diff options
Diffstat (limited to 'include/uapi/drm/xe_drm.h')
-rw-r--r-- | include/uapi/drm/xe_drm.h | 1327 |
1 files changed, 1327 insertions, 0 deletions
diff --git a/include/uapi/drm/xe_drm.h b/include/uapi/drm/xe_drm.h new file mode 100644 index 0000000000..bb0c8a9941 --- /dev/null +++ b/include/uapi/drm/xe_drm.h @@ -0,0 +1,1327 @@ +/* SPDX-License-Identifier: MIT */ +/* + * Copyright © 2023 Intel Corporation + */ + +#ifndef _UAPI_XE_DRM_H_ +#define _UAPI_XE_DRM_H_ + +#include "drm.h" + +#if defined(__cplusplus) +extern "C" { +#endif + +/* + * Please note that modifications to all structs defined here are + * subject to backwards-compatibility constraints. + * Sections in this file are organized as follows: + * 1. IOCTL definition + * 2. Extension definition and helper structs + * 3. IOCTL's Query structs in the order of the Query's entries. + * 4. The rest of IOCTL structs in the order of IOCTL declaration. + */ + +/** + * DOC: Xe Device Block Diagram + * + * The diagram below represents a high-level simplification of a discrete + * GPU supported by the Xe driver. It shows some device components which + * are necessary to understand this API, as well as how their relations + * to each other. This diagram does not represent real hardware:: + * + * ┌──────────────────────────────────────────────────────────────────┐ + * │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │ + * │ │ ┌───────────────────────┐ ┌─────┐ │ │ ┌─────┐ │ │ + * │ │ │ VRAM0 ├───┤ ... │ │ │ │VRAM1│ │ │ + * │ │ └───────────┬───────────┘ └─GT1─┘ │ │ └──┬──┘ │ │ + * │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │ + * │ │ │ ┌─────────────────────┐ ┌─────────────────┐ │ │ │ │ │ │ │ + * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ + * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │RCS0 │ │BCS0 │ │ │ │ │ │ │ │ │ + * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ + * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ + * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VCS0 │ │VCS1 │ │ │ │ │ │ │ │ │ + * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ + * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ + * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │ + * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ + * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ + * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │CCS0 │ │CCS1 │ │ │ │ │ │ │ │ │ + * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ + * │ │ │ └─────────DSS─────────┘ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ + * │ │ │ │ │CCS2 │ │CCS3 │ │ │ │ │ │ │ │ │ + * │ │ │ ┌─────┐ ┌─────┐ ┌─────┐ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ + * │ │ │ │ ... │ │ ... │ │ ... │ │ │ │ │ │ │ │ │ │ + * │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘ └─────Engines─────┘ │ │ │ │ │ │ │ + * │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │ + * │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │ + * └─────────────────────────────Device0───────┬──────────────────────┘ + * │ + * ───────────────────────┴────────── PCI bus + */ + +/** + * DOC: Xe uAPI Overview + * + * This section aims to describe the Xe's IOCTL entries, its structs, and other + * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related + * entries and usage. + * + * List of supported IOCTLs: + * - &DRM_IOCTL_XE_DEVICE_QUERY + * - &DRM_IOCTL_XE_GEM_CREATE + * - &DRM_IOCTL_XE_GEM_MMAP_OFFSET + * - &DRM_IOCTL_XE_VM_CREATE + * - &DRM_IOCTL_XE_VM_DESTROY + * - &DRM_IOCTL_XE_VM_BIND + * - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE + * - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY + * - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY + * - &DRM_IOCTL_XE_EXEC + * - &DRM_IOCTL_XE_WAIT_USER_FENCE + */ + +/* + * xe specific ioctls. + * + * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie + * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset + * against DRM_COMMAND_BASE and should be between [0x0, 0x60). + */ +#define DRM_XE_DEVICE_QUERY 0x00 +#define DRM_XE_GEM_CREATE 0x01 +#define DRM_XE_GEM_MMAP_OFFSET 0x02 +#define DRM_XE_VM_CREATE 0x03 +#define DRM_XE_VM_DESTROY 0x04 +#define DRM_XE_VM_BIND 0x05 +#define DRM_XE_EXEC_QUEUE_CREATE 0x06 +#define DRM_XE_EXEC_QUEUE_DESTROY 0x07 +#define DRM_XE_EXEC_QUEUE_GET_PROPERTY 0x08 +#define DRM_XE_EXEC 0x09 +#define DRM_XE_WAIT_USER_FENCE 0x0a +/* Must be kept compact -- no holes */ + +#define DRM_IOCTL_XE_DEVICE_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query) +#define DRM_IOCTL_XE_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create) +#define DRM_IOCTL_XE_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset) +#define DRM_IOCTL_XE_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create) +#define DRM_IOCTL_XE_VM_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy) +#define DRM_IOCTL_XE_VM_BIND DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind) +#define DRM_IOCTL_XE_EXEC_QUEUE_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create) +#define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy) +#define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property) +#define DRM_IOCTL_XE_EXEC DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec) +#define DRM_IOCTL_XE_WAIT_USER_FENCE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence) + +/** + * DOC: Xe IOCTL Extensions + * + * Before detailing the IOCTLs and its structs, it is important to highlight + * that every IOCTL in Xe is extensible. + * + * Many interfaces need to grow over time. In most cases we can simply + * extend the struct and have userspace pass in more data. Another option, + * as demonstrated by Vulkan's approach to providing extensions for forward + * and backward compatibility, is to use a list of optional structs to + * provide those extra details. + * + * The key advantage to using an extension chain is that it allows us to + * redefine the interface more easily than an ever growing struct of + * increasing complexity, and for large parts of that interface to be + * entirely optional. The downside is more pointer chasing; chasing across + * the __user boundary with pointers encapsulated inside u64. + * + * Example chaining: + * + * .. code-block:: C + * + * struct drm_xe_user_extension ext3 { + * .next_extension = 0, // end + * .name = ..., + * }; + * struct drm_xe_user_extension ext2 { + * .next_extension = (uintptr_t)&ext3, + * .name = ..., + * }; + * struct drm_xe_user_extension ext1 { + * .next_extension = (uintptr_t)&ext2, + * .name = ..., + * }; + * + * Typically the struct drm_xe_user_extension would be embedded in some uAPI + * struct, and in this case we would feed it the head of the chain(i.e ext1), + * which would then apply all of the above extensions. +*/ + +/** + * struct drm_xe_user_extension - Base class for defining a chain of extensions + */ +struct drm_xe_user_extension { + /** + * @next_extension: + * + * Pointer to the next struct drm_xe_user_extension, or zero if the end. + */ + __u64 next_extension; + + /** + * @name: Name of the extension. + * + * Note that the name here is just some integer. + * + * Also note that the name space for this is not global for the whole + * driver, but rather its scope/meaning is limited to the specific piece + * of uAPI which has embedded the struct drm_xe_user_extension. + */ + __u32 name; + + /** + * @pad: MBZ + * + * All undefined bits must be zero. + */ + __u32 pad; +}; + +/** + * struct drm_xe_ext_set_property - Generic set property extension + * + * A generic struct that allows any of the Xe's IOCTL to be extended + * with a set_property operation. + */ +struct drm_xe_ext_set_property { + /** @base: base user extension */ + struct drm_xe_user_extension base; + + /** @property: property to set */ + __u32 property; + + /** @pad: MBZ */ + __u32 pad; + + /** @value: property value */ + __u64 value; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_engine_class_instance - instance of an engine class + * + * It is returned as part of the @drm_xe_engine, but it also is used as + * the input of engine selection for both @drm_xe_exec_queue_create and + * @drm_xe_query_engine_cycles + * + * The @engine_class can be: + * - %DRM_XE_ENGINE_CLASS_RENDER + * - %DRM_XE_ENGINE_CLASS_COPY + * - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE + * - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE + * - %DRM_XE_ENGINE_CLASS_COMPUTE + * - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual + * hardware engine class). Used for creating ordered queues of VM + * bind operations. + */ +struct drm_xe_engine_class_instance { +#define DRM_XE_ENGINE_CLASS_RENDER 0 +#define DRM_XE_ENGINE_CLASS_COPY 1 +#define DRM_XE_ENGINE_CLASS_VIDEO_DECODE 2 +#define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE 3 +#define DRM_XE_ENGINE_CLASS_COMPUTE 4 +#define DRM_XE_ENGINE_CLASS_VM_BIND 5 + /** @engine_class: engine class id */ + __u16 engine_class; + /** @engine_instance: engine instance id */ + __u16 engine_instance; + /** @gt_id: Unique ID of this GT within the PCI Device */ + __u16 gt_id; + /** @pad: MBZ */ + __u16 pad; +}; + +/** + * struct drm_xe_engine - describe hardware engine + */ +struct drm_xe_engine { + /** @instance: The @drm_xe_engine_class_instance */ + struct drm_xe_engine_class_instance instance; + + /** @reserved: Reserved */ + __u64 reserved[3]; +}; + +/** + * struct drm_xe_query_engines - describe engines + * + * If a query is made with a struct @drm_xe_device_query where .query + * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of + * struct @drm_xe_query_engines in .data. + */ +struct drm_xe_query_engines { + /** @num_engines: number of engines returned in @engines */ + __u32 num_engines; + /** @pad: MBZ */ + __u32 pad; + /** @engines: The returned engines for this device */ + struct drm_xe_engine engines[]; +}; + +/** + * enum drm_xe_memory_class - Supported memory classes. + */ +enum drm_xe_memory_class { + /** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */ + DRM_XE_MEM_REGION_CLASS_SYSMEM = 0, + /** + * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this + * represents the memory that is local to the device, which we + * call VRAM. Not valid on integrated platforms. + */ + DRM_XE_MEM_REGION_CLASS_VRAM +}; + +/** + * struct drm_xe_mem_region - Describes some region as known to + * the driver. + */ +struct drm_xe_mem_region { + /** + * @mem_class: The memory class describing this region. + * + * See enum drm_xe_memory_class for supported values. + */ + __u16 mem_class; + /** + * @instance: The unique ID for this region, which serves as the + * index in the placement bitmask used as argument for + * &DRM_IOCTL_XE_GEM_CREATE + */ + __u16 instance; + /** + * @min_page_size: Min page-size in bytes for this region. + * + * When the kernel allocates memory for this region, the + * underlying pages will be at least @min_page_size in size. + * Buffer objects with an allowable placement in this region must be + * created with a size aligned to this value. + * GPU virtual address mappings of (parts of) buffer objects that + * may be placed in this region must also have their GPU virtual + * address and range aligned to this value. + * Affected IOCTLS will return %-EINVAL if alignment restrictions are + * not met. + */ + __u32 min_page_size; + /** + * @total_size: The usable size in bytes for this region. + */ + __u64 total_size; + /** + * @used: Estimate of the memory used in bytes for this region. + * + * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable + * accounting. Without this the value here will always equal + * zero. + */ + __u64 used; + /** + * @cpu_visible_size: How much of this region can be CPU + * accessed, in bytes. + * + * This will always be <= @total_size, and the remainder (if + * any) will not be CPU accessible. If the CPU accessible part + * is smaller than @total_size then this is referred to as a + * small BAR system. + * + * On systems without small BAR (full BAR), the probed_size will + * always equal the @total_size, since all of it will be CPU + * accessible. + * + * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM + * regions (for other types the value here will always equal + * zero). + */ + __u64 cpu_visible_size; + /** + * @cpu_visible_used: Estimate of CPU visible memory used, in + * bytes. + * + * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable + * accounting. Without this the value here will always equal + * zero. Note this is only currently tracked for + * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value + * here will always be zero). + */ + __u64 cpu_visible_used; + /** @reserved: Reserved */ + __u64 reserved[6]; +}; + +/** + * struct drm_xe_query_mem_regions - describe memory regions + * + * If a query is made with a struct drm_xe_device_query where .query + * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses + * struct drm_xe_query_mem_regions in .data. + */ +struct drm_xe_query_mem_regions { + /** @num_mem_regions: number of memory regions returned in @mem_regions */ + __u32 num_mem_regions; + /** @pad: MBZ */ + __u32 pad; + /** @mem_regions: The returned memory regions for this device */ + struct drm_xe_mem_region mem_regions[]; +}; + +/** + * struct drm_xe_query_config - describe the device configuration + * + * If a query is made with a struct drm_xe_device_query where .query + * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses + * struct drm_xe_query_config in .data. + * + * The index in @info can be: + * - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits) + * and the device revision (next 8 bits) + * - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device + * configuration, see list below + * + * - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device + * has usable VRAM + * - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment + * required by this device, typically SZ_4K or SZ_64K + * - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address + * - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest + * available exec queue priority + */ +struct drm_xe_query_config { + /** @num_params: number of parameters returned in info */ + __u32 num_params; + + /** @pad: MBZ */ + __u32 pad; + +#define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID 0 +#define DRM_XE_QUERY_CONFIG_FLAGS 1 + #define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM (1 << 0) +#define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT 2 +#define DRM_XE_QUERY_CONFIG_VA_BITS 3 +#define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY 4 + /** @info: array of elements containing the config info */ + __u64 info[]; +}; + +/** + * struct drm_xe_gt - describe an individual GT. + * + * To be used with drm_xe_query_gt_list, which will return a list with all the + * existing GT individual descriptions. + * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for + * implementing graphics and/or media operations. + * + * The index in @type can be: + * - %DRM_XE_QUERY_GT_TYPE_MAIN + * - %DRM_XE_QUERY_GT_TYPE_MEDIA + */ +struct drm_xe_gt { +#define DRM_XE_QUERY_GT_TYPE_MAIN 0 +#define DRM_XE_QUERY_GT_TYPE_MEDIA 1 + /** @type: GT type: Main or Media */ + __u16 type; + /** @tile_id: Tile ID where this GT lives (Information only) */ + __u16 tile_id; + /** @gt_id: Unique ID of this GT within the PCI Device */ + __u16 gt_id; + /** @pad: MBZ */ + __u16 pad[3]; + /** @reference_clock: A clock frequency for timestamp */ + __u32 reference_clock; + /** + * @near_mem_regions: Bit mask of instances from + * drm_xe_query_mem_regions that are nearest to the current engines + * of this GT. + * Each index in this mask refers directly to the struct + * drm_xe_query_mem_regions' instance, no assumptions should + * be made about order. The type of each region is described + * by struct drm_xe_query_mem_regions' mem_class. + */ + __u64 near_mem_regions; + /** + * @far_mem_regions: Bit mask of instances from + * drm_xe_query_mem_regions that are far from the engines of this GT. + * In general, they have extra indirections when compared to the + * @near_mem_regions. For a discrete device this could mean system + * memory and memory living in a different tile. + * Each index in this mask refers directly to the struct + * drm_xe_query_mem_regions' instance, no assumptions should + * be made about order. The type of each region is described + * by struct drm_xe_query_mem_regions' mem_class. + */ + __u64 far_mem_regions; + /** @reserved: Reserved */ + __u64 reserved[8]; +}; + +/** + * struct drm_xe_query_gt_list - A list with GT description items. + * + * If a query is made with a struct drm_xe_device_query where .query + * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct + * drm_xe_query_gt_list in .data. + */ +struct drm_xe_query_gt_list { + /** @num_gt: number of GT items returned in gt_list */ + __u32 num_gt; + /** @pad: MBZ */ + __u32 pad; + /** @gt_list: The GT list returned for this device */ + struct drm_xe_gt gt_list[]; +}; + +/** + * struct drm_xe_query_topology_mask - describe the topology mask of a GT + * + * This is the hardware topology which reflects the internal physical + * structure of the GPU. + * + * If a query is made with a struct drm_xe_device_query where .query + * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses + * struct drm_xe_query_topology_mask in .data. + * + * The @type can be: + * - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices + * (DSS) available for geometry operations. For example a query response + * containing the following in mask: + * ``DSS_GEOMETRY ff ff ff ff 00 00 00 00`` + * means 32 DSS are available for geometry. + * - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices + * (DSS) available for compute operations. For example a query response + * containing the following in mask: + * ``DSS_COMPUTE ff ff ff ff 00 00 00 00`` + * means 32 DSS are available for compute. + * - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU) + * available per Dual Sub Slices (DSS). For example a query response + * containing the following in mask: + * ``EU_PER_DSS ff ff 00 00 00 00 00 00`` + * means each DSS has 16 EU. + */ +struct drm_xe_query_topology_mask { + /** @gt_id: GT ID the mask is associated with */ + __u16 gt_id; + +#define DRM_XE_TOPO_DSS_GEOMETRY (1 << 0) +#define DRM_XE_TOPO_DSS_COMPUTE (1 << 1) +#define DRM_XE_TOPO_EU_PER_DSS (1 << 2) + /** @type: type of mask */ + __u16 type; + + /** @num_bytes: number of bytes in requested mask */ + __u32 num_bytes; + + /** @mask: little-endian mask of @num_bytes */ + __u8 mask[]; +}; + +/** + * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps + * + * If a query is made with a struct drm_xe_device_query where .query is equal to + * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles + * in .data. struct drm_xe_query_engine_cycles is allocated by the user and + * .data points to this allocated structure. + * + * The query returns the engine cycles, which along with GT's @reference_clock, + * can be used to calculate the engine timestamp. In addition the + * query returns a set of cpu timestamps that indicate when the command + * streamer cycle count was captured. + */ +struct drm_xe_query_engine_cycles { + /** + * @eci: This is input by the user and is the engine for which command + * streamer cycles is queried. + */ + struct drm_xe_engine_class_instance eci; + + /** + * @clockid: This is input by the user and is the reference clock id for + * CPU timestamp. For definition, see clock_gettime(2) and + * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC, + * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI. + */ + __s32 clockid; + + /** @width: Width of the engine cycle counter in bits. */ + __u32 width; + + /** + * @engine_cycles: Engine cycles as read from its register + * at 0x358 offset. + */ + __u64 engine_cycles; + + /** + * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before + * reading the engine_cycles register using the reference clockid set by the + * user. + */ + __u64 cpu_timestamp; + + /** + * @cpu_delta: Time delta in ns captured around reading the lower dword + * of the engine_cycles register. + */ + __u64 cpu_delta; +}; + +/** + * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main + * structure to query device information + * + * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_* + * and sets the value in the query member. This determines the type of + * the structure provided by the driver in data, among struct drm_xe_query_*. + * + * The @query can be: + * - %DRM_XE_DEVICE_QUERY_ENGINES + * - %DRM_XE_DEVICE_QUERY_MEM_REGIONS + * - %DRM_XE_DEVICE_QUERY_CONFIG + * - %DRM_XE_DEVICE_QUERY_GT_LIST + * - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware + * configuration of the device such as information on slices, memory, + * caches, and so on. It is provided as a table of key / value + * attributes. + * - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY + * - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES + * + * If size is set to 0, the driver fills it with the required size for + * the requested type of data to query. If size is equal to the required + * size, the queried information is copied into data. If size is set to + * a value different from 0 and different from the required size, the + * IOCTL call returns -EINVAL. + * + * For example the following code snippet allows retrieving and printing + * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES: + * + * .. code-block:: C + * + * struct drm_xe_query_engines *engines; + * struct drm_xe_device_query query = { + * .extensions = 0, + * .query = DRM_XE_DEVICE_QUERY_ENGINES, + * .size = 0, + * .data = 0, + * }; + * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query); + * engines = malloc(query.size); + * query.data = (uintptr_t)engines; + * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query); + * for (int i = 0; i < engines->num_engines; i++) { + * printf("Engine %d: %s\n", i, + * engines->engines[i].instance.engine_class == + * DRM_XE_ENGINE_CLASS_RENDER ? "RENDER": + * engines->engines[i].instance.engine_class == + * DRM_XE_ENGINE_CLASS_COPY ? "COPY": + * engines->engines[i].instance.engine_class == + * DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE": + * engines->engines[i].instance.engine_class == + * DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE": + * engines->engines[i].instance.engine_class == + * DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE": + * "UNKNOWN"); + * } + * free(engines); + */ +struct drm_xe_device_query { + /** @extensions: Pointer to the first extension struct, if any */ + __u64 extensions; + +#define DRM_XE_DEVICE_QUERY_ENGINES 0 +#define DRM_XE_DEVICE_QUERY_MEM_REGIONS 1 +#define DRM_XE_DEVICE_QUERY_CONFIG 2 +#define DRM_XE_DEVICE_QUERY_GT_LIST 3 +#define DRM_XE_DEVICE_QUERY_HWCONFIG 4 +#define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY 5 +#define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES 6 + /** @query: The type of data to query */ + __u32 query; + + /** @size: Size of the queried data */ + __u32 size; + + /** @data: Queried data is placed here */ + __u64 data; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for + * gem creation + * + * The @flags can be: + * - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING + * - %DRM_XE_GEM_CREATE_FLAG_SCANOUT + * - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a + * possible placement, ensure that the corresponding VRAM allocation + * will always use the CPU accessible part of VRAM. This is important + * for small-bar systems (on full-bar systems this gets turned into a + * noop). + * Note1: System memory can be used as an extra placement if the kernel + * should spill the allocation to system memory, if space can't be made + * available in the CPU accessible part of VRAM (giving the same + * behaviour as the i915 interface, see + * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS). + * Note2: For clear-color CCS surfaces the kernel needs to read the + * clear-color value stored in the buffer, and on discrete platforms we + * need to use VRAM for display surfaces, therefore the kernel requires + * setting this flag for such objects, otherwise an error is thrown on + * small-bar systems. + * + * @cpu_caching supports the following values: + * - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back + * caching. On iGPU this can't be used for scanout surfaces. Currently + * not allowed for objects placed in VRAM. + * - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This + * is uncached. Scanout surfaces should likely use this. All objects + * that can be placed in VRAM must use this. + */ +struct drm_xe_gem_create { + /** @extensions: Pointer to the first extension struct, if any */ + __u64 extensions; + + /** + * @size: Size of the object to be created, must match region + * (system or vram) minimum alignment (&min_page_size). + */ + __u64 size; + + /** + * @placement: A mask of memory instances of where BO can be placed. + * Each index in this mask refers directly to the struct + * drm_xe_query_mem_regions' instance, no assumptions should + * be made about order. The type of each region is described + * by struct drm_xe_query_mem_regions' mem_class. + */ + __u32 placement; + +#define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING (1 << 0) +#define DRM_XE_GEM_CREATE_FLAG_SCANOUT (1 << 1) +#define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM (1 << 2) + /** + * @flags: Flags, currently a mask of memory instances of where BO can + * be placed + */ + __u32 flags; + + /** + * @vm_id: Attached VM, if any + * + * If a VM is specified, this BO must: + * + * 1. Only ever be bound to that VM. + * 2. Cannot be exported as a PRIME fd. + */ + __u32 vm_id; + + /** + * @handle: Returned handle for the object. + * + * Object handles are nonzero. + */ + __u32 handle; + +#define DRM_XE_GEM_CPU_CACHING_WB 1 +#define DRM_XE_GEM_CPU_CACHING_WC 2 + /** + * @cpu_caching: The CPU caching mode to select for this object. If + * mmaping the object the mode selected here will also be used. + */ + __u16 cpu_caching; + /** @pad: MBZ */ + __u16 pad[3]; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET + */ +struct drm_xe_gem_mmap_offset { + /** @extensions: Pointer to the first extension struct, if any */ + __u64 extensions; + + /** @handle: Handle for the object being mapped. */ + __u32 handle; + + /** @flags: Must be zero */ + __u32 flags; + + /** @offset: The fake offset to use for subsequent mmap call */ + __u64 offset; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE + * + * The @flags can be: + * - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE + * - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts + * exec submissions to its exec_queues that don't have an upper time + * limit on the job execution time. But exec submissions to these + * don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ, + * DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF, + * used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL. + * LR VMs can be created in recoverable page-fault mode using + * DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it. + * If that flag is omitted, the UMD can not rely on the slightly + * different per-VM overcommit semantics that are enabled by + * DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may + * still enable recoverable pagefaults if supported by the device. + * - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also + * DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on + * demand when accessed, and also allows per-VM overcommit of memory. + * The xe driver internally uses recoverable pagefaults to implement + * this. + */ +struct drm_xe_vm_create { + /** @extensions: Pointer to the first extension struct, if any */ + __u64 extensions; + +#define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE (1 << 0) +#define DRM_XE_VM_CREATE_FLAG_LR_MODE (1 << 1) +#define DRM_XE_VM_CREATE_FLAG_FAULT_MODE (1 << 2) + /** @flags: Flags */ + __u32 flags; + + /** @vm_id: Returned VM ID */ + __u32 vm_id; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY + */ +struct drm_xe_vm_destroy { + /** @vm_id: VM ID */ + __u32 vm_id; + + /** @pad: MBZ */ + __u32 pad; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_vm_bind_op - run bind operations + * + * The @op can be: + * - %DRM_XE_VM_BIND_OP_MAP + * - %DRM_XE_VM_BIND_OP_UNMAP + * - %DRM_XE_VM_BIND_OP_MAP_USERPTR + * - %DRM_XE_VM_BIND_OP_UNMAP_ALL + * - %DRM_XE_VM_BIND_OP_PREFETCH + * + * and the @flags can be: + * - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page + * tables are setup with a special bit which indicates writes are + * dropped and all reads return zero. In the future, the NULL flags + * will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO + * handle MBZ, and the BO offset MBZ. This flag is intended to + * implement VK sparse bindings. + */ +struct drm_xe_vm_bind_op { + /** @extensions: Pointer to the first extension struct, if any */ + __u64 extensions; + + /** + * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP + */ + __u32 obj; + + /** + * @pat_index: The platform defined @pat_index to use for this mapping. + * The index basically maps to some predefined memory attributes, + * including things like caching, coherency, compression etc. The exact + * meaning of the pat_index is platform specific and defined in the + * Bspec and PRMs. When the KMD sets up the binding the index here is + * encoded into the ppGTT PTE. + * + * For coherency the @pat_index needs to be at least 1way coherent when + * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD + * will extract the coherency mode from the @pat_index and reject if + * there is a mismatch (see note below for pre-MTL platforms). + * + * Note: On pre-MTL platforms there is only a caching mode and no + * explicit coherency mode, but on such hardware there is always a + * shared-LLC (or is dgpu) so all GT memory accesses are coherent with + * CPU caches even with the caching mode set as uncached. It's only the + * display engine that is incoherent (on dgpu it must be in VRAM which + * is always mapped as WC on the CPU). However to keep the uapi somewhat + * consistent with newer platforms the KMD groups the different cache + * levels into the following coherency buckets on all pre-MTL platforms: + * + * ppGTT UC -> COH_NONE + * ppGTT WC -> COH_NONE + * ppGTT WT -> COH_NONE + * ppGTT WB -> COH_AT_LEAST_1WAY + * + * In practice UC/WC/WT should only ever used for scanout surfaces on + * such platforms (or perhaps in general for dma-buf if shared with + * another device) since it is only the display engine that is actually + * incoherent. Everything else should typically use WB given that we + * have a shared-LLC. On MTL+ this completely changes and the HW + * defines the coherency mode as part of the @pat_index, where + * incoherent GT access is possible. + * + * Note: For userptr and externally imported dma-buf the kernel expects + * either 1WAY or 2WAY for the @pat_index. + * + * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions + * on the @pat_index. For such mappings there is no actual memory being + * mapped (the address in the PTE is invalid), so the various PAT memory + * attributes likely do not apply. Simply leaving as zero is one + * option (still a valid pat_index). + */ + __u16 pat_index; + + /** @pad: MBZ */ + __u16 pad; + + union { + /** + * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE, + * ignored for unbind + */ + __u64 obj_offset; + + /** @userptr: user pointer to bind on */ + __u64 userptr; + }; + + /** + * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL + */ + __u64 range; + + /** @addr: Address to operate on, MBZ for UNMAP_ALL */ + __u64 addr; + +#define DRM_XE_VM_BIND_OP_MAP 0x0 +#define DRM_XE_VM_BIND_OP_UNMAP 0x1 +#define DRM_XE_VM_BIND_OP_MAP_USERPTR 0x2 +#define DRM_XE_VM_BIND_OP_UNMAP_ALL 0x3 +#define DRM_XE_VM_BIND_OP_PREFETCH 0x4 + /** @op: Bind operation to perform */ + __u32 op; + +#define DRM_XE_VM_BIND_FLAG_NULL (1 << 2) +#define DRM_XE_VM_BIND_FLAG_DUMPABLE (1 << 3) + /** @flags: Bind flags */ + __u32 flags; + + /** + * @prefetch_mem_region_instance: Memory region to prefetch VMA to. + * It is a region instance, not a mask. + * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation. + */ + __u32 prefetch_mem_region_instance; + + /** @pad2: MBZ */ + __u32 pad2; + + /** @reserved: Reserved */ + __u64 reserved[3]; +}; + +/** + * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND + * + * Below is an example of a minimal use of @drm_xe_vm_bind to + * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to + * illustrate `userptr`. It can be synchronized by using the example + * provided for @drm_xe_sync. + * + * .. code-block:: C + * + * data = aligned_alloc(ALIGNMENT, BO_SIZE); + * struct drm_xe_vm_bind bind = { + * .vm_id = vm, + * .num_binds = 1, + * .bind.obj = 0, + * .bind.obj_offset = to_user_pointer(data), + * .bind.range = BO_SIZE, + * .bind.addr = BIND_ADDRESS, + * .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR, + * .bind.flags = 0, + * .num_syncs = 1, + * .syncs = &sync, + * .exec_queue_id = 0, + * }; + * ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind); + * + */ +struct drm_xe_vm_bind { + /** @extensions: Pointer to the first extension struct, if any */ + __u64 extensions; + + /** @vm_id: The ID of the VM to bind to */ + __u32 vm_id; + + /** + * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND + * and exec queue must have same vm_id. If zero, the default VM bind engine + * is used. + */ + __u32 exec_queue_id; + + /** @pad: MBZ */ + __u32 pad; + + /** @num_binds: number of binds in this IOCTL */ + __u32 num_binds; + + union { + /** @bind: used if num_binds == 1 */ + struct drm_xe_vm_bind_op bind; + + /** + * @vector_of_binds: userptr to array of struct + * drm_xe_vm_bind_op if num_binds > 1 + */ + __u64 vector_of_binds; + }; + + /** @pad2: MBZ */ + __u32 pad2; + + /** @num_syncs: amount of syncs to wait on */ + __u32 num_syncs; + + /** @syncs: pointer to struct drm_xe_sync array */ + __u64 syncs; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE + * + * The example below shows how to use @drm_xe_exec_queue_create to create + * a simple exec_queue (no parallel submission) of class + * &DRM_XE_ENGINE_CLASS_RENDER. + * + * .. code-block:: C + * + * struct drm_xe_engine_class_instance instance = { + * .engine_class = DRM_XE_ENGINE_CLASS_RENDER, + * }; + * struct drm_xe_exec_queue_create exec_queue_create = { + * .extensions = 0, + * .vm_id = vm, + * .num_bb_per_exec = 1, + * .num_eng_per_bb = 1, + * .instances = to_user_pointer(&instance), + * }; + * ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create); + * + */ +struct drm_xe_exec_queue_create { +#define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY 0 +#define DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY 0 +#define DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE 1 + + /** @extensions: Pointer to the first extension struct, if any */ + __u64 extensions; + + /** @width: submission width (number BB per exec) for this exec queue */ + __u16 width; + + /** @num_placements: number of valid placements for this exec queue */ + __u16 num_placements; + + /** @vm_id: VM to use for this exec queue */ + __u32 vm_id; + + /** @flags: MBZ */ + __u32 flags; + + /** @exec_queue_id: Returned exec queue ID */ + __u32 exec_queue_id; + + /** + * @instances: user pointer to a 2-d array of struct + * drm_xe_engine_class_instance + * + * length = width (i) * num_placements (j) + * index = j + i * width + */ + __u64 instances; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY + */ +struct drm_xe_exec_queue_destroy { + /** @exec_queue_id: Exec queue ID */ + __u32 exec_queue_id; + + /** @pad: MBZ */ + __u32 pad; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY + * + * The @property can be: + * - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN + */ +struct drm_xe_exec_queue_get_property { + /** @extensions: Pointer to the first extension struct, if any */ + __u64 extensions; + + /** @exec_queue_id: Exec queue ID */ + __u32 exec_queue_id; + +#define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN 0 + /** @property: property to get */ + __u32 property; + + /** @value: property value */ + __u64 value; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_sync - sync object + * + * The @type can be: + * - %DRM_XE_SYNC_TYPE_SYNCOBJ + * - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ + * - %DRM_XE_SYNC_TYPE_USER_FENCE + * + * and the @flags can be: + * - %DRM_XE_SYNC_FLAG_SIGNAL + * + * A minimal use of @drm_xe_sync looks like this: + * + * .. code-block:: C + * + * struct drm_xe_sync sync = { + * .flags = DRM_XE_SYNC_FLAG_SIGNAL, + * .type = DRM_XE_SYNC_TYPE_SYNCOBJ, + * }; + * struct drm_syncobj_create syncobj_create = { 0 }; + * ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create); + * sync.handle = syncobj_create.handle; + * ... + * use of &sync in drm_xe_exec or drm_xe_vm_bind + * ... + * struct drm_syncobj_wait wait = { + * .handles = &sync.handle, + * .timeout_nsec = INT64_MAX, + * .count_handles = 1, + * .flags = 0, + * .first_signaled = 0, + * .pad = 0, + * }; + * ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait); + */ +struct drm_xe_sync { + /** @extensions: Pointer to the first extension struct, if any */ + __u64 extensions; + +#define DRM_XE_SYNC_TYPE_SYNCOBJ 0x0 +#define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ 0x1 +#define DRM_XE_SYNC_TYPE_USER_FENCE 0x2 + /** @type: Type of the this sync object */ + __u32 type; + +#define DRM_XE_SYNC_FLAG_SIGNAL (1 << 0) + /** @flags: Sync Flags */ + __u32 flags; + + union { + /** @handle: Handle for the object */ + __u32 handle; + + /** + * @addr: Address of user fence. When sync is passed in via exec + * IOCTL this is a GPU address in the VM. When sync passed in via + * VM bind IOCTL this is a user pointer. In either case, it is + * the users responsibility that this address is present and + * mapped when the user fence is signalled. Must be qword + * aligned. + */ + __u64 addr; + }; + + /** + * @timeline_value: Input for the timeline sync object. Needs to be + * different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ. + */ + __u64 timeline_value; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC + * + * This is an example to use @drm_xe_exec for execution of the object + * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue + * (see example in @drm_xe_exec_queue_create). It can be synchronized + * by using the example provided for @drm_xe_sync. + * + * .. code-block:: C + * + * struct drm_xe_exec exec = { + * .exec_queue_id = exec_queue, + * .syncs = &sync, + * .num_syncs = 1, + * .address = BIND_ADDRESS, + * .num_batch_buffer = 1, + * }; + * ioctl(fd, DRM_IOCTL_XE_EXEC, &exec); + * + */ +struct drm_xe_exec { + /** @extensions: Pointer to the first extension struct, if any */ + __u64 extensions; + + /** @exec_queue_id: Exec queue ID for the batch buffer */ + __u32 exec_queue_id; + + /** @num_syncs: Amount of struct drm_xe_sync in array. */ + __u32 num_syncs; + + /** @syncs: Pointer to struct drm_xe_sync array. */ + __u64 syncs; + + /** + * @address: address of batch buffer if num_batch_buffer == 1 or an + * array of batch buffer addresses + */ + __u64 address; + + /** + * @num_batch_buffer: number of batch buffer in this exec, must match + * the width of the engine + */ + __u16 num_batch_buffer; + + /** @pad: MBZ */ + __u16 pad[3]; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +/** + * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE + * + * Wait on user fence, XE will wake-up on every HW engine interrupt in the + * instances list and check if user fence is complete:: + * + * (*addr & MASK) OP (VALUE & MASK) + * + * Returns to user on user fence completion or timeout. + * + * The @op can be: + * - %DRM_XE_UFENCE_WAIT_OP_EQ + * - %DRM_XE_UFENCE_WAIT_OP_NEQ + * - %DRM_XE_UFENCE_WAIT_OP_GT + * - %DRM_XE_UFENCE_WAIT_OP_GTE + * - %DRM_XE_UFENCE_WAIT_OP_LT + * - %DRM_XE_UFENCE_WAIT_OP_LTE + * + * and the @flags can be: + * - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME + * - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP + * + * The @mask values can be for example: + * - 0xffu for u8 + * - 0xffffu for u16 + * - 0xffffffffu for u32 + * - 0xffffffffffffffffu for u64 + */ +struct drm_xe_wait_user_fence { + /** @extensions: Pointer to the first extension struct, if any */ + __u64 extensions; + + /** + * @addr: user pointer address to wait on, must qword aligned + */ + __u64 addr; + +#define DRM_XE_UFENCE_WAIT_OP_EQ 0x0 +#define DRM_XE_UFENCE_WAIT_OP_NEQ 0x1 +#define DRM_XE_UFENCE_WAIT_OP_GT 0x2 +#define DRM_XE_UFENCE_WAIT_OP_GTE 0x3 +#define DRM_XE_UFENCE_WAIT_OP_LT 0x4 +#define DRM_XE_UFENCE_WAIT_OP_LTE 0x5 + /** @op: wait operation (type of comparison) */ + __u16 op; + +#define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME (1 << 0) + /** @flags: wait flags */ + __u16 flags; + + /** @pad: MBZ */ + __u32 pad; + + /** @value: compare value */ + __u64 value; + + /** @mask: comparison mask */ + __u64 mask; + + /** + * @timeout: how long to wait before bailing, value in nanoseconds. + * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout) + * it contains timeout expressed in nanoseconds to wait (fence will + * expire at now() + timeout). + * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait + * will end at timeout (uses system MONOTONIC_CLOCK). + * Passing negative timeout leads to neverending wait. + * + * On relative timeout this value is updated with timeout left + * (for restarting the call in case of signal delivery). + * On absolute timeout this value stays intact (restarted call still + * expire at the same point of time). + */ + __s64 timeout; + + /** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */ + __u32 exec_queue_id; + + /** @pad2: MBZ */ + __u32 pad2; + + /** @reserved: Reserved */ + __u64 reserved[2]; +}; + +#if defined(__cplusplus) +} +#endif + +#endif /* _UAPI_XE_DRM_H_ */ |