summaryrefslogtreecommitdiffstats
path: root/include/linux/mmzone.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/mmzone.h')
-rw-r--r--include/linux/mmzone.h2067
1 files changed, 2067 insertions, 0 deletions
diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h
new file mode 100644
index 000000000..f43a1cdcc
--- /dev/null
+++ b/include/linux/mmzone.h
@@ -0,0 +1,2067 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _LINUX_MMZONE_H
+#define _LINUX_MMZONE_H
+
+#ifndef __ASSEMBLY__
+#ifndef __GENERATING_BOUNDS_H
+
+#include <linux/spinlock.h>
+#include <linux/list.h>
+#include <linux/list_nulls.h>
+#include <linux/wait.h>
+#include <linux/bitops.h>
+#include <linux/cache.h>
+#include <linux/threads.h>
+#include <linux/numa.h>
+#include <linux/init.h>
+#include <linux/seqlock.h>
+#include <linux/nodemask.h>
+#include <linux/pageblock-flags.h>
+#include <linux/page-flags-layout.h>
+#include <linux/atomic.h>
+#include <linux/mm_types.h>
+#include <linux/page-flags.h>
+#include <linux/local_lock.h>
+#include <asm/page.h>
+
+/* Free memory management - zoned buddy allocator. */
+#ifndef CONFIG_ARCH_FORCE_MAX_ORDER
+#define MAX_ORDER 10
+#else
+#define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
+#endif
+#define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
+
+#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
+
+/*
+ * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
+ * costly to service. That is between allocation orders which should
+ * coalesce naturally under reasonable reclaim pressure and those which
+ * will not.
+ */
+#define PAGE_ALLOC_COSTLY_ORDER 3
+
+enum migratetype {
+ MIGRATE_UNMOVABLE,
+ MIGRATE_MOVABLE,
+ MIGRATE_RECLAIMABLE,
+ MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
+ MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
+#ifdef CONFIG_CMA
+ /*
+ * MIGRATE_CMA migration type is designed to mimic the way
+ * ZONE_MOVABLE works. Only movable pages can be allocated
+ * from MIGRATE_CMA pageblocks and page allocator never
+ * implicitly change migration type of MIGRATE_CMA pageblock.
+ *
+ * The way to use it is to change migratetype of a range of
+ * pageblocks to MIGRATE_CMA which can be done by
+ * __free_pageblock_cma() function.
+ */
+ MIGRATE_CMA,
+#endif
+#ifdef CONFIG_MEMORY_ISOLATION
+ MIGRATE_ISOLATE, /* can't allocate from here */
+#endif
+ MIGRATE_TYPES
+};
+
+/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
+extern const char * const migratetype_names[MIGRATE_TYPES];
+
+#ifdef CONFIG_CMA
+# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
+# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
+#else
+# define is_migrate_cma(migratetype) false
+# define is_migrate_cma_page(_page) false
+#endif
+
+static inline bool is_migrate_movable(int mt)
+{
+ return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
+}
+
+/*
+ * Check whether a migratetype can be merged with another migratetype.
+ *
+ * It is only mergeable when it can fall back to other migratetypes for
+ * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
+ */
+static inline bool migratetype_is_mergeable(int mt)
+{
+ return mt < MIGRATE_PCPTYPES;
+}
+
+#define for_each_migratetype_order(order, type) \
+ for (order = 0; order <= MAX_ORDER; order++) \
+ for (type = 0; type < MIGRATE_TYPES; type++)
+
+extern int page_group_by_mobility_disabled;
+
+#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
+
+#define get_pageblock_migratetype(page) \
+ get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
+
+#define folio_migratetype(folio) \
+ get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
+ MIGRATETYPE_MASK)
+struct free_area {
+ struct list_head free_list[MIGRATE_TYPES];
+ unsigned long nr_free;
+};
+
+struct pglist_data;
+
+#ifdef CONFIG_NUMA
+enum numa_stat_item {
+ NUMA_HIT, /* allocated in intended node */
+ NUMA_MISS, /* allocated in non intended node */
+ NUMA_FOREIGN, /* was intended here, hit elsewhere */
+ NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
+ NUMA_LOCAL, /* allocation from local node */
+ NUMA_OTHER, /* allocation from other node */
+ NR_VM_NUMA_EVENT_ITEMS
+};
+#else
+#define NR_VM_NUMA_EVENT_ITEMS 0
+#endif
+
+enum zone_stat_item {
+ /* First 128 byte cacheline (assuming 64 bit words) */
+ NR_FREE_PAGES,
+ NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
+ NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
+ NR_ZONE_ACTIVE_ANON,
+ NR_ZONE_INACTIVE_FILE,
+ NR_ZONE_ACTIVE_FILE,
+ NR_ZONE_UNEVICTABLE,
+ NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
+ NR_MLOCK, /* mlock()ed pages found and moved off LRU */
+ /* Second 128 byte cacheline */
+ NR_BOUNCE,
+#if IS_ENABLED(CONFIG_ZSMALLOC)
+ NR_ZSPAGES, /* allocated in zsmalloc */
+#endif
+ NR_FREE_CMA_PAGES,
+#ifdef CONFIG_UNACCEPTED_MEMORY
+ NR_UNACCEPTED,
+#endif
+ NR_VM_ZONE_STAT_ITEMS };
+
+enum node_stat_item {
+ NR_LRU_BASE,
+ NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
+ NR_ACTIVE_ANON, /* " " " " " */
+ NR_INACTIVE_FILE, /* " " " " " */
+ NR_ACTIVE_FILE, /* " " " " " */
+ NR_UNEVICTABLE, /* " " " " " */
+ NR_SLAB_RECLAIMABLE_B,
+ NR_SLAB_UNRECLAIMABLE_B,
+ NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
+ NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
+ WORKINGSET_NODES,
+ WORKINGSET_REFAULT_BASE,
+ WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
+ WORKINGSET_REFAULT_FILE,
+ WORKINGSET_ACTIVATE_BASE,
+ WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
+ WORKINGSET_ACTIVATE_FILE,
+ WORKINGSET_RESTORE_BASE,
+ WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
+ WORKINGSET_RESTORE_FILE,
+ WORKINGSET_NODERECLAIM,
+ NR_ANON_MAPPED, /* Mapped anonymous pages */
+ NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
+ only modified from process context */
+ NR_FILE_PAGES,
+ NR_FILE_DIRTY,
+ NR_WRITEBACK,
+ NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
+ NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
+ NR_SHMEM_THPS,
+ NR_SHMEM_PMDMAPPED,
+ NR_FILE_THPS,
+ NR_FILE_PMDMAPPED,
+ NR_ANON_THPS,
+ NR_VMSCAN_WRITE,
+ NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
+ NR_DIRTIED, /* page dirtyings since bootup */
+ NR_WRITTEN, /* page writings since bootup */
+ NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
+ NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
+ NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
+ NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
+ NR_KERNEL_STACK_KB, /* measured in KiB */
+#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
+ NR_KERNEL_SCS_KB, /* measured in KiB */
+#endif
+ NR_PAGETABLE, /* used for pagetables */
+ NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
+#ifdef CONFIG_SWAP
+ NR_SWAPCACHE,
+#endif
+#ifdef CONFIG_NUMA_BALANCING
+ PGPROMOTE_SUCCESS, /* promote successfully */
+ PGPROMOTE_CANDIDATE, /* candidate pages to promote */
+#endif
+ NR_VM_NODE_STAT_ITEMS
+};
+
+/*
+ * Returns true if the item should be printed in THPs (/proc/vmstat
+ * currently prints number of anon, file and shmem THPs. But the item
+ * is charged in pages).
+ */
+static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
+{
+ if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
+ return false;
+
+ return item == NR_ANON_THPS ||
+ item == NR_FILE_THPS ||
+ item == NR_SHMEM_THPS ||
+ item == NR_SHMEM_PMDMAPPED ||
+ item == NR_FILE_PMDMAPPED;
+}
+
+/*
+ * Returns true if the value is measured in bytes (most vmstat values are
+ * measured in pages). This defines the API part, the internal representation
+ * might be different.
+ */
+static __always_inline bool vmstat_item_in_bytes(int idx)
+{
+ /*
+ * Global and per-node slab counters track slab pages.
+ * It's expected that changes are multiples of PAGE_SIZE.
+ * Internally values are stored in pages.
+ *
+ * Per-memcg and per-lruvec counters track memory, consumed
+ * by individual slab objects. These counters are actually
+ * byte-precise.
+ */
+ return (idx == NR_SLAB_RECLAIMABLE_B ||
+ idx == NR_SLAB_UNRECLAIMABLE_B);
+}
+
+/*
+ * We do arithmetic on the LRU lists in various places in the code,
+ * so it is important to keep the active lists LRU_ACTIVE higher in
+ * the array than the corresponding inactive lists, and to keep
+ * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
+ *
+ * This has to be kept in sync with the statistics in zone_stat_item
+ * above and the descriptions in vmstat_text in mm/vmstat.c
+ */
+#define LRU_BASE 0
+#define LRU_ACTIVE 1
+#define LRU_FILE 2
+
+enum lru_list {
+ LRU_INACTIVE_ANON = LRU_BASE,
+ LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
+ LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
+ LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
+ LRU_UNEVICTABLE,
+ NR_LRU_LISTS
+};
+
+enum vmscan_throttle_state {
+ VMSCAN_THROTTLE_WRITEBACK,
+ VMSCAN_THROTTLE_ISOLATED,
+ VMSCAN_THROTTLE_NOPROGRESS,
+ VMSCAN_THROTTLE_CONGESTED,
+ NR_VMSCAN_THROTTLE,
+};
+
+#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
+
+#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
+
+static inline bool is_file_lru(enum lru_list lru)
+{
+ return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
+}
+
+static inline bool is_active_lru(enum lru_list lru)
+{
+ return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
+}
+
+#define WORKINGSET_ANON 0
+#define WORKINGSET_FILE 1
+#define ANON_AND_FILE 2
+
+enum lruvec_flags {
+ /*
+ * An lruvec has many dirty pages backed by a congested BDI:
+ * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
+ * It can be cleared by cgroup reclaim or kswapd.
+ * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
+ * It can only be cleared by kswapd.
+ *
+ * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
+ * reclaim, but not vice versa. This only applies to the root cgroup.
+ * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
+ * memory.reclaim) to unthrottle an unbalanced node (that was throttled
+ * by kswapd).
+ */
+ LRUVEC_CGROUP_CONGESTED,
+ LRUVEC_NODE_CONGESTED,
+};
+
+#endif /* !__GENERATING_BOUNDS_H */
+
+/*
+ * Evictable pages are divided into multiple generations. The youngest and the
+ * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
+ * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
+ * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
+ * corresponding generation. The gen counter in folio->flags stores gen+1 while
+ * a page is on one of lrugen->folios[]. Otherwise it stores 0.
+ *
+ * A page is added to the youngest generation on faulting. The aging needs to
+ * check the accessed bit at least twice before handing this page over to the
+ * eviction. The first check takes care of the accessed bit set on the initial
+ * fault; the second check makes sure this page hasn't been used since then.
+ * This process, AKA second chance, requires a minimum of two generations,
+ * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
+ * LRU, e.g., /proc/vmstat, these two generations are considered active; the
+ * rest of generations, if they exist, are considered inactive. See
+ * lru_gen_is_active().
+ *
+ * PG_active is always cleared while a page is on one of lrugen->folios[] so
+ * that the aging needs not to worry about it. And it's set again when a page
+ * considered active is isolated for non-reclaiming purposes, e.g., migration.
+ * See lru_gen_add_folio() and lru_gen_del_folio().
+ *
+ * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
+ * number of categories of the active/inactive LRU when keeping track of
+ * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
+ * in folio->flags.
+ */
+#define MIN_NR_GENS 2U
+#define MAX_NR_GENS 4U
+
+/*
+ * Each generation is divided into multiple tiers. A page accessed N times
+ * through file descriptors is in tier order_base_2(N). A page in the first tier
+ * (N=0,1) is marked by PG_referenced unless it was faulted in through page
+ * tables or read ahead. A page in any other tier (N>1) is marked by
+ * PG_referenced and PG_workingset. This implies a minimum of two tiers is
+ * supported without using additional bits in folio->flags.
+ *
+ * In contrast to moving across generations which requires the LRU lock, moving
+ * across tiers only involves atomic operations on folio->flags and therefore
+ * has a negligible cost in the buffered access path. In the eviction path,
+ * comparisons of refaulted/(evicted+protected) from the first tier and the
+ * rest infer whether pages accessed multiple times through file descriptors
+ * are statistically hot and thus worth protecting.
+ *
+ * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
+ * number of categories of the active/inactive LRU when keeping track of
+ * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
+ * folio->flags.
+ */
+#define MAX_NR_TIERS 4U
+
+#ifndef __GENERATING_BOUNDS_H
+
+struct lruvec;
+struct page_vma_mapped_walk;
+
+#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
+#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
+
+#ifdef CONFIG_LRU_GEN
+
+enum {
+ LRU_GEN_ANON,
+ LRU_GEN_FILE,
+};
+
+enum {
+ LRU_GEN_CORE,
+ LRU_GEN_MM_WALK,
+ LRU_GEN_NONLEAF_YOUNG,
+ NR_LRU_GEN_CAPS
+};
+
+#define MIN_LRU_BATCH BITS_PER_LONG
+#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
+
+/* whether to keep historical stats from evicted generations */
+#ifdef CONFIG_LRU_GEN_STATS
+#define NR_HIST_GENS MAX_NR_GENS
+#else
+#define NR_HIST_GENS 1U
+#endif
+
+/*
+ * The youngest generation number is stored in max_seq for both anon and file
+ * types as they are aged on an equal footing. The oldest generation numbers are
+ * stored in min_seq[] separately for anon and file types as clean file pages
+ * can be evicted regardless of swap constraints.
+ *
+ * Normally anon and file min_seq are in sync. But if swapping is constrained,
+ * e.g., out of swap space, file min_seq is allowed to advance and leave anon
+ * min_seq behind.
+ *
+ * The number of pages in each generation is eventually consistent and therefore
+ * can be transiently negative when reset_batch_size() is pending.
+ */
+struct lru_gen_folio {
+ /* the aging increments the youngest generation number */
+ unsigned long max_seq;
+ /* the eviction increments the oldest generation numbers */
+ unsigned long min_seq[ANON_AND_FILE];
+ /* the birth time of each generation in jiffies */
+ unsigned long timestamps[MAX_NR_GENS];
+ /* the multi-gen LRU lists, lazily sorted on eviction */
+ struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
+ /* the multi-gen LRU sizes, eventually consistent */
+ long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
+ /* the exponential moving average of refaulted */
+ unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
+ /* the exponential moving average of evicted+protected */
+ unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
+ /* the first tier doesn't need protection, hence the minus one */
+ unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
+ /* can be modified without holding the LRU lock */
+ atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
+ atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
+ /* whether the multi-gen LRU is enabled */
+ bool enabled;
+#ifdef CONFIG_MEMCG
+ /* the memcg generation this lru_gen_folio belongs to */
+ u8 gen;
+ /* the list segment this lru_gen_folio belongs to */
+ u8 seg;
+ /* per-node lru_gen_folio list for global reclaim */
+ struct hlist_nulls_node list;
+#endif
+};
+
+enum {
+ MM_LEAF_TOTAL, /* total leaf entries */
+ MM_LEAF_OLD, /* old leaf entries */
+ MM_LEAF_YOUNG, /* young leaf entries */
+ MM_NONLEAF_TOTAL, /* total non-leaf entries */
+ MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
+ MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
+ NR_MM_STATS
+};
+
+/* double-buffering Bloom filters */
+#define NR_BLOOM_FILTERS 2
+
+struct lru_gen_mm_state {
+ /* set to max_seq after each iteration */
+ unsigned long seq;
+ /* where the current iteration continues after */
+ struct list_head *head;
+ /* where the last iteration ended before */
+ struct list_head *tail;
+ /* Bloom filters flip after each iteration */
+ unsigned long *filters[NR_BLOOM_FILTERS];
+ /* the mm stats for debugging */
+ unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
+};
+
+struct lru_gen_mm_walk {
+ /* the lruvec under reclaim */
+ struct lruvec *lruvec;
+ /* unstable max_seq from lru_gen_folio */
+ unsigned long max_seq;
+ /* the next address within an mm to scan */
+ unsigned long next_addr;
+ /* to batch promoted pages */
+ int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
+ /* to batch the mm stats */
+ int mm_stats[NR_MM_STATS];
+ /* total batched items */
+ int batched;
+ bool can_swap;
+ bool force_scan;
+};
+
+void lru_gen_init_lruvec(struct lruvec *lruvec);
+void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
+
+#ifdef CONFIG_MEMCG
+
+/*
+ * For each node, memcgs are divided into two generations: the old and the
+ * young. For each generation, memcgs are randomly sharded into multiple bins
+ * to improve scalability. For each bin, the hlist_nulls is virtually divided
+ * into three segments: the head, the tail and the default.
+ *
+ * An onlining memcg is added to the tail of a random bin in the old generation.
+ * The eviction starts at the head of a random bin in the old generation. The
+ * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
+ * the old generation, is incremented when all its bins become empty.
+ *
+ * There are four operations:
+ * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
+ * current generation (old or young) and updates its "seg" to "head";
+ * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
+ * current generation (old or young) and updates its "seg" to "tail";
+ * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
+ * generation, updates its "gen" to "old" and resets its "seg" to "default";
+ * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
+ * young generation, updates its "gen" to "young" and resets its "seg" to
+ * "default".
+ *
+ * The events that trigger the above operations are:
+ * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
+ * 2. The first attempt to reclaim a memcg below low, which triggers
+ * MEMCG_LRU_TAIL;
+ * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
+ * threshold, which triggers MEMCG_LRU_TAIL;
+ * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
+ * threshold, which triggers MEMCG_LRU_YOUNG;
+ * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
+ * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
+ * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
+ *
+ * Notes:
+ * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
+ * of their max_seq counters ensures the eventual fairness to all eligible
+ * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
+ * 2. There are only two valid generations: old (seq) and young (seq+1).
+ * MEMCG_NR_GENS is set to three so that when reading the generation counter
+ * locklessly, a stale value (seq-1) does not wraparound to young.
+ */
+#define MEMCG_NR_GENS 3
+#define MEMCG_NR_BINS 8
+
+struct lru_gen_memcg {
+ /* the per-node memcg generation counter */
+ unsigned long seq;
+ /* each memcg has one lru_gen_folio per node */
+ unsigned long nr_memcgs[MEMCG_NR_GENS];
+ /* per-node lru_gen_folio list for global reclaim */
+ struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
+ /* protects the above */
+ spinlock_t lock;
+};
+
+void lru_gen_init_pgdat(struct pglist_data *pgdat);
+
+void lru_gen_init_memcg(struct mem_cgroup *memcg);
+void lru_gen_exit_memcg(struct mem_cgroup *memcg);
+void lru_gen_online_memcg(struct mem_cgroup *memcg);
+void lru_gen_offline_memcg(struct mem_cgroup *memcg);
+void lru_gen_release_memcg(struct mem_cgroup *memcg);
+void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
+
+#else /* !CONFIG_MEMCG */
+
+#define MEMCG_NR_GENS 1
+
+struct lru_gen_memcg {
+};
+
+static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
+{
+}
+
+#endif /* CONFIG_MEMCG */
+
+#else /* !CONFIG_LRU_GEN */
+
+static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
+{
+}
+
+static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
+{
+}
+
+static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
+{
+}
+
+#ifdef CONFIG_MEMCG
+
+static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
+{
+}
+
+static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
+{
+}
+
+static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
+{
+}
+
+static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
+{
+}
+
+static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
+{
+}
+
+static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
+{
+}
+
+#endif /* CONFIG_MEMCG */
+
+#endif /* CONFIG_LRU_GEN */
+
+struct lruvec {
+ struct list_head lists[NR_LRU_LISTS];
+ /* per lruvec lru_lock for memcg */
+ spinlock_t lru_lock;
+ /*
+ * These track the cost of reclaiming one LRU - file or anon -
+ * over the other. As the observed cost of reclaiming one LRU
+ * increases, the reclaim scan balance tips toward the other.
+ */
+ unsigned long anon_cost;
+ unsigned long file_cost;
+ /* Non-resident age, driven by LRU movement */
+ atomic_long_t nonresident_age;
+ /* Refaults at the time of last reclaim cycle */
+ unsigned long refaults[ANON_AND_FILE];
+ /* Various lruvec state flags (enum lruvec_flags) */
+ unsigned long flags;
+#ifdef CONFIG_LRU_GEN
+ /* evictable pages divided into generations */
+ struct lru_gen_folio lrugen;
+ /* to concurrently iterate lru_gen_mm_list */
+ struct lru_gen_mm_state mm_state;
+#endif
+#ifdef CONFIG_MEMCG
+ struct pglist_data *pgdat;
+#endif
+};
+
+/* Isolate unmapped pages */
+#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
+/* Isolate for asynchronous migration */
+#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
+/* Isolate unevictable pages */
+#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
+
+/* LRU Isolation modes. */
+typedef unsigned __bitwise isolate_mode_t;
+
+enum zone_watermarks {
+ WMARK_MIN,
+ WMARK_LOW,
+ WMARK_HIGH,
+ WMARK_PROMO,
+ NR_WMARK
+};
+
+/*
+ * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
+ * for THP which will usually be GFP_MOVABLE. Even if it is another type,
+ * it should not contribute to serious fragmentation causing THP allocation
+ * failures.
+ */
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+#define NR_PCP_THP 1
+#else
+#define NR_PCP_THP 0
+#endif
+#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
+#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
+
+#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
+#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
+#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
+#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
+
+struct per_cpu_pages {
+ spinlock_t lock; /* Protects lists field */
+ int count; /* number of pages in the list */
+ int high; /* high watermark, emptying needed */
+ int batch; /* chunk size for buddy add/remove */
+ short free_factor; /* batch scaling factor during free */
+#ifdef CONFIG_NUMA
+ short expire; /* When 0, remote pagesets are drained */
+#endif
+
+ /* Lists of pages, one per migrate type stored on the pcp-lists */
+ struct list_head lists[NR_PCP_LISTS];
+} ____cacheline_aligned_in_smp;
+
+struct per_cpu_zonestat {
+#ifdef CONFIG_SMP
+ s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
+ s8 stat_threshold;
+#endif
+#ifdef CONFIG_NUMA
+ /*
+ * Low priority inaccurate counters that are only folded
+ * on demand. Use a large type to avoid the overhead of
+ * folding during refresh_cpu_vm_stats.
+ */
+ unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
+#endif
+};
+
+struct per_cpu_nodestat {
+ s8 stat_threshold;
+ s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
+};
+
+#endif /* !__GENERATING_BOUNDS.H */
+
+enum zone_type {
+ /*
+ * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
+ * to DMA to all of the addressable memory (ZONE_NORMAL).
+ * On architectures where this area covers the whole 32 bit address
+ * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
+ * DMA addressing constraints. This distinction is important as a 32bit
+ * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
+ * platforms may need both zones as they support peripherals with
+ * different DMA addressing limitations.
+ */
+#ifdef CONFIG_ZONE_DMA
+ ZONE_DMA,
+#endif
+#ifdef CONFIG_ZONE_DMA32
+ ZONE_DMA32,
+#endif
+ /*
+ * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
+ * performed on pages in ZONE_NORMAL if the DMA devices support
+ * transfers to all addressable memory.
+ */
+ ZONE_NORMAL,
+#ifdef CONFIG_HIGHMEM
+ /*
+ * A memory area that is only addressable by the kernel through
+ * mapping portions into its own address space. This is for example
+ * used by i386 to allow the kernel to address the memory beyond
+ * 900MB. The kernel will set up special mappings (page
+ * table entries on i386) for each page that the kernel needs to
+ * access.
+ */
+ ZONE_HIGHMEM,
+#endif
+ /*
+ * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
+ * movable pages with few exceptional cases described below. Main use
+ * cases for ZONE_MOVABLE are to make memory offlining/unplug more
+ * likely to succeed, and to locally limit unmovable allocations - e.g.,
+ * to increase the number of THP/huge pages. Notable special cases are:
+ *
+ * 1. Pinned pages: (long-term) pinning of movable pages might
+ * essentially turn such pages unmovable. Therefore, we do not allow
+ * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
+ * faulted, they come from the right zone right away. However, it is
+ * still possible that address space already has pages in
+ * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
+ * touches that memory before pinning). In such case we migrate them
+ * to a different zone. When migration fails - pinning fails.
+ * 2. memblock allocations: kernelcore/movablecore setups might create
+ * situations where ZONE_MOVABLE contains unmovable allocations
+ * after boot. Memory offlining and allocations fail early.
+ * 3. Memory holes: kernelcore/movablecore setups might create very rare
+ * situations where ZONE_MOVABLE contains memory holes after boot,
+ * for example, if we have sections that are only partially
+ * populated. Memory offlining and allocations fail early.
+ * 4. PG_hwpoison pages: while poisoned pages can be skipped during
+ * memory offlining, such pages cannot be allocated.
+ * 5. Unmovable PG_offline pages: in paravirtualized environments,
+ * hotplugged memory blocks might only partially be managed by the
+ * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
+ * parts not manged by the buddy are unmovable PG_offline pages. In
+ * some cases (virtio-mem), such pages can be skipped during
+ * memory offlining, however, cannot be moved/allocated. These
+ * techniques might use alloc_contig_range() to hide previously
+ * exposed pages from the buddy again (e.g., to implement some sort
+ * of memory unplug in virtio-mem).
+ * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
+ * situations where ZERO_PAGE(0) which is allocated differently
+ * on different platforms may end up in a movable zone. ZERO_PAGE(0)
+ * cannot be migrated.
+ * 7. Memory-hotplug: when using memmap_on_memory and onlining the
+ * memory to the MOVABLE zone, the vmemmap pages are also placed in
+ * such zone. Such pages cannot be really moved around as they are
+ * self-stored in the range, but they are treated as movable when
+ * the range they describe is about to be offlined.
+ *
+ * In general, no unmovable allocations that degrade memory offlining
+ * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
+ * have to expect that migrating pages in ZONE_MOVABLE can fail (even
+ * if has_unmovable_pages() states that there are no unmovable pages,
+ * there can be false negatives).
+ */
+ ZONE_MOVABLE,
+#ifdef CONFIG_ZONE_DEVICE
+ ZONE_DEVICE,
+#endif
+ __MAX_NR_ZONES
+
+};
+
+#ifndef __GENERATING_BOUNDS_H
+
+#define ASYNC_AND_SYNC 2
+
+struct zone {
+ /* Read-mostly fields */
+
+ /* zone watermarks, access with *_wmark_pages(zone) macros */
+ unsigned long _watermark[NR_WMARK];
+ unsigned long watermark_boost;
+
+ unsigned long nr_reserved_highatomic;
+
+ /*
+ * We don't know if the memory that we're going to allocate will be
+ * freeable or/and it will be released eventually, so to avoid totally
+ * wasting several GB of ram we must reserve some of the lower zone
+ * memory (otherwise we risk to run OOM on the lower zones despite
+ * there being tons of freeable ram on the higher zones). This array is
+ * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
+ * changes.
+ */
+ long lowmem_reserve[MAX_NR_ZONES];
+
+#ifdef CONFIG_NUMA
+ int node;
+#endif
+ struct pglist_data *zone_pgdat;
+ struct per_cpu_pages __percpu *per_cpu_pageset;
+ struct per_cpu_zonestat __percpu *per_cpu_zonestats;
+ /*
+ * the high and batch values are copied to individual pagesets for
+ * faster access
+ */
+ int pageset_high;
+ int pageset_batch;
+
+#ifndef CONFIG_SPARSEMEM
+ /*
+ * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
+ * In SPARSEMEM, this map is stored in struct mem_section
+ */
+ unsigned long *pageblock_flags;
+#endif /* CONFIG_SPARSEMEM */
+
+ /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
+ unsigned long zone_start_pfn;
+
+ /*
+ * spanned_pages is the total pages spanned by the zone, including
+ * holes, which is calculated as:
+ * spanned_pages = zone_end_pfn - zone_start_pfn;
+ *
+ * present_pages is physical pages existing within the zone, which
+ * is calculated as:
+ * present_pages = spanned_pages - absent_pages(pages in holes);
+ *
+ * present_early_pages is present pages existing within the zone
+ * located on memory available since early boot, excluding hotplugged
+ * memory.
+ *
+ * managed_pages is present pages managed by the buddy system, which
+ * is calculated as (reserved_pages includes pages allocated by the
+ * bootmem allocator):
+ * managed_pages = present_pages - reserved_pages;
+ *
+ * cma pages is present pages that are assigned for CMA use
+ * (MIGRATE_CMA).
+ *
+ * So present_pages may be used by memory hotplug or memory power
+ * management logic to figure out unmanaged pages by checking
+ * (present_pages - managed_pages). And managed_pages should be used
+ * by page allocator and vm scanner to calculate all kinds of watermarks
+ * and thresholds.
+ *
+ * Locking rules:
+ *
+ * zone_start_pfn and spanned_pages are protected by span_seqlock.
+ * It is a seqlock because it has to be read outside of zone->lock,
+ * and it is done in the main allocator path. But, it is written
+ * quite infrequently.
+ *
+ * The span_seq lock is declared along with zone->lock because it is
+ * frequently read in proximity to zone->lock. It's good to
+ * give them a chance of being in the same cacheline.
+ *
+ * Write access to present_pages at runtime should be protected by
+ * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
+ * present_pages should use get_online_mems() to get a stable value.
+ */
+ atomic_long_t managed_pages;
+ unsigned long spanned_pages;
+ unsigned long present_pages;
+#if defined(CONFIG_MEMORY_HOTPLUG)
+ unsigned long present_early_pages;
+#endif
+#ifdef CONFIG_CMA
+ unsigned long cma_pages;
+#endif
+
+ const char *name;
+
+#ifdef CONFIG_MEMORY_ISOLATION
+ /*
+ * Number of isolated pageblock. It is used to solve incorrect
+ * freepage counting problem due to racy retrieving migratetype
+ * of pageblock. Protected by zone->lock.
+ */
+ unsigned long nr_isolate_pageblock;
+#endif
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+ /* see spanned/present_pages for more description */
+ seqlock_t span_seqlock;
+#endif
+
+ int initialized;
+
+ /* Write-intensive fields used from the page allocator */
+ CACHELINE_PADDING(_pad1_);
+
+ /* free areas of different sizes */
+ struct free_area free_area[MAX_ORDER + 1];
+
+#ifdef CONFIG_UNACCEPTED_MEMORY
+ /* Pages to be accepted. All pages on the list are MAX_ORDER */
+ struct list_head unaccepted_pages;
+#endif
+
+ /* zone flags, see below */
+ unsigned long flags;
+
+ /* Primarily protects free_area */
+ spinlock_t lock;
+
+ /* Write-intensive fields used by compaction and vmstats. */
+ CACHELINE_PADDING(_pad2_);
+
+ /*
+ * When free pages are below this point, additional steps are taken
+ * when reading the number of free pages to avoid per-cpu counter
+ * drift allowing watermarks to be breached
+ */
+ unsigned long percpu_drift_mark;
+
+#if defined CONFIG_COMPACTION || defined CONFIG_CMA
+ /* pfn where compaction free scanner should start */
+ unsigned long compact_cached_free_pfn;
+ /* pfn where compaction migration scanner should start */
+ unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
+ unsigned long compact_init_migrate_pfn;
+ unsigned long compact_init_free_pfn;
+#endif
+
+#ifdef CONFIG_COMPACTION
+ /*
+ * On compaction failure, 1<<compact_defer_shift compactions
+ * are skipped before trying again. The number attempted since
+ * last failure is tracked with compact_considered.
+ * compact_order_failed is the minimum compaction failed order.
+ */
+ unsigned int compact_considered;
+ unsigned int compact_defer_shift;
+ int compact_order_failed;
+#endif
+
+#if defined CONFIG_COMPACTION || defined CONFIG_CMA
+ /* Set to true when the PG_migrate_skip bits should be cleared */
+ bool compact_blockskip_flush;
+#endif
+
+ bool contiguous;
+
+ CACHELINE_PADDING(_pad3_);
+ /* Zone statistics */
+ atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
+ atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
+} ____cacheline_internodealigned_in_smp;
+
+enum pgdat_flags {
+ PGDAT_DIRTY, /* reclaim scanning has recently found
+ * many dirty file pages at the tail
+ * of the LRU.
+ */
+ PGDAT_WRITEBACK, /* reclaim scanning has recently found
+ * many pages under writeback
+ */
+ PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
+};
+
+enum zone_flags {
+ ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
+ * Cleared when kswapd is woken.
+ */
+ ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
+};
+
+static inline unsigned long zone_managed_pages(struct zone *zone)
+{
+ return (unsigned long)atomic_long_read(&zone->managed_pages);
+}
+
+static inline unsigned long zone_cma_pages(struct zone *zone)
+{
+#ifdef CONFIG_CMA
+ return zone->cma_pages;
+#else
+ return 0;
+#endif
+}
+
+static inline unsigned long zone_end_pfn(const struct zone *zone)
+{
+ return zone->zone_start_pfn + zone->spanned_pages;
+}
+
+static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
+{
+ return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
+}
+
+static inline bool zone_is_initialized(struct zone *zone)
+{
+ return zone->initialized;
+}
+
+static inline bool zone_is_empty(struct zone *zone)
+{
+ return zone->spanned_pages == 0;
+}
+
+#ifndef BUILD_VDSO32_64
+/*
+ * The zone field is never updated after free_area_init_core()
+ * sets it, so none of the operations on it need to be atomic.
+ */
+
+/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
+#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
+#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
+#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
+#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
+#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
+#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
+#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
+
+/*
+ * Define the bit shifts to access each section. For non-existent
+ * sections we define the shift as 0; that plus a 0 mask ensures
+ * the compiler will optimise away reference to them.
+ */
+#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
+#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
+#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
+#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
+#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
+
+/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
+#ifdef NODE_NOT_IN_PAGE_FLAGS
+#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
+#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
+ SECTIONS_PGOFF : ZONES_PGOFF)
+#else
+#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
+#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
+ NODES_PGOFF : ZONES_PGOFF)
+#endif
+
+#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
+
+#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
+#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
+#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
+#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
+#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
+#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
+
+static inline enum zone_type page_zonenum(const struct page *page)
+{
+ ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
+ return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
+}
+
+static inline enum zone_type folio_zonenum(const struct folio *folio)
+{
+ return page_zonenum(&folio->page);
+}
+
+#ifdef CONFIG_ZONE_DEVICE
+static inline bool is_zone_device_page(const struct page *page)
+{
+ return page_zonenum(page) == ZONE_DEVICE;
+}
+
+/*
+ * Consecutive zone device pages should not be merged into the same sgl
+ * or bvec segment with other types of pages or if they belong to different
+ * pgmaps. Otherwise getting the pgmap of a given segment is not possible
+ * without scanning the entire segment. This helper returns true either if
+ * both pages are not zone device pages or both pages are zone device pages
+ * with the same pgmap.
+ */
+static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
+ const struct page *b)
+{
+ if (is_zone_device_page(a) != is_zone_device_page(b))
+ return false;
+ if (!is_zone_device_page(a))
+ return true;
+ return a->pgmap == b->pgmap;
+}
+
+extern void memmap_init_zone_device(struct zone *, unsigned long,
+ unsigned long, struct dev_pagemap *);
+#else
+static inline bool is_zone_device_page(const struct page *page)
+{
+ return false;
+}
+static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
+ const struct page *b)
+{
+ return true;
+}
+#endif
+
+static inline bool folio_is_zone_device(const struct folio *folio)
+{
+ return is_zone_device_page(&folio->page);
+}
+
+static inline bool is_zone_movable_page(const struct page *page)
+{
+ return page_zonenum(page) == ZONE_MOVABLE;
+}
+
+static inline bool folio_is_zone_movable(const struct folio *folio)
+{
+ return folio_zonenum(folio) == ZONE_MOVABLE;
+}
+#endif
+
+/*
+ * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
+ * intersection with the given zone
+ */
+static inline bool zone_intersects(struct zone *zone,
+ unsigned long start_pfn, unsigned long nr_pages)
+{
+ if (zone_is_empty(zone))
+ return false;
+ if (start_pfn >= zone_end_pfn(zone) ||
+ start_pfn + nr_pages <= zone->zone_start_pfn)
+ return false;
+
+ return true;
+}
+
+/*
+ * The "priority" of VM scanning is how much of the queues we will scan in one
+ * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
+ * queues ("queue_length >> 12") during an aging round.
+ */
+#define DEF_PRIORITY 12
+
+/* Maximum number of zones on a zonelist */
+#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
+
+enum {
+ ZONELIST_FALLBACK, /* zonelist with fallback */
+#ifdef CONFIG_NUMA
+ /*
+ * The NUMA zonelists are doubled because we need zonelists that
+ * restrict the allocations to a single node for __GFP_THISNODE.
+ */
+ ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
+#endif
+ MAX_ZONELISTS
+};
+
+/*
+ * This struct contains information about a zone in a zonelist. It is stored
+ * here to avoid dereferences into large structures and lookups of tables
+ */
+struct zoneref {
+ struct zone *zone; /* Pointer to actual zone */
+ int zone_idx; /* zone_idx(zoneref->zone) */
+};
+
+/*
+ * One allocation request operates on a zonelist. A zonelist
+ * is a list of zones, the first one is the 'goal' of the
+ * allocation, the other zones are fallback zones, in decreasing
+ * priority.
+ *
+ * To speed the reading of the zonelist, the zonerefs contain the zone index
+ * of the entry being read. Helper functions to access information given
+ * a struct zoneref are
+ *
+ * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
+ * zonelist_zone_idx() - Return the index of the zone for an entry
+ * zonelist_node_idx() - Return the index of the node for an entry
+ */
+struct zonelist {
+ struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
+};
+
+/*
+ * The array of struct pages for flatmem.
+ * It must be declared for SPARSEMEM as well because there are configurations
+ * that rely on that.
+ */
+extern struct page *mem_map;
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+struct deferred_split {
+ spinlock_t split_queue_lock;
+ struct list_head split_queue;
+ unsigned long split_queue_len;
+};
+#endif
+
+#ifdef CONFIG_MEMORY_FAILURE
+/*
+ * Per NUMA node memory failure handling statistics.
+ */
+struct memory_failure_stats {
+ /*
+ * Number of raw pages poisoned.
+ * Cases not accounted: memory outside kernel control, offline page,
+ * arch-specific memory_failure (SGX), hwpoison_filter() filtered
+ * error events, and unpoison actions from hwpoison_unpoison.
+ */
+ unsigned long total;
+ /*
+ * Recovery results of poisoned raw pages handled by memory_failure,
+ * in sync with mf_result.
+ * total = ignored + failed + delayed + recovered.
+ * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
+ */
+ unsigned long ignored;
+ unsigned long failed;
+ unsigned long delayed;
+ unsigned long recovered;
+};
+#endif
+
+/*
+ * On NUMA machines, each NUMA node would have a pg_data_t to describe
+ * it's memory layout. On UMA machines there is a single pglist_data which
+ * describes the whole memory.
+ *
+ * Memory statistics and page replacement data structures are maintained on a
+ * per-zone basis.
+ */
+typedef struct pglist_data {
+ /*
+ * node_zones contains just the zones for THIS node. Not all of the
+ * zones may be populated, but it is the full list. It is referenced by
+ * this node's node_zonelists as well as other node's node_zonelists.
+ */
+ struct zone node_zones[MAX_NR_ZONES];
+
+ /*
+ * node_zonelists contains references to all zones in all nodes.
+ * Generally the first zones will be references to this node's
+ * node_zones.
+ */
+ struct zonelist node_zonelists[MAX_ZONELISTS];
+
+ int nr_zones; /* number of populated zones in this node */
+#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
+ struct page *node_mem_map;
+#ifdef CONFIG_PAGE_EXTENSION
+ struct page_ext *node_page_ext;
+#endif
+#endif
+#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
+ /*
+ * Must be held any time you expect node_start_pfn,
+ * node_present_pages, node_spanned_pages or nr_zones to stay constant.
+ * Also synchronizes pgdat->first_deferred_pfn during deferred page
+ * init.
+ *
+ * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
+ * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
+ * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
+ *
+ * Nests above zone->lock and zone->span_seqlock
+ */
+ spinlock_t node_size_lock;
+#endif
+ unsigned long node_start_pfn;
+ unsigned long node_present_pages; /* total number of physical pages */
+ unsigned long node_spanned_pages; /* total size of physical page
+ range, including holes */
+ int node_id;
+ wait_queue_head_t kswapd_wait;
+ wait_queue_head_t pfmemalloc_wait;
+
+ /* workqueues for throttling reclaim for different reasons. */
+ wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
+
+ atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
+ unsigned long nr_reclaim_start; /* nr pages written while throttled
+ * when throttling started. */
+#ifdef CONFIG_MEMORY_HOTPLUG
+ struct mutex kswapd_lock;
+#endif
+ struct task_struct *kswapd; /* Protected by kswapd_lock */
+ int kswapd_order;
+ enum zone_type kswapd_highest_zoneidx;
+
+ int kswapd_failures; /* Number of 'reclaimed == 0' runs */
+
+#ifdef CONFIG_COMPACTION
+ int kcompactd_max_order;
+ enum zone_type kcompactd_highest_zoneidx;
+ wait_queue_head_t kcompactd_wait;
+ struct task_struct *kcompactd;
+ bool proactive_compact_trigger;
+#endif
+ /*
+ * This is a per-node reserve of pages that are not available
+ * to userspace allocations.
+ */
+ unsigned long totalreserve_pages;
+
+#ifdef CONFIG_NUMA
+ /*
+ * node reclaim becomes active if more unmapped pages exist.
+ */
+ unsigned long min_unmapped_pages;
+ unsigned long min_slab_pages;
+#endif /* CONFIG_NUMA */
+
+ /* Write-intensive fields used by page reclaim */
+ CACHELINE_PADDING(_pad1_);
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+ /*
+ * If memory initialisation on large machines is deferred then this
+ * is the first PFN that needs to be initialised.
+ */
+ unsigned long first_deferred_pfn;
+#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ struct deferred_split deferred_split_queue;
+#endif
+
+#ifdef CONFIG_NUMA_BALANCING
+ /* start time in ms of current promote rate limit period */
+ unsigned int nbp_rl_start;
+ /* number of promote candidate pages at start time of current rate limit period */
+ unsigned long nbp_rl_nr_cand;
+ /* promote threshold in ms */
+ unsigned int nbp_threshold;
+ /* start time in ms of current promote threshold adjustment period */
+ unsigned int nbp_th_start;
+ /*
+ * number of promote candidate pages at start time of current promote
+ * threshold adjustment period
+ */
+ unsigned long nbp_th_nr_cand;
+#endif
+ /* Fields commonly accessed by the page reclaim scanner */
+
+ /*
+ * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
+ *
+ * Use mem_cgroup_lruvec() to look up lruvecs.
+ */
+ struct lruvec __lruvec;
+
+ unsigned long flags;
+
+#ifdef CONFIG_LRU_GEN
+ /* kswap mm walk data */
+ struct lru_gen_mm_walk mm_walk;
+ /* lru_gen_folio list */
+ struct lru_gen_memcg memcg_lru;
+#endif
+
+ CACHELINE_PADDING(_pad2_);
+
+ /* Per-node vmstats */
+ struct per_cpu_nodestat __percpu *per_cpu_nodestats;
+ atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
+#ifdef CONFIG_NUMA
+ struct memory_tier __rcu *memtier;
+#endif
+#ifdef CONFIG_MEMORY_FAILURE
+ struct memory_failure_stats mf_stats;
+#endif
+} pg_data_t;
+
+#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
+#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
+
+#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
+#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
+
+static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
+{
+ return pgdat->node_start_pfn + pgdat->node_spanned_pages;
+}
+
+#include <linux/memory_hotplug.h>
+
+void build_all_zonelists(pg_data_t *pgdat);
+void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
+ enum zone_type highest_zoneidx);
+bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
+ int highest_zoneidx, unsigned int alloc_flags,
+ long free_pages);
+bool zone_watermark_ok(struct zone *z, unsigned int order,
+ unsigned long mark, int highest_zoneidx,
+ unsigned int alloc_flags);
+bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
+ unsigned long mark, int highest_zoneidx);
+/*
+ * Memory initialization context, use to differentiate memory added by
+ * the platform statically or via memory hotplug interface.
+ */
+enum meminit_context {
+ MEMINIT_EARLY,
+ MEMINIT_HOTPLUG,
+};
+
+extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
+ unsigned long size);
+
+extern void lruvec_init(struct lruvec *lruvec);
+
+static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
+{
+#ifdef CONFIG_MEMCG
+ return lruvec->pgdat;
+#else
+ return container_of(lruvec, struct pglist_data, __lruvec);
+#endif
+}
+
+#ifdef CONFIG_HAVE_MEMORYLESS_NODES
+int local_memory_node(int node_id);
+#else
+static inline int local_memory_node(int node_id) { return node_id; };
+#endif
+
+/*
+ * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
+ */
+#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
+
+#ifdef CONFIG_ZONE_DEVICE
+static inline bool zone_is_zone_device(struct zone *zone)
+{
+ return zone_idx(zone) == ZONE_DEVICE;
+}
+#else
+static inline bool zone_is_zone_device(struct zone *zone)
+{
+ return false;
+}
+#endif
+
+/*
+ * Returns true if a zone has pages managed by the buddy allocator.
+ * All the reclaim decisions have to use this function rather than
+ * populated_zone(). If the whole zone is reserved then we can easily
+ * end up with populated_zone() && !managed_zone().
+ */
+static inline bool managed_zone(struct zone *zone)
+{
+ return zone_managed_pages(zone);
+}
+
+/* Returns true if a zone has memory */
+static inline bool populated_zone(struct zone *zone)
+{
+ return zone->present_pages;
+}
+
+#ifdef CONFIG_NUMA
+static inline int zone_to_nid(struct zone *zone)
+{
+ return zone->node;
+}
+
+static inline void zone_set_nid(struct zone *zone, int nid)
+{
+ zone->node = nid;
+}
+#else
+static inline int zone_to_nid(struct zone *zone)
+{
+ return 0;
+}
+
+static inline void zone_set_nid(struct zone *zone, int nid) {}
+#endif
+
+extern int movable_zone;
+
+static inline int is_highmem_idx(enum zone_type idx)
+{
+#ifdef CONFIG_HIGHMEM
+ return (idx == ZONE_HIGHMEM ||
+ (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
+#else
+ return 0;
+#endif
+}
+
+/**
+ * is_highmem - helper function to quickly check if a struct zone is a
+ * highmem zone or not. This is an attempt to keep references
+ * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
+ * @zone: pointer to struct zone variable
+ * Return: 1 for a highmem zone, 0 otherwise
+ */
+static inline int is_highmem(struct zone *zone)
+{
+ return is_highmem_idx(zone_idx(zone));
+}
+
+#ifdef CONFIG_ZONE_DMA
+bool has_managed_dma(void);
+#else
+static inline bool has_managed_dma(void)
+{
+ return false;
+}
+#endif
+
+
+#ifndef CONFIG_NUMA
+
+extern struct pglist_data contig_page_data;
+static inline struct pglist_data *NODE_DATA(int nid)
+{
+ return &contig_page_data;
+}
+
+#else /* CONFIG_NUMA */
+
+#include <asm/mmzone.h>
+
+#endif /* !CONFIG_NUMA */
+
+extern struct pglist_data *first_online_pgdat(void);
+extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
+extern struct zone *next_zone(struct zone *zone);
+
+/**
+ * for_each_online_pgdat - helper macro to iterate over all online nodes
+ * @pgdat: pointer to a pg_data_t variable
+ */
+#define for_each_online_pgdat(pgdat) \
+ for (pgdat = first_online_pgdat(); \
+ pgdat; \
+ pgdat = next_online_pgdat(pgdat))
+/**
+ * for_each_zone - helper macro to iterate over all memory zones
+ * @zone: pointer to struct zone variable
+ *
+ * The user only needs to declare the zone variable, for_each_zone
+ * fills it in.
+ */
+#define for_each_zone(zone) \
+ for (zone = (first_online_pgdat())->node_zones; \
+ zone; \
+ zone = next_zone(zone))
+
+#define for_each_populated_zone(zone) \
+ for (zone = (first_online_pgdat())->node_zones; \
+ zone; \
+ zone = next_zone(zone)) \
+ if (!populated_zone(zone)) \
+ ; /* do nothing */ \
+ else
+
+static inline struct zone *zonelist_zone(struct zoneref *zoneref)
+{
+ return zoneref->zone;
+}
+
+static inline int zonelist_zone_idx(struct zoneref *zoneref)
+{
+ return zoneref->zone_idx;
+}
+
+static inline int zonelist_node_idx(struct zoneref *zoneref)
+{
+ return zone_to_nid(zoneref->zone);
+}
+
+struct zoneref *__next_zones_zonelist(struct zoneref *z,
+ enum zone_type highest_zoneidx,
+ nodemask_t *nodes);
+
+/**
+ * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
+ * @z: The cursor used as a starting point for the search
+ * @highest_zoneidx: The zone index of the highest zone to return
+ * @nodes: An optional nodemask to filter the zonelist with
+ *
+ * This function returns the next zone at or below a given zone index that is
+ * within the allowed nodemask using a cursor as the starting point for the
+ * search. The zoneref returned is a cursor that represents the current zone
+ * being examined. It should be advanced by one before calling
+ * next_zones_zonelist again.
+ *
+ * Return: the next zone at or below highest_zoneidx within the allowed
+ * nodemask using a cursor within a zonelist as a starting point
+ */
+static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
+ enum zone_type highest_zoneidx,
+ nodemask_t *nodes)
+{
+ if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
+ return z;
+ return __next_zones_zonelist(z, highest_zoneidx, nodes);
+}
+
+/**
+ * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
+ * @zonelist: The zonelist to search for a suitable zone
+ * @highest_zoneidx: The zone index of the highest zone to return
+ * @nodes: An optional nodemask to filter the zonelist with
+ *
+ * This function returns the first zone at or below a given zone index that is
+ * within the allowed nodemask. The zoneref returned is a cursor that can be
+ * used to iterate the zonelist with next_zones_zonelist by advancing it by
+ * one before calling.
+ *
+ * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
+ * never NULL). This may happen either genuinely, or due to concurrent nodemask
+ * update due to cpuset modification.
+ *
+ * Return: Zoneref pointer for the first suitable zone found
+ */
+static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
+ enum zone_type highest_zoneidx,
+ nodemask_t *nodes)
+{
+ return next_zones_zonelist(zonelist->_zonerefs,
+ highest_zoneidx, nodes);
+}
+
+/**
+ * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
+ * @zone: The current zone in the iterator
+ * @z: The current pointer within zonelist->_zonerefs being iterated
+ * @zlist: The zonelist being iterated
+ * @highidx: The zone index of the highest zone to return
+ * @nodemask: Nodemask allowed by the allocator
+ *
+ * This iterator iterates though all zones at or below a given zone index and
+ * within a given nodemask
+ */
+#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
+ for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
+ zone; \
+ z = next_zones_zonelist(++z, highidx, nodemask), \
+ zone = zonelist_zone(z))
+
+#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
+ for (zone = z->zone; \
+ zone; \
+ z = next_zones_zonelist(++z, highidx, nodemask), \
+ zone = zonelist_zone(z))
+
+
+/**
+ * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
+ * @zone: The current zone in the iterator
+ * @z: The current pointer within zonelist->zones being iterated
+ * @zlist: The zonelist being iterated
+ * @highidx: The zone index of the highest zone to return
+ *
+ * This iterator iterates though all zones at or below a given zone index.
+ */
+#define for_each_zone_zonelist(zone, z, zlist, highidx) \
+ for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
+
+/* Whether the 'nodes' are all movable nodes */
+static inline bool movable_only_nodes(nodemask_t *nodes)
+{
+ struct zonelist *zonelist;
+ struct zoneref *z;
+ int nid;
+
+ if (nodes_empty(*nodes))
+ return false;
+
+ /*
+ * We can chose arbitrary node from the nodemask to get a
+ * zonelist as they are interlinked. We just need to find
+ * at least one zone that can satisfy kernel allocations.
+ */
+ nid = first_node(*nodes);
+ zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
+ z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
+ return (!z->zone) ? true : false;
+}
+
+
+#ifdef CONFIG_SPARSEMEM
+#include <asm/sparsemem.h>
+#endif
+
+#ifdef CONFIG_FLATMEM
+#define pfn_to_nid(pfn) (0)
+#endif
+
+#ifdef CONFIG_SPARSEMEM
+
+/*
+ * PA_SECTION_SHIFT physical address to/from section number
+ * PFN_SECTION_SHIFT pfn to/from section number
+ */
+#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
+#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
+
+#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
+
+#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
+#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
+
+#define SECTION_BLOCKFLAGS_BITS \
+ ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
+
+#if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
+#error Allocator MAX_ORDER exceeds SECTION_SIZE
+#endif
+
+static inline unsigned long pfn_to_section_nr(unsigned long pfn)
+{
+ return pfn >> PFN_SECTION_SHIFT;
+}
+static inline unsigned long section_nr_to_pfn(unsigned long sec)
+{
+ return sec << PFN_SECTION_SHIFT;
+}
+
+#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
+#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
+
+#define SUBSECTION_SHIFT 21
+#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
+
+#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
+#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
+#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
+
+#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
+#error Subsection size exceeds section size
+#else
+#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
+#endif
+
+#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
+#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
+
+struct mem_section_usage {
+ struct rcu_head rcu;
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+ DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
+#endif
+ /* See declaration of similar field in struct zone */
+ unsigned long pageblock_flags[0];
+};
+
+void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
+
+struct page;
+struct page_ext;
+struct mem_section {
+ /*
+ * This is, logically, a pointer to an array of struct
+ * pages. However, it is stored with some other magic.
+ * (see sparse.c::sparse_init_one_section())
+ *
+ * Additionally during early boot we encode node id of
+ * the location of the section here to guide allocation.
+ * (see sparse.c::memory_present())
+ *
+ * Making it a UL at least makes someone do a cast
+ * before using it wrong.
+ */
+ unsigned long section_mem_map;
+
+ struct mem_section_usage *usage;
+#ifdef CONFIG_PAGE_EXTENSION
+ /*
+ * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
+ * section. (see page_ext.h about this.)
+ */
+ struct page_ext *page_ext;
+ unsigned long pad;
+#endif
+ /*
+ * WARNING: mem_section must be a power-of-2 in size for the
+ * calculation and use of SECTION_ROOT_MASK to make sense.
+ */
+};
+
+#ifdef CONFIG_SPARSEMEM_EXTREME
+#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
+#else
+#define SECTIONS_PER_ROOT 1
+#endif
+
+#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
+#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
+#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
+
+#ifdef CONFIG_SPARSEMEM_EXTREME
+extern struct mem_section **mem_section;
+#else
+extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
+#endif
+
+static inline unsigned long *section_to_usemap(struct mem_section *ms)
+{
+ return ms->usage->pageblock_flags;
+}
+
+static inline struct mem_section *__nr_to_section(unsigned long nr)
+{
+ unsigned long root = SECTION_NR_TO_ROOT(nr);
+
+ if (unlikely(root >= NR_SECTION_ROOTS))
+ return NULL;
+
+#ifdef CONFIG_SPARSEMEM_EXTREME
+ if (!mem_section || !mem_section[root])
+ return NULL;
+#endif
+ return &mem_section[root][nr & SECTION_ROOT_MASK];
+}
+extern size_t mem_section_usage_size(void);
+
+/*
+ * We use the lower bits of the mem_map pointer to store
+ * a little bit of information. The pointer is calculated
+ * as mem_map - section_nr_to_pfn(pnum). The result is
+ * aligned to the minimum alignment of the two values:
+ * 1. All mem_map arrays are page-aligned.
+ * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
+ * lowest bits. PFN_SECTION_SHIFT is arch-specific
+ * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
+ * worst combination is powerpc with 256k pages,
+ * which results in PFN_SECTION_SHIFT equal 6.
+ * To sum it up, at least 6 bits are available on all architectures.
+ * However, we can exceed 6 bits on some other architectures except
+ * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
+ * with the worst case of 64K pages on arm64) if we make sure the
+ * exceeded bit is not applicable to powerpc.
+ */
+enum {
+ SECTION_MARKED_PRESENT_BIT,
+ SECTION_HAS_MEM_MAP_BIT,
+ SECTION_IS_ONLINE_BIT,
+ SECTION_IS_EARLY_BIT,
+#ifdef CONFIG_ZONE_DEVICE
+ SECTION_TAINT_ZONE_DEVICE_BIT,
+#endif
+ SECTION_MAP_LAST_BIT,
+};
+
+#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
+#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
+#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
+#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
+#ifdef CONFIG_ZONE_DEVICE
+#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
+#endif
+#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
+#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
+
+static inline struct page *__section_mem_map_addr(struct mem_section *section)
+{
+ unsigned long map = section->section_mem_map;
+ map &= SECTION_MAP_MASK;
+ return (struct page *)map;
+}
+
+static inline int present_section(struct mem_section *section)
+{
+ return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
+}
+
+static inline int present_section_nr(unsigned long nr)
+{
+ return present_section(__nr_to_section(nr));
+}
+
+static inline int valid_section(struct mem_section *section)
+{
+ return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
+}
+
+static inline int early_section(struct mem_section *section)
+{
+ return (section && (section->section_mem_map & SECTION_IS_EARLY));
+}
+
+static inline int valid_section_nr(unsigned long nr)
+{
+ return valid_section(__nr_to_section(nr));
+}
+
+static inline int online_section(struct mem_section *section)
+{
+ return (section && (section->section_mem_map & SECTION_IS_ONLINE));
+}
+
+#ifdef CONFIG_ZONE_DEVICE
+static inline int online_device_section(struct mem_section *section)
+{
+ unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
+
+ return section && ((section->section_mem_map & flags) == flags);
+}
+#else
+static inline int online_device_section(struct mem_section *section)
+{
+ return 0;
+}
+#endif
+
+static inline int online_section_nr(unsigned long nr)
+{
+ return online_section(__nr_to_section(nr));
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
+void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
+#endif
+
+static inline struct mem_section *__pfn_to_section(unsigned long pfn)
+{
+ return __nr_to_section(pfn_to_section_nr(pfn));
+}
+
+extern unsigned long __highest_present_section_nr;
+
+static inline int subsection_map_index(unsigned long pfn)
+{
+ return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
+}
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
+{
+ int idx = subsection_map_index(pfn);
+
+ return test_bit(idx, READ_ONCE(ms->usage)->subsection_map);
+}
+#else
+static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
+{
+ return 1;
+}
+#endif
+
+#ifndef CONFIG_HAVE_ARCH_PFN_VALID
+/**
+ * pfn_valid - check if there is a valid memory map entry for a PFN
+ * @pfn: the page frame number to check
+ *
+ * Check if there is a valid memory map entry aka struct page for the @pfn.
+ * Note, that availability of the memory map entry does not imply that
+ * there is actual usable memory at that @pfn. The struct page may
+ * represent a hole or an unusable page frame.
+ *
+ * Return: 1 for PFNs that have memory map entries and 0 otherwise
+ */
+static inline int pfn_valid(unsigned long pfn)
+{
+ struct mem_section *ms;
+ int ret;
+
+ /*
+ * Ensure the upper PAGE_SHIFT bits are clear in the
+ * pfn. Else it might lead to false positives when
+ * some of the upper bits are set, but the lower bits
+ * match a valid pfn.
+ */
+ if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
+ return 0;
+
+ if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
+ return 0;
+ ms = __pfn_to_section(pfn);
+ rcu_read_lock();
+ if (!valid_section(ms)) {
+ rcu_read_unlock();
+ return 0;
+ }
+ /*
+ * Traditionally early sections always returned pfn_valid() for
+ * the entire section-sized span.
+ */
+ ret = early_section(ms) || pfn_section_valid(ms, pfn);
+ rcu_read_unlock();
+
+ return ret;
+}
+#endif
+
+static inline int pfn_in_present_section(unsigned long pfn)
+{
+ if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
+ return 0;
+ return present_section(__pfn_to_section(pfn));
+}
+
+static inline unsigned long next_present_section_nr(unsigned long section_nr)
+{
+ while (++section_nr <= __highest_present_section_nr) {
+ if (present_section_nr(section_nr))
+ return section_nr;
+ }
+
+ return -1;
+}
+
+/*
+ * These are _only_ used during initialisation, therefore they
+ * can use __initdata ... They could have names to indicate
+ * this restriction.
+ */
+#ifdef CONFIG_NUMA
+#define pfn_to_nid(pfn) \
+({ \
+ unsigned long __pfn_to_nid_pfn = (pfn); \
+ page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
+})
+#else
+#define pfn_to_nid(pfn) (0)
+#endif
+
+void sparse_init(void);
+#else
+#define sparse_init() do {} while (0)
+#define sparse_index_init(_sec, _nid) do {} while (0)
+#define pfn_in_present_section pfn_valid
+#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
+#endif /* CONFIG_SPARSEMEM */
+
+#endif /* !__GENERATING_BOUNDS.H */
+#endif /* !__ASSEMBLY__ */
+#endif /* _LINUX_MMZONE_H */