summaryrefslogtreecommitdiffstats
path: root/include/linux/sched.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/sched.h')
-rw-r--r--include/linux/sched.h2460
1 files changed, 2460 insertions, 0 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h
new file mode 100644
index 000000000..77f01ac38
--- /dev/null
+++ b/include/linux/sched.h
@@ -0,0 +1,2460 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _LINUX_SCHED_H
+#define _LINUX_SCHED_H
+
+/*
+ * Define 'struct task_struct' and provide the main scheduler
+ * APIs (schedule(), wakeup variants, etc.)
+ */
+
+#include <uapi/linux/sched.h>
+
+#include <asm/current.h>
+
+#include <linux/pid.h>
+#include <linux/sem.h>
+#include <linux/shm.h>
+#include <linux/kmsan_types.h>
+#include <linux/mutex.h>
+#include <linux/plist.h>
+#include <linux/hrtimer.h>
+#include <linux/irqflags.h>
+#include <linux/seccomp.h>
+#include <linux/nodemask.h>
+#include <linux/rcupdate.h>
+#include <linux/refcount.h>
+#include <linux/resource.h>
+#include <linux/latencytop.h>
+#include <linux/sched/prio.h>
+#include <linux/sched/types.h>
+#include <linux/signal_types.h>
+#include <linux/syscall_user_dispatch.h>
+#include <linux/mm_types_task.h>
+#include <linux/task_io_accounting.h>
+#include <linux/posix-timers.h>
+#include <linux/rseq.h>
+#include <linux/seqlock.h>
+#include <linux/kcsan.h>
+#include <linux/rv.h>
+#include <linux/livepatch_sched.h>
+#include <asm/kmap_size.h>
+
+/* task_struct member predeclarations (sorted alphabetically): */
+struct audit_context;
+struct bio_list;
+struct blk_plug;
+struct bpf_local_storage;
+struct bpf_run_ctx;
+struct capture_control;
+struct cfs_rq;
+struct fs_struct;
+struct futex_pi_state;
+struct io_context;
+struct io_uring_task;
+struct mempolicy;
+struct nameidata;
+struct nsproxy;
+struct perf_event_context;
+struct pid_namespace;
+struct pipe_inode_info;
+struct rcu_node;
+struct reclaim_state;
+struct robust_list_head;
+struct root_domain;
+struct rq;
+struct sched_attr;
+struct sched_param;
+struct seq_file;
+struct sighand_struct;
+struct signal_struct;
+struct task_delay_info;
+struct task_group;
+struct user_event_mm;
+
+/*
+ * Task state bitmask. NOTE! These bits are also
+ * encoded in fs/proc/array.c: get_task_state().
+ *
+ * We have two separate sets of flags: task->__state
+ * is about runnability, while task->exit_state are
+ * about the task exiting. Confusing, but this way
+ * modifying one set can't modify the other one by
+ * mistake.
+ */
+
+/* Used in tsk->__state: */
+#define TASK_RUNNING 0x00000000
+#define TASK_INTERRUPTIBLE 0x00000001
+#define TASK_UNINTERRUPTIBLE 0x00000002
+#define __TASK_STOPPED 0x00000004
+#define __TASK_TRACED 0x00000008
+/* Used in tsk->exit_state: */
+#define EXIT_DEAD 0x00000010
+#define EXIT_ZOMBIE 0x00000020
+#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
+/* Used in tsk->__state again: */
+#define TASK_PARKED 0x00000040
+#define TASK_DEAD 0x00000080
+#define TASK_WAKEKILL 0x00000100
+#define TASK_WAKING 0x00000200
+#define TASK_NOLOAD 0x00000400
+#define TASK_NEW 0x00000800
+#define TASK_RTLOCK_WAIT 0x00001000
+#define TASK_FREEZABLE 0x00002000
+#define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
+#define TASK_FROZEN 0x00008000
+#define TASK_STATE_MAX 0x00010000
+
+#define TASK_ANY (TASK_STATE_MAX-1)
+
+/*
+ * DO NOT ADD ANY NEW USERS !
+ */
+#define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
+
+/* Convenience macros for the sake of set_current_state: */
+#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
+#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
+#define TASK_TRACED __TASK_TRACED
+
+#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
+
+/* Convenience macros for the sake of wake_up(): */
+#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
+
+/* get_task_state(): */
+#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
+ TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
+ __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
+ TASK_PARKED)
+
+#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
+
+#define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
+#define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
+#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
+
+/*
+ * Special states are those that do not use the normal wait-loop pattern. See
+ * the comment with set_special_state().
+ */
+#define is_special_task_state(state) \
+ ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
+
+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
+# define debug_normal_state_change(state_value) \
+ do { \
+ WARN_ON_ONCE(is_special_task_state(state_value)); \
+ current->task_state_change = _THIS_IP_; \
+ } while (0)
+
+# define debug_special_state_change(state_value) \
+ do { \
+ WARN_ON_ONCE(!is_special_task_state(state_value)); \
+ current->task_state_change = _THIS_IP_; \
+ } while (0)
+
+# define debug_rtlock_wait_set_state() \
+ do { \
+ current->saved_state_change = current->task_state_change;\
+ current->task_state_change = _THIS_IP_; \
+ } while (0)
+
+# define debug_rtlock_wait_restore_state() \
+ do { \
+ current->task_state_change = current->saved_state_change;\
+ } while (0)
+
+#else
+# define debug_normal_state_change(cond) do { } while (0)
+# define debug_special_state_change(cond) do { } while (0)
+# define debug_rtlock_wait_set_state() do { } while (0)
+# define debug_rtlock_wait_restore_state() do { } while (0)
+#endif
+
+/*
+ * set_current_state() includes a barrier so that the write of current->__state
+ * is correctly serialised wrt the caller's subsequent test of whether to
+ * actually sleep:
+ *
+ * for (;;) {
+ * set_current_state(TASK_UNINTERRUPTIBLE);
+ * if (CONDITION)
+ * break;
+ *
+ * schedule();
+ * }
+ * __set_current_state(TASK_RUNNING);
+ *
+ * If the caller does not need such serialisation (because, for instance, the
+ * CONDITION test and condition change and wakeup are under the same lock) then
+ * use __set_current_state().
+ *
+ * The above is typically ordered against the wakeup, which does:
+ *
+ * CONDITION = 1;
+ * wake_up_state(p, TASK_UNINTERRUPTIBLE);
+ *
+ * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
+ * accessing p->__state.
+ *
+ * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
+ * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
+ * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
+ *
+ * However, with slightly different timing the wakeup TASK_RUNNING store can
+ * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
+ * a problem either because that will result in one extra go around the loop
+ * and our @cond test will save the day.
+ *
+ * Also see the comments of try_to_wake_up().
+ */
+#define __set_current_state(state_value) \
+ do { \
+ debug_normal_state_change((state_value)); \
+ WRITE_ONCE(current->__state, (state_value)); \
+ } while (0)
+
+#define set_current_state(state_value) \
+ do { \
+ debug_normal_state_change((state_value)); \
+ smp_store_mb(current->__state, (state_value)); \
+ } while (0)
+
+/*
+ * set_special_state() should be used for those states when the blocking task
+ * can not use the regular condition based wait-loop. In that case we must
+ * serialize against wakeups such that any possible in-flight TASK_RUNNING
+ * stores will not collide with our state change.
+ */
+#define set_special_state(state_value) \
+ do { \
+ unsigned long flags; /* may shadow */ \
+ \
+ raw_spin_lock_irqsave(&current->pi_lock, flags); \
+ debug_special_state_change((state_value)); \
+ WRITE_ONCE(current->__state, (state_value)); \
+ raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
+ } while (0)
+
+/*
+ * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
+ *
+ * RT's spin/rwlock substitutions are state preserving. The state of the
+ * task when blocking on the lock is saved in task_struct::saved_state and
+ * restored after the lock has been acquired. These operations are
+ * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
+ * lock related wakeups while the task is blocked on the lock are
+ * redirected to operate on task_struct::saved_state to ensure that these
+ * are not dropped. On restore task_struct::saved_state is set to
+ * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
+ *
+ * The lock operation looks like this:
+ *
+ * current_save_and_set_rtlock_wait_state();
+ * for (;;) {
+ * if (try_lock())
+ * break;
+ * raw_spin_unlock_irq(&lock->wait_lock);
+ * schedule_rtlock();
+ * raw_spin_lock_irq(&lock->wait_lock);
+ * set_current_state(TASK_RTLOCK_WAIT);
+ * }
+ * current_restore_rtlock_saved_state();
+ */
+#define current_save_and_set_rtlock_wait_state() \
+ do { \
+ lockdep_assert_irqs_disabled(); \
+ raw_spin_lock(&current->pi_lock); \
+ current->saved_state = current->__state; \
+ debug_rtlock_wait_set_state(); \
+ WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
+ raw_spin_unlock(&current->pi_lock); \
+ } while (0);
+
+#define current_restore_rtlock_saved_state() \
+ do { \
+ lockdep_assert_irqs_disabled(); \
+ raw_spin_lock(&current->pi_lock); \
+ debug_rtlock_wait_restore_state(); \
+ WRITE_ONCE(current->__state, current->saved_state); \
+ current->saved_state = TASK_RUNNING; \
+ raw_spin_unlock(&current->pi_lock); \
+ } while (0);
+
+#define get_current_state() READ_ONCE(current->__state)
+
+/*
+ * Define the task command name length as enum, then it can be visible to
+ * BPF programs.
+ */
+enum {
+ TASK_COMM_LEN = 16,
+};
+
+extern void scheduler_tick(void);
+
+#define MAX_SCHEDULE_TIMEOUT LONG_MAX
+
+extern long schedule_timeout(long timeout);
+extern long schedule_timeout_interruptible(long timeout);
+extern long schedule_timeout_killable(long timeout);
+extern long schedule_timeout_uninterruptible(long timeout);
+extern long schedule_timeout_idle(long timeout);
+asmlinkage void schedule(void);
+extern void schedule_preempt_disabled(void);
+asmlinkage void preempt_schedule_irq(void);
+#ifdef CONFIG_PREEMPT_RT
+ extern void schedule_rtlock(void);
+#endif
+
+extern int __must_check io_schedule_prepare(void);
+extern void io_schedule_finish(int token);
+extern long io_schedule_timeout(long timeout);
+extern void io_schedule(void);
+
+/**
+ * struct prev_cputime - snapshot of system and user cputime
+ * @utime: time spent in user mode
+ * @stime: time spent in system mode
+ * @lock: protects the above two fields
+ *
+ * Stores previous user/system time values such that we can guarantee
+ * monotonicity.
+ */
+struct prev_cputime {
+#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
+ u64 utime;
+ u64 stime;
+ raw_spinlock_t lock;
+#endif
+};
+
+enum vtime_state {
+ /* Task is sleeping or running in a CPU with VTIME inactive: */
+ VTIME_INACTIVE = 0,
+ /* Task is idle */
+ VTIME_IDLE,
+ /* Task runs in kernelspace in a CPU with VTIME active: */
+ VTIME_SYS,
+ /* Task runs in userspace in a CPU with VTIME active: */
+ VTIME_USER,
+ /* Task runs as guests in a CPU with VTIME active: */
+ VTIME_GUEST,
+};
+
+struct vtime {
+ seqcount_t seqcount;
+ unsigned long long starttime;
+ enum vtime_state state;
+ unsigned int cpu;
+ u64 utime;
+ u64 stime;
+ u64 gtime;
+};
+
+/*
+ * Utilization clamp constraints.
+ * @UCLAMP_MIN: Minimum utilization
+ * @UCLAMP_MAX: Maximum utilization
+ * @UCLAMP_CNT: Utilization clamp constraints count
+ */
+enum uclamp_id {
+ UCLAMP_MIN = 0,
+ UCLAMP_MAX,
+ UCLAMP_CNT
+};
+
+#ifdef CONFIG_SMP
+extern struct root_domain def_root_domain;
+extern struct mutex sched_domains_mutex;
+#endif
+
+struct sched_info {
+#ifdef CONFIG_SCHED_INFO
+ /* Cumulative counters: */
+
+ /* # of times we have run on this CPU: */
+ unsigned long pcount;
+
+ /* Time spent waiting on a runqueue: */
+ unsigned long long run_delay;
+
+ /* Timestamps: */
+
+ /* When did we last run on a CPU? */
+ unsigned long long last_arrival;
+
+ /* When were we last queued to run? */
+ unsigned long long last_queued;
+
+#endif /* CONFIG_SCHED_INFO */
+};
+
+/*
+ * Integer metrics need fixed point arithmetic, e.g., sched/fair
+ * has a few: load, load_avg, util_avg, freq, and capacity.
+ *
+ * We define a basic fixed point arithmetic range, and then formalize
+ * all these metrics based on that basic range.
+ */
+# define SCHED_FIXEDPOINT_SHIFT 10
+# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
+
+/* Increase resolution of cpu_capacity calculations */
+# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
+# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
+
+struct load_weight {
+ unsigned long weight;
+ u32 inv_weight;
+};
+
+/**
+ * struct util_est - Estimation utilization of FAIR tasks
+ * @enqueued: instantaneous estimated utilization of a task/cpu
+ * @ewma: the Exponential Weighted Moving Average (EWMA)
+ * utilization of a task
+ *
+ * Support data structure to track an Exponential Weighted Moving Average
+ * (EWMA) of a FAIR task's utilization. New samples are added to the moving
+ * average each time a task completes an activation. Sample's weight is chosen
+ * so that the EWMA will be relatively insensitive to transient changes to the
+ * task's workload.
+ *
+ * The enqueued attribute has a slightly different meaning for tasks and cpus:
+ * - task: the task's util_avg at last task dequeue time
+ * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
+ * Thus, the util_est.enqueued of a task represents the contribution on the
+ * estimated utilization of the CPU where that task is currently enqueued.
+ *
+ * Only for tasks we track a moving average of the past instantaneous
+ * estimated utilization. This allows to absorb sporadic drops in utilization
+ * of an otherwise almost periodic task.
+ *
+ * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
+ * updates. When a task is dequeued, its util_est should not be updated if its
+ * util_avg has not been updated in the meantime.
+ * This information is mapped into the MSB bit of util_est.enqueued at dequeue
+ * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
+ * for a task) it is safe to use MSB.
+ */
+struct util_est {
+ unsigned int enqueued;
+ unsigned int ewma;
+#define UTIL_EST_WEIGHT_SHIFT 2
+#define UTIL_AVG_UNCHANGED 0x80000000
+} __attribute__((__aligned__(sizeof(u64))));
+
+/*
+ * The load/runnable/util_avg accumulates an infinite geometric series
+ * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
+ *
+ * [load_avg definition]
+ *
+ * load_avg = runnable% * scale_load_down(load)
+ *
+ * [runnable_avg definition]
+ *
+ * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
+ *
+ * [util_avg definition]
+ *
+ * util_avg = running% * SCHED_CAPACITY_SCALE
+ *
+ * where runnable% is the time ratio that a sched_entity is runnable and
+ * running% the time ratio that a sched_entity is running.
+ *
+ * For cfs_rq, they are the aggregated values of all runnable and blocked
+ * sched_entities.
+ *
+ * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
+ * capacity scaling. The scaling is done through the rq_clock_pelt that is used
+ * for computing those signals (see update_rq_clock_pelt())
+ *
+ * N.B., the above ratios (runnable% and running%) themselves are in the
+ * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
+ * to as large a range as necessary. This is for example reflected by
+ * util_avg's SCHED_CAPACITY_SCALE.
+ *
+ * [Overflow issue]
+ *
+ * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
+ * with the highest load (=88761), always runnable on a single cfs_rq,
+ * and should not overflow as the number already hits PID_MAX_LIMIT.
+ *
+ * For all other cases (including 32-bit kernels), struct load_weight's
+ * weight will overflow first before we do, because:
+ *
+ * Max(load_avg) <= Max(load.weight)
+ *
+ * Then it is the load_weight's responsibility to consider overflow
+ * issues.
+ */
+struct sched_avg {
+ u64 last_update_time;
+ u64 load_sum;
+ u64 runnable_sum;
+ u32 util_sum;
+ u32 period_contrib;
+ unsigned long load_avg;
+ unsigned long runnable_avg;
+ unsigned long util_avg;
+ struct util_est util_est;
+} ____cacheline_aligned;
+
+struct sched_statistics {
+#ifdef CONFIG_SCHEDSTATS
+ u64 wait_start;
+ u64 wait_max;
+ u64 wait_count;
+ u64 wait_sum;
+ u64 iowait_count;
+ u64 iowait_sum;
+
+ u64 sleep_start;
+ u64 sleep_max;
+ s64 sum_sleep_runtime;
+
+ u64 block_start;
+ u64 block_max;
+ s64 sum_block_runtime;
+
+ u64 exec_max;
+ u64 slice_max;
+
+ u64 nr_migrations_cold;
+ u64 nr_failed_migrations_affine;
+ u64 nr_failed_migrations_running;
+ u64 nr_failed_migrations_hot;
+ u64 nr_forced_migrations;
+
+ u64 nr_wakeups;
+ u64 nr_wakeups_sync;
+ u64 nr_wakeups_migrate;
+ u64 nr_wakeups_local;
+ u64 nr_wakeups_remote;
+ u64 nr_wakeups_affine;
+ u64 nr_wakeups_affine_attempts;
+ u64 nr_wakeups_passive;
+ u64 nr_wakeups_idle;
+
+#ifdef CONFIG_SCHED_CORE
+ u64 core_forceidle_sum;
+#endif
+#endif /* CONFIG_SCHEDSTATS */
+} ____cacheline_aligned;
+
+struct sched_entity {
+ /* For load-balancing: */
+ struct load_weight load;
+ struct rb_node run_node;
+ u64 deadline;
+ u64 min_deadline;
+
+ struct list_head group_node;
+ unsigned int on_rq;
+
+ u64 exec_start;
+ u64 sum_exec_runtime;
+ u64 prev_sum_exec_runtime;
+ u64 vruntime;
+ s64 vlag;
+ u64 slice;
+
+ u64 nr_migrations;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ int depth;
+ struct sched_entity *parent;
+ /* rq on which this entity is (to be) queued: */
+ struct cfs_rq *cfs_rq;
+ /* rq "owned" by this entity/group: */
+ struct cfs_rq *my_q;
+ /* cached value of my_q->h_nr_running */
+ unsigned long runnable_weight;
+#endif
+
+#ifdef CONFIG_SMP
+ /*
+ * Per entity load average tracking.
+ *
+ * Put into separate cache line so it does not
+ * collide with read-mostly values above.
+ */
+ struct sched_avg avg;
+#endif
+};
+
+struct sched_rt_entity {
+ struct list_head run_list;
+ unsigned long timeout;
+ unsigned long watchdog_stamp;
+ unsigned int time_slice;
+ unsigned short on_rq;
+ unsigned short on_list;
+
+ struct sched_rt_entity *back;
+#ifdef CONFIG_RT_GROUP_SCHED
+ struct sched_rt_entity *parent;
+ /* rq on which this entity is (to be) queued: */
+ struct rt_rq *rt_rq;
+ /* rq "owned" by this entity/group: */
+ struct rt_rq *my_q;
+#endif
+} __randomize_layout;
+
+struct sched_dl_entity {
+ struct rb_node rb_node;
+
+ /*
+ * Original scheduling parameters. Copied here from sched_attr
+ * during sched_setattr(), they will remain the same until
+ * the next sched_setattr().
+ */
+ u64 dl_runtime; /* Maximum runtime for each instance */
+ u64 dl_deadline; /* Relative deadline of each instance */
+ u64 dl_period; /* Separation of two instances (period) */
+ u64 dl_bw; /* dl_runtime / dl_period */
+ u64 dl_density; /* dl_runtime / dl_deadline */
+
+ /*
+ * Actual scheduling parameters. Initialized with the values above,
+ * they are continuously updated during task execution. Note that
+ * the remaining runtime could be < 0 in case we are in overrun.
+ */
+ s64 runtime; /* Remaining runtime for this instance */
+ u64 deadline; /* Absolute deadline for this instance */
+ unsigned int flags; /* Specifying the scheduler behaviour */
+
+ /*
+ * Some bool flags:
+ *
+ * @dl_throttled tells if we exhausted the runtime. If so, the
+ * task has to wait for a replenishment to be performed at the
+ * next firing of dl_timer.
+ *
+ * @dl_yielded tells if task gave up the CPU before consuming
+ * all its available runtime during the last job.
+ *
+ * @dl_non_contending tells if the task is inactive while still
+ * contributing to the active utilization. In other words, it
+ * indicates if the inactive timer has been armed and its handler
+ * has not been executed yet. This flag is useful to avoid race
+ * conditions between the inactive timer handler and the wakeup
+ * code.
+ *
+ * @dl_overrun tells if the task asked to be informed about runtime
+ * overruns.
+ */
+ unsigned int dl_throttled : 1;
+ unsigned int dl_yielded : 1;
+ unsigned int dl_non_contending : 1;
+ unsigned int dl_overrun : 1;
+
+ /*
+ * Bandwidth enforcement timer. Each -deadline task has its
+ * own bandwidth to be enforced, thus we need one timer per task.
+ */
+ struct hrtimer dl_timer;
+
+ /*
+ * Inactive timer, responsible for decreasing the active utilization
+ * at the "0-lag time". When a -deadline task blocks, it contributes
+ * to GRUB's active utilization until the "0-lag time", hence a
+ * timer is needed to decrease the active utilization at the correct
+ * time.
+ */
+ struct hrtimer inactive_timer;
+
+#ifdef CONFIG_RT_MUTEXES
+ /*
+ * Priority Inheritance. When a DEADLINE scheduling entity is boosted
+ * pi_se points to the donor, otherwise points to the dl_se it belongs
+ * to (the original one/itself).
+ */
+ struct sched_dl_entity *pi_se;
+#endif
+};
+
+#ifdef CONFIG_UCLAMP_TASK
+/* Number of utilization clamp buckets (shorter alias) */
+#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
+
+/*
+ * Utilization clamp for a scheduling entity
+ * @value: clamp value "assigned" to a se
+ * @bucket_id: bucket index corresponding to the "assigned" value
+ * @active: the se is currently refcounted in a rq's bucket
+ * @user_defined: the requested clamp value comes from user-space
+ *
+ * The bucket_id is the index of the clamp bucket matching the clamp value
+ * which is pre-computed and stored to avoid expensive integer divisions from
+ * the fast path.
+ *
+ * The active bit is set whenever a task has got an "effective" value assigned,
+ * which can be different from the clamp value "requested" from user-space.
+ * This allows to know a task is refcounted in the rq's bucket corresponding
+ * to the "effective" bucket_id.
+ *
+ * The user_defined bit is set whenever a task has got a task-specific clamp
+ * value requested from userspace, i.e. the system defaults apply to this task
+ * just as a restriction. This allows to relax default clamps when a less
+ * restrictive task-specific value has been requested, thus allowing to
+ * implement a "nice" semantic. For example, a task running with a 20%
+ * default boost can still drop its own boosting to 0%.
+ */
+struct uclamp_se {
+ unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
+ unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
+ unsigned int active : 1;
+ unsigned int user_defined : 1;
+};
+#endif /* CONFIG_UCLAMP_TASK */
+
+union rcu_special {
+ struct {
+ u8 blocked;
+ u8 need_qs;
+ u8 exp_hint; /* Hint for performance. */
+ u8 need_mb; /* Readers need smp_mb(). */
+ } b; /* Bits. */
+ u32 s; /* Set of bits. */
+};
+
+enum perf_event_task_context {
+ perf_invalid_context = -1,
+ perf_hw_context = 0,
+ perf_sw_context,
+ perf_nr_task_contexts,
+};
+
+struct wake_q_node {
+ struct wake_q_node *next;
+};
+
+struct kmap_ctrl {
+#ifdef CONFIG_KMAP_LOCAL
+ int idx;
+ pte_t pteval[KM_MAX_IDX];
+#endif
+};
+
+struct task_struct {
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+ /*
+ * For reasons of header soup (see current_thread_info()), this
+ * must be the first element of task_struct.
+ */
+ struct thread_info thread_info;
+#endif
+ unsigned int __state;
+
+#ifdef CONFIG_PREEMPT_RT
+ /* saved state for "spinlock sleepers" */
+ unsigned int saved_state;
+#endif
+
+ /*
+ * This begins the randomizable portion of task_struct. Only
+ * scheduling-critical items should be added above here.
+ */
+ randomized_struct_fields_start
+
+ void *stack;
+ refcount_t usage;
+ /* Per task flags (PF_*), defined further below: */
+ unsigned int flags;
+ unsigned int ptrace;
+
+#ifdef CONFIG_SMP
+ int on_cpu;
+ struct __call_single_node wake_entry;
+ unsigned int wakee_flips;
+ unsigned long wakee_flip_decay_ts;
+ struct task_struct *last_wakee;
+
+ /*
+ * recent_used_cpu is initially set as the last CPU used by a task
+ * that wakes affine another task. Waker/wakee relationships can
+ * push tasks around a CPU where each wakeup moves to the next one.
+ * Tracking a recently used CPU allows a quick search for a recently
+ * used CPU that may be idle.
+ */
+ int recent_used_cpu;
+ int wake_cpu;
+#endif
+ int on_rq;
+
+ int prio;
+ int static_prio;
+ int normal_prio;
+ unsigned int rt_priority;
+
+ struct sched_entity se;
+ struct sched_rt_entity rt;
+ struct sched_dl_entity dl;
+ const struct sched_class *sched_class;
+
+#ifdef CONFIG_SCHED_CORE
+ struct rb_node core_node;
+ unsigned long core_cookie;
+ unsigned int core_occupation;
+#endif
+
+#ifdef CONFIG_CGROUP_SCHED
+ struct task_group *sched_task_group;
+#endif
+
+#ifdef CONFIG_UCLAMP_TASK
+ /*
+ * Clamp values requested for a scheduling entity.
+ * Must be updated with task_rq_lock() held.
+ */
+ struct uclamp_se uclamp_req[UCLAMP_CNT];
+ /*
+ * Effective clamp values used for a scheduling entity.
+ * Must be updated with task_rq_lock() held.
+ */
+ struct uclamp_se uclamp[UCLAMP_CNT];
+#endif
+
+ struct sched_statistics stats;
+
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+ /* List of struct preempt_notifier: */
+ struct hlist_head preempt_notifiers;
+#endif
+
+#ifdef CONFIG_BLK_DEV_IO_TRACE
+ unsigned int btrace_seq;
+#endif
+
+ unsigned int policy;
+ int nr_cpus_allowed;
+ const cpumask_t *cpus_ptr;
+ cpumask_t *user_cpus_ptr;
+ cpumask_t cpus_mask;
+ void *migration_pending;
+#ifdef CONFIG_SMP
+ unsigned short migration_disabled;
+#endif
+ unsigned short migration_flags;
+
+#ifdef CONFIG_PREEMPT_RCU
+ int rcu_read_lock_nesting;
+ union rcu_special rcu_read_unlock_special;
+ struct list_head rcu_node_entry;
+ struct rcu_node *rcu_blocked_node;
+#endif /* #ifdef CONFIG_PREEMPT_RCU */
+
+#ifdef CONFIG_TASKS_RCU
+ unsigned long rcu_tasks_nvcsw;
+ u8 rcu_tasks_holdout;
+ u8 rcu_tasks_idx;
+ int rcu_tasks_idle_cpu;
+ struct list_head rcu_tasks_holdout_list;
+#endif /* #ifdef CONFIG_TASKS_RCU */
+
+#ifdef CONFIG_TASKS_TRACE_RCU
+ int trc_reader_nesting;
+ int trc_ipi_to_cpu;
+ union rcu_special trc_reader_special;
+ struct list_head trc_holdout_list;
+ struct list_head trc_blkd_node;
+ int trc_blkd_cpu;
+#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
+
+ struct sched_info sched_info;
+
+ struct list_head tasks;
+#ifdef CONFIG_SMP
+ struct plist_node pushable_tasks;
+ struct rb_node pushable_dl_tasks;
+#endif
+
+ struct mm_struct *mm;
+ struct mm_struct *active_mm;
+
+ int exit_state;
+ int exit_code;
+ int exit_signal;
+ /* The signal sent when the parent dies: */
+ int pdeath_signal;
+ /* JOBCTL_*, siglock protected: */
+ unsigned long jobctl;
+
+ /* Used for emulating ABI behavior of previous Linux versions: */
+ unsigned int personality;
+
+ /* Scheduler bits, serialized by scheduler locks: */
+ unsigned sched_reset_on_fork:1;
+ unsigned sched_contributes_to_load:1;
+ unsigned sched_migrated:1;
+
+ /* Force alignment to the next boundary: */
+ unsigned :0;
+
+ /* Unserialized, strictly 'current' */
+
+ /*
+ * This field must not be in the scheduler word above due to wakelist
+ * queueing no longer being serialized by p->on_cpu. However:
+ *
+ * p->XXX = X; ttwu()
+ * schedule() if (p->on_rq && ..) // false
+ * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
+ * deactivate_task() ttwu_queue_wakelist())
+ * p->on_rq = 0; p->sched_remote_wakeup = Y;
+ *
+ * guarantees all stores of 'current' are visible before
+ * ->sched_remote_wakeup gets used, so it can be in this word.
+ */
+ unsigned sched_remote_wakeup:1;
+
+ /* Bit to tell LSMs we're in execve(): */
+ unsigned in_execve:1;
+ unsigned in_iowait:1;
+#ifndef TIF_RESTORE_SIGMASK
+ unsigned restore_sigmask:1;
+#endif
+#ifdef CONFIG_MEMCG
+ unsigned in_user_fault:1;
+#endif
+#ifdef CONFIG_LRU_GEN
+ /* whether the LRU algorithm may apply to this access */
+ unsigned in_lru_fault:1;
+#endif
+#ifdef CONFIG_COMPAT_BRK
+ unsigned brk_randomized:1;
+#endif
+#ifdef CONFIG_CGROUPS
+ /* disallow userland-initiated cgroup migration */
+ unsigned no_cgroup_migration:1;
+ /* task is frozen/stopped (used by the cgroup freezer) */
+ unsigned frozen:1;
+#endif
+#ifdef CONFIG_BLK_CGROUP
+ unsigned use_memdelay:1;
+#endif
+#ifdef CONFIG_PSI
+ /* Stalled due to lack of memory */
+ unsigned in_memstall:1;
+#endif
+#ifdef CONFIG_PAGE_OWNER
+ /* Used by page_owner=on to detect recursion in page tracking. */
+ unsigned in_page_owner:1;
+#endif
+#ifdef CONFIG_EVENTFD
+ /* Recursion prevention for eventfd_signal() */
+ unsigned in_eventfd:1;
+#endif
+#ifdef CONFIG_IOMMU_SVA
+ unsigned pasid_activated:1;
+#endif
+#ifdef CONFIG_CPU_SUP_INTEL
+ unsigned reported_split_lock:1;
+#endif
+#ifdef CONFIG_TASK_DELAY_ACCT
+ /* delay due to memory thrashing */
+ unsigned in_thrashing:1;
+#endif
+
+ unsigned long atomic_flags; /* Flags requiring atomic access. */
+
+ struct restart_block restart_block;
+
+ pid_t pid;
+ pid_t tgid;
+
+#ifdef CONFIG_STACKPROTECTOR
+ /* Canary value for the -fstack-protector GCC feature: */
+ unsigned long stack_canary;
+#endif
+ /*
+ * Pointers to the (original) parent process, youngest child, younger sibling,
+ * older sibling, respectively. (p->father can be replaced with
+ * p->real_parent->pid)
+ */
+
+ /* Real parent process: */
+ struct task_struct __rcu *real_parent;
+
+ /* Recipient of SIGCHLD, wait4() reports: */
+ struct task_struct __rcu *parent;
+
+ /*
+ * Children/sibling form the list of natural children:
+ */
+ struct list_head children;
+ struct list_head sibling;
+ struct task_struct *group_leader;
+
+ /*
+ * 'ptraced' is the list of tasks this task is using ptrace() on.
+ *
+ * This includes both natural children and PTRACE_ATTACH targets.
+ * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
+ */
+ struct list_head ptraced;
+ struct list_head ptrace_entry;
+
+ /* PID/PID hash table linkage. */
+ struct pid *thread_pid;
+ struct hlist_node pid_links[PIDTYPE_MAX];
+ struct list_head thread_group;
+ struct list_head thread_node;
+
+ struct completion *vfork_done;
+
+ /* CLONE_CHILD_SETTID: */
+ int __user *set_child_tid;
+
+ /* CLONE_CHILD_CLEARTID: */
+ int __user *clear_child_tid;
+
+ /* PF_KTHREAD | PF_IO_WORKER */
+ void *worker_private;
+
+ u64 utime;
+ u64 stime;
+#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
+ u64 utimescaled;
+ u64 stimescaled;
+#endif
+ u64 gtime;
+ struct prev_cputime prev_cputime;
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
+ struct vtime vtime;
+#endif
+
+#ifdef CONFIG_NO_HZ_FULL
+ atomic_t tick_dep_mask;
+#endif
+ /* Context switch counts: */
+ unsigned long nvcsw;
+ unsigned long nivcsw;
+
+ /* Monotonic time in nsecs: */
+ u64 start_time;
+
+ /* Boot based time in nsecs: */
+ u64 start_boottime;
+
+ /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
+ unsigned long min_flt;
+ unsigned long maj_flt;
+
+ /* Empty if CONFIG_POSIX_CPUTIMERS=n */
+ struct posix_cputimers posix_cputimers;
+
+#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
+ struct posix_cputimers_work posix_cputimers_work;
+#endif
+
+ /* Process credentials: */
+
+ /* Tracer's credentials at attach: */
+ const struct cred __rcu *ptracer_cred;
+
+ /* Objective and real subjective task credentials (COW): */
+ const struct cred __rcu *real_cred;
+
+ /* Effective (overridable) subjective task credentials (COW): */
+ const struct cred __rcu *cred;
+
+#ifdef CONFIG_KEYS
+ /* Cached requested key. */
+ struct key *cached_requested_key;
+#endif
+
+ /*
+ * executable name, excluding path.
+ *
+ * - normally initialized setup_new_exec()
+ * - access it with [gs]et_task_comm()
+ * - lock it with task_lock()
+ */
+ char comm[TASK_COMM_LEN];
+
+ struct nameidata *nameidata;
+
+#ifdef CONFIG_SYSVIPC
+ struct sysv_sem sysvsem;
+ struct sysv_shm sysvshm;
+#endif
+#ifdef CONFIG_DETECT_HUNG_TASK
+ unsigned long last_switch_count;
+ unsigned long last_switch_time;
+#endif
+ /* Filesystem information: */
+ struct fs_struct *fs;
+
+ /* Open file information: */
+ struct files_struct *files;
+
+#ifdef CONFIG_IO_URING
+ struct io_uring_task *io_uring;
+#endif
+
+ /* Namespaces: */
+ struct nsproxy *nsproxy;
+
+ /* Signal handlers: */
+ struct signal_struct *signal;
+ struct sighand_struct __rcu *sighand;
+ sigset_t blocked;
+ sigset_t real_blocked;
+ /* Restored if set_restore_sigmask() was used: */
+ sigset_t saved_sigmask;
+ struct sigpending pending;
+ unsigned long sas_ss_sp;
+ size_t sas_ss_size;
+ unsigned int sas_ss_flags;
+
+ struct callback_head *task_works;
+
+#ifdef CONFIG_AUDIT
+#ifdef CONFIG_AUDITSYSCALL
+ struct audit_context *audit_context;
+#endif
+ kuid_t loginuid;
+ unsigned int sessionid;
+#endif
+ struct seccomp seccomp;
+ struct syscall_user_dispatch syscall_dispatch;
+
+ /* Thread group tracking: */
+ u64 parent_exec_id;
+ u64 self_exec_id;
+
+ /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
+ spinlock_t alloc_lock;
+
+ /* Protection of the PI data structures: */
+ raw_spinlock_t pi_lock;
+
+ struct wake_q_node wake_q;
+
+#ifdef CONFIG_RT_MUTEXES
+ /* PI waiters blocked on a rt_mutex held by this task: */
+ struct rb_root_cached pi_waiters;
+ /* Updated under owner's pi_lock and rq lock */
+ struct task_struct *pi_top_task;
+ /* Deadlock detection and priority inheritance handling: */
+ struct rt_mutex_waiter *pi_blocked_on;
+#endif
+
+#ifdef CONFIG_DEBUG_MUTEXES
+ /* Mutex deadlock detection: */
+ struct mutex_waiter *blocked_on;
+#endif
+
+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
+ int non_block_count;
+#endif
+
+#ifdef CONFIG_TRACE_IRQFLAGS
+ struct irqtrace_events irqtrace;
+ unsigned int hardirq_threaded;
+ u64 hardirq_chain_key;
+ int softirqs_enabled;
+ int softirq_context;
+ int irq_config;
+#endif
+#ifdef CONFIG_PREEMPT_RT
+ int softirq_disable_cnt;
+#endif
+
+#ifdef CONFIG_LOCKDEP
+# define MAX_LOCK_DEPTH 48UL
+ u64 curr_chain_key;
+ int lockdep_depth;
+ unsigned int lockdep_recursion;
+ struct held_lock held_locks[MAX_LOCK_DEPTH];
+#endif
+
+#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
+ unsigned int in_ubsan;
+#endif
+
+ /* Journalling filesystem info: */
+ void *journal_info;
+
+ /* Stacked block device info: */
+ struct bio_list *bio_list;
+
+ /* Stack plugging: */
+ struct blk_plug *plug;
+
+ /* VM state: */
+ struct reclaim_state *reclaim_state;
+
+ struct io_context *io_context;
+
+#ifdef CONFIG_COMPACTION
+ struct capture_control *capture_control;
+#endif
+ /* Ptrace state: */
+ unsigned long ptrace_message;
+ kernel_siginfo_t *last_siginfo;
+
+ struct task_io_accounting ioac;
+#ifdef CONFIG_PSI
+ /* Pressure stall state */
+ unsigned int psi_flags;
+#endif
+#ifdef CONFIG_TASK_XACCT
+ /* Accumulated RSS usage: */
+ u64 acct_rss_mem1;
+ /* Accumulated virtual memory usage: */
+ u64 acct_vm_mem1;
+ /* stime + utime since last update: */
+ u64 acct_timexpd;
+#endif
+#ifdef CONFIG_CPUSETS
+ /* Protected by ->alloc_lock: */
+ nodemask_t mems_allowed;
+ /* Sequence number to catch updates: */
+ seqcount_spinlock_t mems_allowed_seq;
+ int cpuset_mem_spread_rotor;
+ int cpuset_slab_spread_rotor;
+#endif
+#ifdef CONFIG_CGROUPS
+ /* Control Group info protected by css_set_lock: */
+ struct css_set __rcu *cgroups;
+ /* cg_list protected by css_set_lock and tsk->alloc_lock: */
+ struct list_head cg_list;
+#endif
+#ifdef CONFIG_X86_CPU_RESCTRL
+ u32 closid;
+ u32 rmid;
+#endif
+#ifdef CONFIG_FUTEX
+ struct robust_list_head __user *robust_list;
+#ifdef CONFIG_COMPAT
+ struct compat_robust_list_head __user *compat_robust_list;
+#endif
+ struct list_head pi_state_list;
+ struct futex_pi_state *pi_state_cache;
+ struct mutex futex_exit_mutex;
+ unsigned int futex_state;
+#endif
+#ifdef CONFIG_PERF_EVENTS
+ struct perf_event_context *perf_event_ctxp;
+ struct mutex perf_event_mutex;
+ struct list_head perf_event_list;
+#endif
+#ifdef CONFIG_DEBUG_PREEMPT
+ unsigned long preempt_disable_ip;
+#endif
+#ifdef CONFIG_NUMA
+ /* Protected by alloc_lock: */
+ struct mempolicy *mempolicy;
+ short il_prev;
+ short pref_node_fork;
+#endif
+#ifdef CONFIG_NUMA_BALANCING
+ int numa_scan_seq;
+ unsigned int numa_scan_period;
+ unsigned int numa_scan_period_max;
+ int numa_preferred_nid;
+ unsigned long numa_migrate_retry;
+ /* Migration stamp: */
+ u64 node_stamp;
+ u64 last_task_numa_placement;
+ u64 last_sum_exec_runtime;
+ struct callback_head numa_work;
+
+ /*
+ * This pointer is only modified for current in syscall and
+ * pagefault context (and for tasks being destroyed), so it can be read
+ * from any of the following contexts:
+ * - RCU read-side critical section
+ * - current->numa_group from everywhere
+ * - task's runqueue locked, task not running
+ */
+ struct numa_group __rcu *numa_group;
+
+ /*
+ * numa_faults is an array split into four regions:
+ * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
+ * in this precise order.
+ *
+ * faults_memory: Exponential decaying average of faults on a per-node
+ * basis. Scheduling placement decisions are made based on these
+ * counts. The values remain static for the duration of a PTE scan.
+ * faults_cpu: Track the nodes the process was running on when a NUMA
+ * hinting fault was incurred.
+ * faults_memory_buffer and faults_cpu_buffer: Record faults per node
+ * during the current scan window. When the scan completes, the counts
+ * in faults_memory and faults_cpu decay and these values are copied.
+ */
+ unsigned long *numa_faults;
+ unsigned long total_numa_faults;
+
+ /*
+ * numa_faults_locality tracks if faults recorded during the last
+ * scan window were remote/local or failed to migrate. The task scan
+ * period is adapted based on the locality of the faults with different
+ * weights depending on whether they were shared or private faults
+ */
+ unsigned long numa_faults_locality[3];
+
+ unsigned long numa_pages_migrated;
+#endif /* CONFIG_NUMA_BALANCING */
+
+#ifdef CONFIG_RSEQ
+ struct rseq __user *rseq;
+ u32 rseq_len;
+ u32 rseq_sig;
+ /*
+ * RmW on rseq_event_mask must be performed atomically
+ * with respect to preemption.
+ */
+ unsigned long rseq_event_mask;
+#endif
+
+#ifdef CONFIG_SCHED_MM_CID
+ int mm_cid; /* Current cid in mm */
+ int last_mm_cid; /* Most recent cid in mm */
+ int migrate_from_cpu;
+ int mm_cid_active; /* Whether cid bitmap is active */
+ struct callback_head cid_work;
+#endif
+
+ struct tlbflush_unmap_batch tlb_ubc;
+
+ /* Cache last used pipe for splice(): */
+ struct pipe_inode_info *splice_pipe;
+
+ struct page_frag task_frag;
+
+#ifdef CONFIG_TASK_DELAY_ACCT
+ struct task_delay_info *delays;
+#endif
+
+#ifdef CONFIG_FAULT_INJECTION
+ int make_it_fail;
+ unsigned int fail_nth;
+#endif
+ /*
+ * When (nr_dirtied >= nr_dirtied_pause), it's time to call
+ * balance_dirty_pages() for a dirty throttling pause:
+ */
+ int nr_dirtied;
+ int nr_dirtied_pause;
+ /* Start of a write-and-pause period: */
+ unsigned long dirty_paused_when;
+
+#ifdef CONFIG_LATENCYTOP
+ int latency_record_count;
+ struct latency_record latency_record[LT_SAVECOUNT];
+#endif
+ /*
+ * Time slack values; these are used to round up poll() and
+ * select() etc timeout values. These are in nanoseconds.
+ */
+ u64 timer_slack_ns;
+ u64 default_timer_slack_ns;
+
+#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
+ unsigned int kasan_depth;
+#endif
+
+#ifdef CONFIG_KCSAN
+ struct kcsan_ctx kcsan_ctx;
+#ifdef CONFIG_TRACE_IRQFLAGS
+ struct irqtrace_events kcsan_save_irqtrace;
+#endif
+#ifdef CONFIG_KCSAN_WEAK_MEMORY
+ int kcsan_stack_depth;
+#endif
+#endif
+
+#ifdef CONFIG_KMSAN
+ struct kmsan_ctx kmsan_ctx;
+#endif
+
+#if IS_ENABLED(CONFIG_KUNIT)
+ struct kunit *kunit_test;
+#endif
+
+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+ /* Index of current stored address in ret_stack: */
+ int curr_ret_stack;
+ int curr_ret_depth;
+
+ /* Stack of return addresses for return function tracing: */
+ struct ftrace_ret_stack *ret_stack;
+
+ /* Timestamp for last schedule: */
+ unsigned long long ftrace_timestamp;
+
+ /*
+ * Number of functions that haven't been traced
+ * because of depth overrun:
+ */
+ atomic_t trace_overrun;
+
+ /* Pause tracing: */
+ atomic_t tracing_graph_pause;
+#endif
+
+#ifdef CONFIG_TRACING
+ /* Bitmask and counter of trace recursion: */
+ unsigned long trace_recursion;
+#endif /* CONFIG_TRACING */
+
+#ifdef CONFIG_KCOV
+ /* See kernel/kcov.c for more details. */
+
+ /* Coverage collection mode enabled for this task (0 if disabled): */
+ unsigned int kcov_mode;
+
+ /* Size of the kcov_area: */
+ unsigned int kcov_size;
+
+ /* Buffer for coverage collection: */
+ void *kcov_area;
+
+ /* KCOV descriptor wired with this task or NULL: */
+ struct kcov *kcov;
+
+ /* KCOV common handle for remote coverage collection: */
+ u64 kcov_handle;
+
+ /* KCOV sequence number: */
+ int kcov_sequence;
+
+ /* Collect coverage from softirq context: */
+ unsigned int kcov_softirq;
+#endif
+
+#ifdef CONFIG_MEMCG
+ struct mem_cgroup *memcg_in_oom;
+ gfp_t memcg_oom_gfp_mask;
+ int memcg_oom_order;
+
+ /* Number of pages to reclaim on returning to userland: */
+ unsigned int memcg_nr_pages_over_high;
+
+ /* Used by memcontrol for targeted memcg charge: */
+ struct mem_cgroup *active_memcg;
+#endif
+
+#ifdef CONFIG_BLK_CGROUP
+ struct gendisk *throttle_disk;
+#endif
+
+#ifdef CONFIG_UPROBES
+ struct uprobe_task *utask;
+#endif
+#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
+ unsigned int sequential_io;
+ unsigned int sequential_io_avg;
+#endif
+ struct kmap_ctrl kmap_ctrl;
+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
+ unsigned long task_state_change;
+# ifdef CONFIG_PREEMPT_RT
+ unsigned long saved_state_change;
+# endif
+#endif
+ struct rcu_head rcu;
+ refcount_t rcu_users;
+ int pagefault_disabled;
+#ifdef CONFIG_MMU
+ struct task_struct *oom_reaper_list;
+ struct timer_list oom_reaper_timer;
+#endif
+#ifdef CONFIG_VMAP_STACK
+ struct vm_struct *stack_vm_area;
+#endif
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+ /* A live task holds one reference: */
+ refcount_t stack_refcount;
+#endif
+#ifdef CONFIG_LIVEPATCH
+ int patch_state;
+#endif
+#ifdef CONFIG_SECURITY
+ /* Used by LSM modules for access restriction: */
+ void *security;
+#endif
+#ifdef CONFIG_BPF_SYSCALL
+ /* Used by BPF task local storage */
+ struct bpf_local_storage __rcu *bpf_storage;
+ /* Used for BPF run context */
+ struct bpf_run_ctx *bpf_ctx;
+#endif
+
+#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
+ unsigned long lowest_stack;
+ unsigned long prev_lowest_stack;
+#endif
+
+#ifdef CONFIG_X86_MCE
+ void __user *mce_vaddr;
+ __u64 mce_kflags;
+ u64 mce_addr;
+ __u64 mce_ripv : 1,
+ mce_whole_page : 1,
+ __mce_reserved : 62;
+ struct callback_head mce_kill_me;
+ int mce_count;
+#endif
+
+#ifdef CONFIG_KRETPROBES
+ struct llist_head kretprobe_instances;
+#endif
+#ifdef CONFIG_RETHOOK
+ struct llist_head rethooks;
+#endif
+
+#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
+ /*
+ * If L1D flush is supported on mm context switch
+ * then we use this callback head to queue kill work
+ * to kill tasks that are not running on SMT disabled
+ * cores
+ */
+ struct callback_head l1d_flush_kill;
+#endif
+
+#ifdef CONFIG_RV
+ /*
+ * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
+ * If we find justification for more monitors, we can think
+ * about adding more or developing a dynamic method. So far,
+ * none of these are justified.
+ */
+ union rv_task_monitor rv[RV_PER_TASK_MONITORS];
+#endif
+
+#ifdef CONFIG_USER_EVENTS
+ struct user_event_mm *user_event_mm;
+#endif
+
+ /*
+ * New fields for task_struct should be added above here, so that
+ * they are included in the randomized portion of task_struct.
+ */
+ randomized_struct_fields_end
+
+ /* CPU-specific state of this task: */
+ struct thread_struct thread;
+
+ /*
+ * WARNING: on x86, 'thread_struct' contains a variable-sized
+ * structure. It *MUST* be at the end of 'task_struct'.
+ *
+ * Do not put anything below here!
+ */
+};
+
+static inline struct pid *task_pid(struct task_struct *task)
+{
+ return task->thread_pid;
+}
+
+/*
+ * the helpers to get the task's different pids as they are seen
+ * from various namespaces
+ *
+ * task_xid_nr() : global id, i.e. the id seen from the init namespace;
+ * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
+ * current.
+ * task_xid_nr_ns() : id seen from the ns specified;
+ *
+ * see also pid_nr() etc in include/linux/pid.h
+ */
+pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
+
+static inline pid_t task_pid_nr(struct task_struct *tsk)
+{
+ return tsk->pid;
+}
+
+static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
+{
+ return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
+}
+
+static inline pid_t task_pid_vnr(struct task_struct *tsk)
+{
+ return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
+}
+
+
+static inline pid_t task_tgid_nr(struct task_struct *tsk)
+{
+ return tsk->tgid;
+}
+
+/**
+ * pid_alive - check that a task structure is not stale
+ * @p: Task structure to be checked.
+ *
+ * Test if a process is not yet dead (at most zombie state)
+ * If pid_alive fails, then pointers within the task structure
+ * can be stale and must not be dereferenced.
+ *
+ * Return: 1 if the process is alive. 0 otherwise.
+ */
+static inline int pid_alive(const struct task_struct *p)
+{
+ return p->thread_pid != NULL;
+}
+
+static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
+{
+ return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
+}
+
+static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
+{
+ return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
+}
+
+
+static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
+{
+ return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
+}
+
+static inline pid_t task_session_vnr(struct task_struct *tsk)
+{
+ return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
+}
+
+static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
+{
+ return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
+}
+
+static inline pid_t task_tgid_vnr(struct task_struct *tsk)
+{
+ return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
+}
+
+static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
+{
+ pid_t pid = 0;
+
+ rcu_read_lock();
+ if (pid_alive(tsk))
+ pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
+ rcu_read_unlock();
+
+ return pid;
+}
+
+static inline pid_t task_ppid_nr(const struct task_struct *tsk)
+{
+ return task_ppid_nr_ns(tsk, &init_pid_ns);
+}
+
+/* Obsolete, do not use: */
+static inline pid_t task_pgrp_nr(struct task_struct *tsk)
+{
+ return task_pgrp_nr_ns(tsk, &init_pid_ns);
+}
+
+#define TASK_REPORT_IDLE (TASK_REPORT + 1)
+#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
+
+static inline unsigned int __task_state_index(unsigned int tsk_state,
+ unsigned int tsk_exit_state)
+{
+ unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
+
+ BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
+
+ if ((tsk_state & TASK_IDLE) == TASK_IDLE)
+ state = TASK_REPORT_IDLE;
+
+ /*
+ * We're lying here, but rather than expose a completely new task state
+ * to userspace, we can make this appear as if the task has gone through
+ * a regular rt_mutex_lock() call.
+ */
+ if (tsk_state & TASK_RTLOCK_WAIT)
+ state = TASK_UNINTERRUPTIBLE;
+
+ return fls(state);
+}
+
+static inline unsigned int task_state_index(struct task_struct *tsk)
+{
+ return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
+}
+
+static inline char task_index_to_char(unsigned int state)
+{
+ static const char state_char[] = "RSDTtXZPI";
+
+ BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
+
+ return state_char[state];
+}
+
+static inline char task_state_to_char(struct task_struct *tsk)
+{
+ return task_index_to_char(task_state_index(tsk));
+}
+
+/**
+ * is_global_init - check if a task structure is init. Since init
+ * is free to have sub-threads we need to check tgid.
+ * @tsk: Task structure to be checked.
+ *
+ * Check if a task structure is the first user space task the kernel created.
+ *
+ * Return: 1 if the task structure is init. 0 otherwise.
+ */
+static inline int is_global_init(struct task_struct *tsk)
+{
+ return task_tgid_nr(tsk) == 1;
+}
+
+extern struct pid *cad_pid;
+
+/*
+ * Per process flags
+ */
+#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
+#define PF_IDLE 0x00000002 /* I am an IDLE thread */
+#define PF_EXITING 0x00000004 /* Getting shut down */
+#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
+#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
+#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
+#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
+#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
+#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
+#define PF_DUMPCORE 0x00000200 /* Dumped core */
+#define PF_SIGNALED 0x00000400 /* Killed by a signal */
+#define PF_MEMALLOC 0x00000800 /* Allocating memory */
+#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
+#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
+#define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
+#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
+#define PF__HOLE__00010000 0x00010000
+#define PF_KSWAPD 0x00020000 /* I am kswapd */
+#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
+#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
+#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
+ * I am cleaning dirty pages from some other bdi. */
+#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
+#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
+#define PF__HOLE__00800000 0x00800000
+#define PF__HOLE__01000000 0x01000000
+#define PF__HOLE__02000000 0x02000000
+#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
+#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
+#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
+#define PF__HOLE__20000000 0x20000000
+#define PF__HOLE__40000000 0x40000000
+#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
+
+/*
+ * Only the _current_ task can read/write to tsk->flags, but other
+ * tasks can access tsk->flags in readonly mode for example
+ * with tsk_used_math (like during threaded core dumping).
+ * There is however an exception to this rule during ptrace
+ * or during fork: the ptracer task is allowed to write to the
+ * child->flags of its traced child (same goes for fork, the parent
+ * can write to the child->flags), because we're guaranteed the
+ * child is not running and in turn not changing child->flags
+ * at the same time the parent does it.
+ */
+#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
+#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
+#define clear_used_math() clear_stopped_child_used_math(current)
+#define set_used_math() set_stopped_child_used_math(current)
+
+#define conditional_stopped_child_used_math(condition, child) \
+ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
+
+#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
+
+#define copy_to_stopped_child_used_math(child) \
+ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
+
+/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
+#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
+#define used_math() tsk_used_math(current)
+
+static __always_inline bool is_percpu_thread(void)
+{
+#ifdef CONFIG_SMP
+ return (current->flags & PF_NO_SETAFFINITY) &&
+ (current->nr_cpus_allowed == 1);
+#else
+ return true;
+#endif
+}
+
+/* Per-process atomic flags. */
+#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
+#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
+#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
+#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
+#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
+#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
+#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
+#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
+
+#define TASK_PFA_TEST(name, func) \
+ static inline bool task_##func(struct task_struct *p) \
+ { return test_bit(PFA_##name, &p->atomic_flags); }
+
+#define TASK_PFA_SET(name, func) \
+ static inline void task_set_##func(struct task_struct *p) \
+ { set_bit(PFA_##name, &p->atomic_flags); }
+
+#define TASK_PFA_CLEAR(name, func) \
+ static inline void task_clear_##func(struct task_struct *p) \
+ { clear_bit(PFA_##name, &p->atomic_flags); }
+
+TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
+TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
+
+TASK_PFA_TEST(SPREAD_PAGE, spread_page)
+TASK_PFA_SET(SPREAD_PAGE, spread_page)
+TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
+
+TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
+TASK_PFA_SET(SPREAD_SLAB, spread_slab)
+TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
+
+TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
+TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
+TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
+
+TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
+TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
+TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
+
+TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
+TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
+
+TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
+TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
+TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
+
+TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
+TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
+
+static inline void
+current_restore_flags(unsigned long orig_flags, unsigned long flags)
+{
+ current->flags &= ~flags;
+ current->flags |= orig_flags & flags;
+}
+
+extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
+extern int task_can_attach(struct task_struct *p);
+extern int dl_bw_alloc(int cpu, u64 dl_bw);
+extern void dl_bw_free(int cpu, u64 dl_bw);
+#ifdef CONFIG_SMP
+
+/* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
+extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
+
+/**
+ * set_cpus_allowed_ptr - set CPU affinity mask of a task
+ * @p: the task
+ * @new_mask: CPU affinity mask
+ *
+ * Return: zero if successful, or a negative error code
+ */
+extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
+extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
+extern void release_user_cpus_ptr(struct task_struct *p);
+extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
+extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
+extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
+#else
+static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+{
+}
+static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
+{
+ if (!cpumask_test_cpu(0, new_mask))
+ return -EINVAL;
+ return 0;
+}
+static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
+{
+ if (src->user_cpus_ptr)
+ return -EINVAL;
+ return 0;
+}
+static inline void release_user_cpus_ptr(struct task_struct *p)
+{
+ WARN_ON(p->user_cpus_ptr);
+}
+
+static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
+{
+ return 0;
+}
+#endif
+
+extern int yield_to(struct task_struct *p, bool preempt);
+extern void set_user_nice(struct task_struct *p, long nice);
+extern int task_prio(const struct task_struct *p);
+
+/**
+ * task_nice - return the nice value of a given task.
+ * @p: the task in question.
+ *
+ * Return: The nice value [ -20 ... 0 ... 19 ].
+ */
+static inline int task_nice(const struct task_struct *p)
+{
+ return PRIO_TO_NICE((p)->static_prio);
+}
+
+extern int can_nice(const struct task_struct *p, const int nice);
+extern int task_curr(const struct task_struct *p);
+extern int idle_cpu(int cpu);
+extern int available_idle_cpu(int cpu);
+extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
+extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
+extern void sched_set_fifo(struct task_struct *p);
+extern void sched_set_fifo_low(struct task_struct *p);
+extern void sched_set_normal(struct task_struct *p, int nice);
+extern int sched_setattr(struct task_struct *, const struct sched_attr *);
+extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
+extern struct task_struct *idle_task(int cpu);
+
+/**
+ * is_idle_task - is the specified task an idle task?
+ * @p: the task in question.
+ *
+ * Return: 1 if @p is an idle task. 0 otherwise.
+ */
+static __always_inline bool is_idle_task(const struct task_struct *p)
+{
+ return !!(p->flags & PF_IDLE);
+}
+
+extern struct task_struct *curr_task(int cpu);
+extern void ia64_set_curr_task(int cpu, struct task_struct *p);
+
+void yield(void);
+
+union thread_union {
+#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
+ struct task_struct task;
+#endif
+#ifndef CONFIG_THREAD_INFO_IN_TASK
+ struct thread_info thread_info;
+#endif
+ unsigned long stack[THREAD_SIZE/sizeof(long)];
+};
+
+#ifndef CONFIG_THREAD_INFO_IN_TASK
+extern struct thread_info init_thread_info;
+#endif
+
+extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
+
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+# define task_thread_info(task) (&(task)->thread_info)
+#elif !defined(__HAVE_THREAD_FUNCTIONS)
+# define task_thread_info(task) ((struct thread_info *)(task)->stack)
+#endif
+
+/*
+ * find a task by one of its numerical ids
+ *
+ * find_task_by_pid_ns():
+ * finds a task by its pid in the specified namespace
+ * find_task_by_vpid():
+ * finds a task by its virtual pid
+ *
+ * see also find_vpid() etc in include/linux/pid.h
+ */
+
+extern struct task_struct *find_task_by_vpid(pid_t nr);
+extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
+
+/*
+ * find a task by its virtual pid and get the task struct
+ */
+extern struct task_struct *find_get_task_by_vpid(pid_t nr);
+
+extern int wake_up_state(struct task_struct *tsk, unsigned int state);
+extern int wake_up_process(struct task_struct *tsk);
+extern void wake_up_new_task(struct task_struct *tsk);
+
+#ifdef CONFIG_SMP
+extern void kick_process(struct task_struct *tsk);
+#else
+static inline void kick_process(struct task_struct *tsk) { }
+#endif
+
+extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
+
+static inline void set_task_comm(struct task_struct *tsk, const char *from)
+{
+ __set_task_comm(tsk, from, false);
+}
+
+extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
+#define get_task_comm(buf, tsk) ({ \
+ BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
+ __get_task_comm(buf, sizeof(buf), tsk); \
+})
+
+#ifdef CONFIG_SMP
+static __always_inline void scheduler_ipi(void)
+{
+ /*
+ * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
+ * TIF_NEED_RESCHED remotely (for the first time) will also send
+ * this IPI.
+ */
+ preempt_fold_need_resched();
+}
+#else
+static inline void scheduler_ipi(void) { }
+#endif
+
+extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
+
+/*
+ * Set thread flags in other task's structures.
+ * See asm/thread_info.h for TIF_xxxx flags available:
+ */
+static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
+{
+ set_ti_thread_flag(task_thread_info(tsk), flag);
+}
+
+static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
+{
+ clear_ti_thread_flag(task_thread_info(tsk), flag);
+}
+
+static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
+ bool value)
+{
+ update_ti_thread_flag(task_thread_info(tsk), flag, value);
+}
+
+static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
+{
+ return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
+}
+
+static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
+{
+ return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
+}
+
+static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
+{
+ return test_ti_thread_flag(task_thread_info(tsk), flag);
+}
+
+static inline void set_tsk_need_resched(struct task_struct *tsk)
+{
+ set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
+}
+
+static inline void clear_tsk_need_resched(struct task_struct *tsk)
+{
+ clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
+}
+
+static inline int test_tsk_need_resched(struct task_struct *tsk)
+{
+ return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
+}
+
+/*
+ * cond_resched() and cond_resched_lock(): latency reduction via
+ * explicit rescheduling in places that are safe. The return
+ * value indicates whether a reschedule was done in fact.
+ * cond_resched_lock() will drop the spinlock before scheduling,
+ */
+#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
+extern int __cond_resched(void);
+
+#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
+
+void sched_dynamic_klp_enable(void);
+void sched_dynamic_klp_disable(void);
+
+DECLARE_STATIC_CALL(cond_resched, __cond_resched);
+
+static __always_inline int _cond_resched(void)
+{
+ return static_call_mod(cond_resched)();
+}
+
+#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
+
+extern int dynamic_cond_resched(void);
+
+static __always_inline int _cond_resched(void)
+{
+ return dynamic_cond_resched();
+}
+
+#else /* !CONFIG_PREEMPTION */
+
+static inline int _cond_resched(void)
+{
+ klp_sched_try_switch();
+ return __cond_resched();
+}
+
+#endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
+
+#else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
+
+static inline int _cond_resched(void)
+{
+ klp_sched_try_switch();
+ return 0;
+}
+
+#endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
+
+#define cond_resched() ({ \
+ __might_resched(__FILE__, __LINE__, 0); \
+ _cond_resched(); \
+})
+
+extern int __cond_resched_lock(spinlock_t *lock);
+extern int __cond_resched_rwlock_read(rwlock_t *lock);
+extern int __cond_resched_rwlock_write(rwlock_t *lock);
+
+#define MIGHT_RESCHED_RCU_SHIFT 8
+#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
+
+#ifndef CONFIG_PREEMPT_RT
+/*
+ * Non RT kernels have an elevated preempt count due to the held lock,
+ * but are not allowed to be inside a RCU read side critical section
+ */
+# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
+#else
+/*
+ * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
+ * cond_resched*lock() has to take that into account because it checks for
+ * preempt_count() and rcu_preempt_depth().
+ */
+# define PREEMPT_LOCK_RESCHED_OFFSETS \
+ (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
+#endif
+
+#define cond_resched_lock(lock) ({ \
+ __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
+ __cond_resched_lock(lock); \
+})
+
+#define cond_resched_rwlock_read(lock) ({ \
+ __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
+ __cond_resched_rwlock_read(lock); \
+})
+
+#define cond_resched_rwlock_write(lock) ({ \
+ __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
+ __cond_resched_rwlock_write(lock); \
+})
+
+static inline void cond_resched_rcu(void)
+{
+#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
+ rcu_read_unlock();
+ cond_resched();
+ rcu_read_lock();
+#endif
+}
+
+#ifdef CONFIG_PREEMPT_DYNAMIC
+
+extern bool preempt_model_none(void);
+extern bool preempt_model_voluntary(void);
+extern bool preempt_model_full(void);
+
+#else
+
+static inline bool preempt_model_none(void)
+{
+ return IS_ENABLED(CONFIG_PREEMPT_NONE);
+}
+static inline bool preempt_model_voluntary(void)
+{
+ return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
+}
+static inline bool preempt_model_full(void)
+{
+ return IS_ENABLED(CONFIG_PREEMPT);
+}
+
+#endif
+
+static inline bool preempt_model_rt(void)
+{
+ return IS_ENABLED(CONFIG_PREEMPT_RT);
+}
+
+/*
+ * Does the preemption model allow non-cooperative preemption?
+ *
+ * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
+ * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
+ * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
+ * PREEMPT_NONE model.
+ */
+static inline bool preempt_model_preemptible(void)
+{
+ return preempt_model_full() || preempt_model_rt();
+}
+
+/*
+ * Does a critical section need to be broken due to another
+ * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
+ * but a general need for low latency)
+ */
+static inline int spin_needbreak(spinlock_t *lock)
+{
+#ifdef CONFIG_PREEMPTION
+ return spin_is_contended(lock);
+#else
+ return 0;
+#endif
+}
+
+/*
+ * Check if a rwlock is contended.
+ * Returns non-zero if there is another task waiting on the rwlock.
+ * Returns zero if the lock is not contended or the system / underlying
+ * rwlock implementation does not support contention detection.
+ * Technically does not depend on CONFIG_PREEMPTION, but a general need
+ * for low latency.
+ */
+static inline int rwlock_needbreak(rwlock_t *lock)
+{
+#ifdef CONFIG_PREEMPTION
+ return rwlock_is_contended(lock);
+#else
+ return 0;
+#endif
+}
+
+static __always_inline bool need_resched(void)
+{
+ return unlikely(tif_need_resched());
+}
+
+/*
+ * Wrappers for p->thread_info->cpu access. No-op on UP.
+ */
+#ifdef CONFIG_SMP
+
+static inline unsigned int task_cpu(const struct task_struct *p)
+{
+ return READ_ONCE(task_thread_info(p)->cpu);
+}
+
+extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
+
+#else
+
+static inline unsigned int task_cpu(const struct task_struct *p)
+{
+ return 0;
+}
+
+static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
+{
+}
+
+#endif /* CONFIG_SMP */
+
+extern bool sched_task_on_rq(struct task_struct *p);
+extern unsigned long get_wchan(struct task_struct *p);
+extern struct task_struct *cpu_curr_snapshot(int cpu);
+
+/*
+ * In order to reduce various lock holder preemption latencies provide an
+ * interface to see if a vCPU is currently running or not.
+ *
+ * This allows us to terminate optimistic spin loops and block, analogous to
+ * the native optimistic spin heuristic of testing if the lock owner task is
+ * running or not.
+ */
+#ifndef vcpu_is_preempted
+static inline bool vcpu_is_preempted(int cpu)
+{
+ return false;
+}
+#endif
+
+extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
+extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
+
+#ifndef TASK_SIZE_OF
+#define TASK_SIZE_OF(tsk) TASK_SIZE
+#endif
+
+#ifdef CONFIG_SMP
+static inline bool owner_on_cpu(struct task_struct *owner)
+{
+ /*
+ * As lock holder preemption issue, we both skip spinning if
+ * task is not on cpu or its cpu is preempted
+ */
+ return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
+}
+
+/* Returns effective CPU energy utilization, as seen by the scheduler */
+unsigned long sched_cpu_util(int cpu);
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_RSEQ
+
+/*
+ * Map the event mask on the user-space ABI enum rseq_cs_flags
+ * for direct mask checks.
+ */
+enum rseq_event_mask_bits {
+ RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
+ RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
+ RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
+};
+
+enum rseq_event_mask {
+ RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
+ RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
+ RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
+};
+
+static inline void rseq_set_notify_resume(struct task_struct *t)
+{
+ if (t->rseq)
+ set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
+}
+
+void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
+
+static inline void rseq_handle_notify_resume(struct ksignal *ksig,
+ struct pt_regs *regs)
+{
+ if (current->rseq)
+ __rseq_handle_notify_resume(ksig, regs);
+}
+
+static inline void rseq_signal_deliver(struct ksignal *ksig,
+ struct pt_regs *regs)
+{
+ preempt_disable();
+ __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
+ preempt_enable();
+ rseq_handle_notify_resume(ksig, regs);
+}
+
+/* rseq_preempt() requires preemption to be disabled. */
+static inline void rseq_preempt(struct task_struct *t)
+{
+ __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
+ rseq_set_notify_resume(t);
+}
+
+/* rseq_migrate() requires preemption to be disabled. */
+static inline void rseq_migrate(struct task_struct *t)
+{
+ __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
+ rseq_set_notify_resume(t);
+}
+
+/*
+ * If parent process has a registered restartable sequences area, the
+ * child inherits. Unregister rseq for a clone with CLONE_VM set.
+ */
+static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
+{
+ if (clone_flags & CLONE_VM) {
+ t->rseq = NULL;
+ t->rseq_len = 0;
+ t->rseq_sig = 0;
+ t->rseq_event_mask = 0;
+ } else {
+ t->rseq = current->rseq;
+ t->rseq_len = current->rseq_len;
+ t->rseq_sig = current->rseq_sig;
+ t->rseq_event_mask = current->rseq_event_mask;
+ }
+}
+
+static inline void rseq_execve(struct task_struct *t)
+{
+ t->rseq = NULL;
+ t->rseq_len = 0;
+ t->rseq_sig = 0;
+ t->rseq_event_mask = 0;
+}
+
+#else
+
+static inline void rseq_set_notify_resume(struct task_struct *t)
+{
+}
+static inline void rseq_handle_notify_resume(struct ksignal *ksig,
+ struct pt_regs *regs)
+{
+}
+static inline void rseq_signal_deliver(struct ksignal *ksig,
+ struct pt_regs *regs)
+{
+}
+static inline void rseq_preempt(struct task_struct *t)
+{
+}
+static inline void rseq_migrate(struct task_struct *t)
+{
+}
+static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
+{
+}
+static inline void rseq_execve(struct task_struct *t)
+{
+}
+
+#endif
+
+#ifdef CONFIG_DEBUG_RSEQ
+
+void rseq_syscall(struct pt_regs *regs);
+
+#else
+
+static inline void rseq_syscall(struct pt_regs *regs)
+{
+}
+
+#endif
+
+#ifdef CONFIG_SCHED_CORE
+extern void sched_core_free(struct task_struct *tsk);
+extern void sched_core_fork(struct task_struct *p);
+extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
+ unsigned long uaddr);
+extern int sched_core_idle_cpu(int cpu);
+#else
+static inline void sched_core_free(struct task_struct *tsk) { }
+static inline void sched_core_fork(struct task_struct *p) { }
+static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
+#endif
+
+extern void sched_set_stop_task(int cpu, struct task_struct *stop);
+
+#endif