 0;
+}
+
+/*
+ * RF value list for RF5225 & RF5325
+ * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
+ */
+static const struct rf_channel rf_vals_noseq[] = {
+ { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
+ { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
+ { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
+ { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
+ { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
+ { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
+ { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
+ { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
+ { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
+ { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
+ { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
+ { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
+ { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
+ { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
+
+ /* 802.11 UNI / HyperLan 2 */
+ { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
+ { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
+ { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
+ { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
+ { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
+ { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
+ { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
+ { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
+
+ /* 802.11 HyperLan 2 */
+ { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
+ { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
+ { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
+ { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
+ { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
+ { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
+ { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
+ { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
+ { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
+ { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
+
+ /* 802.11 UNII */
+ { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
+ { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
+ { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
+ { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
+ { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
+ { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
+
+ /* MMAC(Japan)J52 ch 34,38,42,46 */
+ { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
+ { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
+ { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
+ { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
+};
+
+/*
+ * RF value list for RF5225 & RF5325
+ * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
+ */
+static const struct rf_channel rf_vals_seq[] = {
+ { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
+ { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
+ { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
+ { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
+ { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
+ { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
+ { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
+ { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
+ { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
+ { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
+ { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
+ { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
+ { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
+ { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
+
+ /* 802.11 UNI / HyperLan 2 */
+ { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
+ { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
+ { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
+ { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
+ { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
+ { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
+ { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
+ { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
+
+ /* 802.11 HyperLan 2 */
+ { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
+ { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
+ { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
+ { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
+ { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
+ { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
+ { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
+ { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
+ { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
+ { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
+
+ /* 802.11 UNII */
+ { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
+ { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
+ { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
+ { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
+ { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
+ { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
+
+ /* MMAC(Japan)J52 ch 34,38,42,46 */
+ { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
+ { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
+ { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
+ { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
+};
+
+static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+ struct hw_mode_spec *spec = &rt2x00dev->spec;
+ struct channel_info *info;
+ u8 *tx_power;
+ unsigned int i;
+
+ /*
+ * Disable powersaving as default.
+ */
+ rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
+
+ /*
+ * Initialize all hw fields.
+ */
+ ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+ ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+ ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
+ ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+
+ SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+ SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+ rt2x00_eeprom_addr(rt2x00dev,
+ EEPROM_MAC_ADDR_0));
+
+ /*
+ * As rt61 has a global fallback table we cannot specify
+ * more then one tx rate per frame but since the hw will
+ * try several rates (based on the fallback table) we should
+ * initialize max_report_rates to the maximum number of rates
+ * we are going to try. Otherwise mac80211 will truncate our
+ * reported tx rates and the rc algortihm will end up with
+ * incorrect data.
+ */
+ rt2x00dev->hw->max_rates = 1;
+ rt2x00dev->hw->max_report_rates = 7;
+ rt2x00dev->hw->max_rate_tries = 1;
+
+ /*
+ * Initialize hw_mode information.
+ */
+ spec->supported_bands = SUPPORT_BAND_2GHZ;
+ spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+ if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
+ spec->num_channels = 14;
+ spec->channels = rf_vals_noseq;
+ } else {
+ spec->num_channels = 14;
+ spec->channels = rf_vals_seq;
+ }
+
+ if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
+ spec->supported_bands |= SUPPORT_BAND_5GHZ;
+ spec->num_channels = ARRAY_SIZE(rf_vals_seq);
+ }
+
+ /*
+ * Create channel information array
+ */
+ info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ spec->channels_info = info;
+
+ tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
+ for (i = 0; i < 14; i++) {
+ info[i].max_power = MAX_TXPOWER;
+ info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
+ }
+
+ if (spec->num_channels > 14) {
+ tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
+ for (i = 14; i < spec->num_channels; i++) {
+ info[i].max_power = MAX_TXPOWER;
+ info[i].default_power1 =
+ TXPOWER_FROM_DEV(tx_power[i - 14]);
+ }
+ }
+
+ return 0;
+}
+
+static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+ u32 reg;
+
+ /*
+ * Disable power saving.
+ */
+ rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
+
+ /*
+ * Allocate eeprom data.
+ */
+ retval = rt61pci_validate_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ retval = rt61pci_init_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Enable rfkill polling by setting GPIO direction of the
+ * rfkill switch GPIO pin correctly.
+ */
+ reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
+ rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
+ rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
+
+ /*
+ * Initialize hw specifications.
+ */
+ retval = rt61pci_probe_hw_mode(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * This device has multiple filters for control frames,
+ * but has no a separate filter for PS Poll frames.
+ */
+ __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
+
+ /*
+ * This device requires firmware and DMA mapped skbs.
+ */
+ __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
+ if (!modparam_nohwcrypt)
+ __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
+ __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
+
+ /*
+ * Set the rssi offset.
+ */
+ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+ return 0;
+}
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+static int rt61pci_conf_tx(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ unsigned int link_id, u16 queue_idx,
+ const struct ieee80211_tx_queue_params *params)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct data_queue *queue;
+ struct rt2x00_field32 field;
+ int retval;
+ u32 reg;
+ u32 offset;
+
+ /*
+ * First pass the configuration through rt2x00lib, that will
+ * update the queue settings and validate the input. After that
+ * we are free to update the registers based on the value
+ * in the queue parameter.
+ */
+ retval = rt2x00mac_conf_tx(hw, vif, link_id, queue_idx, params);
+ if (retval)
+ return retval;
+
+ /*
+ * We only need to perform additional register initialization
+ * for WMM queues.
+ */
+ if (queue_idx >= 4)
+ return 0;
+
+ queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+
+ /* Update WMM TXOP register */
+ offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
+ field.bit_offset = (queue_idx & 1) * 16;
+ field.bit_mask = 0xffff << field.bit_offset;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, offset);
+ rt2x00_set_field32(&reg, field, queue->txop);
+ rt2x00mmio_register_write(rt2x00dev, offset, reg);
+
+ /* Update WMM registers */
+ field.bit_offset = queue_idx * 4;
+ field.bit_mask = 0xf << field.bit_offset;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR);
+ rt2x00_set_field32(&reg, field, queue->aifs);
+ rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR);
+ rt2x00_set_field32(&reg, field, queue->cw_min);
+ rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
+
+ reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR);
+ rt2x00_set_field32(&reg, field, queue->cw_max);
+ rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
+
+ return 0;
+}
+
+static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u64 tsf;
+ u32 reg;
+
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13);
+ tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
+ reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12);
+ tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
+
+ return tsf;
+}
+
+static const struct ieee80211_ops rt61pci_mac80211_ops = {
+ .tx = rt2x00mac_tx,
+ .wake_tx_queue = ieee80211_handle_wake_tx_queue,
+ .start = rt2x00mac_start,
+ .stop = rt2x00mac_stop,
+ .add_interface = rt2x00mac_add_interface,
+ .remove_interface = rt2x00mac_remove_interface,
+ .config = rt2x00mac_config,
+ .configure_filter = rt2x00mac_configure_filter,
+ .set_key = rt2x00mac_set_key,
+ .sw_scan_start = rt2x00mac_sw_scan_start,
+ .sw_scan_complete = rt2x00mac_sw_scan_complete,
+ .get_stats = rt2x00mac_get_stats,
+ .bss_info_changed = rt2x00mac_bss_info_changed,
+ .conf_tx = rt61pci_conf_tx,
+ .get_tsf = rt61pci_get_tsf,
+ .rfkill_poll = rt2x00mac_rfkill_poll,
+ .flush = rt2x00mac_flush,
+ .set_antenna = rt2x00mac_set_antenna,
+ .get_antenna = rt2x00mac_get_antenna,
+ .get_ringparam = rt2x00mac_get_ringparam,
+ .tx_frames_pending = rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
+ .irq_handler = rt61pci_interrupt,
+ .txstatus_tasklet = rt61pci_txstatus_tasklet,
+ .tbtt_tasklet = rt61pci_tbtt_tasklet,
+ .rxdone_tasklet = rt61pci_rxdone_tasklet,
+ .autowake_tasklet = rt61pci_autowake_tasklet,
+ .probe_hw = rt61pci_probe_hw,
+ .get_firmware_name = rt61pci_get_firmware_name,
+ .check_firmware = rt61pci_check_firmware,
+ .load_firmware = rt61pci_load_firmware,
+ .initialize = rt2x00mmio_initialize,
+ .uninitialize = rt2x00mmio_uninitialize,
+ .get_entry_state = rt61pci_get_entry_state,
+ .clear_entry = rt61pci_clear_entry,
+ .set_device_state = rt61pci_set_device_state,
+ .rfkill_poll = rt61pci_rfkill_poll,
+ .link_stats = rt61pci_link_stats,
+ .reset_tuner = rt61pci_reset_tuner,
+ .link_tuner = rt61pci_link_tuner,
+ .start_queue = rt61pci_start_queue,
+ .kick_queue = rt61pci_kick_queue,
+ .stop_queue = rt61pci_stop_queue,
+ .flush_queue = rt2x00mmio_flush_queue,
+ .write_tx_desc = rt61pci_write_tx_desc,
+ .write_beacon = rt61pci_write_beacon,
+ .clear_beacon = rt61pci_clear_beacon,
+ .fill_rxdone = rt61pci_fill_rxdone,
+ .config_shared_key = rt61pci_config_shared_key,
+ .config_pairwise_key = rt61pci_config_pairwise_key,
+ .config_filter = rt61pci_config_filter,
+ .config_intf = rt61pci_config_intf,
+ .config_erp = rt61pci_config_erp,
+ .config_ant = rt61pci_config_ant,
+ .config = rt61pci_config,
+};
+
+static void rt61pci_queue_init(struct data_queue *queue)
+{
+ switch (queue->qid) {
+ case QID_RX:
+ queue->limit = 32;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = RXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ queue->limit = 32;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_BEACON:
+ queue->limit = 4;
+ queue->data_size = 0; /* No DMA required for beacons */
+ queue->desc_size = TXINFO_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+ break;
+
+ case QID_ATIM:
+ default:
+ BUG();
+ break;
+ }
+}
+
+static const struct rt2x00_ops rt61pci_ops = {
+ .name = KBUILD_MODNAME,
+ .max_ap_intf = 4,
+ .eeprom_size = EEPROM_SIZE,
+ .rf_size = RF_SIZE,
+ .tx_queues = NUM_TX_QUEUES,
+ .queue_init = rt61pci_queue_init,
+ .lib = &rt61pci_rt2x00_ops,
+ .hw = &rt61pci_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+ .debugfs = &rt61pci_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * RT61pci module information.
+ */
+static const struct pci_device_id rt61pci_device_table[] = {
+ /* RT2561s */
+ { PCI_DEVICE(0x1814, 0x0301) },
+ /* RT2561 v2 */
+ { PCI_DEVICE(0x1814, 0x0302) },
+ /* RT2661 */
+ { PCI_DEVICE(0x1814, 0x0401) },
+ { 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
+MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
+MODULE_FIRMWARE(FIRMWARE_RT2561);
+MODULE_FIRMWARE(FIRMWARE_RT2561s);
+MODULE_FIRMWARE(FIRMWARE_RT2661);
+MODULE_LICENSE("GPL");
+
+static int rt61pci_probe(struct pci_dev *pci_dev,
+ const struct pci_device_id *id)
+{
+ return rt2x00pci_probe(pci_dev, &rt61pci_ops);
+}
+
+static struct pci_driver rt61pci_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = rt61pci_device_table,
+ .probe = rt61pci_probe,
+ .remove = rt2x00pci_remove,
+ .driver.pm = &rt2x00pci_pm_ops,
+};
+
+module_pci_driver(rt61pci_driver);
diff --git a/drivers/net/wireless/ralink/rt2x00/rt61pci.h b/drivers/net/wireless/ralink/rt2x00/rt61pci.h
new file mode 100644
index 0000000000..d72d0ffd11
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt61pci.h
@@ -0,0 +1,1489 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt61pci
+ Abstract: Data structures and registers for the rt61pci module.
+ Supported chipsets: RT2561, RT2561s, RT2661.
+ */
+
+#ifndef RT61PCI_H
+#define RT61PCI_H
+
+/*
+ * RT chip PCI IDs.
+ */
+#define RT2561s_PCI_ID 0x0301
+#define RT2561_PCI_ID 0x0302
+#define RT2661_PCI_ID 0x0401
+
+/*
+ * RF chip defines.
+ */
+#define RF5225 0x0001
+#define RF5325 0x0002
+#define RF2527 0x0003
+#define RF2529 0x0004
+
+/*
+ * Signal information.
+ * Default offset is required for RSSI <-> dBm conversion.
+ */
+#define DEFAULT_RSSI_OFFSET 120
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE 0x3000
+#define CSR_REG_SIZE 0x04b0
+#define EEPROM_BASE 0x0000
+#define EEPROM_SIZE 0x0100
+#define BBP_BASE 0x0000
+#define BBP_SIZE 0x0080
+#define RF_BASE 0x0004
+#define RF_SIZE 0x0010
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES 4
+
+/*
+ * PCI registers.
+ */
+
+/*
+ * HOST_CMD_CSR: For HOST to interrupt embedded processor
+ */
+#define HOST_CMD_CSR 0x0008
+#define HOST_CMD_CSR_HOST_COMMAND FIELD32(0x0000007f)
+#define HOST_CMD_CSR_INTERRUPT_MCU FIELD32(0x00000080)
+
+/*
+ * MCU_CNTL_CSR
+ * SELECT_BANK: Select 8051 program bank.
+ * RESET: Enable 8051 reset state.
+ * READY: Ready state for 8051.
+ */
+#define MCU_CNTL_CSR 0x000c
+#define MCU_CNTL_CSR_SELECT_BANK FIELD32(0x00000001)
+#define MCU_CNTL_CSR_RESET FIELD32(0x00000002)
+#define MCU_CNTL_CSR_READY FIELD32(0x00000004)
+
+/*
+ * SOFT_RESET_CSR
+ * FORCE_CLOCK_ON: Host force MAC clock ON
+ */
+#define SOFT_RESET_CSR 0x0010
+#define SOFT_RESET_CSR_FORCE_CLOCK_ON FIELD32(0x00000002)
+
+/*
+ * MCU_INT_SOURCE_CSR: MCU interrupt source/mask register.
+ */
+#define MCU_INT_SOURCE_CSR 0x0014
+#define MCU_INT_SOURCE_CSR_0 FIELD32(0x00000001)
+#define MCU_INT_SOURCE_CSR_1 FIELD32(0x00000002)
+#define MCU_INT_SOURCE_CSR_2 FIELD32(0x00000004)
+#define MCU_INT_SOURCE_CSR_3 FIELD32(0x00000008)
+#define MCU_INT_SOURCE_CSR_4 FIELD32(0x00000010)
+#define MCU_INT_SOURCE_CSR_5 FIELD32(0x00000020)
+#define MCU_INT_SOURCE_CSR_6 FIELD32(0x00000040)
+#define MCU_INT_SOURCE_CSR_7 FIELD32(0x00000080)
+#define MCU_INT_SOURCE_CSR_TWAKEUP FIELD32(0x00000100)
+#define MCU_INT_SOURCE_CSR_TBTT_EXPIRE FIELD32(0x00000200)
+
+/*
+ * MCU_INT_MASK_CSR: MCU interrupt source/mask register.
+ */
+#define MCU_INT_MASK_CSR 0x0018
+#define MCU_INT_MASK_CSR_0 FIELD32(0x00000001)
+#define MCU_INT_MASK_CSR_1 FIELD32(0x00000002)
+#define MCU_INT_MASK_CSR_2 FIELD32(0x00000004)
+#define MCU_INT_MASK_CSR_3 FIELD32(0x00000008)
+#define MCU_INT_MASK_CSR_4 FIELD32(0x00000010)
+#define MCU_INT_MASK_CSR_5 FIELD32(0x00000020)
+#define MCU_INT_MASK_CSR_6 FIELD32(0x00000040)
+#define MCU_INT_MASK_CSR_7 FIELD32(0x00000080)
+#define MCU_INT_MASK_CSR_TWAKEUP FIELD32(0x00000100)
+#define MCU_INT_MASK_CSR_TBTT_EXPIRE FIELD32(0x00000200)
+
+/*
+ * PCI_USEC_CSR
+ */
+#define PCI_USEC_CSR 0x001c
+
+/*
+ * Security key table memory.
+ * 16 entries 32-byte for shared key table
+ * 64 entries 32-byte for pairwise key table
+ * 64 entries 8-byte for pairwise ta key table
+ */
+#define SHARED_KEY_TABLE_BASE 0x1000
+#define PAIRWISE_KEY_TABLE_BASE 0x1200
+#define PAIRWISE_TA_TABLE_BASE 0x1a00
+
+#define SHARED_KEY_ENTRY(__idx) \
+ (SHARED_KEY_TABLE_BASE + \
+ ((__idx) * sizeof(struct hw_key_entry)))
+#define PAIRWISE_KEY_ENTRY(__idx) \
+ (PAIRWISE_KEY_TABLE_BASE + \
+ ((__idx) * sizeof(struct hw_key_entry)))
+#define PAIRWISE_TA_ENTRY(__idx) \
+ (PAIRWISE_TA_TABLE_BASE + \
+ ((__idx) * sizeof(struct hw_pairwise_ta_entry)))
+
+struct hw_key_entry {
+ u8 key[16];
+ u8 tx_mic[8];
+ u8 rx_mic[8];
+} __packed;
+
+struct hw_pairwise_ta_entry {
+ u8 address[6];
+ u8 cipher;
+ u8 reserved;
+} __packed;
+
+/*
+ * Other on-chip shared memory space.
+ */
+#define HW_CIS_BASE 0x2000
+#define HW_NULL_BASE 0x2b00
+
+/*
+ * Since NULL frame won't be that long (256 byte),
+ * We steal 16 tail bytes to save debugging settings.
+ */
+#define HW_DEBUG_SETTING_BASE 0x2bf0
+
+/*
+ * On-chip BEACON frame space.
+ */
+#define HW_BEACON_BASE0 0x2c00
+#define HW_BEACON_BASE1 0x2d00
+#define HW_BEACON_BASE2 0x2e00
+#define HW_BEACON_BASE3 0x2f00
+
+#define HW_BEACON_OFFSET(__index) \
+ (HW_BEACON_BASE0 + (__index * 0x0100))
+
+/*
+ * HOST-MCU shared memory.
+ */
+
+/*
+ * H2M_MAILBOX_CSR: Host-to-MCU Mailbox.
+ */
+#define H2M_MAILBOX_CSR 0x2100
+#define H2M_MAILBOX_CSR_ARG0 FIELD32(0x000000ff)
+#define H2M_MAILBOX_CSR_ARG1 FIELD32(0x0000ff00)
+#define H2M_MAILBOX_CSR_CMD_TOKEN FIELD32(0x00ff0000)
+#define H2M_MAILBOX_CSR_OWNER FIELD32(0xff000000)
+
+/*
+ * MCU_LEDCS: LED control for MCU Mailbox.
+ */
+#define MCU_LEDCS_LED_MODE FIELD16(0x001f)
+#define MCU_LEDCS_RADIO_STATUS FIELD16(0x0020)
+#define MCU_LEDCS_LINK_BG_STATUS FIELD16(0x0040)
+#define MCU_LEDCS_LINK_A_STATUS FIELD16(0x0080)
+#define MCU_LEDCS_POLARITY_GPIO_0 FIELD16(0x0100)
+#define MCU_LEDCS_POLARITY_GPIO_1 FIELD16(0x0200)
+#define MCU_LEDCS_POLARITY_GPIO_2 FIELD16(0x0400)
+#define MCU_LEDCS_POLARITY_GPIO_3 FIELD16(0x0800)
+#define MCU_LEDCS_POLARITY_GPIO_4 FIELD16(0x1000)
+#define MCU_LEDCS_POLARITY_ACT FIELD16(0x2000)
+#define MCU_LEDCS_POLARITY_READY_BG FIELD16(0x4000)
+#define MCU_LEDCS_POLARITY_READY_A FIELD16(0x8000)
+
+/*
+ * M2H_CMD_DONE_CSR.
+ */
+#define M2H_CMD_DONE_CSR 0x2104
+
+/*
+ * MCU_TXOP_ARRAY_BASE.
+ */
+#define MCU_TXOP_ARRAY_BASE 0x2110
+
+/*
+ * MAC Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * MAC_CSR0: ASIC revision number.
+ */
+#define MAC_CSR0 0x3000
+#define MAC_CSR0_REVISION FIELD32(0x0000000f)
+#define MAC_CSR0_CHIPSET FIELD32(0x000ffff0)
+
+/*
+ * MAC_CSR1: System control register.
+ * SOFT_RESET: Software reset bit, 1: reset, 0: normal.
+ * BBP_RESET: Hardware reset BBP.
+ * HOST_READY: Host is ready after initialization, 1: ready.
+ */
+#define MAC_CSR1 0x3004
+#define MAC_CSR1_SOFT_RESET FIELD32(0x00000001)
+#define MAC_CSR1_BBP_RESET FIELD32(0x00000002)
+#define MAC_CSR1_HOST_READY FIELD32(0x00000004)
+
+/*
+ * MAC_CSR2: STA MAC register 0.
+ */
+#define MAC_CSR2 0x3008
+#define MAC_CSR2_BYTE0 FIELD32(0x000000ff)
+#define MAC_CSR2_BYTE1 FIELD32(0x0000ff00)
+#define MAC_CSR2_BYTE2 FIELD32(0x00ff0000)
+#define MAC_CSR2_BYTE3 FIELD32(0xff000000)
+
+/*
+ * MAC_CSR3: STA MAC register 1.
+ * UNICAST_TO_ME_MASK:
+ * Used to mask off bits from byte 5 of the MAC address
+ * to determine the UNICAST_TO_ME bit for RX frames.
+ * The full mask is complemented by BSS_ID_MASK:
+ * MASK = BSS_ID_MASK & UNICAST_TO_ME_MASK
+ */
+#define MAC_CSR3 0x300c
+#define MAC_CSR3_BYTE4 FIELD32(0x000000ff)
+#define MAC_CSR3_BYTE5 FIELD32(0x0000ff00)
+#define MAC_CSR3_UNICAST_TO_ME_MASK FIELD32(0x00ff0000)
+
+/*
+ * MAC_CSR4: BSSID register 0.
+ */
+#define MAC_CSR4 0x3010
+#define MAC_CSR4_BYTE0 FIELD32(0x000000ff)
+#define MAC_CSR4_BYTE1 FIELD32(0x0000ff00)
+#define MAC_CSR4_BYTE2 FIELD32(0x00ff0000)
+#define MAC_CSR4_BYTE3 FIELD32(0xff000000)
+
+/*
+ * MAC_CSR5: BSSID register 1.
+ * BSS_ID_MASK:
+ * This mask is used to mask off bits 0 and 1 of byte 5 of the
+ * BSSID. This will make sure that those bits will be ignored
+ * when determining the MY_BSS of RX frames.
+ * 0: 1-BSSID mode (BSS index = 0)
+ * 1: 2-BSSID mode (BSS index: Byte5, bit 0)
+ * 2: 2-BSSID mode (BSS index: byte5, bit 1)
+ * 3: 4-BSSID mode (BSS index: byte5, bit 0 - 1)
+ */
+#define MAC_CSR5 0x3014
+#define MAC_CSR5_BYTE4 FIELD32(0x000000ff)
+#define MAC_CSR5_BYTE5 FIELD32(0x0000ff00)
+#define MAC_CSR5_BSS_ID_MASK FIELD32(0x00ff0000)
+
+/*
+ * MAC_CSR6: Maximum frame length register.
+ */
+#define MAC_CSR6 0x3018
+#define MAC_CSR6_MAX_FRAME_UNIT FIELD32(0x00000fff)
+
+/*
+ * MAC_CSR7: Reserved
+ */
+#define MAC_CSR7 0x301c
+
+/*
+ * MAC_CSR8: SIFS/EIFS register.
+ * All units are in US.
+ */
+#define MAC_CSR8 0x3020
+#define MAC_CSR8_SIFS FIELD32(0x000000ff)
+#define MAC_CSR8_SIFS_AFTER_RX_OFDM FIELD32(0x0000ff00)
+#define MAC_CSR8_EIFS FIELD32(0xffff0000)
+
+/*
+ * MAC_CSR9: Back-Off control register.
+ * SLOT_TIME: Slot time, default is 20us for 802.11BG.
+ * CWMIN: Bit for Cwmin. default Cwmin is 31 (2^5 - 1).
+ * CWMAX: Bit for Cwmax, default Cwmax is 1023 (2^10 - 1).
+ * CW_SELECT: 1: CWmin/Cwmax select from register, 0:select from TxD.
+ */
+#define MAC_CSR9 0x3024
+#define MAC_CSR9_SLOT_TIME FIELD32(0x000000ff)
+#define MAC_CSR9_CWMIN FIELD32(0x00000f00)
+#define MAC_CSR9_CWMAX FIELD32(0x0000f000)
+#define MAC_CSR9_CW_SELECT FIELD32(0x00010000)
+
+/*
+ * MAC_CSR10: Power state configuration.
+ */
+#define MAC_CSR10 0x3028
+
+/*
+ * MAC_CSR11: Power saving transition time register.
+ * DELAY_AFTER_TBCN: Delay after Tbcn expired in units of TU.
+ * TBCN_BEFORE_WAKEUP: Number of beacon before wakeup.
+ * WAKEUP_LATENCY: In unit of TU.
+ */
+#define MAC_CSR11 0x302c
+#define MAC_CSR11_DELAY_AFTER_TBCN FIELD32(0x000000ff)
+#define MAC_CSR11_TBCN_BEFORE_WAKEUP FIELD32(0x00007f00)
+#define MAC_CSR11_AUTOWAKE FIELD32(0x00008000)
+#define MAC_CSR11_WAKEUP_LATENCY FIELD32(0x000f0000)
+
+/*
+ * MAC_CSR12: Manual power control / status register (merge CSR20 & PWRCSR1).
+ * CURRENT_STATE: 0:sleep, 1:awake.
+ * FORCE_WAKEUP: This has higher priority than PUT_TO_SLEEP.
+ * BBP_CURRENT_STATE: 0: BBP sleep, 1: BBP awake.
+ */
+#define MAC_CSR12 0x3030
+#define MAC_CSR12_CURRENT_STATE FIELD32(0x00000001)
+#define MAC_CSR12_PUT_TO_SLEEP FIELD32(0x00000002)
+#define MAC_CSR12_FORCE_WAKEUP FIELD32(0x00000004)
+#define MAC_CSR12_BBP_CURRENT_STATE FIELD32(0x00000008)
+
+/*
+ * MAC_CSR13: GPIO.
+ * MAC_CSR13_VALx: GPIO value
+ * MAC_CSR13_DIRx: GPIO direction: 0 = output; 1 = input
+ */
+#define MAC_CSR13 0x3034
+#define MAC_CSR13_VAL0 FIELD32(0x00000001)
+#define MAC_CSR13_VAL1 FIELD32(0x00000002)
+#define MAC_CSR13_VAL2 FIELD32(0x00000004)
+#define MAC_CSR13_VAL3 FIELD32(0x00000008)
+#define MAC_CSR13_VAL4 FIELD32(0x00000010)
+#define MAC_CSR13_VAL5 FIELD32(0x00000020)
+#define MAC_CSR13_DIR0 FIELD32(0x00000100)
+#define MAC_CSR13_DIR1 FIELD32(0x00000200)
+#define MAC_CSR13_DIR2 FIELD32(0x00000400)
+#define MAC_CSR13_DIR3 FIELD32(0x00000800)
+#define MAC_CSR13_DIR4 FIELD32(0x00001000)
+#define MAC_CSR13_DIR5 FIELD32(0x00002000)
+
+/*
+ * MAC_CSR14: LED control register.
+ * ON_PERIOD: On period, default 70ms.
+ * OFF_PERIOD: Off period, default 30ms.
+ * HW_LED: HW TX activity, 1: normal OFF, 0: normal ON.
+ * SW_LED: s/w LED, 1: ON, 0: OFF.
+ * HW_LED_POLARITY: 0: active low, 1: active high.
+ */
+#define MAC_CSR14 0x3038
+#define MAC_CSR14_ON_PERIOD FIELD32(0x000000ff)
+#define MAC_CSR14_OFF_PERIOD FIELD32(0x0000ff00)
+#define MAC_CSR14_HW_LED FIELD32(0x00010000)
+#define MAC_CSR14_SW_LED FIELD32(0x00020000)
+#define MAC_CSR14_HW_LED_POLARITY FIELD32(0x00040000)
+#define MAC_CSR14_SW_LED2 FIELD32(0x00080000)
+
+/*
+ * MAC_CSR15: NAV control.
+ */
+#define MAC_CSR15 0x303c
+
+/*
+ * TXRX control registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * TXRX_CSR0: TX/RX configuration register.
+ * TSF_OFFSET: Default is 24.
+ * AUTO_TX_SEQ: 1: ASIC auto replace sequence nr in outgoing frame.
+ * DISABLE_RX: Disable Rx engine.
+ * DROP_CRC: Drop CRC error.
+ * DROP_PHYSICAL: Drop physical error.
+ * DROP_CONTROL: Drop control frame.
+ * DROP_NOT_TO_ME: Drop not to me unicast frame.
+ * DROP_TO_DS: Drop fram ToDs bit is true.
+ * DROP_VERSION_ERROR: Drop version error frame.
+ * DROP_MULTICAST: Drop multicast frames.
+ * DROP_BORADCAST: Drop broadcast frames.
+ * DROP_ACK_CTS: Drop received ACK and CTS.
+ */
+#define TXRX_CSR0 0x3040
+#define TXRX_CSR0_RX_ACK_TIMEOUT FIELD32(0x000001ff)
+#define TXRX_CSR0_TSF_OFFSET FIELD32(0x00007e00)
+#define TXRX_CSR0_AUTO_TX_SEQ FIELD32(0x00008000)
+#define TXRX_CSR0_DISABLE_RX FIELD32(0x00010000)
+#define TXRX_CSR0_DROP_CRC FIELD32(0x00020000)
+#define TXRX_CSR0_DROP_PHYSICAL FIELD32(0x00040000)
+#define TXRX_CSR0_DROP_CONTROL FIELD32(0x00080000)
+#define TXRX_CSR0_DROP_NOT_TO_ME FIELD32(0x00100000)
+#define TXRX_CSR0_DROP_TO_DS FIELD32(0x00200000)
+#define TXRX_CSR0_DROP_VERSION_ERROR FIELD32(0x00400000)
+#define TXRX_CSR0_DROP_MULTICAST FIELD32(0x00800000)
+#define TXRX_CSR0_DROP_BROADCAST FIELD32(0x01000000)
+#define TXRX_CSR0_DROP_ACK_CTS FIELD32(0x02000000)
+#define TXRX_CSR0_TX_WITHOUT_WAITING FIELD32(0x04000000)
+
+/*
+ * TXRX_CSR1
+ */
+#define TXRX_CSR1 0x3044
+#define TXRX_CSR1_BBP_ID0 FIELD32(0x0000007f)
+#define TXRX_CSR1_BBP_ID0_VALID FIELD32(0x00000080)
+#define TXRX_CSR1_BBP_ID1 FIELD32(0x00007f00)
+#define TXRX_CSR1_BBP_ID1_VALID FIELD32(0x00008000)
+#define TXRX_CSR1_BBP_ID2 FIELD32(0x007f0000)
+#define TXRX_CSR1_BBP_ID2_VALID FIELD32(0x00800000)
+#define TXRX_CSR1_BBP_ID3 FIELD32(0x7f000000)
+#define TXRX_CSR1_BBP_ID3_VALID FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR2
+ */
+#define TXRX_CSR2 0x3048
+#define TXRX_CSR2_BBP_ID0 FIELD32(0x0000007f)
+#define TXRX_CSR2_BBP_ID0_VALID FIELD32(0x00000080)
+#define TXRX_CSR2_BBP_ID1 FIELD32(0x00007f00)
+#define TXRX_CSR2_BBP_ID1_VALID FIELD32(0x00008000)
+#define TXRX_CSR2_BBP_ID2 FIELD32(0x007f0000)
+#define TXRX_CSR2_BBP_ID2_VALID FIELD32(0x00800000)
+#define TXRX_CSR2_BBP_ID3 FIELD32(0x7f000000)
+#define TXRX_CSR2_BBP_ID3_VALID FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR3
+ */
+#define TXRX_CSR3 0x304c
+#define TXRX_CSR3_BBP_ID0 FIELD32(0x0000007f)
+#define TXRX_CSR3_BBP_ID0_VALID FIELD32(0x00000080)
+#define TXRX_CSR3_BBP_ID1 FIELD32(0x00007f00)
+#define TXRX_CSR3_BBP_ID1_VALID FIELD32(0x00008000)
+#define TXRX_CSR3_BBP_ID2 FIELD32(0x007f0000)
+#define TXRX_CSR3_BBP_ID2_VALID FIELD32(0x00800000)
+#define TXRX_CSR3_BBP_ID3 FIELD32(0x7f000000)
+#define TXRX_CSR3_BBP_ID3_VALID FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR4: Auto-Responder/Tx-retry register.
+ * AUTORESPOND_PREAMBLE: 0:long, 1:short preamble.
+ * OFDM_TX_RATE_DOWN: 1:enable.
+ * OFDM_TX_RATE_STEP: 0:1-step, 1: 2-step, 2:3-step, 3:4-step.
+ * OFDM_TX_FALLBACK_CCK: 0: Fallback to OFDM 6M only, 1: Fallback to CCK 1M,2M.
+ */
+#define TXRX_CSR4 0x3050
+#define TXRX_CSR4_TX_ACK_TIMEOUT FIELD32(0x000000ff)
+#define TXRX_CSR4_CNTL_ACK_POLICY FIELD32(0x00000700)
+#define TXRX_CSR4_ACK_CTS_PSM FIELD32(0x00010000)
+#define TXRX_CSR4_AUTORESPOND_ENABLE FIELD32(0x00020000)
+#define TXRX_CSR4_AUTORESPOND_PREAMBLE FIELD32(0x00040000)
+#define TXRX_CSR4_OFDM_TX_RATE_DOWN FIELD32(0x00080000)
+#define TXRX_CSR4_OFDM_TX_RATE_STEP FIELD32(0x00300000)
+#define TXRX_CSR4_OFDM_TX_FALLBACK_CCK FIELD32(0x00400000)
+#define TXRX_CSR4_LONG_RETRY_LIMIT FIELD32(0x0f000000)
+#define TXRX_CSR4_SHORT_RETRY_LIMIT FIELD32(0xf0000000)
+
+/*
+ * TXRX_CSR5
+ */
+#define TXRX_CSR5 0x3054
+
+/*
+ * TXRX_CSR6: ACK/CTS payload consumed time
+ */
+#define TXRX_CSR6 0x3058
+
+/*
+ * TXRX_CSR7: OFDM ACK/CTS payload consumed time for 6/9/12/18 mbps.
+ */
+#define TXRX_CSR7 0x305c
+#define TXRX_CSR7_ACK_CTS_6MBS FIELD32(0x000000ff)
+#define TXRX_CSR7_ACK_CTS_9MBS FIELD32(0x0000ff00)
+#define TXRX_CSR7_ACK_CTS_12MBS FIELD32(0x00ff0000)
+#define TXRX_CSR7_ACK_CTS_18MBS FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR8: OFDM ACK/CTS payload consumed time for 24/36/48/54 mbps.
+ */
+#define TXRX_CSR8 0x3060
+#define TXRX_CSR8_ACK_CTS_24MBS FIELD32(0x000000ff)
+#define TXRX_CSR8_ACK_CTS_36MBS FIELD32(0x0000ff00)
+#define TXRX_CSR8_ACK_CTS_48MBS FIELD32(0x00ff0000)
+#define TXRX_CSR8_ACK_CTS_54MBS FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR9: Synchronization control register.
+ * BEACON_INTERVAL: In unit of 1/16 TU.
+ * TSF_TICKING: Enable TSF auto counting.
+ * TSF_SYNC: Tsf sync, 0: disable, 1: infra, 2: ad-hoc/master mode.
+ * BEACON_GEN: Enable beacon generator.
+ */
+#define TXRX_CSR9 0x3064
+#define TXRX_CSR9_BEACON_INTERVAL FIELD32(0x0000ffff)
+#define TXRX_CSR9_TSF_TICKING FIELD32(0x00010000)
+#define TXRX_CSR9_TSF_SYNC FIELD32(0x00060000)
+#define TXRX_CSR9_TBTT_ENABLE FIELD32(0x00080000)
+#define TXRX_CSR9_BEACON_GEN FIELD32(0x00100000)
+#define TXRX_CSR9_TIMESTAMP_COMPENSATE FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR10: BEACON alignment.
+ */
+#define TXRX_CSR10 0x3068
+
+/*
+ * TXRX_CSR11: AES mask.
+ */
+#define TXRX_CSR11 0x306c
+
+/*
+ * TXRX_CSR12: TSF low 32.
+ */
+#define TXRX_CSR12 0x3070
+#define TXRX_CSR12_LOW_TSFTIMER FIELD32(0xffffffff)
+
+/*
+ * TXRX_CSR13: TSF high 32.
+ */
+#define TXRX_CSR13 0x3074
+#define TXRX_CSR13_HIGH_TSFTIMER FIELD32(0xffffffff)
+
+/*
+ * TXRX_CSR14: TBTT timer.
+ */
+#define TXRX_CSR14 0x3078
+
+/*
+ * TXRX_CSR15: TKIP MIC priority byte "AND" mask.
+ */
+#define TXRX_CSR15 0x307c
+
+/*
+ * PHY control registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * PHY_CSR0: RF/PS control.
+ */
+#define PHY_CSR0 0x3080
+#define PHY_CSR0_PA_PE_BG FIELD32(0x00010000)
+#define PHY_CSR0_PA_PE_A FIELD32(0x00020000)
+
+/*
+ * PHY_CSR1
+ */
+#define PHY_CSR1 0x3084
+
+/*
+ * PHY_CSR2: Pre-TX BBP control.
+ */
+#define PHY_CSR2 0x3088
+
+/*
+ * PHY_CSR3: BBP serial control register.
+ * VALUE: Register value to program into BBP.
+ * REG_NUM: Selected BBP register.
+ * READ_CONTROL: 0: Write BBP, 1: Read BBP.
+ * BUSY: 1: ASIC is busy execute BBP programming.
+ */
+#define PHY_CSR3 0x308c
+#define PHY_CSR3_VALUE FIELD32(0x000000ff)
+#define PHY_CSR3_REGNUM FIELD32(0x00007f00)
+#define PHY_CSR3_READ_CONTROL FIELD32(0x00008000)
+#define PHY_CSR3_BUSY FIELD32(0x00010000)
+
+/*
+ * PHY_CSR4: RF serial control register
+ * VALUE: Register value (include register id) serial out to RF/IF chip.
+ * NUMBER_OF_BITS: Number of bits used in RFRegValue (I:20, RFMD:22).
+ * IF_SELECT: 1: select IF to program, 0: select RF to program.
+ * PLL_LD: RF PLL_LD status.
+ * BUSY: 1: ASIC is busy execute RF programming.
+ */
+#define PHY_CSR4 0x3090
+#define PHY_CSR4_VALUE FIELD32(0x00ffffff)
+#define PHY_CSR4_NUMBER_OF_BITS FIELD32(0x1f000000)
+#define PHY_CSR4_IF_SELECT FIELD32(0x20000000)
+#define PHY_CSR4_PLL_LD FIELD32(0x40000000)
+#define PHY_CSR4_BUSY FIELD32(0x80000000)
+
+/*
+ * PHY_CSR5: RX to TX signal switch timing control.
+ */
+#define PHY_CSR5 0x3094
+#define PHY_CSR5_IQ_FLIP FIELD32(0x00000004)
+
+/*
+ * PHY_CSR6: TX to RX signal timing control.
+ */
+#define PHY_CSR6 0x3098
+#define PHY_CSR6_IQ_FLIP FIELD32(0x00000004)
+
+/*
+ * PHY_CSR7: TX DAC switching timing control.
+ */
+#define PHY_CSR7 0x309c
+
+/*
+ * Security control register.
+ */
+
+/*
+ * SEC_CSR0: Shared key table control.
+ */
+#define SEC_CSR0 0x30a0
+#define SEC_CSR0_BSS0_KEY0_VALID FIELD32(0x00000001)
+#define SEC_CSR0_BSS0_KEY1_VALID FIELD32(0x00000002)
+#define SEC_CSR0_BSS0_KEY2_VALID FIELD32(0x00000004)
+#define SEC_CSR0_BSS0_KEY3_VALID FIELD32(0x00000008)
+#define SEC_CSR0_BSS1_KEY0_VALID FIELD32(0x00000010)
+#define SEC_CSR0_BSS1_KEY1_VALID FIELD32(0x00000020)
+#define SEC_CSR0_BSS1_KEY2_VALID FIELD32(0x00000040)
+#define SEC_CSR0_BSS1_KEY3_VALID FIELD32(0x00000080)
+#define SEC_CSR0_BSS2_KEY0_VALID FIELD32(0x00000100)
+#define SEC_CSR0_BSS2_KEY1_VALID FIELD32(0x00000200)
+#define SEC_CSR0_BSS2_KEY2_VALID FIELD32(0x00000400)
+#define SEC_CSR0_BSS2_KEY3_VALID FIELD32(0x00000800)
+#define SEC_CSR0_BSS3_KEY0_VALID FIELD32(0x00001000)
+#define SEC_CSR0_BSS3_KEY1_VALID FIELD32(0x00002000)
+#define SEC_CSR0_BSS3_KEY2_VALID FIELD32(0x00004000)
+#define SEC_CSR0_BSS3_KEY3_VALID FIELD32(0x00008000)
+
+/*
+ * SEC_CSR1: Shared key table security mode register.
+ */
+#define SEC_CSR1 0x30a4
+#define SEC_CSR1_BSS0_KEY0_CIPHER_ALG FIELD32(0x00000007)
+#define SEC_CSR1_BSS0_KEY1_CIPHER_ALG FIELD32(0x00000070)
+#define SEC_CSR1_BSS0_KEY2_CIPHER_ALG FIELD32(0x00000700)
+#define SEC_CSR1_BSS0_KEY3_CIPHER_ALG FIELD32(0x00007000)
+#define SEC_CSR1_BSS1_KEY0_CIPHER_ALG FIELD32(0x00070000)
+#define SEC_CSR1_BSS1_KEY1_CIPHER_ALG FIELD32(0x00700000)
+#define SEC_CSR1_BSS1_KEY2_CIPHER_ALG FIELD32(0x07000000)
+#define SEC_CSR1_BSS1_KEY3_CIPHER_ALG FIELD32(0x70000000)
+
+/*
+ * Pairwise key table valid bitmap registers.
+ * SEC_CSR2: pairwise key table valid bitmap 0.
+ * SEC_CSR3: pairwise key table valid bitmap 1.
+ */
+#define SEC_CSR2 0x30a8
+#define SEC_CSR3 0x30ac
+
+/*
+ * SEC_CSR4: Pairwise key table lookup control.
+ */
+#define SEC_CSR4 0x30b0
+#define SEC_CSR4_ENABLE_BSS0 FIELD32(0x00000001)
+#define SEC_CSR4_ENABLE_BSS1 FIELD32(0x00000002)
+#define SEC_CSR4_ENABLE_BSS2 FIELD32(0x00000004)
+#define SEC_CSR4_ENABLE_BSS3 FIELD32(0x00000008)
+
+/*
+ * SEC_CSR5: shared key table security mode register.
+ */
+#define SEC_CSR5 0x30b4
+#define SEC_CSR5_BSS2_KEY0_CIPHER_ALG FIELD32(0x00000007)
+#define SEC_CSR5_BSS2_KEY1_CIPHER_ALG FIELD32(0x00000070)
+#define SEC_CSR5_BSS2_KEY2_CIPHER_ALG FIELD32(0x00000700)
+#define SEC_CSR5_BSS2_KEY3_CIPHER_ALG FIELD32(0x00007000)
+#define SEC_CSR5_BSS3_KEY0_CIPHER_ALG FIELD32(0x00070000)
+#define SEC_CSR5_BSS3_KEY1_CIPHER_ALG FIELD32(0x00700000)
+#define SEC_CSR5_BSS3_KEY2_CIPHER_ALG FIELD32(0x07000000)
+#define SEC_CSR5_BSS3_KEY3_CIPHER_ALG FIELD32(0x70000000)
+
+/*
+ * STA control registers.
+ */
+
+/*
+ * STA_CSR0: RX PLCP error count & RX FCS error count.
+ */
+#define STA_CSR0 0x30c0
+#define STA_CSR0_FCS_ERROR FIELD32(0x0000ffff)
+#define STA_CSR0_PLCP_ERROR FIELD32(0xffff0000)
+
+/*
+ * STA_CSR1: RX False CCA count & RX LONG frame count.
+ */
+#define STA_CSR1 0x30c4
+#define STA_CSR1_PHYSICAL_ERROR FIELD32(0x0000ffff)
+#define STA_CSR1_FALSE_CCA_ERROR FIELD32(0xffff0000)
+
+/*
+ * STA_CSR2: TX Beacon count and RX FIFO overflow count.
+ */
+#define STA_CSR2 0x30c8
+#define STA_CSR2_RX_FIFO_OVERFLOW_COUNT FIELD32(0x0000ffff)
+#define STA_CSR2_RX_OVERFLOW_COUNT FIELD32(0xffff0000)
+
+/*
+ * STA_CSR3: TX Beacon count.
+ */
+#define STA_CSR3 0x30cc
+#define STA_CSR3_TX_BEACON_COUNT FIELD32(0x0000ffff)
+
+/*
+ * STA_CSR4: TX Result status register.
+ * VALID: 1:This register contains a valid TX result.
+ */
+#define STA_CSR4 0x30d0
+#define STA_CSR4_VALID FIELD32(0x00000001)
+#define STA_CSR4_TX_RESULT FIELD32(0x0000000e)
+#define STA_CSR4_RETRY_COUNT FIELD32(0x000000f0)
+#define STA_CSR4_PID_SUBTYPE FIELD32(0x00001f00)
+#define STA_CSR4_PID_TYPE FIELD32(0x0000e000)
+#define STA_CSR4_TXRATE FIELD32(0x000f0000)
+
+/*
+ * QOS control registers.
+ */
+
+/*
+ * QOS_CSR0: TXOP holder MAC address register.
+ */
+#define QOS_CSR0 0x30e0
+#define QOS_CSR0_BYTE0 FIELD32(0x000000ff)
+#define QOS_CSR0_BYTE1 FIELD32(0x0000ff00)
+#define QOS_CSR0_BYTE2 FIELD32(0x00ff0000)
+#define QOS_CSR0_BYTE3 FIELD32(0xff000000)
+
+/*
+ * QOS_CSR1: TXOP holder MAC address register.
+ */
+#define QOS_CSR1 0x30e4
+#define QOS_CSR1_BYTE4 FIELD32(0x000000ff)
+#define QOS_CSR1_BYTE5 FIELD32(0x0000ff00)
+
+/*
+ * QOS_CSR2: TXOP holder timeout register.
+ */
+#define QOS_CSR2 0x30e8
+
+/*
+ * RX QOS-CFPOLL MAC address register.
+ * QOS_CSR3: RX QOS-CFPOLL MAC address 0.
+ * QOS_CSR4: RX QOS-CFPOLL MAC address 1.
+ */
+#define QOS_CSR3 0x30ec
+#define QOS_CSR4 0x30f0
+
+/*
+ * QOS_CSR5: "QosControl" field of the RX QOS-CFPOLL.
+ */
+#define QOS_CSR5 0x30f4
+
+/*
+ * Host DMA registers.
+ */
+
+/*
+ * AC0_BASE_CSR: AC_VO base address.
+ */
+#define AC0_BASE_CSR 0x3400
+#define AC0_BASE_CSR_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * AC1_BASE_CSR: AC_VI base address.
+ */
+#define AC1_BASE_CSR 0x3404
+#define AC1_BASE_CSR_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * AC2_BASE_CSR: AC_BE base address.
+ */
+#define AC2_BASE_CSR 0x3408
+#define AC2_BASE_CSR_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * AC3_BASE_CSR: AC_BK base address.
+ */
+#define AC3_BASE_CSR 0x340c
+#define AC3_BASE_CSR_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * MGMT_BASE_CSR: MGMT ring base address.
+ */
+#define MGMT_BASE_CSR 0x3410
+#define MGMT_BASE_CSR_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * TX_RING_CSR0: TX Ring size for AC_VO, AC_VI, AC_BE, AC_BK.
+ */
+#define TX_RING_CSR0 0x3418
+#define TX_RING_CSR0_AC0_RING_SIZE FIELD32(0x000000ff)
+#define TX_RING_CSR0_AC1_RING_SIZE FIELD32(0x0000ff00)
+#define TX_RING_CSR0_AC2_RING_SIZE FIELD32(0x00ff0000)
+#define TX_RING_CSR0_AC3_RING_SIZE FIELD32(0xff000000)
+
+/*
+ * TX_RING_CSR1: TX Ring size for MGMT Ring, HCCA Ring
+ * TXD_SIZE: In unit of 32-bit.
+ */
+#define TX_RING_CSR1 0x341c
+#define TX_RING_CSR1_MGMT_RING_SIZE FIELD32(0x000000ff)
+#define TX_RING_CSR1_HCCA_RING_SIZE FIELD32(0x0000ff00)
+#define TX_RING_CSR1_TXD_SIZE FIELD32(0x003f0000)
+
+/*
+ * AIFSN_CSR: AIFSN for each EDCA AC.
+ * AIFSN0: For AC_VO.
+ * AIFSN1: For AC_VI.
+ * AIFSN2: For AC_BE.
+ * AIFSN3: For AC_BK.
+ */
+#define AIFSN_CSR 0x3420
+#define AIFSN_CSR_AIFSN0 FIELD32(0x0000000f)
+#define AIFSN_CSR_AIFSN1 FIELD32(0x000000f0)
+#define AIFSN_CSR_AIFSN2 FIELD32(0x00000f00)
+#define AIFSN_CSR_AIFSN3 FIELD32(0x0000f000)
+
+/*
+ * CWMIN_CSR: CWmin for each EDCA AC.
+ * CWMIN0: For AC_VO.
+ * CWMIN1: For AC_VI.
+ * CWMIN2: For AC_BE.
+ * CWMIN3: For AC_BK.
+ */
+#define CWMIN_CSR 0x3424
+#define CWMIN_CSR_CWMIN0 FIELD32(0x0000000f)
+#define CWMIN_CSR_CWMIN1 FIELD32(0x000000f0)
+#define CWMIN_CSR_CWMIN2 FIELD32(0x00000f00)
+#define CWMIN_CSR_CWMIN3 FIELD32(0x0000f000)
+
+/*
+ * CWMAX_CSR: CWmax for each EDCA AC.
+ * CWMAX0: For AC_VO.
+ * CWMAX1: For AC_VI.
+ * CWMAX2: For AC_BE.
+ * CWMAX3: For AC_BK.
+ */
+#define CWMAX_CSR 0x3428
+#define CWMAX_CSR_CWMAX0 FIELD32(0x0000000f)
+#define CWMAX_CSR_CWMAX1 FIELD32(0x000000f0)
+#define CWMAX_CSR_CWMAX2 FIELD32(0x00000f00)
+#define CWMAX_CSR_CWMAX3 FIELD32(0x0000f000)
+
+/*
+ * TX_DMA_DST_CSR: TX DMA destination
+ * 0: TX ring0, 1: TX ring1, 2: TX ring2 3: invalid
+ */
+#define TX_DMA_DST_CSR 0x342c
+#define TX_DMA_DST_CSR_DEST_AC0 FIELD32(0x00000003)
+#define TX_DMA_DST_CSR_DEST_AC1 FIELD32(0x0000000c)
+#define TX_DMA_DST_CSR_DEST_AC2 FIELD32(0x00000030)
+#define TX_DMA_DST_CSR_DEST_AC3 FIELD32(0x000000c0)
+#define TX_DMA_DST_CSR_DEST_MGMT FIELD32(0x00000300)
+
+/*
+ * TX_CNTL_CSR: KICK/Abort TX.
+ * KICK_TX_AC0: For AC_VO.
+ * KICK_TX_AC1: For AC_VI.
+ * KICK_TX_AC2: For AC_BE.
+ * KICK_TX_AC3: For AC_BK.
+ * ABORT_TX_AC0: For AC_VO.
+ * ABORT_TX_AC1: For AC_VI.
+ * ABORT_TX_AC2: For AC_BE.
+ * ABORT_TX_AC3: For AC_BK.
+ */
+#define TX_CNTL_CSR 0x3430
+#define TX_CNTL_CSR_KICK_TX_AC0 FIELD32(0x00000001)
+#define TX_CNTL_CSR_KICK_TX_AC1 FIELD32(0x00000002)
+#define TX_CNTL_CSR_KICK_TX_AC2 FIELD32(0x00000004)
+#define TX_CNTL_CSR_KICK_TX_AC3 FIELD32(0x00000008)
+#define TX_CNTL_CSR_KICK_TX_MGMT FIELD32(0x00000010)
+#define TX_CNTL_CSR_ABORT_TX_AC0 FIELD32(0x00010000)
+#define TX_CNTL_CSR_ABORT_TX_AC1 FIELD32(0x00020000)
+#define TX_CNTL_CSR_ABORT_TX_AC2 FIELD32(0x00040000)
+#define TX_CNTL_CSR_ABORT_TX_AC3 FIELD32(0x00080000)
+#define TX_CNTL_CSR_ABORT_TX_MGMT FIELD32(0x00100000)
+
+/*
+ * LOAD_TX_RING_CSR: Load RX desriptor
+ */
+#define LOAD_TX_RING_CSR 0x3434
+#define LOAD_TX_RING_CSR_LOAD_TXD_AC0 FIELD32(0x00000001)
+#define LOAD_TX_RING_CSR_LOAD_TXD_AC1 FIELD32(0x00000002)
+#define LOAD_TX_RING_CSR_LOAD_TXD_AC2 FIELD32(0x00000004)
+#define LOAD_TX_RING_CSR_LOAD_TXD_AC3 FIELD32(0x00000008)
+#define LOAD_TX_RING_CSR_LOAD_TXD_MGMT FIELD32(0x00000010)
+
+/*
+ * Several read-only registers, for debugging.
+ */
+#define AC0_TXPTR_CSR 0x3438
+#define AC1_TXPTR_CSR 0x343c
+#define AC2_TXPTR_CSR 0x3440
+#define AC3_TXPTR_CSR 0x3444
+#define MGMT_TXPTR_CSR 0x3448
+
+/*
+ * RX_BASE_CSR
+ */
+#define RX_BASE_CSR 0x3450
+#define RX_BASE_CSR_RING_REGISTER FIELD32(0xffffffff)
+
+/*
+ * RX_RING_CSR.
+ * RXD_SIZE: In unit of 32-bit.
+ */
+#define RX_RING_CSR 0x3454
+#define RX_RING_CSR_RING_SIZE FIELD32(0x000000ff)
+#define RX_RING_CSR_RXD_SIZE FIELD32(0x00003f00)
+#define RX_RING_CSR_RXD_WRITEBACK_SIZE FIELD32(0x00070000)
+
+/*
+ * RX_CNTL_CSR
+ */
+#define RX_CNTL_CSR 0x3458
+#define RX_CNTL_CSR_ENABLE_RX_DMA FIELD32(0x00000001)
+#define RX_CNTL_CSR_LOAD_RXD FIELD32(0x00000002)
+
+/*
+ * RXPTR_CSR: Read-only, for debugging.
+ */
+#define RXPTR_CSR 0x345c
+
+/*
+ * PCI_CFG_CSR
+ */
+#define PCI_CFG_CSR 0x3460
+
+/*
+ * BUF_FORMAT_CSR
+ */
+#define BUF_FORMAT_CSR 0x3464
+
+/*
+ * INT_SOURCE_CSR: Interrupt source register.
+ * Write one to clear corresponding bit.
+ */
+#define INT_SOURCE_CSR 0x3468
+#define INT_SOURCE_CSR_TXDONE FIELD32(0x00000001)
+#define INT_SOURCE_CSR_RXDONE FIELD32(0x00000002)
+#define INT_SOURCE_CSR_BEACON_DONE FIELD32(0x00000004)
+#define INT_SOURCE_CSR_TX_ABORT_DONE FIELD32(0x00000010)
+#define INT_SOURCE_CSR_AC0_DMA_DONE FIELD32(0x00010000)
+#define INT_SOURCE_CSR_AC1_DMA_DONE FIELD32(0x00020000)
+#define INT_SOURCE_CSR_AC2_DMA_DONE FIELD32(0x00040000)
+#define INT_SOURCE_CSR_AC3_DMA_DONE FIELD32(0x00080000)
+#define INT_SOURCE_CSR_MGMT_DMA_DONE FIELD32(0x00100000)
+#define INT_SOURCE_CSR_HCCA_DMA_DONE FIELD32(0x00200000)
+
+/*
+ * INT_MASK_CSR: Interrupt MASK register. 1: the interrupt is mask OFF.
+ * MITIGATION_PERIOD: Interrupt mitigation in unit of 32 PCI clock.
+ */
+#define INT_MASK_CSR 0x346c
+#define INT_MASK_CSR_TXDONE FIELD32(0x00000001)
+#define INT_MASK_CSR_RXDONE FIELD32(0x00000002)
+#define INT_MASK_CSR_BEACON_DONE FIELD32(0x00000004)
+#define INT_MASK_CSR_TX_ABORT_DONE FIELD32(0x00000010)
+#define INT_MASK_CSR_ENABLE_MITIGATION FIELD32(0x00000080)
+#define INT_MASK_CSR_MITIGATION_PERIOD FIELD32(0x0000ff00)
+#define INT_MASK_CSR_AC0_DMA_DONE FIELD32(0x00010000)
+#define INT_MASK_CSR_AC1_DMA_DONE FIELD32(0x00020000)
+#define INT_MASK_CSR_AC2_DMA_DONE FIELD32(0x00040000)
+#define INT_MASK_CSR_AC3_DMA_DONE FIELD32(0x00080000)
+#define INT_MASK_CSR_MGMT_DMA_DONE FIELD32(0x00100000)
+#define INT_MASK_CSR_HCCA_DMA_DONE FIELD32(0x00200000)
+
+/*
+ * E2PROM_CSR: EEPROM control register.
+ * RELOAD: Write 1 to reload eeprom content.
+ * TYPE_93C46: 1: 93c46, 0:93c66.
+ * LOAD_STATUS: 1:loading, 0:done.
+ */
+#define E2PROM_CSR 0x3470
+#define E2PROM_CSR_RELOAD FIELD32(0x00000001)
+#define E2PROM_CSR_DATA_CLOCK FIELD32(0x00000002)
+#define E2PROM_CSR_CHIP_SELECT FIELD32(0x00000004)
+#define E2PROM_CSR_DATA_IN FIELD32(0x00000008)
+#define E2PROM_CSR_DATA_OUT FIELD32(0x00000010)
+#define E2PROM_CSR_TYPE_93C46 FIELD32(0x00000020)
+#define E2PROM_CSR_LOAD_STATUS FIELD32(0x00000040)
+
+/*
+ * AC_TXOP_CSR0: AC_VO/AC_VI TXOP register.
+ * AC0_TX_OP: For AC_VO, in unit of 32us.
+ * AC1_TX_OP: For AC_VI, in unit of 32us.
+ */
+#define AC_TXOP_CSR0 0x3474
+#define AC_TXOP_CSR0_AC0_TX_OP FIELD32(0x0000ffff)
+#define AC_TXOP_CSR0_AC1_TX_OP FIELD32(0xffff0000)
+
+/*
+ * AC_TXOP_CSR1: AC_BE/AC_BK TXOP register.
+ * AC2_TX_OP: For AC_BE, in unit of 32us.
+ * AC3_TX_OP: For AC_BK, in unit of 32us.
+ */
+#define AC_TXOP_CSR1 0x3478
+#define AC_TXOP_CSR1_AC2_TX_OP FIELD32(0x0000ffff)
+#define AC_TXOP_CSR1_AC3_TX_OP FIELD32(0xffff0000)
+
+/*
+ * DMA_STATUS_CSR
+ */
+#define DMA_STATUS_CSR 0x3480
+
+/*
+ * TEST_MODE_CSR
+ */
+#define TEST_MODE_CSR 0x3484
+
+/*
+ * UART0_TX_CSR
+ */
+#define UART0_TX_CSR 0x3488
+
+/*
+ * UART0_RX_CSR
+ */
+#define UART0_RX_CSR 0x348c
+
+/*
+ * UART0_FRAME_CSR
+ */
+#define UART0_FRAME_CSR 0x3490
+
+/*
+ * UART0_BUFFER_CSR
+ */
+#define UART0_BUFFER_CSR 0x3494
+
+/*
+ * IO_CNTL_CSR
+ * RF_PS: Set RF interface value to power save
+ */
+#define IO_CNTL_CSR 0x3498
+#define IO_CNTL_CSR_RF_PS FIELD32(0x00000004)
+
+/*
+ * UART_INT_SOURCE_CSR
+ */
+#define UART_INT_SOURCE_CSR 0x34a8
+
+/*
+ * UART_INT_MASK_CSR
+ */
+#define UART_INT_MASK_CSR 0x34ac
+
+/*
+ * PBF_QUEUE_CSR
+ */
+#define PBF_QUEUE_CSR 0x34b0
+
+/*
+ * Firmware DMA registers.
+ * Firmware DMA registers are dedicated for MCU usage
+ * and should not be touched by host driver.
+ * Therefore we skip the definition of these registers.
+ */
+#define FW_TX_BASE_CSR 0x34c0
+#define FW_TX_START_CSR 0x34c4
+#define FW_TX_LAST_CSR 0x34c8
+#define FW_MODE_CNTL_CSR 0x34cc
+#define FW_TXPTR_CSR 0x34d0
+
+/*
+ * 8051 firmware image.
+ */
+#define FIRMWARE_RT2561 "rt2561.bin"
+#define FIRMWARE_RT2561s "rt2561s.bin"
+#define FIRMWARE_RT2661 "rt2661.bin"
+#define FIRMWARE_IMAGE_BASE 0x4000
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * R2
+ */
+#define BBP_R2_BG_MODE FIELD8(0x20)
+
+/*
+ * R3
+ */
+#define BBP_R3_SMART_MODE FIELD8(0x01)
+
+/*
+ * R4: RX antenna control
+ * FRAME_END: 1 - DPDT, 0 - SPDT (Only valid for 802.11G, RF2527 & RF2529)
+ */
+
+/*
+ * ANTENNA_CONTROL semantics (guessed):
+ * 0x1: Software controlled antenna switching (fixed or SW diversity)
+ * 0x2: Hardware diversity.
+ */
+#define BBP_R4_RX_ANTENNA_CONTROL FIELD8(0x03)
+#define BBP_R4_RX_FRAME_END FIELD8(0x20)
+
+/*
+ * R77
+ */
+#define BBP_R77_RX_ANTENNA FIELD8(0x03)
+
+/*
+ * RF registers
+ */
+
+/*
+ * RF 3
+ */
+#define RF3_TXPOWER FIELD32(0x00003e00)
+
+/*
+ * RF 4
+ */
+#define RF4_FREQ_OFFSET FIELD32(0x0003f000)
+
+/*
+ * EEPROM content.
+ * The wordsize of the EEPROM is 16 bits.
+ */
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_0 0x0002
+#define EEPROM_MAC_ADDR_BYTE0 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR1 0x0003
+#define EEPROM_MAC_ADDR_BYTE2 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_2 0x0004
+#define EEPROM_MAC_ADDR_BYTE4 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5 FIELD16(0xff00)
+
+/*
+ * EEPROM antenna.
+ * ANTENNA_NUM: Number of antenna's.
+ * TX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * FRAME_TYPE: 0: DPDT , 1: SPDT , noted this bit is valid for g only.
+ * DYN_TXAGC: Dynamic TX AGC control.
+ * HARDWARE_RADIO: 1: Hardware controlled radio. Read GPIO0.
+ * RF_TYPE: Rf_type of this adapter.
+ */
+#define EEPROM_ANTENNA 0x0010
+#define EEPROM_ANTENNA_NUM FIELD16(0x0003)
+#define EEPROM_ANTENNA_TX_DEFAULT FIELD16(0x000c)
+#define EEPROM_ANTENNA_RX_DEFAULT FIELD16(0x0030)
+#define EEPROM_ANTENNA_FRAME_TYPE FIELD16(0x0040)
+#define EEPROM_ANTENNA_DYN_TXAGC FIELD16(0x0200)
+#define EEPROM_ANTENNA_HARDWARE_RADIO FIELD16(0x0400)
+#define EEPROM_ANTENNA_RF_TYPE FIELD16(0xf800)
+
+/*
+ * EEPROM NIC config.
+ * ENABLE_DIVERSITY: 1:enable, 0:disable.
+ * EXTERNAL_LNA_BG: External LNA enable for 2.4G.
+ * CARDBUS_ACCEL: 0:enable, 1:disable.
+ * EXTERNAL_LNA_A: External LNA enable for 5G.
+ */
+#define EEPROM_NIC 0x0011
+#define EEPROM_NIC_ENABLE_DIVERSITY FIELD16(0x0001)
+#define EEPROM_NIC_TX_DIVERSITY FIELD16(0x0002)
+#define EEPROM_NIC_RX_FIXED FIELD16(0x0004)
+#define EEPROM_NIC_TX_FIXED FIELD16(0x0008)
+#define EEPROM_NIC_EXTERNAL_LNA_BG FIELD16(0x0010)
+#define EEPROM_NIC_CARDBUS_ACCEL FIELD16(0x0020)
+#define EEPROM_NIC_EXTERNAL_LNA_A FIELD16(0x0040)
+
+/*
+ * EEPROM geography.
+ * GEO_A: Default geographical setting for 5GHz band
+ * GEO: Default geographical setting.
+ */
+#define EEPROM_GEOGRAPHY 0x0012
+#define EEPROM_GEOGRAPHY_GEO_A FIELD16(0x00ff)
+#define EEPROM_GEOGRAPHY_GEO FIELD16(0xff00)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_START 0x0013
+#define EEPROM_BBP_SIZE 16
+#define EEPROM_BBP_VALUE FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER 802.11G
+ */
+#define EEPROM_TXPOWER_G_START 0x0023
+#define EEPROM_TXPOWER_G_SIZE 7
+#define EEPROM_TXPOWER_G_1 FIELD16(0x00ff)
+#define EEPROM_TXPOWER_G_2 FIELD16(0xff00)
+
+/*
+ * EEPROM Frequency
+ */
+#define EEPROM_FREQ 0x002f
+#define EEPROM_FREQ_OFFSET FIELD16(0x00ff)
+#define EEPROM_FREQ_SEQ_MASK FIELD16(0xff00)
+#define EEPROM_FREQ_SEQ FIELD16(0x0300)
+
+/*
+ * EEPROM LED.
+ * POLARITY_RDY_G: Polarity RDY_G setting.
+ * POLARITY_RDY_A: Polarity RDY_A setting.
+ * POLARITY_ACT: Polarity ACT setting.
+ * POLARITY_GPIO_0: Polarity GPIO0 setting.
+ * POLARITY_GPIO_1: Polarity GPIO1 setting.
+ * POLARITY_GPIO_2: Polarity GPIO2 setting.
+ * POLARITY_GPIO_3: Polarity GPIO3 setting.
+ * POLARITY_GPIO_4: Polarity GPIO4 setting.
+ * LED_MODE: Led mode.
+ */
+#define EEPROM_LED 0x0030
+#define EEPROM_LED_POLARITY_RDY_G FIELD16(0x0001)
+#define EEPROM_LED_POLARITY_RDY_A FIELD16(0x0002)
+#define EEPROM_LED_POLARITY_ACT FIELD16(0x0004)
+#define EEPROM_LED_POLARITY_GPIO_0 FIELD16(0x0008)
+#define EEPROM_LED_POLARITY_GPIO_1 FIELD16(0x0010)
+#define EEPROM_LED_POLARITY_GPIO_2 FIELD16(0x0020)
+#define EEPROM_LED_POLARITY_GPIO_3 FIELD16(0x0040)
+#define EEPROM_LED_POLARITY_GPIO_4 FIELD16(0x0080)
+#define EEPROM_LED_LED_MODE FIELD16(0x1f00)
+
+/*
+ * EEPROM TXPOWER 802.11A
+ */
+#define EEPROM_TXPOWER_A_START 0x0031
+#define EEPROM_TXPOWER_A_SIZE 12
+#define EEPROM_TXPOWER_A_1 FIELD16(0x00ff)
+#define EEPROM_TXPOWER_A_2 FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI offset 802.11BG
+ */
+#define EEPROM_RSSI_OFFSET_BG 0x004d
+#define EEPROM_RSSI_OFFSET_BG_1 FIELD16(0x00ff)
+#define EEPROM_RSSI_OFFSET_BG_2 FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI offset 802.11A
+ */
+#define EEPROM_RSSI_OFFSET_A 0x004e
+#define EEPROM_RSSI_OFFSET_A_1 FIELD16(0x00ff)
+#define EEPROM_RSSI_OFFSET_A_2 FIELD16(0xff00)
+
+/*
+ * MCU mailbox commands.
+ */
+#define MCU_SLEEP 0x30
+#define MCU_WAKEUP 0x31
+#define MCU_LED 0x50
+#define MCU_LED_STRENGTH 0x52
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE (16 * sizeof(__le32))
+#define TXINFO_SIZE (6 * sizeof(__le32))
+#define RXD_DESC_SIZE (16 * sizeof(__le32))
+
+/*
+ * TX descriptor format for TX, PRIO and Beacon Ring.
+ */
+
+/*
+ * Word0
+ * TKIP_MIC: ASIC appends TKIP MIC if TKIP is used.
+ * KEY_TABLE: Use per-client pairwise KEY table.
+ * KEY_INDEX:
+ * Key index (0~31) to the pairwise KEY table.
+ * 0~3 to shared KEY table 0 (BSS0).
+ * 4~7 to shared KEY table 1 (BSS1).
+ * 8~11 to shared KEY table 2 (BSS2).
+ * 12~15 to shared KEY table 3 (BSS3).
+ * BURST: Next frame belongs to same "burst" event.
+ */
+#define TXD_W0_OWNER_NIC FIELD32(0x00000001)
+#define TXD_W0_VALID FIELD32(0x00000002)
+#define TXD_W0_MORE_FRAG FIELD32(0x00000004)
+#define TXD_W0_ACK FIELD32(0x00000008)
+#define TXD_W0_TIMESTAMP FIELD32(0x00000010)
+#define TXD_W0_OFDM FIELD32(0x00000020)
+#define TXD_W0_IFS FIELD32(0x00000040)
+#define TXD_W0_RETRY_MODE FIELD32(0x00000080)
+#define TXD_W0_TKIP_MIC FIELD32(0x00000100)
+#define TXD_W0_KEY_TABLE FIELD32(0x00000200)
+#define TXD_W0_KEY_INDEX FIELD32(0x0000fc00)
+#define TXD_W0_DATABYTE_COUNT FIELD32(0x0fff0000)
+#define TXD_W0_BURST FIELD32(0x10000000)
+#define TXD_W0_CIPHER_ALG FIELD32(0xe0000000)
+
+/*
+ * Word1
+ * HOST_Q_ID: EDCA/HCCA queue ID.
+ * HW_SEQUENCE: MAC overwrites the frame sequence number.
+ * BUFFER_COUNT: Number of buffers in this TXD.
+ */
+#define TXD_W1_HOST_Q_ID FIELD32(0x0000000f)
+#define TXD_W1_AIFSN FIELD32(0x000000f0)
+#define TXD_W1_CWMIN FIELD32(0x00000f00)
+#define TXD_W1_CWMAX FIELD32(0x0000f000)
+#define TXD_W1_IV_OFFSET FIELD32(0x003f0000)
+#define TXD_W1_PIGGY_BACK FIELD32(0x01000000)
+#define TXD_W1_HW_SEQUENCE FIELD32(0x10000000)
+#define TXD_W1_BUFFER_COUNT FIELD32(0xe0000000)
+
+/*
+ * Word2: PLCP information
+ */
+#define TXD_W2_PLCP_SIGNAL FIELD32(0x000000ff)
+#define TXD_W2_PLCP_SERVICE FIELD32(0x0000ff00)
+#define TXD_W2_PLCP_LENGTH_LOW FIELD32(0x00ff0000)
+#define TXD_W2_PLCP_LENGTH_HIGH FIELD32(0xff000000)
+
+/*
+ * Word3
+ */
+#define TXD_W3_IV FIELD32(0xffffffff)
+
+/*
+ * Word4
+ */
+#define TXD_W4_EIV FIELD32(0xffffffff)
+
+/*
+ * Word5
+ * FRAME_OFFSET: Frame start offset inside ASIC TXFIFO (after TXINFO field).
+ * TXD_W5_PID_SUBTYPE: Driver assigned packet ID index for txdone handler.
+ * TXD_W5_PID_TYPE: Driver assigned packet ID type for txdone handler.
+ * WAITING_DMA_DONE_INT: TXD been filled with data
+ * and waiting for TxDoneISR housekeeping.
+ */
+#define TXD_W5_FRAME_OFFSET FIELD32(0x000000ff)
+#define TXD_W5_PID_SUBTYPE FIELD32(0x00001f00)
+#define TXD_W5_PID_TYPE FIELD32(0x0000e000)
+#define TXD_W5_TX_POWER FIELD32(0x00ff0000)
+#define TXD_W5_WAITING_DMA_DONE_INT FIELD32(0x01000000)
+
+/*
+ * the above 24-byte is called TXINFO and will be DMAed to MAC block
+ * through TXFIFO. MAC block use this TXINFO to control the transmission
+ * behavior of this frame.
+ * The following fields are not used by MAC block.
+ * They are used by DMA block and HOST driver only.
+ * Once a frame has been DMA to ASIC, all the following fields are useless
+ * to ASIC.
+ */
+
+/*
+ * Word6-10: Buffer physical address
+ */
+#define TXD_W6_BUFFER_PHYSICAL_ADDRESS FIELD32(0xffffffff)
+#define TXD_W7_BUFFER_PHYSICAL_ADDRESS FIELD32(0xffffffff)
+#define TXD_W8_BUFFER_PHYSICAL_ADDRESS FIELD32(0xffffffff)
+#define TXD_W9_BUFFER_PHYSICAL_ADDRESS FIELD32(0xffffffff)
+#define TXD_W10_BUFFER_PHYSICAL_ADDRESS FIELD32(0xffffffff)
+
+/*
+ * Word11-13: Buffer length
+ */
+#define TXD_W11_BUFFER_LENGTH0 FIELD32(0x00000fff)
+#define TXD_W11_BUFFER_LENGTH1 FIELD32(0x0fff0000)
+#define TXD_W12_BUFFER_LENGTH2 FIELD32(0x00000fff)
+#define TXD_W12_BUFFER_LENGTH3 FIELD32(0x0fff0000)
+#define TXD_W13_BUFFER_LENGTH4 FIELD32(0x00000fff)
+
+/*
+ * Word14
+ */
+#define TXD_W14_SK_BUFFER FIELD32(0xffffffff)
+
+/*
+ * Word15
+ */
+#define TXD_W15_NEXT_SK_BUFFER FIELD32(0xffffffff)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ * CIPHER_ERROR: 1:ICV error, 2:MIC error, 3:invalid key.
+ * KEY_INDEX: Decryption key actually used.
+ */
+#define RXD_W0_OWNER_NIC FIELD32(0x00000001)
+#define RXD_W0_DROP FIELD32(0x00000002)
+#define RXD_W0_UNICAST_TO_ME FIELD32(0x00000004)
+#define RXD_W0_MULTICAST FIELD32(0x00000008)
+#define RXD_W0_BROADCAST FIELD32(0x00000010)
+#define RXD_W0_MY_BSS FIELD32(0x00000020)
+#define RXD_W0_CRC_ERROR FIELD32(0x00000040)
+#define RXD_W0_OFDM FIELD32(0x00000080)
+#define RXD_W0_CIPHER_ERROR FIELD32(0x00000300)
+#define RXD_W0_KEY_INDEX FIELD32(0x0000fc00)
+#define RXD_W0_DATABYTE_COUNT FIELD32(0x0fff0000)
+#define RXD_W0_CIPHER_ALG FIELD32(0xe0000000)
+
+/*
+ * Word1
+ * SIGNAL: RX raw data rate reported by BBP.
+ */
+#define RXD_W1_SIGNAL FIELD32(0x000000ff)
+#define RXD_W1_RSSI_AGC FIELD32(0x00001f00)
+#define RXD_W1_RSSI_LNA FIELD32(0x00006000)
+#define RXD_W1_FRAME_OFFSET FIELD32(0x7f000000)
+
+/*
+ * Word2
+ * IV: Received IV of originally encrypted.
+ */
+#define RXD_W2_IV FIELD32(0xffffffff)
+
+/*
+ * Word3
+ * EIV: Received EIV of originally encrypted.
+ */
+#define RXD_W3_EIV FIELD32(0xffffffff)
+
+/*
+ * Word4
+ * ICV: Received ICV of originally encrypted.
+ * NOTE: This is a guess, the official definition is "reserved"
+ */
+#define RXD_W4_ICV FIELD32(0xffffffff)
+
+/*
+ * the above 20-byte is called RXINFO and will be DMAed to MAC RX block
+ * and passed to the HOST driver.
+ * The following fields are for DMA block and HOST usage only.
+ * Can't be touched by ASIC MAC block.
+ */
+
+/*
+ * Word5
+ */
+#define RXD_W5_BUFFER_PHYSICAL_ADDRESS FIELD32(0xffffffff)
+
+/*
+ * Word6-15: Reserved
+ */
+#define RXD_W6_RESERVED FIELD32(0xffffffff)
+#define RXD_W7_RESERVED FIELD32(0xffffffff)
+#define RXD_W8_RESERVED FIELD32(0xffffffff)
+#define RXD_W9_RESERVED FIELD32(0xffffffff)
+#define RXD_W10_RESERVED FIELD32(0xffffffff)
+#define RXD_W11_RESERVED FIELD32(0xffffffff)
+#define RXD_W12_RESERVED FIELD32(0xffffffff)
+#define RXD_W13_RESERVED FIELD32(0xffffffff)
+#define RXD_W14_RESERVED FIELD32(0xffffffff)
+#define RXD_W15_RESERVED FIELD32(0xffffffff)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ */
+#define MIN_TXPOWER 0
+#define MAX_TXPOWER 31
+#define DEFAULT_TXPOWER 24
+
+#define TXPOWER_FROM_DEV(__txpower) \
+ (((u8)(__txpower)) > MAX_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+#define TXPOWER_TO_DEV(__txpower) \
+ clamp_t(u8, __txpower, MIN_TXPOWER, MAX_TXPOWER)
+
+#endif /* RT61PCI_H */
diff --git a/drivers/net/wireless/ralink/rt2x00/rt73usb.c b/drivers/net/wireless/ralink/rt2x00/rt73usb.c
new file mode 100644
index 0000000000..dfa9d52138
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt73usb.c
@@ -0,0 +1,2539 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt73usb
+ Abstract: rt73usb device specific routines.
+ Supported chipsets: rt2571W & rt2671.
+ */
+
+#include <linux/crc-itu-t.h>
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/usb.h>
+
+#include "rt2x00.h"
+#include "rt2x00usb.h"
+#include "rt73usb.h"
+
+/*
+ * Allow hardware encryption to be disabled.
+ */
+static bool modparam_nohwcrypt;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2x00usb_register_read and rt2x00usb_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attampt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ * The _lock versions must be used if you already hold the csr_mutex
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+ rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+ rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
+
+static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u8 value)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
+ rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
+ rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
+ rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
+
+ rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static u8 rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word)
+{
+ u32 reg;
+ u8 value;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the BBP becomes available, afterwards we
+ * can safely write the read request into the register.
+ * After the data has been written, we wait until hardware
+ * returns the correct value, if at any time the register
+ * doesn't become available in time, reg will be 0xffffffff
+ * which means we return 0xff to the caller.
+ */
+ if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
+ rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
+ rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
+
+ rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
+
+ WAIT_FOR_BBP(rt2x00dev, &reg);
+ }
+
+ value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+
+ return value;
+}
+
+static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
+ const unsigned int word, const u32 value)
+{
+ u32 reg;
+
+ mutex_lock(&rt2x00dev->csr_mutex);
+
+ /*
+ * Wait until the RF becomes available, afterwards we
+ * can safely write the new data into the register.
+ */
+ if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+ reg = 0;
+ rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
+ /*
+ * RF5225 and RF2527 contain 21 bits per RF register value,
+ * all others contain 20 bits.
+ */
+ rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
+ 20 + (rt2x00_rf(rt2x00dev, RF5225) ||
+ rt2x00_rf(rt2x00dev, RF2527)));
+ rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
+ rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
+
+ rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
+ rt2x00_rf_write(rt2x00dev, word, value);
+ }
+
+ mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static const struct rt2x00debug rt73usb_rt2x00debug = {
+ .owner = THIS_MODULE,
+ .csr = {
+ .read = rt2x00usb_register_read,
+ .write = rt2x00usb_register_write,
+ .flags = RT2X00DEBUGFS_OFFSET,
+ .word_base = CSR_REG_BASE,
+ .word_size = sizeof(u32),
+ .word_count = CSR_REG_SIZE / sizeof(u32),
+ },
+ .eeprom = {
+ .read = rt2x00_eeprom_read,
+ .write = rt2x00_eeprom_write,
+ .word_base = EEPROM_BASE,
+ .word_size = sizeof(u16),
+ .word_count = EEPROM_SIZE / sizeof(u16),
+ },
+ .bbp = {
+ .read = rt73usb_bbp_read,
+ .write = rt73usb_bbp_write,
+ .word_base = BBP_BASE,
+ .word_size = sizeof(u8),
+ .word_count = BBP_SIZE / sizeof(u8),
+ },
+ .rf = {
+ .read = rt2x00_rf_read,
+ .write = rt73usb_rf_write,
+ .word_base = RF_BASE,
+ .word_size = sizeof(u32),
+ .word_count = RF_SIZE / sizeof(u32),
+ },
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13);
+ return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
+}
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt73usb_brightness_set(struct led_classdev *led_cdev,
+ enum led_brightness brightness)
+{
+ struct rt2x00_led *led =
+ container_of(led_cdev, struct rt2x00_led, led_dev);
+ unsigned int enabled = brightness != LED_OFF;
+ unsigned int a_mode =
+ (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
+ unsigned int bg_mode =
+ (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
+
+ if (led->type == LED_TYPE_RADIO) {
+ rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+ MCU_LEDCS_RADIO_STATUS, enabled);
+
+ rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
+ 0, led->rt2x00dev->led_mcu_reg,
+ REGISTER_TIMEOUT);
+ } else if (led->type == LED_TYPE_ASSOC) {
+ rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+ MCU_LEDCS_LINK_BG_STATUS, bg_mode);
+ rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+ MCU_LEDCS_LINK_A_STATUS, a_mode);
+
+ rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
+ 0, led->rt2x00dev->led_mcu_reg,
+ REGISTER_TIMEOUT);
+ } else if (led->type == LED_TYPE_QUALITY) {
+ /*
+ * The brightness is divided into 6 levels (0 - 5),
+ * this means we need to convert the brightness
+ * argument into the matching level within that range.
+ */
+ rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
+ brightness / (LED_FULL / 6),
+ led->rt2x00dev->led_mcu_reg,
+ REGISTER_TIMEOUT);
+ }
+}
+
+static int rt73usb_blink_set(struct led_classdev *led_cdev,
+ unsigned long *delay_on,
+ unsigned long *delay_off)
+{
+ struct rt2x00_led *led =
+ container_of(led_cdev, struct rt2x00_led, led_dev);
+ u32 reg;
+
+ reg = rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14);
+ rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
+ rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
+ rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
+
+ return 0;
+}
+
+static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_led *led,
+ enum led_type type)
+{
+ led->rt2x00dev = rt2x00dev;
+ led->type = type;
+ led->led_dev.brightness_set = rt73usb_brightness_set;
+ led->led_dev.blink_set = rt73usb_blink_set;
+ led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key)
+{
+ struct hw_key_entry key_entry;
+ struct rt2x00_field32 field;
+ u32 mask;
+ u32 reg;
+
+ if (crypto->cmd == SET_KEY) {
+ /*
+ * rt2x00lib can't determine the correct free
+ * key_idx for shared keys. We have 1 register
+ * with key valid bits. The goal is simple, read
+ * the register, if that is full we have no slots
+ * left.
+ * Note that each BSS is allowed to have up to 4
+ * shared keys, so put a mask over the allowed
+ * entries.
+ */
+ mask = (0xf << crypto->bssidx);
+
+ reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0);
+ reg &= mask;
+
+ if (reg && reg == mask)
+ return -ENOSPC;
+
+ key->hw_key_idx += reg ? ffz(reg) : 0;
+
+ /*
+ * Upload key to hardware
+ */
+ memcpy(key_entry.key, crypto->key,
+ sizeof(key_entry.key));
+ memcpy(key_entry.tx_mic, crypto->tx_mic,
+ sizeof(key_entry.tx_mic));
+ memcpy(key_entry.rx_mic, crypto->rx_mic,
+ sizeof(key_entry.rx_mic));
+
+ reg = SHARED_KEY_ENTRY(key->hw_key_idx);
+ rt2x00usb_register_multiwrite(rt2x00dev, reg,
+ &key_entry, sizeof(key_entry));
+
+ /*
+ * The cipher types are stored over 2 registers.
+ * bssidx 0 and 1 keys are stored in SEC_CSR1 and
+ * bssidx 1 and 2 keys are stored in SEC_CSR5.
+ * Using the correct defines correctly will cause overhead,
+ * so just calculate the correct offset.
+ */
+ if (key->hw_key_idx < 8) {
+ field.bit_offset = (3 * key->hw_key_idx);
+ field.bit_mask = 0x7 << field.bit_offset;
+
+ reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR1);
+ rt2x00_set_field32(&reg, field, crypto->cipher);
+ rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
+ } else {
+ field.bit_offset = (3 * (key->hw_key_idx - 8));
+ field.bit_mask = 0x7 << field.bit_offset;
+
+ reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR5);
+ rt2x00_set_field32(&reg, field, crypto->cipher);
+ rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
+ }
+
+ /*
+ * The driver does not support the IV/EIV generation
+ * in hardware. However it doesn't support the IV/EIV
+ * inside the ieee80211 frame either, but requires it
+ * to be provided separately for the descriptor.
+ * rt2x00lib will cut the IV/EIV data out of all frames
+ * given to us by mac80211, but we must tell mac80211
+ * to generate the IV/EIV data.
+ */
+ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
+ }
+
+ /*
+ * SEC_CSR0 contains only single-bit fields to indicate
+ * a particular key is valid. Because using the FIELD32()
+ * defines directly will cause a lot of overhead we use
+ * a calculation to determine the correct bit directly.
+ */
+ mask = 1 << key->hw_key_idx;
+
+ reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0);
+ if (crypto->cmd == SET_KEY)
+ reg |= mask;
+ else if (crypto->cmd == DISABLE_KEY)
+ reg &= ~mask;
+ rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
+
+ return 0;
+}
+
+static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_crypto *crypto,
+ struct ieee80211_key_conf *key)
+{
+ struct hw_pairwise_ta_entry addr_entry;
+ struct hw_key_entry key_entry;
+ u32 mask;
+ u32 reg;
+
+ if (crypto->cmd == SET_KEY) {
+ /*
+ * rt2x00lib can't determine the correct free
+ * key_idx for pairwise keys. We have 2 registers
+ * with key valid bits. The goal is simple, read
+ * the first register, if that is full move to
+ * the next register.
+ * When both registers are full, we drop the key,
+ * otherwise we use the first invalid entry.
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2);
+ if (reg && reg == ~0) {
+ key->hw_key_idx = 32;
+ reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3);
+ if (reg && reg == ~0)
+ return -ENOSPC;
+ }
+
+ key->hw_key_idx += reg ? ffz(reg) : 0;
+
+ /*
+ * Upload key to hardware
+ */
+ memcpy(key_entry.key, crypto->key,
+ sizeof(key_entry.key));
+ memcpy(key_entry.tx_mic, crypto->tx_mic,
+ sizeof(key_entry.tx_mic));
+ memcpy(key_entry.rx_mic, crypto->rx_mic,
+ sizeof(key_entry.rx_mic));
+
+ reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
+ rt2x00usb_register_multiwrite(rt2x00dev, reg,
+ &key_entry, sizeof(key_entry));
+
+ /*
+ * Send the address and cipher type to the hardware register.
+ */
+ memset(&addr_entry, 0, sizeof(addr_entry));
+ memcpy(&addr_entry, crypto->address, ETH_ALEN);
+ addr_entry.cipher = crypto->cipher;
+
+ reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
+ rt2x00usb_register_multiwrite(rt2x00dev, reg,
+ &addr_entry, sizeof(addr_entry));
+
+ /*
+ * Enable pairwise lookup table for given BSS idx,
+ * without this received frames will not be decrypted
+ * by the hardware.
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR4);
+ reg |= (1 << crypto->bssidx);
+ rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
+
+ /*
+ * The driver does not support the IV/EIV generation
+ * in hardware. However it doesn't support the IV/EIV
+ * inside the ieee80211 frame either, but requires it
+ * to be provided separately for the descriptor.
+ * rt2x00lib will cut the IV/EIV data out of all frames
+ * given to us by mac80211, but we must tell mac80211
+ * to generate the IV/EIV data.
+ */
+ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
+ }
+
+ /*
+ * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
+ * a particular key is valid. Because using the FIELD32()
+ * defines directly will cause a lot of overhead we use
+ * a calculation to determine the correct bit directly.
+ */
+ if (key->hw_key_idx < 32) {
+ mask = 1 << key->hw_key_idx;
+
+ reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2);
+ if (crypto->cmd == SET_KEY)
+ reg |= mask;
+ else if (crypto->cmd == DISABLE_KEY)
+ reg &= ~mask;
+ rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
+ } else {
+ mask = 1 << (key->hw_key_idx - 32);
+
+ reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3);
+ if (crypto->cmd == SET_KEY)
+ reg |= mask;
+ else if (crypto->cmd == DISABLE_KEY)
+ reg &= ~mask;
+ rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
+ }
+
+ return 0;
+}
+
+static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
+ const unsigned int filter_flags)
+{
+ u32 reg;
+
+ /*
+ * Start configuration steps.
+ * Note that the version error will always be dropped
+ * and broadcast frames will always be accepted since
+ * there is no filter for it at this time.
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
+ !(filter_flags & FIF_FCSFAIL));
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
+ !(filter_flags & FIF_PLCPFAIL));
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
+ !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
+ !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
+ !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
+ !rt2x00dev->intf_ap_count);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
+ !(filter_flags & FIF_ALLMULTI));
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
+ !(filter_flags & FIF_CONTROL));
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+}
+
+static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00_intf *intf,
+ struct rt2x00intf_conf *conf,
+ const unsigned int flags)
+{
+ u32 reg;
+
+ if (flags & CONFIG_UPDATE_TYPE) {
+ /*
+ * Enable synchronisation.
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+ }
+
+ if (flags & CONFIG_UPDATE_MAC) {
+ reg = le32_to_cpu(conf->mac[1]);
+ rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
+ conf->mac[1] = cpu_to_le32(reg);
+
+ rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
+ conf->mac, sizeof(conf->mac));
+ }
+
+ if (flags & CONFIG_UPDATE_BSSID) {
+ reg = le32_to_cpu(conf->bssid[1]);
+ rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
+ conf->bssid[1] = cpu_to_le32(reg);
+
+ rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
+ conf->bssid, sizeof(conf->bssid));
+ }
+}
+
+static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_erp *erp,
+ u32 changed)
+{
+ u32 reg;
+
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
+ rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+ if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4);
+ rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
+ !!erp->short_preamble);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
+ }
+
+ if (changed & BSS_CHANGED_BASIC_RATES)
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
+ erp->basic_rates);
+
+ if (changed & BSS_CHANGED_BEACON_INT) {
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
+ erp->beacon_int * 16);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+ }
+
+ if (changed & BSS_CHANGED_ERP_SLOT) {
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9);
+ rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
+
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR8);
+ rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
+ rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
+ rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
+ }
+}
+
+static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant)
+{
+ u8 r3;
+ u8 r4;
+ u8 r77;
+ u8 temp;
+
+ r3 = rt73usb_bbp_read(rt2x00dev, 3);
+ r4 = rt73usb_bbp_read(rt2x00dev, 4);
+ r77 = rt73usb_bbp_read(rt2x00dev, 77);
+
+ rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
+
+ /*
+ * Configure the RX antenna.
+ */
+ switch (ant->rx) {
+ case ANTENNA_HW_DIVERSITY:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
+ temp = !rt2x00_has_cap_frame_type(rt2x00dev) &&
+ (rt2x00dev->curr_band != NL80211_BAND_5GHZ);
+ rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
+ break;
+ case ANTENNA_A:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+ rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
+ if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+ else
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+ break;
+ case ANTENNA_B:
+ default:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+ rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
+ if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+ else
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+ break;
+ }
+
+ rt73usb_bbp_write(rt2x00dev, 77, r77);
+ rt73usb_bbp_write(rt2x00dev, 3, r3);
+ rt73usb_bbp_write(rt2x00dev, 4, r4);
+}
+
+static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant)
+{
+ u8 r3;
+ u8 r4;
+ u8 r77;
+
+ r3 = rt73usb_bbp_read(rt2x00dev, 3);
+ r4 = rt73usb_bbp_read(rt2x00dev, 4);
+ r77 = rt73usb_bbp_read(rt2x00dev, 77);
+
+ rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
+ rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
+ !rt2x00_has_cap_frame_type(rt2x00dev));
+
+ /*
+ * Configure the RX antenna.
+ */
+ switch (ant->rx) {
+ case ANTENNA_HW_DIVERSITY:
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
+ break;
+ case ANTENNA_A:
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+ break;
+ case ANTENNA_B:
+ default:
+ rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+ rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+ break;
+ }
+
+ rt73usb_bbp_write(rt2x00dev, 77, r77);
+ rt73usb_bbp_write(rt2x00dev, 3, r3);
+ rt73usb_bbp_write(rt2x00dev, 4, r4);
+}
+
+struct antenna_sel {
+ u8 word;
+ /*
+ * value[0] -> non-LNA
+ * value[1] -> LNA
+ */
+ u8 value[2];
+};
+
+static const struct antenna_sel antenna_sel_a[] = {
+ { 96, { 0x58, 0x78 } },
+ { 104, { 0x38, 0x48 } },
+ { 75, { 0xfe, 0x80 } },
+ { 86, { 0xfe, 0x80 } },
+ { 88, { 0xfe, 0x80 } },
+ { 35, { 0x60, 0x60 } },
+ { 97, { 0x58, 0x58 } },
+ { 98, { 0x58, 0x58 } },
+};
+
+static const struct antenna_sel antenna_sel_bg[] = {
+ { 96, { 0x48, 0x68 } },
+ { 104, { 0x2c, 0x3c } },
+ { 75, { 0xfe, 0x80 } },
+ { 86, { 0xfe, 0x80 } },
+ { 88, { 0xfe, 0x80 } },
+ { 35, { 0x50, 0x50 } },
+ { 97, { 0x48, 0x48 } },
+ { 98, { 0x48, 0x48 } },
+};
+
+static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
+ struct antenna_setup *ant)
+{
+ const struct antenna_sel *sel;
+ unsigned int lna;
+ unsigned int i;
+ u32 reg;
+
+ /*
+ * We should never come here because rt2x00lib is supposed
+ * to catch this and send us the correct antenna explicitely.
+ */
+ BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
+ ant->tx == ANTENNA_SW_DIVERSITY);
+
+ if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
+ sel = antenna_sel_a;
+ lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
+ } else {
+ sel = antenna_sel_bg;
+ lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
+ }
+
+ for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
+ rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
+
+ reg = rt2x00usb_register_read(rt2x00dev, PHY_CSR0);
+
+ rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
+ (rt2x00dev->curr_band == NL80211_BAND_2GHZ));
+ rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
+ (rt2x00dev->curr_band == NL80211_BAND_5GHZ));
+
+ rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
+
+ if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
+ rt73usb_config_antenna_5x(rt2x00dev, ant);
+ else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
+ rt73usb_config_antenna_2x(rt2x00dev, ant);
+}
+
+static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ u16 eeprom;
+ short lna_gain = 0;
+
+ if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
+ if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
+ lna_gain += 14;
+
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
+ lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
+ } else {
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
+ lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
+ }
+
+ rt2x00dev->lna_gain = lna_gain;
+}
+
+static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
+ struct rf_channel *rf, const int txpower)
+{
+ u8 r3;
+ u8 r94;
+ u8 smart;
+
+ rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+ rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
+
+ smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
+
+ r3 = rt73usb_bbp_read(rt2x00dev, 3);
+ rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
+ rt73usb_bbp_write(rt2x00dev, 3, r3);
+
+ r94 = 6;
+ if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
+ r94 += txpower - MAX_TXPOWER;
+ else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
+ r94 += txpower;
+ rt73usb_bbp_write(rt2x00dev, 94, r94);
+
+ rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
+ rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
+ rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+ rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
+
+ rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
+ rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
+ rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
+ rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
+
+ rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
+ rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
+ rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+ rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
+
+ udelay(10);
+}
+
+static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
+ const int txpower)
+{
+ struct rf_channel rf;
+
+ rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
+ rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
+ rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
+ rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
+
+ rt73usb_config_channel(rt2x00dev, &rf, txpower);
+}
+
+static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ u32 reg;
+
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4);
+ rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
+ libconf->conf->long_frame_max_tx_count);
+ rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
+ libconf->conf->short_frame_max_tx_count);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
+}
+
+static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf)
+{
+ enum dev_state state =
+ (libconf->conf->flags & IEEE80211_CONF_PS) ?
+ STATE_SLEEP : STATE_AWAKE;
+ u32 reg;
+
+ if (state == STATE_SLEEP) {
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11);
+ rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
+ rt2x00dev->beacon_int - 10);
+ rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
+ libconf->conf->listen_interval - 1);
+ rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
+
+ /* We must first disable autowake before it can be enabled */
+ rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
+
+ rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
+
+ rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
+ USB_MODE_SLEEP, REGISTER_TIMEOUT);
+ } else {
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11);
+ rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
+ rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
+ rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
+ rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
+
+ rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
+ USB_MODE_WAKEUP, REGISTER_TIMEOUT);
+ }
+}
+
+static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
+ struct rt2x00lib_conf *libconf,
+ const unsigned int flags)
+{
+ /* Always recalculate LNA gain before changing configuration */
+ rt73usb_config_lna_gain(rt2x00dev, libconf);
+
+ if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
+ rt73usb_config_channel(rt2x00dev, &libconf->rf,
+ libconf->conf->power_level);
+ if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
+ !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
+ rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
+ if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+ rt73usb_config_retry_limit(rt2x00dev, libconf);
+ if (flags & IEEE80211_CONF_CHANGE_PS)
+ rt73usb_config_ps(rt2x00dev, libconf);
+}
+
+/*
+ * Link tuning
+ */
+static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual)
+{
+ u32 reg;
+
+ /*
+ * Update FCS error count from register.
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0);
+ qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
+
+ /*
+ * Update False CCA count from register.
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1);
+ qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
+}
+
+static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual, u8 vgc_level)
+{
+ if (qual->vgc_level != vgc_level) {
+ rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
+ qual->vgc_level = vgc_level;
+ qual->vgc_level_reg = vgc_level;
+ }
+}
+
+static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual)
+{
+ rt73usb_set_vgc(rt2x00dev, qual, 0x20);
+}
+
+static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
+ struct link_qual *qual, const u32 count)
+{
+ u8 up_bound;
+ u8 low_bound;
+
+ /*
+ * Determine r17 bounds.
+ */
+ if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
+ low_bound = 0x28;
+ up_bound = 0x48;
+
+ if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
+ low_bound += 0x10;
+ up_bound += 0x10;
+ }
+ } else {
+ if (qual->rssi > -82) {
+ low_bound = 0x1c;
+ up_bound = 0x40;
+ } else if (qual->rssi > -84) {
+ low_bound = 0x1c;
+ up_bound = 0x20;
+ } else {
+ low_bound = 0x1c;
+ up_bound = 0x1c;
+ }
+
+ if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
+ low_bound += 0x14;
+ up_bound += 0x10;
+ }
+ }
+
+ /*
+ * If we are not associated, we should go straight to the
+ * dynamic CCA tuning.
+ */
+ if (!rt2x00dev->intf_associated)
+ goto dynamic_cca_tune;
+
+ /*
+ * Special big-R17 for very short distance
+ */
+ if (qual->rssi > -35) {
+ rt73usb_set_vgc(rt2x00dev, qual, 0x60);
+ return;
+ }
+
+ /*
+ * Special big-R17 for short distance
+ */
+ if (qual->rssi >= -58) {
+ rt73usb_set_vgc(rt2x00dev, qual, up_bound);
+ return;
+ }
+
+ /*
+ * Special big-R17 for middle-short distance
+ */
+ if (qual->rssi >= -66) {
+ rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
+ return;
+ }
+
+ /*
+ * Special mid-R17 for middle distance
+ */
+ if (qual->rssi >= -74) {
+ rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
+ return;
+ }
+
+ /*
+ * Special case: Change up_bound based on the rssi.
+ * Lower up_bound when rssi is weaker then -74 dBm.
+ */
+ up_bound -= 2 * (-74 - qual->rssi);
+ if (low_bound > up_bound)
+ up_bound = low_bound;
+
+ if (qual->vgc_level > up_bound) {
+ rt73usb_set_vgc(rt2x00dev, qual, up_bound);
+ return;
+ }
+
+dynamic_cca_tune:
+
+ /*
+ * r17 does not yet exceed upper limit, continue and base
+ * the r17 tuning on the false CCA count.
+ */
+ if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
+ rt73usb_set_vgc(rt2x00dev, qual,
+ min_t(u8, qual->vgc_level + 4, up_bound));
+ else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
+ rt73usb_set_vgc(rt2x00dev, qual,
+ max_t(u8, qual->vgc_level - 4, low_bound));
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt73usb_start_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_RX:
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+static void rt73usb_stop_queue(struct data_queue *queue)
+{
+ struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+ u32 reg;
+
+ switch (queue->qid) {
+ case QID_RX:
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+ break;
+ case QID_BEACON:
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+ break;
+ default:
+ break;
+ }
+}
+
+/*
+ * Firmware functions
+ */
+static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
+{
+ return FIRMWARE_RT2571;
+}
+
+static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ u16 fw_crc;
+ u16 crc;
+
+ /*
+ * Only support 2kb firmware files.
+ */
+ if (len != 2048)
+ return FW_BAD_LENGTH;
+
+ /*
+ * The last 2 bytes in the firmware array are the crc checksum itself,
+ * this means that we should never pass those 2 bytes to the crc
+ * algorithm.
+ */
+ fw_crc = (data[len - 2] << 8 | data[len - 1]);
+
+ /*
+ * Use the crc itu-t algorithm.
+ */
+ crc = crc_itu_t(0, data, len - 2);
+ crc = crc_itu_t_byte(crc, 0);
+ crc = crc_itu_t_byte(crc, 0);
+
+ return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
+}
+
+static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
+ const u8 *data, const size_t len)
+{
+ unsigned int i;
+ int status;
+ u32 reg;
+
+ /*
+ * Wait for stable hardware.
+ */
+ for (i = 0; i < 100; i++) {
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0);
+ if (reg)
+ break;
+ msleep(1);
+ }
+
+ if (!reg) {
+ rt2x00_err(rt2x00dev, "Unstable hardware\n");
+ return -EBUSY;
+ }
+
+ /*
+ * Write firmware to device.
+ */
+ rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
+
+ /*
+ * Send firmware request to device to load firmware,
+ * we need to specify a long timeout time.
+ */
+ status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
+ 0, USB_MODE_FIRMWARE,
+ REGISTER_TIMEOUT_FIRMWARE);
+ if (status < 0) {
+ rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
+ return status;
+ }
+
+ return 0;
+}
+
+/*
+ * Initialization functions.
+ */
+static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR1);
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
+ rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
+
+ /*
+ * CCK TXD BBP registers
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR2);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
+ rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
+
+ /*
+ * OFDM TXD BBP registers
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR3);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
+ rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
+
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR7);
+ rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
+ rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
+ rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
+ rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
+
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR8);
+ rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
+ rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
+ rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
+ rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
+
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+ rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
+
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR6);
+ rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
+
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
+
+ if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+ return -EBUSY;
+
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
+
+ /*
+ * Invalidate all Shared Keys (SEC_CSR0),
+ * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
+ */
+ rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
+ rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
+ rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
+
+ reg = 0x000023b0;
+ if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
+ rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
+ rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
+
+ rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
+ rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
+ rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
+
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9);
+ rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
+
+ /*
+ * Clear all beacons
+ * For the Beacon base registers we only need to clear
+ * the first byte since that byte contains the VALID and OWNER
+ * bits which (when set to 0) will invalidate the entire beacon.
+ */
+ rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
+ rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
+ rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
+ rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
+
+ /*
+ * We must clear the error counters.
+ * These registers are cleared on read,
+ * so we may pass a useless variable to store the value.
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0);
+ reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1);
+ reg = rt2x00usb_register_read(rt2x00dev, STA_CSR2);
+
+ /*
+ * Reset MAC and BBP registers.
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
+ rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
+ rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
+ rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
+ rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
+ rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+ return 0;
+}
+
+static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u8 value;
+
+ for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
+ value = rt73usb_bbp_read(rt2x00dev, 0);
+ if ((value != 0xff) && (value != 0x00))
+ return 0;
+ udelay(REGISTER_BUSY_DELAY);
+ }
+
+ rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+ return -EACCES;
+}
+
+static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+ unsigned int i;
+ u16 eeprom;
+ u8 reg_id;
+ u8 value;
+
+ if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
+ return -EACCES;
+
+ rt73usb_bbp_write(rt2x00dev, 3, 0x80);
+ rt73usb_bbp_write(rt2x00dev, 15, 0x30);
+ rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
+ rt73usb_bbp_write(rt2x00dev, 22, 0x38);
+ rt73usb_bbp_write(rt2x00dev, 23, 0x06);
+ rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
+ rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
+ rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
+ rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
+ rt73usb_bbp_write(rt2x00dev, 34, 0x12);
+ rt73usb_bbp_write(rt2x00dev, 37, 0x07);
+ rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
+ rt73usb_bbp_write(rt2x00dev, 41, 0x60);
+ rt73usb_bbp_write(rt2x00dev, 53, 0x10);
+ rt73usb_bbp_write(rt2x00dev, 54, 0x18);
+ rt73usb_bbp_write(rt2x00dev, 60, 0x10);
+ rt73usb_bbp_write(rt2x00dev, 61, 0x04);
+ rt73usb_bbp_write(rt2x00dev, 62, 0x04);
+ rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
+ rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
+ rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
+ rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
+ rt73usb_bbp_write(rt2x00dev, 99, 0x00);
+ rt73usb_bbp_write(rt2x00dev, 102, 0x16);
+ rt73usb_bbp_write(rt2x00dev, 107, 0x04);
+
+ for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
+
+ if (eeprom != 0xffff && eeprom != 0x0000) {
+ reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+ value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+ rt73usb_bbp_write(rt2x00dev, reg_id, value);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ /*
+ * Initialize all registers.
+ */
+ if (unlikely(rt73usb_init_registers(rt2x00dev) ||
+ rt73usb_init_bbp(rt2x00dev)))
+ return -EIO;
+
+ return 0;
+}
+
+static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
+
+ /*
+ * Disable synchronisation.
+ */
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
+
+ rt2x00usb_disable_radio(rt2x00dev);
+}
+
+static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
+{
+ u32 reg, reg2;
+ unsigned int i;
+ bool put_to_sleep;
+
+ put_to_sleep = (state != STATE_AWAKE);
+
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR12);
+ rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
+ rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
+
+ /*
+ * Device is not guaranteed to be in the requested state yet.
+ * We must wait until the register indicates that the
+ * device has entered the correct state.
+ */
+ for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+ reg2 = rt2x00usb_register_read(rt2x00dev, MAC_CSR12);
+ state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
+ if (state == !put_to_sleep)
+ return 0;
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
+ msleep(10);
+ }
+
+ return -EBUSY;
+}
+
+static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
+ enum dev_state state)
+{
+ int retval = 0;
+
+ switch (state) {
+ case STATE_RADIO_ON:
+ retval = rt73usb_enable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_OFF:
+ rt73usb_disable_radio(rt2x00dev);
+ break;
+ case STATE_RADIO_IRQ_ON:
+ case STATE_RADIO_IRQ_OFF:
+ /* No support, but no error either */
+ break;
+ case STATE_DEEP_SLEEP:
+ case STATE_SLEEP:
+ case STATE_STANDBY:
+ case STATE_AWAKE:
+ retval = rt73usb_set_state(rt2x00dev, state);
+ break;
+ default:
+ retval = -ENOTSUPP;
+ break;
+ }
+
+ if (unlikely(retval))
+ rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+ state, retval);
+
+ return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt73usb_write_tx_desc(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ __le32 *txd = (__le32 *) entry->skb->data;
+ u32 word;
+
+ /*
+ * Start writing the descriptor words.
+ */
+ word = rt2x00_desc_read(txd, 0);
+ rt2x00_set_field32(&word, TXD_W0_BURST,
+ test_bit(ENTRY_TXD_BURST, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_VALID, 1);
+ rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+ test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_ACK,
+ test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+ test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_OFDM,
+ (txdesc->rate_mode == RATE_MODE_OFDM));
+ rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
+ rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
+ test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
+ test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
+ test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
+ rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
+ rt2x00_set_field32(&word, TXD_W0_BURST2,
+ test_bit(ENTRY_TXD_BURST, &txdesc->flags));
+ rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
+ rt2x00_desc_write(txd, 0, word);
+
+ word = rt2x00_desc_read(txd, 1);
+ rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
+ rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
+ rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
+ rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
+ rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
+ rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
+ test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
+ rt2x00_desc_write(txd, 1, word);
+
+ word = rt2x00_desc_read(txd, 2);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
+ txdesc->u.plcp.length_low);
+ rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
+ txdesc->u.plcp.length_high);
+ rt2x00_desc_write(txd, 2, word);
+
+ if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
+ _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
+ _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
+ }
+
+ word = rt2x00_desc_read(txd, 5);
+ rt2x00_set_field32(&word, TXD_W5_TX_POWER,
+ TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
+ rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
+ rt2x00_desc_write(txd, 5, word);
+
+ /*
+ * Register descriptor details in skb frame descriptor.
+ */
+ skbdesc->flags |= SKBDESC_DESC_IN_SKB;
+ skbdesc->desc = txd;
+ skbdesc->desc_len = TXD_DESC_SIZE;
+}
+
+/*
+ * TX data initialization
+ */
+static void rt73usb_write_beacon(struct queue_entry *entry,
+ struct txentry_desc *txdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ unsigned int beacon_base;
+ unsigned int padding_len;
+ u32 orig_reg, reg;
+
+ /*
+ * Disable beaconing while we are reloading the beacon data,
+ * otherwise we might be sending out invalid data.
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
+ orig_reg = reg;
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+ /*
+ * Add space for the descriptor in front of the skb.
+ */
+ skb_push(entry->skb, TXD_DESC_SIZE);
+ memset(entry->skb->data, 0, TXD_DESC_SIZE);
+
+ /*
+ * Write the TX descriptor for the beacon.
+ */
+ rt73usb_write_tx_desc(entry, txdesc);
+
+ /*
+ * Dump beacon to userspace through debugfs.
+ */
+ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
+
+ /*
+ * Write entire beacon with descriptor and padding to register.
+ */
+ padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
+ if (padding_len && skb_pad(entry->skb, padding_len)) {
+ rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
+ /* skb freed by skb_pad() on failure */
+ entry->skb = NULL;
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
+ return;
+ }
+
+ beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
+ rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
+ entry->skb->len + padding_len);
+
+ /*
+ * Enable beaconing again.
+ *
+ * For Wi-Fi faily generated beacons between participating stations.
+ * Set TBTT phase adaptive adjustment step to 8us (default 16us)
+ */
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
+
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+ /*
+ * Clean up the beacon skb.
+ */
+ dev_kfree_skb(entry->skb);
+ entry->skb = NULL;
+}
+
+static void rt73usb_clear_beacon(struct queue_entry *entry)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ unsigned int beacon_base;
+ u32 orig_reg, reg;
+
+ /*
+ * Disable beaconing while we are reloading the beacon data,
+ * otherwise we might be sending out invalid data.
+ */
+ orig_reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
+ reg = orig_reg;
+ rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+ /*
+ * Clear beacon.
+ */
+ beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
+ rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
+
+ /*
+ * Restore beaconing state.
+ */
+ rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
+}
+
+static int rt73usb_get_tx_data_len(struct queue_entry *entry)
+{
+ int length;
+
+ /*
+ * The length _must_ be a multiple of 4,
+ * but it must _not_ be a multiple of the USB packet size.
+ */
+ length = roundup(entry->skb->len, 4);
+ length += (4 * !(length % entry->queue->usb_maxpacket));
+
+ return length;
+}
+
+/*
+ * RX control handlers
+ */
+static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
+{
+ u8 offset = rt2x00dev->lna_gain;
+ u8 lna;
+
+ lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
+ switch (lna) {
+ case 3:
+ offset += 90;
+ break;
+ case 2:
+ offset += 74;
+ break;
+ case 1:
+ offset += 64;
+ break;
+ default:
+ return 0;
+ }
+
+ if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
+ if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
+ if (lna == 3 || lna == 2)
+ offset += 10;
+ } else {
+ if (lna == 3)
+ offset += 6;
+ else if (lna == 2)
+ offset += 8;
+ }
+ }
+
+ return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
+}
+
+static void rt73usb_fill_rxdone(struct queue_entry *entry,
+ struct rxdone_entry_desc *rxdesc)
+{
+ struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+ struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+ __le32 *rxd = (__le32 *)entry->skb->data;
+ u32 word0;
+ u32 word1;
+
+ /*
+ * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
+ * frame data in rt2x00usb.
+ */
+ memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
+ rxd = (__le32 *)skbdesc->desc;
+
+ /*
+ * It is now safe to read the descriptor on all architectures.
+ */
+ word0 = rt2x00_desc_read(rxd, 0);
+ word1 = rt2x00_desc_read(rxd, 1);
+
+ if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
+ rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+
+ rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
+ rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
+
+ if (rxdesc->cipher != CIPHER_NONE) {
+ rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
+ rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
+ rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
+
+ rxdesc->icv = _rt2x00_desc_read(rxd, 4);
+ rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
+
+ /*
+ * Hardware has stripped IV/EIV data from 802.11 frame during
+ * decryption. It has provided the data separately but rt2x00lib
+ * should decide if it should be reinserted.
+ */
+ rxdesc->flags |= RX_FLAG_IV_STRIPPED;
+
+ /*
+ * The hardware has already checked the Michael Mic and has
+ * stripped it from the frame. Signal this to mac80211.
+ */
+ rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
+
+ if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
+ rxdesc->flags |= RX_FLAG_DECRYPTED;
+ else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
+ rxdesc->flags |= RX_FLAG_MMIC_ERROR;
+ }
+
+ /*
+ * Obtain the status about this packet.
+ * When frame was received with an OFDM bitrate,
+ * the signal is the PLCP value. If it was received with
+ * a CCK bitrate the signal is the rate in 100kbit/s.
+ */
+ rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
+ rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
+ rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+
+ if (rt2x00_get_field32(word0, RXD_W0_OFDM))
+ rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
+ else
+ rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
+ if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
+ rxdesc->dev_flags |= RXDONE_MY_BSS;
+
+ /*
+ * Set skb pointers, and update frame information.
+ */
+ skb_pull(entry->skb, entry->queue->desc_size);
+ skb_trim(entry->skb, rxdesc->size);
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ u16 word;
+ u8 *mac;
+ s8 value;
+
+ rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
+
+ /*
+ * Start validation of the data that has been read.
+ */
+ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+ rt2x00lib_set_mac_address(rt2x00dev, mac);
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
+ ANTENNA_B);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
+ ANTENNA_B);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
+ rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
+ rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
+ rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
+ rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
+ rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
+ rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
+ rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
+ rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
+ rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
+ LED_MODE_DEFAULT);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
+ rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
+ } else {
+ value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
+ if (value < -10 || value > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
+ value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
+ if (value < -10 || value > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
+ }
+
+ word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
+ if (word == 0xffff) {
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
+ rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
+ } else {
+ value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
+ if (value < -10 || value > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
+ value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
+ if (value < -10 || value > 10)
+ rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
+ rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
+ }
+
+ return 0;
+}
+
+static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+ u32 reg;
+ u16 value;
+ u16 eeprom;
+
+ /*
+ * Read EEPROM word for configuration.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
+
+ /*
+ * Identify RF chipset.
+ */
+ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0);
+ rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
+ value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
+
+ if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
+ rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
+ return -ENODEV;
+ }
+
+ if (!rt2x00_rf(rt2x00dev, RF5226) &&
+ !rt2x00_rf(rt2x00dev, RF2528) &&
+ !rt2x00_rf(rt2x00dev, RF5225) &&
+ !rt2x00_rf(rt2x00dev, RF2527)) {
+ rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
+ return -ENODEV;
+ }
+
+ /*
+ * Identify default antenna configuration.
+ */
+ rt2x00dev->default_ant.tx =
+ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
+ rt2x00dev->default_ant.rx =
+ rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
+
+ /*
+ * Read the Frame type.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
+ __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
+
+ /*
+ * Detect if this device has an hardware controlled radio.
+ */
+ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
+ __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+
+ /*
+ * Read frequency offset.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
+ rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
+
+ /*
+ * Read external LNA informations.
+ */
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
+
+ if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
+ __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
+ __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
+ }
+
+ /*
+ * Store led settings, for correct led behaviour.
+ */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+ eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
+
+ rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+ rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
+ if (value == LED_MODE_SIGNAL_STRENGTH)
+ rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
+ LED_TYPE_QUALITY);
+
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_GPIO_0));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_GPIO_1));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_GPIO_2));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_GPIO_3));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_GPIO_4));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
+ rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_RDY_G));
+ rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
+ rt2x00_get_field16(eeprom,
+ EEPROM_LED_POLARITY_RDY_A));
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+ return 0;
+}
+
+/*
+ * RF value list for RF2528
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2528[] = {
+ { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
+ { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
+ { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
+ { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
+ { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
+ { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
+ { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
+ { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
+ { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
+ { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
+ { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
+ { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
+ { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
+ { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
+};
+
+/*
+ * RF value list for RF5226
+ * Supports: 2.4 GHz & 5.2 GHz
+ */
+static const struct rf_channel rf_vals_5226[] = {
+ { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
+ { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
+ { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
+ { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
+ { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
+ { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
+ { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
+ { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
+ { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
+ { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
+ { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
+ { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
+ { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
+ { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
+
+ /* 802.11 UNI / HyperLan 2 */
+ { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
+ { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
+ { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
+ { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
+ { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
+ { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
+ { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
+ { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
+
+ /* 802.11 HyperLan 2 */
+ { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
+ { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
+ { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
+ { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
+ { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
+ { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
+ { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
+ { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
+ { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
+ { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
+
+ /* 802.11 UNII */
+ { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
+ { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
+ { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
+ { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
+ { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
+ { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
+
+ /* MMAC(Japan)J52 ch 34,38,42,46 */
+ { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
+ { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
+ { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
+ { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
+};
+
+/*
+ * RF value list for RF5225 & RF2527
+ * Supports: 2.4 GHz & 5.2 GHz
+ */
+static const struct rf_channel rf_vals_5225_2527[] = {
+ { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
+ { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
+ { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
+ { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
+ { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
+ { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
+ { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
+ { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
+ { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
+ { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
+ { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
+ { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
+ { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
+ { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
+
+ /* 802.11 UNI / HyperLan 2 */
+ { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
+ { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
+ { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
+ { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
+ { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
+ { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
+ { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
+ { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
+
+ /* 802.11 HyperLan 2 */
+ { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
+ { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
+ { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
+ { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
+ { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
+ { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
+ { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
+ { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
+ { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
+ { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
+
+ /* 802.11 UNII */
+ { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
+ { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
+ { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
+ { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
+ { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
+ { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
+
+ /* MMAC(Japan)J52 ch 34,38,42,46 */
+ { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
+ { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
+ { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
+ { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
+};
+
+
+static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+ struct hw_mode_spec *spec = &rt2x00dev->spec;
+ struct channel_info *info;
+ u8 *tx_power;
+ unsigned int i;
+
+ /*
+ * Initialize all hw fields.
+ *
+ * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are
+ * capable of sending the buffered frames out after the DTIM
+ * transmission using rt2x00lib_beacondone. This will send out
+ * multicast and broadcast traffic immediately instead of buffering it
+ * infinitly and thus dropping it after some time.
+ */
+ ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+ ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+ ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+
+ SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+ SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+ rt2x00_eeprom_addr(rt2x00dev,
+ EEPROM_MAC_ADDR_0));
+
+ /*
+ * Initialize hw_mode information.
+ */
+ spec->supported_bands = SUPPORT_BAND_2GHZ;
+ spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+ if (rt2x00_rf(rt2x00dev, RF2528)) {
+ spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
+ spec->channels = rf_vals_bg_2528;
+ } else if (rt2x00_rf(rt2x00dev, RF5226)) {
+ spec->supported_bands |= SUPPORT_BAND_5GHZ;
+ spec->num_channels = ARRAY_SIZE(rf_vals_5226);
+ spec->channels = rf_vals_5226;
+ } else if (rt2x00_rf(rt2x00dev, RF2527)) {
+ spec->num_channels = 14;
+ spec->channels = rf_vals_5225_2527;
+ } else if (rt2x00_rf(rt2x00dev, RF5225)) {
+ spec->supported_bands |= SUPPORT_BAND_5GHZ;
+ spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
+ spec->channels = rf_vals_5225_2527;
+ }
+
+ /*
+ * Create channel information array
+ */
+ info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ spec->channels_info = info;
+
+ tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
+ for (i = 0; i < 14; i++) {
+ info[i].max_power = MAX_TXPOWER;
+ info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
+ }
+
+ if (spec->num_channels > 14) {
+ tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
+ for (i = 14; i < spec->num_channels; i++) {
+ info[i].max_power = MAX_TXPOWER;
+ info[i].default_power1 =
+ TXPOWER_FROM_DEV(tx_power[i - 14]);
+ }
+ }
+
+ return 0;
+}
+
+static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+ int retval;
+ u32 reg;
+
+ /*
+ * Allocate eeprom data.
+ */
+ retval = rt73usb_validate_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ retval = rt73usb_init_eeprom(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * Enable rfkill polling by setting GPIO direction of the
+ * rfkill switch GPIO pin correctly.
+ */
+ reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13);
+ rt2x00_set_field32(&reg, MAC_CSR13_DIR7, 0);
+ rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
+
+ /*
+ * Initialize hw specifications.
+ */
+ retval = rt73usb_probe_hw_mode(rt2x00dev);
+ if (retval)
+ return retval;
+
+ /*
+ * This device has multiple filters for control frames,
+ * but has no a separate filter for PS Poll frames.
+ */
+ __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
+
+ /*
+ * This device requires firmware.
+ */
+ __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
+ if (!modparam_nohwcrypt)
+ __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
+ __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
+ __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
+
+ /*
+ * Set the rssi offset.
+ */
+ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+ return 0;
+}
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+static int rt73usb_conf_tx(struct ieee80211_hw *hw,
+ struct ieee80211_vif *vif,
+ unsigned int link_id, u16 queue_idx,
+ const struct ieee80211_tx_queue_params *params)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ struct data_queue *queue;
+ struct rt2x00_field32 field;
+ int retval;
+ u32 reg;
+ u32 offset;
+
+ /*
+ * First pass the configuration through rt2x00lib, that will
+ * update the queue settings and validate the input. After that
+ * we are free to update the registers based on the value
+ * in the queue parameter.
+ */
+ retval = rt2x00mac_conf_tx(hw, vif, link_id, queue_idx, params);
+ if (retval)
+ return retval;
+
+ /*
+ * We only need to perform additional register initialization
+ * for WMM queues/
+ */
+ if (queue_idx >= 4)
+ return 0;
+
+ queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+
+ /* Update WMM TXOP register */
+ offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
+ field.bit_offset = (queue_idx & 1) * 16;
+ field.bit_mask = 0xffff << field.bit_offset;
+
+ reg = rt2x00usb_register_read(rt2x00dev, offset);
+ rt2x00_set_field32(&reg, field, queue->txop);
+ rt2x00usb_register_write(rt2x00dev, offset, reg);
+
+ /* Update WMM registers */
+ field.bit_offset = queue_idx * 4;
+ field.bit_mask = 0xf << field.bit_offset;
+
+ reg = rt2x00usb_register_read(rt2x00dev, AIFSN_CSR);
+ rt2x00_set_field32(&reg, field, queue->aifs);
+ rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
+
+ reg = rt2x00usb_register_read(rt2x00dev, CWMIN_CSR);
+ rt2x00_set_field32(&reg, field, queue->cw_min);
+ rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
+
+ reg = rt2x00usb_register_read(rt2x00dev, CWMAX_CSR);
+ rt2x00_set_field32(&reg, field, queue->cw_max);
+ rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
+
+ return 0;
+}
+
+static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
+{
+ struct rt2x00_dev *rt2x00dev = hw->priv;
+ u64 tsf;
+ u32 reg;
+
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR13);
+ tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
+ reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR12);
+ tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
+
+ return tsf;
+}
+
+static const struct ieee80211_ops rt73usb_mac80211_ops = {
+ .tx = rt2x00mac_tx,
+ .wake_tx_queue = ieee80211_handle_wake_tx_queue,
+ .start = rt2x00mac_start,
+ .stop = rt2x00mac_stop,
+ .add_interface = rt2x00mac_add_interface,
+ .remove_interface = rt2x00mac_remove_interface,
+ .config = rt2x00mac_config,
+ .configure_filter = rt2x00mac_configure_filter,
+ .set_tim = rt2x00mac_set_tim,
+ .set_key = rt2x00mac_set_key,
+ .sw_scan_start = rt2x00mac_sw_scan_start,
+ .sw_scan_complete = rt2x00mac_sw_scan_complete,
+ .get_stats = rt2x00mac_get_stats,
+ .bss_info_changed = rt2x00mac_bss_info_changed,
+ .conf_tx = rt73usb_conf_tx,
+ .get_tsf = rt73usb_get_tsf,
+ .rfkill_poll = rt2x00mac_rfkill_poll,
+ .flush = rt2x00mac_flush,
+ .set_antenna = rt2x00mac_set_antenna,
+ .get_antenna = rt2x00mac_get_antenna,
+ .get_ringparam = rt2x00mac_get_ringparam,
+ .tx_frames_pending = rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
+ .probe_hw = rt73usb_probe_hw,
+ .get_firmware_name = rt73usb_get_firmware_name,
+ .check_firmware = rt73usb_check_firmware,
+ .load_firmware = rt73usb_load_firmware,
+ .initialize = rt2x00usb_initialize,
+ .uninitialize = rt2x00usb_uninitialize,
+ .clear_entry = rt2x00usb_clear_entry,
+ .set_device_state = rt73usb_set_device_state,
+ .rfkill_poll = rt73usb_rfkill_poll,
+ .link_stats = rt73usb_link_stats,
+ .reset_tuner = rt73usb_reset_tuner,
+ .link_tuner = rt73usb_link_tuner,
+ .watchdog = rt2x00usb_watchdog,
+ .start_queue = rt73usb_start_queue,
+ .kick_queue = rt2x00usb_kick_queue,
+ .stop_queue = rt73usb_stop_queue,
+ .flush_queue = rt2x00usb_flush_queue,
+ .write_tx_desc = rt73usb_write_tx_desc,
+ .write_beacon = rt73usb_write_beacon,
+ .clear_beacon = rt73usb_clear_beacon,
+ .get_tx_data_len = rt73usb_get_tx_data_len,
+ .fill_rxdone = rt73usb_fill_rxdone,
+ .config_shared_key = rt73usb_config_shared_key,
+ .config_pairwise_key = rt73usb_config_pairwise_key,
+ .config_filter = rt73usb_config_filter,
+ .config_intf = rt73usb_config_intf,
+ .config_erp = rt73usb_config_erp,
+ .config_ant = rt73usb_config_ant,
+ .config = rt73usb_config,
+};
+
+static void rt73usb_queue_init(struct data_queue *queue)
+{
+ switch (queue->qid) {
+ case QID_RX:
+ queue->limit = 32;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = RXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_usb);
+ break;
+
+ case QID_AC_VO:
+ case QID_AC_VI:
+ case QID_AC_BE:
+ case QID_AC_BK:
+ queue->limit = 32;
+ queue->data_size = DATA_FRAME_SIZE;
+ queue->desc_size = TXD_DESC_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_usb);
+ break;
+
+ case QID_BEACON:
+ queue->limit = 4;
+ queue->data_size = MGMT_FRAME_SIZE;
+ queue->desc_size = TXINFO_SIZE;
+ queue->priv_size = sizeof(struct queue_entry_priv_usb);
+ break;
+
+ case QID_ATIM:
+ default:
+ BUG();
+ break;
+ }
+}
+
+static const struct rt2x00_ops rt73usb_ops = {
+ .name = KBUILD_MODNAME,
+ .max_ap_intf = 4,
+ .eeprom_size = EEPROM_SIZE,
+ .rf_size = RF_SIZE,
+ .tx_queues = NUM_TX_QUEUES,
+ .queue_init = rt73usb_queue_init,
+ .lib = &rt73usb_rt2x00_ops,
+ .hw = &rt73usb_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+ .debugfs = &rt73usb_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * rt73usb module information.
+ */
+static const struct usb_device_id rt73usb_device_table[] = {
+ /* AboCom */
+ { USB_DEVICE(0x07b8, 0xb21b) },
+ { USB_DEVICE(0x07b8, 0xb21c) },
+ { USB_DEVICE(0x07b8, 0xb21d) },
+ { USB_DEVICE(0x07b8, 0xb21e) },
+ { USB_DEVICE(0x07b8, 0xb21f) },
+ /* AL */
+ { USB_DEVICE(0x14b2, 0x3c10) },
+ /* Amigo */
+ { USB_DEVICE(0x148f, 0x9021) },
+ { USB_DEVICE(0x0eb0, 0x9021) },
+ /* AMIT */
+ { USB_DEVICE(0x18c5, 0x0002) },
+ /* Askey */
+ { USB_DEVICE(0x1690, 0x0722) },
+ /* ASUS */
+ { USB_DEVICE(0x0b05, 0x1723) },
+ { USB_DEVICE(0x0b05, 0x1724) },
+ /* Belkin */
+ { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */
+ { USB_DEVICE(0x050d, 0x705a) },
+ { USB_DEVICE(0x050d, 0x905b) },
+ { USB_DEVICE(0x050d, 0x905c) },
+ /* Billionton */
+ { USB_DEVICE(0x1631, 0xc019) },
+ { USB_DEVICE(0x08dd, 0x0120) },
+ /* Buffalo */
+ { USB_DEVICE(0x0411, 0x00d8) },
+ { USB_DEVICE(0x0411, 0x00d9) },
+ { USB_DEVICE(0x0411, 0x00e6) },
+ { USB_DEVICE(0x0411, 0x00f4) },
+ { USB_DEVICE(0x0411, 0x0116) },
+ { USB_DEVICE(0x0411, 0x0119) },
+ { USB_DEVICE(0x0411, 0x0137) },
+ /* CEIVA */
+ { USB_DEVICE(0x178d, 0x02be) },
+ /* CNet */
+ { USB_DEVICE(0x1371, 0x9022) },
+ { USB_DEVICE(0x1371, 0x9032) },
+ /* Conceptronic */
+ { USB_DEVICE(0x14b2, 0x3c22) },
+ /* Corega */
+ { USB_DEVICE(0x07aa, 0x002e) },
+ /* D-Link */
+ { USB_DEVICE(0x07d1, 0x3c03) },
+ { USB_DEVICE(0x07d1, 0x3c04) },
+ { USB_DEVICE(0x07d1, 0x3c06) },
+ { USB_DEVICE(0x07d1, 0x3c07) },
+ /* Edimax */
+ { USB_DEVICE(0x7392, 0x7318) },
+ { USB_DEVICE(0x7392, 0x7618) },
+ /* EnGenius */
+ { USB_DEVICE(0x1740, 0x3701) },
+ /* Gemtek */
+ { USB_DEVICE(0x15a9, 0x0004) },
+ /* Gigabyte */
+ { USB_DEVICE(0x1044, 0x8008) },
+ { USB_DEVICE(0x1044, 0x800a) },
+ /* Huawei-3Com */
+ { USB_DEVICE(0x1472, 0x0009) },
+ /* Hercules */
+ { USB_DEVICE(0x06f8, 0xe002) },
+ { USB_DEVICE(0x06f8, 0xe010) },
+ { USB_DEVICE(0x06f8, 0xe020) },
+ /* Linksys */
+ { USB_DEVICE(0x13b1, 0x0020) },
+ { USB_DEVICE(0x13b1, 0x0023) },
+ { USB_DEVICE(0x13b1, 0x0028) },
+ /* MSI */
+ { USB_DEVICE(0x0db0, 0x4600) },
+ { USB_DEVICE(0x0db0, 0x6877) },
+ { USB_DEVICE(0x0db0, 0x6874) },
+ { USB_DEVICE(0x0db0, 0xa861) },
+ { USB_DEVICE(0x0db0, 0xa874) },
+ /* Ovislink */
+ { USB_DEVICE(0x1b75, 0x7318) },
+ /* Ralink */
+ { USB_DEVICE(0x04bb, 0x093d) },
+ { USB_DEVICE(0x148f, 0x2573) },
+ { USB_DEVICE(0x148f, 0x2671) },
+ { USB_DEVICE(0x0812, 0x3101) },
+ /* Qcom */
+ { USB_DEVICE(0x18e8, 0x6196) },
+ { USB_DEVICE(0x18e8, 0x6229) },
+ { USB_DEVICE(0x18e8, 0x6238) },
+ /* Samsung */
+ { USB_DEVICE(0x04e8, 0x4471) },
+ /* Senao */
+ { USB_DEVICE(0x1740, 0x7100) },
+ /* Sitecom */
+ { USB_DEVICE(0x0df6, 0x0024) },
+ { USB_DEVICE(0x0df6, 0x0027) },
+ { USB_DEVICE(0x0df6, 0x002f) },
+ { USB_DEVICE(0x0df6, 0x90ac) },
+ { USB_DEVICE(0x0df6, 0x9712) },
+ /* Surecom */
+ { USB_DEVICE(0x0769, 0x31f3) },
+ /* Tilgin */
+ { USB_DEVICE(0x6933, 0x5001) },
+ /* Philips */
+ { USB_DEVICE(0x0471, 0x200a) },
+ /* Planex */
+ { USB_DEVICE(0x2019, 0xab01) },
+ { USB_DEVICE(0x2019, 0xab50) },
+ /* WideTell */
+ { USB_DEVICE(0x7167, 0x3840) },
+ /* Zcom */
+ { USB_DEVICE(0x0cde, 0x001c) },
+ /* ZyXEL */
+ { USB_DEVICE(0x0586, 0x3415) },
+ { 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
+MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
+MODULE_FIRMWARE(FIRMWARE_RT2571);
+MODULE_LICENSE("GPL");
+
+static int rt73usb_probe(struct usb_interface *usb_intf,
+ const struct usb_device_id *id)
+{
+ return rt2x00usb_probe(usb_intf, &rt73usb_ops);
+}
+
+static struct usb_driver rt73usb_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = rt73usb_device_table,
+ .probe = rt73usb_probe,
+ .disconnect = rt2x00usb_disconnect,
+ .suspend = rt2x00usb_suspend,
+ .resume = rt2x00usb_resume,
+ .reset_resume = rt2x00usb_resume,
+ .disable_hub_initiated_lpm = 1,
+};
+
+module_usb_driver(rt73usb_driver);
diff --git a/drivers/net/wireless/ralink/rt2x00/rt73usb.h b/drivers/net/wireless/ralink/rt2x00/rt73usb.h
new file mode 100644
index 0000000000..bb0a68516c
--- /dev/null
+++ b/drivers/net/wireless/ralink/rt2x00/rt73usb.h
@@ -0,0 +1,1068 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+ <http://rt2x00.serialmonkey.com>
+
+ */
+
+/*
+ Module: rt73usb
+ Abstract: Data structures and registers for the rt73usb module.
+ Supported chipsets: rt2571W & rt2671.
+ */
+
+#ifndef RT73USB_H
+#define RT73USB_H
+
+/*
+ * RF chip defines.
+ */
+#define RF5226 0x0001
+#define RF2528 0x0002
+#define RF5225 0x0003
+#define RF2527 0x0004
+
+/*
+ * Signal information.
+ * Default offset is required for RSSI <-> dBm conversion.
+ */
+#define DEFAULT_RSSI_OFFSET 120
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE 0x3000
+#define CSR_REG_SIZE 0x04b0
+#define EEPROM_BASE 0x0000
+#define EEPROM_SIZE 0x0100
+#define BBP_BASE 0x0000
+#define BBP_SIZE 0x0080
+#define RF_BASE 0x0004
+#define RF_SIZE 0x0010
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES 4
+
+/*
+ * USB registers.
+ */
+
+/*
+ * MCU_LEDCS: LED control for MCU Mailbox.
+ */
+#define MCU_LEDCS_LED_MODE FIELD16(0x001f)
+#define MCU_LEDCS_RADIO_STATUS FIELD16(0x0020)
+#define MCU_LEDCS_LINK_BG_STATUS FIELD16(0x0040)
+#define MCU_LEDCS_LINK_A_STATUS FIELD16(0x0080)
+#define MCU_LEDCS_POLARITY_GPIO_0 FIELD16(0x0100)
+#define MCU_LEDCS_POLARITY_GPIO_1 FIELD16(0x0200)
+#define MCU_LEDCS_POLARITY_GPIO_2 FIELD16(0x0400)
+#define MCU_LEDCS_POLARITY_GPIO_3 FIELD16(0x0800)
+#define MCU_LEDCS_POLARITY_GPIO_4 FIELD16(0x1000)
+#define MCU_LEDCS_POLARITY_ACT FIELD16(0x2000)
+#define MCU_LEDCS_POLARITY_READY_BG FIELD16(0x4000)
+#define MCU_LEDCS_POLARITY_READY_A FIELD16(0x8000)
+
+/*
+ * 8051 firmware image.
+ */
+#define FIRMWARE_RT2571 "rt73.bin"
+#define FIRMWARE_IMAGE_BASE 0x0800
+
+/*
+ * Security key table memory.
+ * 16 entries 32-byte for shared key table
+ * 64 entries 32-byte for pairwise key table
+ * 64 entries 8-byte for pairwise ta key table
+ */
+#define SHARED_KEY_TABLE_BASE 0x1000
+#define PAIRWISE_KEY_TABLE_BASE 0x1200
+#define PAIRWISE_TA_TABLE_BASE 0x1a00
+
+#define SHARED_KEY_ENTRY(__idx) \
+ ( SHARED_KEY_TABLE_BASE + \
+ ((__idx) * sizeof(struct hw_key_entry)) )
+#define PAIRWISE_KEY_ENTRY(__idx) \
+ ( PAIRWISE_KEY_TABLE_BASE + \
+ ((__idx) * sizeof(struct hw_key_entry)) )
+#define PAIRWISE_TA_ENTRY(__idx) \
+ ( PAIRWISE_TA_TABLE_BASE + \
+ ((__idx) * sizeof(struct hw_pairwise_ta_entry)) )
+
+struct hw_key_entry {
+ u8 key[16];
+ u8 tx_mic[8];
+ u8 rx_mic[8];
+} __packed;
+
+struct hw_pairwise_ta_entry {
+ u8 address[6];
+ u8 cipher;
+ u8 reserved;
+} __packed;
+
+/*
+ * Since NULL frame won't be that long (256 byte),
+ * We steal 16 tail bytes to save debugging settings.
+ */
+#define HW_DEBUG_SETTING_BASE 0x2bf0
+
+/*
+ * On-chip BEACON frame space.
+ */
+#define HW_BEACON_BASE0 0x2400
+#define HW_BEACON_BASE1 0x2500
+#define HW_BEACON_BASE2 0x2600
+#define HW_BEACON_BASE3 0x2700
+
+#define HW_BEACON_OFFSET(__index) \
+ ( HW_BEACON_BASE0 + (__index * 0x0100) )
+
+/*
+ * MAC Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * MAC_CSR0: ASIC revision number.
+ */
+#define MAC_CSR0 0x3000
+#define MAC_CSR0_REVISION FIELD32(0x0000000f)
+#define MAC_CSR0_CHIPSET FIELD32(0x000ffff0)
+
+/*
+ * MAC_CSR1: System control register.
+ * SOFT_RESET: Software reset bit, 1: reset, 0: normal.
+ * BBP_RESET: Hardware reset BBP.
+ * HOST_READY: Host is ready after initialization, 1: ready.
+ */
+#define MAC_CSR1 0x3004
+#define MAC_CSR1_SOFT_RESET FIELD32(0x00000001)
+#define MAC_CSR1_BBP_RESET FIELD32(0x00000002)
+#define MAC_CSR1_HOST_READY FIELD32(0x00000004)
+
+/*
+ * MAC_CSR2: STA MAC register 0.
+ */
+#define MAC_CSR2 0x3008
+#define MAC_CSR2_BYTE0 FIELD32(0x000000ff)
+#define MAC_CSR2_BYTE1 FIELD32(0x0000ff00)
+#define MAC_CSR2_BYTE2 FIELD32(0x00ff0000)
+#define MAC_CSR2_BYTE3 FIELD32(0xff000000)
+
+/*
+ * MAC_CSR3: STA MAC register 1.
+ * UNICAST_TO_ME_MASK:
+ * Used to mask off bits from byte 5 of the MAC address
+ * to determine the UNICAST_TO_ME bit for RX frames.
+ * The full mask is complemented by BSS_ID_MASK:
+ * MASK = BSS_ID_MASK & UNICAST_TO_ME_MASK
+ */
+#define MAC_CSR3 0x300c
+#define MAC_CSR3_BYTE4 FIELD32(0x000000ff)
+#define MAC_CSR3_BYTE5 FIELD32(0x0000ff00)
+#define MAC_CSR3_UNICAST_TO_ME_MASK FIELD32(0x00ff0000)
+
+/*
+ * MAC_CSR4: BSSID register 0.
+ */
+#define MAC_CSR4 0x3010
+#define MAC_CSR4_BYTE0 FIELD32(0x000000ff)
+#define MAC_CSR4_BYTE1 FIELD32(0x0000ff00)
+#define MAC_CSR4_BYTE2 FIELD32(0x00ff0000)
+#define MAC_CSR4_BYTE3 FIELD32(0xff000000)
+
+/*
+ * MAC_CSR5: BSSID register 1.
+ * BSS_ID_MASK:
+ * This mask is used to mask off bits 0 and 1 of byte 5 of the
+ * BSSID. This will make sure that those bits will be ignored
+ * when determining the MY_BSS of RX frames.
+ * 0: 1-BSSID mode (BSS index = 0)
+ * 1: 2-BSSID mode (BSS index: Byte5, bit 0)
+ * 2: 2-BSSID mode (BSS index: byte5, bit 1)
+ * 3: 4-BSSID mode (BSS index: byte5, bit 0 - 1)
+ */
+#define MAC_CSR5 0x3014
+#define MAC_CSR5_BYTE4 FIELD32(0x000000ff)
+#define MAC_CSR5_BYTE5 FIELD32(0x0000ff00)
+#define MAC_CSR5_BSS_ID_MASK FIELD32(0x00ff0000)
+
+/*
+ * MAC_CSR6: Maximum frame length register.
+ */
+#define MAC_CSR6 0x3018
+#define MAC_CSR6_MAX_FRAME_UNIT FIELD32(0x00000fff)
+
+/*
+ * MAC_CSR7: Reserved
+ */
+#define MAC_CSR7 0x301c
+
+/*
+ * MAC_CSR8: SIFS/EIFS register.
+ * All units are in US.
+ */
+#define MAC_CSR8 0x3020
+#define MAC_CSR8_SIFS FIELD32(0x000000ff)
+#define MAC_CSR8_SIFS_AFTER_RX_OFDM FIELD32(0x0000ff00)
+#define MAC_CSR8_EIFS FIELD32(0xffff0000)
+
+/*
+ * MAC_CSR9: Back-Off control register.
+ * SLOT_TIME: Slot time, default is 20us for 802.11BG.
+ * CWMIN: Bit for Cwmin. default Cwmin is 31 (2^5 - 1).
+ * CWMAX: Bit for Cwmax, default Cwmax is 1023 (2^10 - 1).
+ * CW_SELECT: 1: CWmin/Cwmax select from register, 0:select from TxD.
+ */
+#define MAC_CSR9 0x3024
+#define MAC_CSR9_SLOT_TIME FIELD32(0x000000ff)
+#define MAC_CSR9_CWMIN FIELD32(0x00000f00)
+#define MAC_CSR9_CWMAX FIELD32(0x0000f000)
+#define MAC_CSR9_CW_SELECT FIELD32(0x00010000)
+
+/*
+ * MAC_CSR10: Power state configuration.
+ */
+#define MAC_CSR10 0x3028
+
+/*
+ * MAC_CSR11: Power saving transition time register.
+ * DELAY_AFTER_TBCN: Delay after Tbcn expired in units of TU.
+ * TBCN_BEFORE_WAKEUP: Number of beacon before wakeup.
+ * WAKEUP_LATENCY: In unit of TU.
+ */
+#define MAC_CSR11 0x302c
+#define MAC_CSR11_DELAY_AFTER_TBCN FIELD32(0x000000ff)
+#define MAC_CSR11_TBCN_BEFORE_WAKEUP FIELD32(0x00007f00)
+#define MAC_CSR11_AUTOWAKE FIELD32(0x00008000)
+#define MAC_CSR11_WAKEUP_LATENCY FIELD32(0x000f0000)
+
+/*
+ * MAC_CSR12: Manual power control / status register (merge CSR20 & PWRCSR1).
+ * CURRENT_STATE: 0:sleep, 1:awake.
+ * FORCE_WAKEUP: This has higher priority than PUT_TO_SLEEP.
+ * BBP_CURRENT_STATE: 0: BBP sleep, 1: BBP awake.
+ */
+#define MAC_CSR12 0x3030
+#define MAC_CSR12_CURRENT_STATE FIELD32(0x00000001)
+#define MAC_CSR12_PUT_TO_SLEEP FIELD32(0x00000002)
+#define MAC_CSR12_FORCE_WAKEUP FIELD32(0x00000004)
+#define MAC_CSR12_BBP_CURRENT_STATE FIELD32(0x00000008)
+
+/*
+ * MAC_CSR13: GPIO.
+ * MAC_CSR13_VALx: GPIO value
+ * MAC_CSR13_DIRx: GPIO direction: 0 = input; 1 = output
+ */
+#define MAC_CSR13 0x3034
+#define MAC_CSR13_VAL0 FIELD32(0x00000001)
+#define MAC_CSR13_VAL1 FIELD32(0x00000002)
+#define MAC_CSR13_VAL2 FIELD32(0x00000004)
+#define MAC_CSR13_VAL3 FIELD32(0x00000008)
+#define MAC_CSR13_VAL4 FIELD32(0x00000010)
+#define MAC_CSR13_VAL5 FIELD32(0x00000020)
+#define MAC_CSR13_VAL6 FIELD32(0x00000040)
+#define MAC_CSR13_VAL7 FIELD32(0x00000080)
+#define MAC_CSR13_DIR0 FIELD32(0x00000100)
+#define MAC_CSR13_DIR1 FIELD32(0x00000200)
+#define MAC_CSR13_DIR2 FIELD32(0x00000400)
+#define MAC_CSR13_DIR3 FIELD32(0x00000800)
+#define MAC_CSR13_DIR4 FIELD32(0x00001000)
+#define MAC_CSR13_DIR5 FIELD32(0x00002000)
+#define MAC_CSR13_DIR6 FIELD32(0x00004000)
+#define MAC_CSR13_DIR7 FIELD32(0x00008000)
+
+/*
+ * MAC_CSR14: LED control register.
+ * ON_PERIOD: On period, default 70ms.
+ * OFF_PERIOD: Off period, default 30ms.
+ * HW_LED: HW TX activity, 1: normal OFF, 0: normal ON.
+ * SW_LED: s/w LED, 1: ON, 0: OFF.
+ * HW_LED_POLARITY: 0: active low, 1: active high.
+ */
+#define MAC_CSR14 0x3038
+#define MAC_CSR14_ON_PERIOD FIELD32(0x000000ff)
+#define MAC_CSR14_OFF_PERIOD FIELD32(0x0000ff00)
+#define MAC_CSR14_HW_LED FIELD32(0x00010000)
+#define MAC_CSR14_SW_LED FIELD32(0x00020000)
+#define MAC_CSR14_HW_LED_POLARITY FIELD32(0x00040000)
+#define MAC_CSR14_SW_LED2 FIELD32(0x00080000)
+
+/*
+ * MAC_CSR15: NAV control.
+ */
+#define MAC_CSR15 0x303c
+
+/*
+ * TXRX control registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * TXRX_CSR0: TX/RX configuration register.
+ * TSF_OFFSET: Default is 24.
+ * AUTO_TX_SEQ: 1: ASIC auto replace sequence nr in outgoing frame.
+ * DISABLE_RX: Disable Rx engine.
+ * DROP_CRC: Drop CRC error.
+ * DROP_PHYSICAL: Drop physical error.
+ * DROP_CONTROL: Drop control frame.
+ * DROP_NOT_TO_ME: Drop not to me unicast frame.
+ * DROP_TO_DS: Drop fram ToDs bit is true.
+ * DROP_VERSION_ERROR: Drop version error frame.
+ * DROP_MULTICAST: Drop multicast frames.
+ * DROP_BORADCAST: Drop broadcast frames.
+ * DROP_ACK_CTS: Drop received ACK and CTS.
+ */
+#define TXRX_CSR0 0x3040
+#define TXRX_CSR0_RX_ACK_TIMEOUT FIELD32(0x000001ff)
+#define TXRX_CSR0_TSF_OFFSET FIELD32(0x00007e00)
+#define TXRX_CSR0_AUTO_TX_SEQ FIELD32(0x00008000)
+#define TXRX_CSR0_DISABLE_RX FIELD32(0x00010000)
+#define TXRX_CSR0_DROP_CRC FIELD32(0x00020000)
+#define TXRX_CSR0_DROP_PHYSICAL FIELD32(0x00040000)
+#define TXRX_CSR0_DROP_CONTROL FIELD32(0x00080000)
+#define TXRX_CSR0_DROP_NOT_TO_ME FIELD32(0x00100000)
+#define TXRX_CSR0_DROP_TO_DS FIELD32(0x00200000)
+#define TXRX_CSR0_DROP_VERSION_ERROR FIELD32(0x00400000)
+#define TXRX_CSR0_DROP_MULTICAST FIELD32(0x00800000)
+#define TXRX_CSR0_DROP_BROADCAST FIELD32(0x01000000)
+#define TXRX_CSR0_DROP_ACK_CTS FIELD32(0x02000000)
+#define TXRX_CSR0_TX_WITHOUT_WAITING FIELD32(0x04000000)
+
+/*
+ * TXRX_CSR1
+ */
+#define TXRX_CSR1 0x3044
+#define TXRX_CSR1_BBP_ID0 FIELD32(0x0000007f)
+#define TXRX_CSR1_BBP_ID0_VALID FIELD32(0x00000080)
+#define TXRX_CSR1_BBP_ID1 FIELD32(0x00007f00)
+#define TXRX_CSR1_BBP_ID1_VALID FIELD32(0x00008000)
+#define TXRX_CSR1_BBP_ID2 FIELD32(0x007f0000)
+#define TXRX_CSR1_BBP_ID2_VALID FIELD32(0x00800000)
+#define TXRX_CSR1_BBP_ID3 FIELD32(0x7f000000)
+#define TXRX_CSR1_BBP_ID3_VALID FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR2
+ */
+#define TXRX_CSR2 0x3048
+#define TXRX_CSR2_BBP_ID0 FIELD32(0x0000007f)
+#define TXRX_CSR2_BBP_ID0_VALID FIELD32(0x00000080)
+#define TXRX_CSR2_BBP_ID1 FIELD32(0x00007f00)
+#define TXRX_CSR2_BBP_ID1_VALID FIELD32(0x00008000)
+#define TXRX_CSR2_BBP_ID2 FIELD32(0x007f0000)
+#define TXRX_CSR2_BBP_ID2_VALID FIELD32(0x00800000)
+#define TXRX_CSR2_BBP_ID3 FIELD32(0x7f000000)
+#define TXRX_CSR2_BBP_ID3_VALID FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR3
+ */
+#define TXRX_CSR3 0x304c
+#define TXRX_CSR3_BBP_ID0 FIELD32(0x0000007f)
+#define TXRX_CSR3_BBP_ID0_VALID FIELD32(0x00000080)
+#define TXRX_CSR3_BBP_ID1 FIELD32(0x00007f00)
+#define TXRX_CSR3_BBP_ID1_VALID FIELD32(0x00008000)
+#define TXRX_CSR3_BBP_ID2 FIELD32(0x007f0000)
+#define TXRX_CSR3_BBP_ID2_VALID FIELD32(0x00800000)
+#define TXRX_CSR3_BBP_ID3 FIELD32(0x7f000000)
+#define TXRX_CSR3_BBP_ID3_VALID FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR4: Auto-Responder/Tx-retry register.
+ * AUTORESPOND_PREAMBLE: 0:long, 1:short preamble.
+ * OFDM_TX_RATE_DOWN: 1:enable.
+ * OFDM_TX_RATE_STEP: 0:1-step, 1: 2-step, 2:3-step, 3:4-step.
+ * OFDM_TX_FALLBACK_CCK: 0: Fallback to OFDM 6M only, 1: Fallback to CCK 1M,2M.
+ */
+#define TXRX_CSR4 0x3050
+#define TXRX_CSR4_TX_ACK_TIMEOUT FIELD32(0x000000ff)
+#define TXRX_CSR4_CNTL_ACK_POLICY FIELD32(0x00000700)
+#define TXRX_CSR4_ACK_CTS_PSM FIELD32(0x00010000)
+#define TXRX_CSR4_AUTORESPOND_ENABLE FIELD32(0x00020000)
+#define TXRX_CSR4_AUTORESPOND_PREAMBLE FIELD32(0x00040000)
+#define TXRX_CSR4_OFDM_TX_RATE_DOWN FIELD32(0x00080000)
+#define TXRX_CSR4_OFDM_TX_RATE_STEP FIELD32(0x00300000)
+#define TXRX_CSR4_OFDM_TX_FALLBACK_CCK FIELD32(0x00400000)
+#define TXRX_CSR4_LONG_RETRY_LIMIT FIELD32(0x0f000000)
+#define TXRX_CSR4_SHORT_RETRY_LIMIT FIELD32(0xf0000000)
+
+/*
+ * TXRX_CSR5
+ */
+#define TXRX_CSR5 0x3054
+
+/*
+ * TXRX_CSR6: ACK/CTS payload consumed time
+ */
+#define TXRX_CSR6 0x3058
+
+/*
+ * TXRX_CSR7: OFDM ACK/CTS payload consumed time for 6/9/12/18 mbps.
+ */
+#define TXRX_CSR7 0x305c
+#define TXRX_CSR7_ACK_CTS_6MBS FIELD32(0x000000ff)
+#define TXRX_CSR7_ACK_CTS_9MBS FIELD32(0x0000ff00)
+#define TXRX_CSR7_ACK_CTS_12MBS FIELD32(0x00ff0000)
+#define TXRX_CSR7_ACK_CTS_18MBS FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR8: OFDM ACK/CTS payload consumed time for 24/36/48/54 mbps.
+ */
+#define TXRX_CSR8 0x3060
+#define TXRX_CSR8_ACK_CTS_24MBS FIELD32(0x000000ff)
+#define TXRX_CSR8_ACK_CTS_36MBS FIELD32(0x0000ff00)
+#define TXRX_CSR8_ACK_CTS_48MBS FIELD32(0x00ff0000)
+#define TXRX_CSR8_ACK_CTS_54MBS FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR9: Synchronization control register.
+ * BEACON_INTERVAL: In unit of 1/16 TU.
+ * TSF_TICKING: Enable TSF auto counting.
+ * TSF_SYNC: Tsf sync, 0: disable, 1: infra, 2: ad-hoc/master mode.
+ * BEACON_GEN: Enable beacon generator.
+ */
+#define TXRX_CSR9 0x3064
+#define TXRX_CSR9_BEACON_INTERVAL FIELD32(0x0000ffff)
+#define TXRX_CSR9_TSF_TICKING FIELD32(0x00010000)
+#define TXRX_CSR9_TSF_SYNC FIELD32(0x00060000)
+#define TXRX_CSR9_TBTT_ENABLE FIELD32(0x00080000)
+#define TXRX_CSR9_BEACON_GEN FIELD32(0x00100000)
+#define TXRX_CSR9_TIMESTAMP_COMPENSATE FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR10: BEACON alignment.
+ */
+#define TXRX_CSR10 0x3068
+
+/*
+ * TXRX_CSR11: AES mask.
+ */
+#define TXRX_CSR11 0x306c
+
+/*
+ * TXRX_CSR12: TSF low 32.
+ */
+#define TXRX_CSR12 0x3070
+#define TXRX_CSR12_LOW_TSFTIMER FIELD32(0xffffffff)
+
+/*
+ * TXRX_CSR13: TSF high 32.
+ */
+#define TXRX_CSR13 0x3074
+#define TXRX_CSR13_HIGH_TSFTIMER FIELD32(0xffffffff)
+
+/*
+ * TXRX_CSR14: TBTT timer.
+ */
+#define TXRX_CSR14 0x3078
+
+/*
+ * TXRX_CSR15: TKIP MIC priority byte "AND" mask.
+ */
+#define TXRX_CSR15 0x307c
+
+/*
+ * PHY control registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * PHY_CSR0: RF/PS control.
+ */
+#define PHY_CSR0 0x3080
+#define PHY_CSR0_PA_PE_BG FIELD32(0x00010000)
+#define PHY_CSR0_PA_PE_A FIELD32(0x00020000)
+
+/*
+ * PHY_CSR1
+ */
+#define PHY_CSR1 0x3084
+#define PHY_CSR1_RF_RPI FIELD32(0x00010000)
+
+/*
+ * PHY_CSR2: Pre-TX BBP control.
+ */
+#define PHY_CSR2 0x3088
+
+/*
+ * PHY_CSR3: BBP serial control register.
+ * VALUE: Register value to program into BBP.
+ * REG_NUM: Selected BBP register.
+ * READ_CONTROL: 0: Write BBP, 1: Read BBP.
+ * BUSY: 1: ASIC is busy execute BBP programming.
+ */
+#define PHY_CSR3 0x308c
+#define PHY_CSR3_VALUE FIELD32(0x000000ff)
+#define PHY_CSR3_REGNUM FIELD32(0x00007f00)
+#define PHY_CSR3_READ_CONTROL FIELD32(0x00008000)
+#define PHY_CSR3_BUSY FIELD32(0x00010000)
+
+/*
+ * PHY_CSR4: RF serial control register
+ * VALUE: Register value (include register id) serial out to RF/IF chip.
+ * NUMBER_OF_BITS: Number of bits used in RFRegValue (I:20, RFMD:22).
+ * IF_SELECT: 1: select IF to program, 0: select RF to program.
+ * PLL_LD: RF PLL_LD status.
+ * BUSY: 1: ASIC is busy execute RF programming.
+ */
+#define PHY_CSR4 0x3090
+#define PHY_CSR4_VALUE FIELD32(0x00ffffff)
+#define PHY_CSR4_NUMBER_OF_BITS FIELD32(0x1f000000)
+#define PHY_CSR4_IF_SELECT FIELD32(0x20000000)
+#define PHY_CSR4_PLL_LD FIELD32(0x40000000)
+#define PHY_CSR4_BUSY FIELD32(0x80000000)
+
+/*
+ * PHY_CSR5: RX to TX signal switch timing control.
+ */
+#define PHY_CSR5 0x3094
+#define PHY_CSR5_IQ_FLIP FIELD32(0x00000004)
+
+/*
+ * PHY_CSR6: TX to RX signal timing control.
+ */
+#define PHY_CSR6 0x3098
+#define PHY_CSR6_IQ_FLIP FIELD32(0x00000004)
+
+/*
+ * PHY_CSR7: TX DAC switching timing control.
+ */
+#define PHY_CSR7 0x309c
+
+/*
+ * Security control register.
+ */
+
+/*
+ * SEC_CSR0: Shared key table control.
+ */
+#define SEC_CSR0 0x30a0
+#define SEC_CSR0_BSS0_KEY0_VALID FIELD32(0x00000001)
+#define SEC_CSR0_BSS0_KEY1_VALID FIELD32(0x00000002)
+#define SEC_CSR0_BSS0_KEY2_VALID FIELD32(0x00000004)
+#define SEC_CSR0_BSS0_KEY3_VALID FIELD32(0x00000008)
+#define SEC_CSR0_BSS1_KEY0_VALID FIELD32(0x00000010)
+#define SEC_CSR0_BSS1_KEY1_VALID FIELD32(0x00000020)
+#define SEC_CSR0_BSS1_KEY2_VALID FIELD32(0x00000040)
+#define SEC_CSR0_BSS1_KEY3_VALID FIELD32(0x00000080)
+#define SEC_CSR0_BSS2_KEY0_VALID FIELD32(0x00000100)
+#define SEC_CSR0_BSS2_KEY1_VALID FIELD32(0x00000200)
+#define SEC_CSR0_BSS2_KEY2_VALID FIELD32(0x00000400)
+#define SEC_CSR0_BSS2_KEY3_VALID FIELD32(0x00000800)
+#define SEC_CSR0_BSS3_KEY0_VALID FIELD32(0x00001000)
+#define SEC_CSR0_BSS3_KEY1_VALID FIELD32(0x00002000)
+#define SEC_CSR0_BSS3_KEY2_VALID FIELD32(0x00004000)
+#define SEC_CSR0_BSS3_KEY3_VALID FIELD32(0x00008000)
+
+/*
+ * SEC_CSR1: Shared key table security mode register.
+ */
+#define SEC_CSR1 0x30a4
+#define SEC_CSR1_BSS0_KEY0_CIPHER_ALG FIELD32(0x00000007)
+#define SEC_CSR1_BSS0_KEY1_CIPHER_ALG FIELD32(0x00000070)
+#define SEC_CSR1_BSS0_KEY2_CIPHER_ALG FIELD32(0x00000700)
+#define SEC_CSR1_BSS0_KEY3_CIPHER_ALG FIELD32(0x00007000)
+#define SEC_CSR1_BSS1_KEY0_CIPHER_ALG FIELD32(0x00070000)
+#define SEC_CSR1_BSS1_KEY1_CIPHER_ALG FIELD32(0x00700000)
+#define SEC_CSR1_BSS1_KEY2_CIPHER_ALG FIELD32(0x07000000)
+#define SEC_CSR1_BSS1_KEY3_CIPHER_ALG FIELD32(0x70000000)
+
+/*
+ * Pairwise key table valid bitmap registers.
+ * SEC_CSR2: pairwise key table valid bitmap 0.
+ * SEC_CSR3: pairwise key table valid bitmap 1.
+ */
+#define SEC_CSR2 0x30a8
+#define SEC_CSR3 0x30ac
+
+/*
+ * SEC_CSR4: Pairwise key table lookup control.
+ */
+#define SEC_CSR4 0x30b0
+#define SEC_CSR4_ENABLE_BSS0 FIELD32(0x00000001)
+#define SEC_CSR4_ENABLE_BSS1 FIELD32(0x00000002)
+#define SEC_CSR4_ENABLE_BSS2 FIELD32(0x00000004)
+#define SEC_CSR4_ENABLE_BSS3 FIELD32(0x00000008)
+
+/*
+ * SEC_CSR5: shared key table security mode register.
+ */
+#define SEC_CSR5 0x30b4
+#define SEC_CSR5_BSS2_KEY0_CIPHER_ALG FIELD32(0x00000007)
+#define SEC_CSR5_BSS2_KEY1_CIPHER_ALG FIELD32(0x00000070)
+#define SEC_CSR5_BSS2_KEY2_CIPHER_ALG FIELD32(0x00000700)
+#define SEC_CSR5_BSS2_KEY3_CIPHER_ALG FIELD32(0x00007000)
+#define SEC_CSR5_BSS3_KEY0_CIPHER_ALG FIELD32(0x00070000)
+#define SEC_CSR5_BSS3_KEY1_CIPHER_ALG FIELD32(0x00700000)
+#define SEC_CSR5_BSS3_KEY2_CIPHER_ALG FIELD32(0x07000000)
+#define SEC_CSR5_BSS3_KEY3_CIPHER_ALG FIELD32(0x70000000)
+
+/*
+ * STA control registers.
+ */
+
+/*
+ * STA_CSR0: RX PLCP error count & RX FCS error count.
+ */
+#define STA_CSR0 0x30c0
+#define STA_CSR0_FCS_ERROR FIELD32(0x0000ffff)
+#define STA_CSR0_PLCP_ERROR FIELD32(0xffff0000)
+
+/*
+ * STA_CSR1: RX False CCA count & RX LONG frame count.
+ */
+#define STA_CSR1 0x30c4
+#define STA_CSR1_PHYSICAL_ERROR FIELD32(0x0000ffff)
+#define STA_CSR1_FALSE_CCA_ERROR FIELD32(0xffff0000)
+
+/*
+ * STA_CSR2: TX Beacon count and RX FIFO overflow count.
+ */
+#define STA_CSR2 0x30c8
+#define STA_CSR2_RX_FIFO_OVERFLOW_COUNT FIELD32(0x0000ffff)
+#define STA_CSR2_RX_OVERFLOW_COUNT FIELD32(0xffff0000)
+
+/*
+ * STA_CSR3: TX Beacon count.
+ */
+#define STA_CSR3 0x30cc
+#define STA_CSR3_TX_BEACON_COUNT FIELD32(0x0000ffff)
+
+/*
+ * STA_CSR4: TX Retry count.
+ */
+#define STA_CSR4 0x30d0
+#define STA_CSR4_TX_NO_RETRY_COUNT FIELD32(0x0000ffff)
+#define STA_CSR4_TX_ONE_RETRY_COUNT FIELD32(0xffff0000)
+
+/*
+ * STA_CSR5: TX Retry count.
+ */
+#define STA_CSR5 0x30d4
+#define STA_CSR4_TX_MULTI_RETRY_COUNT FIELD32(0x0000ffff)
+#define STA_CSR4_TX_RETRY_FAIL_COUNT FIELD32(0xffff0000)
+
+/*
+ * QOS control registers.
+ */
+
+/*
+ * QOS_CSR1: TXOP holder MAC address register.
+ */
+#define QOS_CSR1 0x30e4
+#define QOS_CSR1_BYTE4 FIELD32(0x000000ff)
+#define QOS_CSR1_BYTE5 FIELD32(0x0000ff00)
+
+/*
+ * QOS_CSR2: TXOP holder timeout register.
+ */
+#define QOS_CSR2 0x30e8
+
+/*
+ * RX QOS-CFPOLL MAC address register.
+ * QOS_CSR3: RX QOS-CFPOLL MAC address 0.
+ * QOS_CSR4: RX QOS-CFPOLL MAC address 1.
+ */
+#define QOS_CSR3 0x30ec
+#define QOS_CSR4 0x30f0
+
+/*
+ * QOS_CSR5: "QosControl" field of the RX QOS-CFPOLL.
+ */
+#define QOS_CSR5 0x30f4
+
+/*
+ * WMM Scheduler Register
+ */
+
+/*
+ * AIFSN_CSR: AIFSN for each EDCA AC.
+ * AIFSN0: For AC_VO.
+ * AIFSN1: For AC_VI.
+ * AIFSN2: For AC_BE.
+ * AIFSN3: For AC_BK.
+ */
+#define AIFSN_CSR 0x0400
+#define AIFSN_CSR_AIFSN0 FIELD32(0x0000000f)
+#define AIFSN_CSR_AIFSN1 FIELD32(0x000000f0)
+#define AIFSN_CSR_AIFSN2 FIELD32(0x00000f00)
+#define AIFSN_CSR_AIFSN3 FIELD32(0x0000f000)
+
+/*
+ * CWMIN_CSR: CWmin for each EDCA AC.
+ * CWMIN0: For AC_VO.
+ * CWMIN1: For AC_VI.
+ * CWMIN2: For AC_BE.
+ * CWMIN3: For AC_BK.
+ */
+#define CWMIN_CSR 0x0404
+#define CWMIN_CSR_CWMIN0 FIELD32(0x0000000f)
+#define CWMIN_CSR_CWMIN1 FIELD32(0x000000f0)
+#define CWMIN_CSR_CWMIN2 FIELD32(0x00000f00)
+#define CWMIN_CSR_CWMIN3 FIELD32(0x0000f000)
+
+/*
+ * CWMAX_CSR: CWmax for each EDCA AC.
+ * CWMAX0: For AC_VO.
+ * CWMAX1: For AC_VI.
+ * CWMAX2: For AC_BE.
+ * CWMAX3: For AC_BK.
+ */
+#define CWMAX_CSR 0x0408
+#define CWMAX_CSR_CWMAX0 FIELD32(0x0000000f)
+#define CWMAX_CSR_CWMAX1 FIELD32(0x000000f0)
+#define CWMAX_CSR_CWMAX2 FIELD32(0x00000f00)
+#define CWMAX_CSR_CWMAX3 FIELD32(0x0000f000)
+
+/*
+ * AC_TXOP_CSR0: AC_VO/AC_VI TXOP register.
+ * AC0_TX_OP: For AC_VO, in unit of 32us.
+ * AC1_TX_OP: For AC_VI, in unit of 32us.
+ */
+#define AC_TXOP_CSR0 0x040c
+#define AC_TXOP_CSR0_AC0_TX_OP FIELD32(0x0000ffff)
+#define AC_TXOP_CSR0_AC1_TX_OP FIELD32(0xffff0000)
+
+/*
+ * AC_TXOP_CSR1: AC_BE/AC_BK TXOP register.
+ * AC2_TX_OP: For AC_BE, in unit of 32us.
+ * AC3_TX_OP: For AC_BK, in unit of 32us.
+ */
+#define AC_TXOP_CSR1 0x0410
+#define AC_TXOP_CSR1_AC2_TX_OP FIELD32(0x0000ffff)
+#define AC_TXOP_CSR1_AC3_TX_OP FIELD32(0xffff0000)
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * R2
+ */
+#define BBP_R2_BG_MODE FIELD8(0x20)
+
+/*
+ * R3
+ */
+#define BBP_R3_SMART_MODE FIELD8(0x01)
+
+/*
+ * R4: RX antenna control
+ * FRAME_END: 1 - DPDT, 0 - SPDT (Only valid for 802.11G, RF2527 & RF2529)
+ */
+
+/*
+ * ANTENNA_CONTROL semantics (guessed):
+ * 0x1: Software controlled antenna switching (fixed or SW diversity)
+ * 0x2: Hardware diversity.
+ */
+#define BBP_R4_RX_ANTENNA_CONTROL FIELD8(0x03)
+#define BBP_R4_RX_FRAME_END FIELD8(0x20)
+
+/*
+ * R77
+ */
+#define BBP_R77_RX_ANTENNA FIELD8(0x03)
+
+/*
+ * RF registers
+ */
+
+/*
+ * RF 3
+ */
+#define RF3_TXPOWER FIELD32(0x00003e00)
+
+/*
+ * RF 4
+ */
+#define RF4_FREQ_OFFSET FIELD32(0x0003f000)
+
+/*
+ * EEPROM content.
+ * The wordsize of the EEPROM is 16 bits.
+ */
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_0 0x0002
+#define EEPROM_MAC_ADDR_BYTE0 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR1 0x0003
+#define EEPROM_MAC_ADDR_BYTE2 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3 FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_2 0x0004
+#define EEPROM_MAC_ADDR_BYTE4 FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5 FIELD16(0xff00)
+
+/*
+ * EEPROM antenna.
+ * ANTENNA_NUM: Number of antennas.
+ * TX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * FRAME_TYPE: 0: DPDT , 1: SPDT , noted this bit is valid for g only.
+ * DYN_TXAGC: Dynamic TX AGC control.
+ * HARDWARE_RADIO: 1: Hardware controlled radio. Read GPIO0.
+ * RF_TYPE: Rf_type of this adapter.
+ */
+#define EEPROM_ANTENNA 0x0010
+#define EEPROM_ANTENNA_NUM FIELD16(0x0003)
+#define EEPROM_ANTENNA_TX_DEFAULT FIELD16(0x000c)
+#define EEPROM_ANTENNA_RX_DEFAULT FIELD16(0x0030)
+#define EEPROM_ANTENNA_FRAME_TYPE FIELD16(0x0040)
+#define EEPROM_ANTENNA_DYN_TXAGC FIELD16(0x0200)
+#define EEPROM_ANTENNA_HARDWARE_RADIO FIELD16(0x0400)
+#define EEPROM_ANTENNA_RF_TYPE FIELD16(0xf800)
+
+/*
+ * EEPROM NIC config.
+ * EXTERNAL_LNA: External LNA.
+ */
+#define EEPROM_NIC 0x0011
+#define EEPROM_NIC_EXTERNAL_LNA FIELD16(0x0010)
+
+/*
+ * EEPROM geography.
+ * GEO_A: Default geographical setting for 5GHz band
+ * GEO: Default geographical setting.
+ */
+#define EEPROM_GEOGRAPHY 0x0012
+#define EEPROM_GEOGRAPHY_GEO_A FIELD16(0x00ff)
+#define EEPROM_GEOGRAPHY_GEO FIELD16(0xff00)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_START 0x0013
+#define EEPROM_BBP_SIZE 16
+#define EEPROM_BBP_VALUE FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER 802.11G
+ */
+#define EEPROM_TXPOWER_G_START 0x0023
+#define EEPROM_TXPOWER_G_SIZE 7
+#define EEPROM_TXPOWER_G_1 FIELD16(0x00ff)
+#define EEPROM_TXPOWER_G_2 FIELD16(0xff00)
+
+/*
+ * EEPROM Frequency
+ */
+#define EEPROM_FREQ 0x002f
+#define EEPROM_FREQ_OFFSET FIELD16(0x00ff)
+#define EEPROM_FREQ_SEQ_MASK FIELD16(0xff00)
+#define EEPROM_FREQ_SEQ FIELD16(0x0300)
+
+/*
+ * EEPROM LED.
+ * POLARITY_RDY_G: Polarity RDY_G setting.
+ * POLARITY_RDY_A: Polarity RDY_A setting.
+ * POLARITY_ACT: Polarity ACT setting.
+ * POLARITY_GPIO_0: Polarity GPIO0 setting.
+ * POLARITY_GPIO_1: Polarity GPIO1 setting.
+ * POLARITY_GPIO_2: Polarity GPIO2 setting.
+ * POLARITY_GPIO_3: Polarity GPIO3 setting.
+ * POLARITY_GPIO_4: Polarity GPIO4 setting.
+ * LED_MODE: Led mode.
+ */
+#define EEPROM_LED 0x0030
+#define EEPROM_LED_POLARITY_RDY_G FIELD16(0x0001)
+#define EEPROM_LED_POLARITY_RDY_A FIELD16(0x0002)
+#define EEPROM_LED_POLARITY_ACT FIELD16(0x0004)
+#define EEPROM_LED_POLARITY_GPIO_0 FIELD16(0x0008)
+#define EEPROM_LED_POLARITY_GPIO_1 FIELD16(0x0010)
+#define EEPROM_LED_POLARITY_GPIO_2 FIELD16(0x0020)
+#define EEPROM_LED_POLARITY_GPIO_3 FIELD16(0x0040)
+#define EEPROM_LED_POLARITY_GPIO_4 FIELD16(0x0080)
+#define EEPROM_LED_LED_MODE FIELD16(0x1f00)
+
+/*
+ * EEPROM TXPOWER 802.11A
+ */
+#define EEPROM_TXPOWER_A_START 0x0031
+#define EEPROM_TXPOWER_A_SIZE 12
+#define EEPROM_TXPOWER_A_1 FIELD16(0x00ff)
+#define EEPROM_TXPOWER_A_2 FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI offset 802.11BG
+ */
+#define EEPROM_RSSI_OFFSET_BG 0x004d
+#define EEPROM_RSSI_OFFSET_BG_1 FIELD16(0x00ff)
+#define EEPROM_RSSI_OFFSET_BG_2 FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI offset 802.11A
+ */
+#define EEPROM_RSSI_OFFSET_A 0x004e
+#define EEPROM_RSSI_OFFSET_A_1 FIELD16(0x00ff)
+#define EEPROM_RSSI_OFFSET_A_2 FIELD16(0xff00)
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE ( 6 * sizeof(__le32) )
+#define TXINFO_SIZE ( 6 * sizeof(__le32) )
+#define RXD_DESC_SIZE ( 6 * sizeof(__le32) )
+
+/*
+ * TX descriptor format for TX, PRIO and Beacon Ring.
+ */
+
+/*
+ * Word0
+ * BURST: Next frame belongs to same "burst" event.
+ * TKIP_MIC: ASIC appends TKIP MIC if TKIP is used.
+ * KEY_TABLE: Use per-client pairwise KEY table.
+ * KEY_INDEX:
+ * Key index (0~31) to the pairwise KEY table.
+ * 0~3 to shared KEY table 0 (BSS0).
+ * 4~7 to shared KEY table 1 (BSS1).
+ * 8~11 to shared KEY table 2 (BSS2).
+ * 12~15 to shared KEY table 3 (BSS3).
+ * BURST2: For backward compatibility, set to same value as BURST.
+ */
+#define TXD_W0_BURST FIELD32(0x00000001)
+#define TXD_W0_VALID FIELD32(0x00000002)
+#define TXD_W0_MORE_FRAG FIELD32(0x00000004)
+#define TXD_W0_ACK FIELD32(0x00000008)
+#define TXD_W0_TIMESTAMP FIELD32(0x00000010)
+#define TXD_W0_OFDM FIELD32(0x00000020)
+#define TXD_W0_IFS FIELD32(0x00000040)
+#define TXD_W0_RETRY_MODE FIELD32(0x00000080)
+#define TXD_W0_TKIP_MIC FIELD32(0x00000100)
+#define TXD_W0_KEY_TABLE FIELD32(0x00000200)
+#define TXD_W0_KEY_INDEX FIELD32(0x0000fc00)
+#define TXD_W0_DATABYTE_COUNT FIELD32(0x0fff0000)
+#define TXD_W0_BURST2 FIELD32(0x10000000)
+#define TXD_W0_CIPHER_ALG FIELD32(0xe0000000)
+
+/*
+ * Word1
+ * HOST_Q_ID: EDCA/HCCA queue ID.
+ * HW_SEQUENCE: MAC overwrites the frame sequence number.
+ * BUFFER_COUNT: Number of buffers in this TXD.
+ */
+#define TXD_W1_HOST_Q_ID FIELD32(0x0000000f)
+#define TXD_W1_AIFSN FIELD32(0x000000f0)
+#define TXD_W1_CWMIN FIELD32(0x00000f00)
+#define TXD_W1_CWMAX FIELD32(0x0000f000)
+#define TXD_W1_IV_OFFSET FIELD32(0x003f0000)
+#define TXD_W1_HW_SEQUENCE FIELD32(0x10000000)
+#define TXD_W1_BUFFER_COUNT FIELD32(0xe0000000)
+
+/*
+ * Word2: PLCP information
+ */
+#define TXD_W2_PLCP_SIGNAL FIELD32(0x000000ff)
+#define TXD_W2_PLCP_SERVICE FIELD32(0x0000ff00)
+#define TXD_W2_PLCP_LENGTH_LOW FIELD32(0x00ff0000)
+#define TXD_W2_PLCP_LENGTH_HIGH FIELD32(0xff000000)
+
+/*
+ * Word3
+ */
+#define TXD_W3_IV FIELD32(0xffffffff)
+
+/*
+ * Word4
+ */
+#define TXD_W4_EIV FIELD32(0xffffffff)
+
+/*
+ * Word5
+ * FRAME_OFFSET: Frame start offset inside ASIC TXFIFO (after TXINFO field).
+ * PACKET_ID: Driver assigned packet ID to categorize TXResult in interrupt.
+ * WAITING_DMA_DONE_INT: TXD been filled with data
+ * and waiting for TxDoneISR housekeeping.
+ */
+#define TXD_W5_FRAME_OFFSET FIELD32(0x000000ff)
+#define TXD_W5_PACKET_ID FIELD32(0x0000ff00)
+#define TXD_W5_TX_POWER FIELD32(0x00ff0000)
+#define TXD_W5_WAITING_DMA_DONE_INT FIELD32(0x01000000)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ * CIPHER_ERROR: 1:ICV error, 2:MIC error, 3:invalid key.
+ * KEY_INDEX: Decryption key actually used.
+ */
+#define RXD_W0_OWNER_NIC FIELD32(0x00000001)
+#define RXD_W0_DROP FIELD32(0x00000002)
+#define RXD_W0_UNICAST_TO_ME FIELD32(0x00000004)
+#define RXD_W0_MULTICAST FIELD32(0x00000008)
+#define RXD_W0_BROADCAST FIELD32(0x00000010)
+#define RXD_W0_MY_BSS FIELD32(0x00000020)
+#define RXD_W0_CRC_ERROR FIELD32(0x00000040)
+#define RXD_W0_OFDM FIELD32(0x00000080)
+#define RXD_W0_CIPHER_ERROR FIELD32(0x00000300)
+#define RXD_W0_KEY_INDEX FIELD32(0x0000fc00)
+#define RXD_W0_DATABYTE_COUNT FIELD32(0x0fff0000)
+#define RXD_W0_CIPHER_ALG FIELD32(0xe0000000)
+
+/*
+ * WORD1
+ * SIGNAL: RX raw data rate reported by BBP.
+ * RSSI: RSSI reported by BBP.
+ */
+#define RXD_W1_SIGNAL FIELD32(0x000000ff)
+#define RXD_W1_RSSI_AGC FIELD32(0x00001f00)
+#define RXD_W1_RSSI_LNA FIELD32(0x00006000)
+#define RXD_W1_FRAME_OFFSET FIELD32(0x7f000000)
+
+/*
+ * Word2
+ * IV: Received IV of originally encrypted.
+ */
+#define RXD_W2_IV FIELD32(0xffffffff)
+
+/*
+ * Word3
+ * EIV: Received EIV of originally encrypted.
+ */
+#define RXD_W3_EIV FIELD32(0xffffffff)
+
+/*
+ * Word4
+ * ICV: Received ICV of originally encrypted.
+ * NOTE: This is a guess, the official definition is "reserved"
+ */
+#define RXD_W4_ICV FIELD32(0xffffffff)
+
+/*
+ * the above 20-byte is called RXINFO and will be DMAed to MAC RX block
+ * and passed to the HOST driver.
+ * The following fields are for DMA block and HOST usage only.
+ * Can't be touched by ASIC MAC block.
+ */
+
+/*
+ * Word5
+ */
+#define RXD_W5_RESERVED FIELD32(0xffffffff)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ */
+#define MIN_TXPOWER 0
+#define MAX_TXPOWER 31
+#define DEFAULT_TXPOWER 24
+
+#define TXPOWER_FROM_DEV(__txpower) \
+ (((u8)(__txpower)) > MAX_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+#define TXPOWER_TO_DEV(__txpower) \
+ clamp_t(u8, __txpower, MIN_TXPOWER, MAX_TXPOWER)
+
+#endif /* RT73USB_H */