summaryrefslogtreecommitdiffstats
path: root/kernel/trace/trace_events_user.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/trace/trace_events_user.c')
-rw-r--r--kernel/trace/trace_events_user.c2778
1 files changed, 2778 insertions, 0 deletions
diff --git a/kernel/trace/trace_events_user.c b/kernel/trace/trace_events_user.c
new file mode 100644
index 000000000..b87f41187
--- /dev/null
+++ b/kernel/trace/trace_events_user.c
@@ -0,0 +1,2778 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (c) 2021, Microsoft Corporation.
+ *
+ * Authors:
+ * Beau Belgrave <beaub@linux.microsoft.com>
+ */
+
+#include <linux/bitmap.h>
+#include <linux/cdev.h>
+#include <linux/hashtable.h>
+#include <linux/list.h>
+#include <linux/io.h>
+#include <linux/uio.h>
+#include <linux/ioctl.h>
+#include <linux/jhash.h>
+#include <linux/refcount.h>
+#include <linux/trace_events.h>
+#include <linux/tracefs.h>
+#include <linux/types.h>
+#include <linux/uaccess.h>
+#include <linux/highmem.h>
+#include <linux/init.h>
+#include <linux/user_events.h>
+#include "trace_dynevent.h"
+#include "trace_output.h"
+#include "trace.h"
+
+#define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
+
+#define FIELD_DEPTH_TYPE 0
+#define FIELD_DEPTH_NAME 1
+#define FIELD_DEPTH_SIZE 2
+
+/* Limit how long of an event name plus args within the subsystem. */
+#define MAX_EVENT_DESC 512
+#define EVENT_NAME(user_event) ((user_event)->tracepoint.name)
+#define MAX_FIELD_ARRAY_SIZE 1024
+
+/*
+ * Internal bits (kernel side only) to keep track of connected probes:
+ * These are used when status is requested in text form about an event. These
+ * bits are compared against an internal byte on the event to determine which
+ * probes to print out to the user.
+ *
+ * These do not reflect the mapped bytes between the user and kernel space.
+ */
+#define EVENT_STATUS_FTRACE BIT(0)
+#define EVENT_STATUS_PERF BIT(1)
+#define EVENT_STATUS_OTHER BIT(7)
+
+/*
+ * User register flags are not allowed yet, keep them here until we are
+ * ready to expose them out to the user ABI.
+ */
+enum user_reg_flag {
+ /* Event will not delete upon last reference closing */
+ USER_EVENT_REG_PERSIST = 1U << 0,
+
+ /* This value or above is currently non-ABI */
+ USER_EVENT_REG_MAX = 1U << 1,
+};
+
+/*
+ * Stores the system name, tables, and locks for a group of events. This
+ * allows isolation for events by various means.
+ */
+struct user_event_group {
+ char *system_name;
+ struct hlist_node node;
+ struct mutex reg_mutex;
+ DECLARE_HASHTABLE(register_table, 8);
+};
+
+/* Group for init_user_ns mapping, top-most group */
+static struct user_event_group *init_group;
+
+/* Max allowed events for the whole system */
+static unsigned int max_user_events = 32768;
+
+/* Current number of events on the whole system */
+static unsigned int current_user_events;
+
+/*
+ * Stores per-event properties, as users register events
+ * within a file a user_event might be created if it does not
+ * already exist. These are globally used and their lifetime
+ * is tied to the refcnt member. These cannot go away until the
+ * refcnt reaches one.
+ */
+struct user_event {
+ struct user_event_group *group;
+ struct tracepoint tracepoint;
+ struct trace_event_call call;
+ struct trace_event_class class;
+ struct dyn_event devent;
+ struct hlist_node node;
+ struct list_head fields;
+ struct list_head validators;
+ struct work_struct put_work;
+ refcount_t refcnt;
+ int min_size;
+ int reg_flags;
+ char status;
+};
+
+/*
+ * Stores per-mm/event properties that enable an address to be
+ * updated properly for each task. As tasks are forked, we use
+ * these to track enablement sites that are tied to an event.
+ */
+struct user_event_enabler {
+ struct list_head mm_enablers_link;
+ struct user_event *event;
+ unsigned long addr;
+
+ /* Track enable bit, flags, etc. Aligned for bitops. */
+ unsigned long values;
+};
+
+/* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
+#define ENABLE_VAL_BIT_MASK 0x3F
+
+/* Bit 6 is for faulting status of enablement */
+#define ENABLE_VAL_FAULTING_BIT 6
+
+/* Bit 7 is for freeing status of enablement */
+#define ENABLE_VAL_FREEING_BIT 7
+
+/* Bit 8 is for marking 32-bit on 64-bit */
+#define ENABLE_VAL_32_ON_64_BIT 8
+
+#define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT)
+
+/* Only duplicate the bit and compat values */
+#define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK)
+
+#define ENABLE_BITOPS(e) (&(e)->values)
+
+#define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK))
+
+/* Used for asynchronous faulting in of pages */
+struct user_event_enabler_fault {
+ struct work_struct work;
+ struct user_event_mm *mm;
+ struct user_event_enabler *enabler;
+ int attempt;
+};
+
+static struct kmem_cache *fault_cache;
+
+/* Global list of memory descriptors using user_events */
+static LIST_HEAD(user_event_mms);
+static DEFINE_SPINLOCK(user_event_mms_lock);
+
+/*
+ * Stores per-file events references, as users register events
+ * within a file this structure is modified and freed via RCU.
+ * The lifetime of this struct is tied to the lifetime of the file.
+ * These are not shared and only accessible by the file that created it.
+ */
+struct user_event_refs {
+ struct rcu_head rcu;
+ int count;
+ struct user_event *events[];
+};
+
+struct user_event_file_info {
+ struct user_event_group *group;
+ struct user_event_refs *refs;
+};
+
+#define VALIDATOR_ENSURE_NULL (1 << 0)
+#define VALIDATOR_REL (1 << 1)
+
+struct user_event_validator {
+ struct list_head user_event_link;
+ int offset;
+ int flags;
+};
+
+static inline void align_addr_bit(unsigned long *addr, int *bit,
+ unsigned long *flags)
+{
+ if (IS_ALIGNED(*addr, sizeof(long))) {
+#ifdef __BIG_ENDIAN
+ /* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */
+ if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags))
+ *bit += 32;
+#endif
+ return;
+ }
+
+ *addr = ALIGN_DOWN(*addr, sizeof(long));
+
+ /*
+ * We only support 32 and 64 bit values. The only time we need
+ * to align is a 32 bit value on a 64 bit kernel, which on LE
+ * is always 32 bits, and on BE requires no change when unaligned.
+ */
+#ifdef __LITTLE_ENDIAN
+ *bit += 32;
+#endif
+}
+
+typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
+ void *tpdata, bool *faulted);
+
+static int user_event_parse(struct user_event_group *group, char *name,
+ char *args, char *flags,
+ struct user_event **newuser, int reg_flags);
+
+static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
+static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
+static void user_event_mm_put(struct user_event_mm *mm);
+static int destroy_user_event(struct user_event *user);
+
+static u32 user_event_key(char *name)
+{
+ return jhash(name, strlen(name), 0);
+}
+
+static struct user_event *user_event_get(struct user_event *user)
+{
+ refcount_inc(&user->refcnt);
+
+ return user;
+}
+
+static void delayed_destroy_user_event(struct work_struct *work)
+{
+ struct user_event *user = container_of(
+ work, struct user_event, put_work);
+
+ mutex_lock(&event_mutex);
+
+ if (!refcount_dec_and_test(&user->refcnt))
+ goto out;
+
+ if (destroy_user_event(user)) {
+ /*
+ * The only reason this would fail here is if we cannot
+ * update the visibility of the event. In this case the
+ * event stays in the hashtable, waiting for someone to
+ * attempt to delete it later.
+ */
+ pr_warn("user_events: Unable to delete event\n");
+ refcount_set(&user->refcnt, 1);
+ }
+out:
+ mutex_unlock(&event_mutex);
+}
+
+static void user_event_put(struct user_event *user, bool locked)
+{
+ bool delete;
+
+ if (unlikely(!user))
+ return;
+
+ /*
+ * When the event is not enabled for auto-delete there will always
+ * be at least 1 reference to the event. During the event creation
+ * we initially set the refcnt to 2 to achieve this. In those cases
+ * the caller must acquire event_mutex and after decrement check if
+ * the refcnt is 1, meaning this is the last reference. When auto
+ * delete is enabled, there will only be 1 ref, IE: refcnt will be
+ * only set to 1 during creation to allow the below checks to go
+ * through upon the last put. The last put must always be done with
+ * the event mutex held.
+ */
+ if (!locked) {
+ lockdep_assert_not_held(&event_mutex);
+ delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex);
+ } else {
+ lockdep_assert_held(&event_mutex);
+ delete = refcount_dec_and_test(&user->refcnt);
+ }
+
+ if (!delete)
+ return;
+
+ /*
+ * We now have the event_mutex in all cases, which ensures that
+ * no new references will be taken until event_mutex is released.
+ * New references come through find_user_event(), which requires
+ * the event_mutex to be held.
+ */
+
+ if (user->reg_flags & USER_EVENT_REG_PERSIST) {
+ /* We should not get here when persist flag is set */
+ pr_alert("BUG: Auto-delete engaged on persistent event\n");
+ goto out;
+ }
+
+ /*
+ * Unfortunately we have to attempt the actual destroy in a work
+ * queue. This is because not all cases handle a trace_event_call
+ * being removed within the class->reg() operation for unregister.
+ */
+ INIT_WORK(&user->put_work, delayed_destroy_user_event);
+
+ /*
+ * Since the event is still in the hashtable, we have to re-inc
+ * the ref count to 1. This count will be decremented and checked
+ * in the work queue to ensure it's still the last ref. This is
+ * needed because a user-process could register the same event in
+ * between the time of event_mutex release and the work queue
+ * running the delayed destroy. If we removed the item now from
+ * the hashtable, this would result in a timing window where a
+ * user process would fail a register because the trace_event_call
+ * register would fail in the tracing layers.
+ */
+ refcount_set(&user->refcnt, 1);
+
+ if (WARN_ON_ONCE(!schedule_work(&user->put_work))) {
+ /*
+ * If we fail we must wait for an admin to attempt delete or
+ * another register/close of the event, whichever is first.
+ */
+ pr_warn("user_events: Unable to queue delayed destroy\n");
+ }
+out:
+ /* Ensure if we didn't have event_mutex before we unlock it */
+ if (!locked)
+ mutex_unlock(&event_mutex);
+}
+
+static void user_event_group_destroy(struct user_event_group *group)
+{
+ kfree(group->system_name);
+ kfree(group);
+}
+
+static char *user_event_group_system_name(void)
+{
+ char *system_name;
+ int len = sizeof(USER_EVENTS_SYSTEM) + 1;
+
+ system_name = kmalloc(len, GFP_KERNEL);
+
+ if (!system_name)
+ return NULL;
+
+ snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
+
+ return system_name;
+}
+
+static struct user_event_group *current_user_event_group(void)
+{
+ return init_group;
+}
+
+static struct user_event_group *user_event_group_create(void)
+{
+ struct user_event_group *group;
+
+ group = kzalloc(sizeof(*group), GFP_KERNEL);
+
+ if (!group)
+ return NULL;
+
+ group->system_name = user_event_group_system_name();
+
+ if (!group->system_name)
+ goto error;
+
+ mutex_init(&group->reg_mutex);
+ hash_init(group->register_table);
+
+ return group;
+error:
+ if (group)
+ user_event_group_destroy(group);
+
+ return NULL;
+};
+
+static void user_event_enabler_destroy(struct user_event_enabler *enabler,
+ bool locked)
+{
+ list_del_rcu(&enabler->mm_enablers_link);
+
+ /* No longer tracking the event via the enabler */
+ user_event_put(enabler->event, locked);
+
+ kfree(enabler);
+}
+
+static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
+ int attempt)
+{
+ bool unlocked;
+ int ret;
+
+ /*
+ * Normally this is low, ensure that it cannot be taken advantage of by
+ * bad user processes to cause excessive looping.
+ */
+ if (attempt > 10)
+ return -EFAULT;
+
+ mmap_read_lock(mm->mm);
+
+ /* Ensure MM has tasks, cannot use after exit_mm() */
+ if (refcount_read(&mm->tasks) == 0) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
+ &unlocked);
+out:
+ mmap_read_unlock(mm->mm);
+
+ return ret;
+}
+
+static int user_event_enabler_write(struct user_event_mm *mm,
+ struct user_event_enabler *enabler,
+ bool fixup_fault, int *attempt);
+
+static void user_event_enabler_fault_fixup(struct work_struct *work)
+{
+ struct user_event_enabler_fault *fault = container_of(
+ work, struct user_event_enabler_fault, work);
+ struct user_event_enabler *enabler = fault->enabler;
+ struct user_event_mm *mm = fault->mm;
+ unsigned long uaddr = enabler->addr;
+ int attempt = fault->attempt;
+ int ret;
+
+ ret = user_event_mm_fault_in(mm, uaddr, attempt);
+
+ if (ret && ret != -ENOENT) {
+ struct user_event *user = enabler->event;
+
+ pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
+ mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
+ }
+
+ /* Prevent state changes from racing */
+ mutex_lock(&event_mutex);
+
+ /* User asked for enabler to be removed during fault */
+ if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
+ user_event_enabler_destroy(enabler, true);
+ goto out;
+ }
+
+ /*
+ * If we managed to get the page, re-issue the write. We do not
+ * want to get into a possible infinite loop, which is why we only
+ * attempt again directly if the page came in. If we couldn't get
+ * the page here, then we will try again the next time the event is
+ * enabled/disabled.
+ */
+ clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
+
+ if (!ret) {
+ mmap_read_lock(mm->mm);
+ user_event_enabler_write(mm, enabler, true, &attempt);
+ mmap_read_unlock(mm->mm);
+ }
+out:
+ mutex_unlock(&event_mutex);
+
+ /* In all cases we no longer need the mm or fault */
+ user_event_mm_put(mm);
+ kmem_cache_free(fault_cache, fault);
+}
+
+static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
+ struct user_event_enabler *enabler,
+ int attempt)
+{
+ struct user_event_enabler_fault *fault;
+
+ fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
+
+ if (!fault)
+ return false;
+
+ INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
+ fault->mm = user_event_mm_get(mm);
+ fault->enabler = enabler;
+ fault->attempt = attempt;
+
+ /* Don't try to queue in again while we have a pending fault */
+ set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
+
+ if (!schedule_work(&fault->work)) {
+ /* Allow another attempt later */
+ clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
+
+ user_event_mm_put(mm);
+ kmem_cache_free(fault_cache, fault);
+
+ return false;
+ }
+
+ return true;
+}
+
+static int user_event_enabler_write(struct user_event_mm *mm,
+ struct user_event_enabler *enabler,
+ bool fixup_fault, int *attempt)
+{
+ unsigned long uaddr = enabler->addr;
+ unsigned long *ptr;
+ struct page *page;
+ void *kaddr;
+ int bit = ENABLE_BIT(enabler);
+ int ret;
+
+ lockdep_assert_held(&event_mutex);
+ mmap_assert_locked(mm->mm);
+
+ *attempt += 1;
+
+ /* Ensure MM has tasks, cannot use after exit_mm() */
+ if (refcount_read(&mm->tasks) == 0)
+ return -ENOENT;
+
+ if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
+ test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
+ return -EBUSY;
+
+ align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler));
+
+ ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
+ &page, NULL);
+
+ if (unlikely(ret <= 0)) {
+ if (!fixup_fault)
+ return -EFAULT;
+
+ if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
+ pr_warn("user_events: Unable to queue fault handler\n");
+
+ return -EFAULT;
+ }
+
+ kaddr = kmap_local_page(page);
+ ptr = kaddr + (uaddr & ~PAGE_MASK);
+
+ /* Update bit atomically, user tracers must be atomic as well */
+ if (enabler->event && enabler->event->status)
+ set_bit(bit, ptr);
+ else
+ clear_bit(bit, ptr);
+
+ kunmap_local(kaddr);
+ unpin_user_pages_dirty_lock(&page, 1, true);
+
+ return 0;
+}
+
+static bool user_event_enabler_exists(struct user_event_mm *mm,
+ unsigned long uaddr, unsigned char bit)
+{
+ struct user_event_enabler *enabler;
+
+ list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
+ if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit)
+ return true;
+ }
+
+ return false;
+}
+
+static void user_event_enabler_update(struct user_event *user)
+{
+ struct user_event_enabler *enabler;
+ struct user_event_mm *next;
+ struct user_event_mm *mm;
+ int attempt;
+
+ lockdep_assert_held(&event_mutex);
+
+ /*
+ * We need to build a one-shot list of all the mms that have an
+ * enabler for the user_event passed in. This list is only valid
+ * while holding the event_mutex. The only reason for this is due
+ * to the global mm list being RCU protected and we use methods
+ * which can wait (mmap_read_lock and pin_user_pages_remote).
+ *
+ * NOTE: user_event_mm_get_all() increments the ref count of each
+ * mm that is added to the list to prevent removal timing windows.
+ * We must always put each mm after they are used, which may wait.
+ */
+ mm = user_event_mm_get_all(user);
+
+ while (mm) {
+ next = mm->next;
+ mmap_read_lock(mm->mm);
+
+ list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
+ if (enabler->event == user) {
+ attempt = 0;
+ user_event_enabler_write(mm, enabler, true, &attempt);
+ }
+ }
+
+ mmap_read_unlock(mm->mm);
+ user_event_mm_put(mm);
+ mm = next;
+ }
+}
+
+static bool user_event_enabler_dup(struct user_event_enabler *orig,
+ struct user_event_mm *mm)
+{
+ struct user_event_enabler *enabler;
+
+ /* Skip pending frees */
+ if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
+ return true;
+
+ enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
+
+ if (!enabler)
+ return false;
+
+ enabler->event = user_event_get(orig->event);
+ enabler->addr = orig->addr;
+
+ /* Only dup part of value (ignore future flags, etc) */
+ enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
+
+ /* Enablers not exposed yet, RCU not required */
+ list_add(&enabler->mm_enablers_link, &mm->enablers);
+
+ return true;
+}
+
+static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
+{
+ refcount_inc(&mm->refcnt);
+
+ return mm;
+}
+
+static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
+{
+ struct user_event_mm *found = NULL;
+ struct user_event_enabler *enabler;
+ struct user_event_mm *mm;
+
+ /*
+ * We use the mm->next field to build a one-shot list from the global
+ * RCU protected list. To build this list the event_mutex must be held.
+ * This lets us build a list without requiring allocs that could fail
+ * when user based events are most wanted for diagnostics.
+ */
+ lockdep_assert_held(&event_mutex);
+
+ /*
+ * We do not want to block fork/exec while enablements are being
+ * updated, so we use RCU to walk the current tasks that have used
+ * user_events ABI for 1 or more events. Each enabler found in each
+ * task that matches the event being updated has a write to reflect
+ * the kernel state back into the process. Waits/faults must not occur
+ * during this. So we scan the list under RCU for all the mm that have
+ * the event within it. This is needed because mm_read_lock() can wait.
+ * Each user mm returned has a ref inc to handle remove RCU races.
+ */
+ rcu_read_lock();
+
+ list_for_each_entry_rcu(mm, &user_event_mms, mms_link) {
+ list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) {
+ if (enabler->event == user) {
+ mm->next = found;
+ found = user_event_mm_get(mm);
+ break;
+ }
+ }
+ }
+
+ rcu_read_unlock();
+
+ return found;
+}
+
+static struct user_event_mm *user_event_mm_alloc(struct task_struct *t)
+{
+ struct user_event_mm *user_mm;
+
+ user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
+
+ if (!user_mm)
+ return NULL;
+
+ user_mm->mm = t->mm;
+ INIT_LIST_HEAD(&user_mm->enablers);
+ refcount_set(&user_mm->refcnt, 1);
+ refcount_set(&user_mm->tasks, 1);
+
+ /*
+ * The lifetime of the memory descriptor can slightly outlast
+ * the task lifetime if a ref to the user_event_mm is taken
+ * between list_del_rcu() and call_rcu(). Therefore we need
+ * to take a reference to it to ensure it can live this long
+ * under this corner case. This can also occur in clones that
+ * outlast the parent.
+ */
+ mmgrab(user_mm->mm);
+
+ return user_mm;
+}
+
+static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&user_event_mms_lock, flags);
+ list_add_rcu(&user_mm->mms_link, &user_event_mms);
+ spin_unlock_irqrestore(&user_event_mms_lock, flags);
+
+ t->user_event_mm = user_mm;
+}
+
+static struct user_event_mm *current_user_event_mm(void)
+{
+ struct user_event_mm *user_mm = current->user_event_mm;
+
+ if (user_mm)
+ goto inc;
+
+ user_mm = user_event_mm_alloc(current);
+
+ if (!user_mm)
+ goto error;
+
+ user_event_mm_attach(user_mm, current);
+inc:
+ refcount_inc(&user_mm->refcnt);
+error:
+ return user_mm;
+}
+
+static void user_event_mm_destroy(struct user_event_mm *mm)
+{
+ struct user_event_enabler *enabler, *next;
+
+ list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link)
+ user_event_enabler_destroy(enabler, false);
+
+ mmdrop(mm->mm);
+ kfree(mm);
+}
+
+static void user_event_mm_put(struct user_event_mm *mm)
+{
+ if (mm && refcount_dec_and_test(&mm->refcnt))
+ user_event_mm_destroy(mm);
+}
+
+static void delayed_user_event_mm_put(struct work_struct *work)
+{
+ struct user_event_mm *mm;
+
+ mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
+ user_event_mm_put(mm);
+}
+
+void user_event_mm_remove(struct task_struct *t)
+{
+ struct user_event_mm *mm;
+ unsigned long flags;
+
+ might_sleep();
+
+ mm = t->user_event_mm;
+ t->user_event_mm = NULL;
+
+ /* Clone will increment the tasks, only remove if last clone */
+ if (!refcount_dec_and_test(&mm->tasks))
+ return;
+
+ /* Remove the mm from the list, so it can no longer be enabled */
+ spin_lock_irqsave(&user_event_mms_lock, flags);
+ list_del_rcu(&mm->mms_link);
+ spin_unlock_irqrestore(&user_event_mms_lock, flags);
+
+ /*
+ * We need to wait for currently occurring writes to stop within
+ * the mm. This is required since exit_mm() snaps the current rss
+ * stats and clears them. On the final mmdrop(), check_mm() will
+ * report a bug if these increment.
+ *
+ * All writes/pins are done under mmap_read lock, take the write
+ * lock to ensure in-progress faults have completed. Faults that
+ * are pending but yet to run will check the task count and skip
+ * the fault since the mm is going away.
+ */
+ mmap_write_lock(mm->mm);
+ mmap_write_unlock(mm->mm);
+
+ /*
+ * Put for mm must be done after RCU delay to handle new refs in
+ * between the list_del_rcu() and now. This ensures any get refs
+ * during rcu_read_lock() are accounted for during list removal.
+ *
+ * CPU A | CPU B
+ * ---------------------------------------------------------------
+ * user_event_mm_remove() | rcu_read_lock();
+ * list_del_rcu() | list_for_each_entry_rcu();
+ * call_rcu() | refcount_inc();
+ * . | rcu_read_unlock();
+ * schedule_work() | .
+ * user_event_mm_put() | .
+ *
+ * mmdrop() cannot be called in the softirq context of call_rcu()
+ * so we use a work queue after call_rcu() to run within.
+ */
+ INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
+ queue_rcu_work(system_wq, &mm->put_rwork);
+}
+
+void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
+{
+ struct user_event_mm *mm = user_event_mm_alloc(t);
+ struct user_event_enabler *enabler;
+
+ if (!mm)
+ return;
+
+ rcu_read_lock();
+
+ list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) {
+ if (!user_event_enabler_dup(enabler, mm))
+ goto error;
+ }
+
+ rcu_read_unlock();
+
+ user_event_mm_attach(mm, t);
+ return;
+error:
+ rcu_read_unlock();
+ user_event_mm_destroy(mm);
+}
+
+static bool current_user_event_enabler_exists(unsigned long uaddr,
+ unsigned char bit)
+{
+ struct user_event_mm *user_mm = current_user_event_mm();
+ bool exists;
+
+ if (!user_mm)
+ return false;
+
+ exists = user_event_enabler_exists(user_mm, uaddr, bit);
+
+ user_event_mm_put(user_mm);
+
+ return exists;
+}
+
+static struct user_event_enabler
+*user_event_enabler_create(struct user_reg *reg, struct user_event *user,
+ int *write_result)
+{
+ struct user_event_enabler *enabler;
+ struct user_event_mm *user_mm;
+ unsigned long uaddr = (unsigned long)reg->enable_addr;
+ int attempt = 0;
+
+ user_mm = current_user_event_mm();
+
+ if (!user_mm)
+ return NULL;
+
+ enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
+
+ if (!enabler)
+ goto out;
+
+ enabler->event = user;
+ enabler->addr = uaddr;
+ enabler->values = reg->enable_bit;
+
+#if BITS_PER_LONG >= 64
+ if (reg->enable_size == 4)
+ set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler));
+#endif
+
+retry:
+ /* Prevents state changes from racing with new enablers */
+ mutex_lock(&event_mutex);
+
+ /* Attempt to reflect the current state within the process */
+ mmap_read_lock(user_mm->mm);
+ *write_result = user_event_enabler_write(user_mm, enabler, false,
+ &attempt);
+ mmap_read_unlock(user_mm->mm);
+
+ /*
+ * If the write works, then we will track the enabler. A ref to the
+ * underlying user_event is held by the enabler to prevent it going
+ * away while the enabler is still in use by a process. The ref is
+ * removed when the enabler is destroyed. This means a event cannot
+ * be forcefully deleted from the system until all tasks using it
+ * exit or run exec(), which includes forks and clones.
+ */
+ if (!*write_result) {
+ user_event_get(user);
+ list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers);
+ }
+
+ mutex_unlock(&event_mutex);
+
+ if (*write_result) {
+ /* Attempt to fault-in and retry if it worked */
+ if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
+ goto retry;
+
+ kfree(enabler);
+ enabler = NULL;
+ }
+out:
+ user_event_mm_put(user_mm);
+
+ return enabler;
+}
+
+static __always_inline __must_check
+bool user_event_last_ref(struct user_event *user)
+{
+ int last = 0;
+
+ if (user->reg_flags & USER_EVENT_REG_PERSIST)
+ last = 1;
+
+ return refcount_read(&user->refcnt) == last;
+}
+
+static __always_inline __must_check
+size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
+{
+ size_t ret;
+
+ pagefault_disable();
+
+ ret = copy_from_iter_nocache(addr, bytes, i);
+
+ pagefault_enable();
+
+ return ret;
+}
+
+static struct list_head *user_event_get_fields(struct trace_event_call *call)
+{
+ struct user_event *user = (struct user_event *)call->data;
+
+ return &user->fields;
+}
+
+/*
+ * Parses a register command for user_events
+ * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
+ *
+ * Example event named 'test' with a 20 char 'msg' field with an unsigned int
+ * 'id' field after:
+ * test char[20] msg;unsigned int id
+ *
+ * NOTE: Offsets are from the user data perspective, they are not from the
+ * trace_entry/buffer perspective. We automatically add the common properties
+ * sizes to the offset for the user.
+ *
+ * Upon success user_event has its ref count increased by 1.
+ */
+static int user_event_parse_cmd(struct user_event_group *group,
+ char *raw_command, struct user_event **newuser,
+ int reg_flags)
+{
+ char *name = raw_command;
+ char *args = strpbrk(name, " ");
+ char *flags;
+
+ if (args)
+ *args++ = '\0';
+
+ flags = strpbrk(name, ":");
+
+ if (flags)
+ *flags++ = '\0';
+
+ return user_event_parse(group, name, args, flags, newuser, reg_flags);
+}
+
+static int user_field_array_size(const char *type)
+{
+ const char *start = strchr(type, '[');
+ char val[8];
+ char *bracket;
+ int size = 0;
+
+ if (start == NULL)
+ return -EINVAL;
+
+ if (strscpy(val, start + 1, sizeof(val)) <= 0)
+ return -EINVAL;
+
+ bracket = strchr(val, ']');
+
+ if (!bracket)
+ return -EINVAL;
+
+ *bracket = '\0';
+
+ if (kstrtouint(val, 0, &size))
+ return -EINVAL;
+
+ if (size > MAX_FIELD_ARRAY_SIZE)
+ return -EINVAL;
+
+ return size;
+}
+
+static int user_field_size(const char *type)
+{
+ /* long is not allowed from a user, since it's ambigious in size */
+ if (strcmp(type, "s64") == 0)
+ return sizeof(s64);
+ if (strcmp(type, "u64") == 0)
+ return sizeof(u64);
+ if (strcmp(type, "s32") == 0)
+ return sizeof(s32);
+ if (strcmp(type, "u32") == 0)
+ return sizeof(u32);
+ if (strcmp(type, "int") == 0)
+ return sizeof(int);
+ if (strcmp(type, "unsigned int") == 0)
+ return sizeof(unsigned int);
+ if (strcmp(type, "s16") == 0)
+ return sizeof(s16);
+ if (strcmp(type, "u16") == 0)
+ return sizeof(u16);
+ if (strcmp(type, "short") == 0)
+ return sizeof(short);
+ if (strcmp(type, "unsigned short") == 0)
+ return sizeof(unsigned short);
+ if (strcmp(type, "s8") == 0)
+ return sizeof(s8);
+ if (strcmp(type, "u8") == 0)
+ return sizeof(u8);
+ if (strcmp(type, "char") == 0)
+ return sizeof(char);
+ if (strcmp(type, "unsigned char") == 0)
+ return sizeof(unsigned char);
+ if (str_has_prefix(type, "char["))
+ return user_field_array_size(type);
+ if (str_has_prefix(type, "unsigned char["))
+ return user_field_array_size(type);
+ if (str_has_prefix(type, "__data_loc "))
+ return sizeof(u32);
+ if (str_has_prefix(type, "__rel_loc "))
+ return sizeof(u32);
+
+ /* Uknown basic type, error */
+ return -EINVAL;
+}
+
+static void user_event_destroy_validators(struct user_event *user)
+{
+ struct user_event_validator *validator, *next;
+ struct list_head *head = &user->validators;
+
+ list_for_each_entry_safe(validator, next, head, user_event_link) {
+ list_del(&validator->user_event_link);
+ kfree(validator);
+ }
+}
+
+static void user_event_destroy_fields(struct user_event *user)
+{
+ struct ftrace_event_field *field, *next;
+ struct list_head *head = &user->fields;
+
+ list_for_each_entry_safe(field, next, head, link) {
+ list_del(&field->link);
+ kfree(field);
+ }
+}
+
+static int user_event_add_field(struct user_event *user, const char *type,
+ const char *name, int offset, int size,
+ int is_signed, int filter_type)
+{
+ struct user_event_validator *validator;
+ struct ftrace_event_field *field;
+ int validator_flags = 0;
+
+ field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
+
+ if (!field)
+ return -ENOMEM;
+
+ if (str_has_prefix(type, "__data_loc "))
+ goto add_validator;
+
+ if (str_has_prefix(type, "__rel_loc ")) {
+ validator_flags |= VALIDATOR_REL;
+ goto add_validator;
+ }
+
+ goto add_field;
+
+add_validator:
+ if (strstr(type, "char") != NULL)
+ validator_flags |= VALIDATOR_ENSURE_NULL;
+
+ validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
+
+ if (!validator) {
+ kfree(field);
+ return -ENOMEM;
+ }
+
+ validator->flags = validator_flags;
+ validator->offset = offset;
+
+ /* Want sequential access when validating */
+ list_add_tail(&validator->user_event_link, &user->validators);
+
+add_field:
+ field->type = type;
+ field->name = name;
+ field->offset = offset;
+ field->size = size;
+ field->is_signed = is_signed;
+ field->filter_type = filter_type;
+
+ if (filter_type == FILTER_OTHER)
+ field->filter_type = filter_assign_type(type);
+
+ list_add(&field->link, &user->fields);
+
+ /*
+ * Min size from user writes that are required, this does not include
+ * the size of trace_entry (common fields).
+ */
+ user->min_size = (offset + size) - sizeof(struct trace_entry);
+
+ return 0;
+}
+
+/*
+ * Parses the values of a field within the description
+ * Format: type name [size]
+ */
+static int user_event_parse_field(char *field, struct user_event *user,
+ u32 *offset)
+{
+ char *part, *type, *name;
+ u32 depth = 0, saved_offset = *offset;
+ int len, size = -EINVAL;
+ bool is_struct = false;
+
+ field = skip_spaces(field);
+
+ if (*field == '\0')
+ return 0;
+
+ /* Handle types that have a space within */
+ len = str_has_prefix(field, "unsigned ");
+ if (len)
+ goto skip_next;
+
+ len = str_has_prefix(field, "struct ");
+ if (len) {
+ is_struct = true;
+ goto skip_next;
+ }
+
+ len = str_has_prefix(field, "__data_loc unsigned ");
+ if (len)
+ goto skip_next;
+
+ len = str_has_prefix(field, "__data_loc ");
+ if (len)
+ goto skip_next;
+
+ len = str_has_prefix(field, "__rel_loc unsigned ");
+ if (len)
+ goto skip_next;
+
+ len = str_has_prefix(field, "__rel_loc ");
+ if (len)
+ goto skip_next;
+
+ goto parse;
+skip_next:
+ type = field;
+ field = strpbrk(field + len, " ");
+
+ if (field == NULL)
+ return -EINVAL;
+
+ *field++ = '\0';
+ depth++;
+parse:
+ name = NULL;
+
+ while ((part = strsep(&field, " ")) != NULL) {
+ switch (depth++) {
+ case FIELD_DEPTH_TYPE:
+ type = part;
+ break;
+ case FIELD_DEPTH_NAME:
+ name = part;
+ break;
+ case FIELD_DEPTH_SIZE:
+ if (!is_struct)
+ return -EINVAL;
+
+ if (kstrtou32(part, 10, &size))
+ return -EINVAL;
+ break;
+ default:
+ return -EINVAL;
+ }
+ }
+
+ if (depth < FIELD_DEPTH_SIZE || !name)
+ return -EINVAL;
+
+ if (depth == FIELD_DEPTH_SIZE)
+ size = user_field_size(type);
+
+ if (size == 0)
+ return -EINVAL;
+
+ if (size < 0)
+ return size;
+
+ *offset = saved_offset + size;
+
+ return user_event_add_field(user, type, name, saved_offset, size,
+ type[0] != 'u', FILTER_OTHER);
+}
+
+static int user_event_parse_fields(struct user_event *user, char *args)
+{
+ char *field;
+ u32 offset = sizeof(struct trace_entry);
+ int ret = -EINVAL;
+
+ if (args == NULL)
+ return 0;
+
+ while ((field = strsep(&args, ";")) != NULL) {
+ ret = user_event_parse_field(field, user, &offset);
+
+ if (ret)
+ break;
+ }
+
+ return ret;
+}
+
+static struct trace_event_fields user_event_fields_array[1];
+
+static const char *user_field_format(const char *type)
+{
+ if (strcmp(type, "s64") == 0)
+ return "%lld";
+ if (strcmp(type, "u64") == 0)
+ return "%llu";
+ if (strcmp(type, "s32") == 0)
+ return "%d";
+ if (strcmp(type, "u32") == 0)
+ return "%u";
+ if (strcmp(type, "int") == 0)
+ return "%d";
+ if (strcmp(type, "unsigned int") == 0)
+ return "%u";
+ if (strcmp(type, "s16") == 0)
+ return "%d";
+ if (strcmp(type, "u16") == 0)
+ return "%u";
+ if (strcmp(type, "short") == 0)
+ return "%d";
+ if (strcmp(type, "unsigned short") == 0)
+ return "%u";
+ if (strcmp(type, "s8") == 0)
+ return "%d";
+ if (strcmp(type, "u8") == 0)
+ return "%u";
+ if (strcmp(type, "char") == 0)
+ return "%d";
+ if (strcmp(type, "unsigned char") == 0)
+ return "%u";
+ if (strstr(type, "char[") != NULL)
+ return "%s";
+
+ /* Unknown, likely struct, allowed treat as 64-bit */
+ return "%llu";
+}
+
+static bool user_field_is_dyn_string(const char *type, const char **str_func)
+{
+ if (str_has_prefix(type, "__data_loc ")) {
+ *str_func = "__get_str";
+ goto check;
+ }
+
+ if (str_has_prefix(type, "__rel_loc ")) {
+ *str_func = "__get_rel_str";
+ goto check;
+ }
+
+ return false;
+check:
+ return strstr(type, "char") != NULL;
+}
+
+#define LEN_OR_ZERO (len ? len - pos : 0)
+static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
+ char *buf, int len, bool *colon)
+{
+ int pos = 0, i = *iout;
+
+ *colon = false;
+
+ for (; i < argc; ++i) {
+ if (i != *iout)
+ pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
+
+ pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
+
+ if (strchr(argv[i], ';')) {
+ ++i;
+ *colon = true;
+ break;
+ }
+ }
+
+ /* Actual set, advance i */
+ if (len != 0)
+ *iout = i;
+
+ return pos + 1;
+}
+
+static int user_field_set_string(struct ftrace_event_field *field,
+ char *buf, int len, bool colon)
+{
+ int pos = 0;
+
+ pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
+ pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
+ pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
+
+ if (str_has_prefix(field->type, "struct "))
+ pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size);
+
+ if (colon)
+ pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
+
+ return pos + 1;
+}
+
+static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
+{
+ struct ftrace_event_field *field;
+ struct list_head *head = &user->fields;
+ int pos = 0, depth = 0;
+ const char *str_func;
+
+ pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
+
+ list_for_each_entry_reverse(field, head, link) {
+ if (depth != 0)
+ pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
+
+ pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
+ field->name, user_field_format(field->type));
+
+ depth++;
+ }
+
+ pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
+
+ list_for_each_entry_reverse(field, head, link) {
+ if (user_field_is_dyn_string(field->type, &str_func))
+ pos += snprintf(buf + pos, LEN_OR_ZERO,
+ ", %s(%s)", str_func, field->name);
+ else
+ pos += snprintf(buf + pos, LEN_OR_ZERO,
+ ", REC->%s", field->name);
+ }
+
+ return pos + 1;
+}
+#undef LEN_OR_ZERO
+
+static int user_event_create_print_fmt(struct user_event *user)
+{
+ char *print_fmt;
+ int len;
+
+ len = user_event_set_print_fmt(user, NULL, 0);
+
+ print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
+
+ if (!print_fmt)
+ return -ENOMEM;
+
+ user_event_set_print_fmt(user, print_fmt, len);
+
+ user->call.print_fmt = print_fmt;
+
+ return 0;
+}
+
+static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
+ int flags,
+ struct trace_event *event)
+{
+ return print_event_fields(iter, event);
+}
+
+static struct trace_event_functions user_event_funcs = {
+ .trace = user_event_print_trace,
+};
+
+static int user_event_set_call_visible(struct user_event *user, bool visible)
+{
+ int ret;
+ const struct cred *old_cred;
+ struct cred *cred;
+
+ cred = prepare_creds();
+
+ if (!cred)
+ return -ENOMEM;
+
+ /*
+ * While by default tracefs is locked down, systems can be configured
+ * to allow user_event files to be less locked down. The extreme case
+ * being "other" has read/write access to user_events_data/status.
+ *
+ * When not locked down, processes may not have permissions to
+ * add/remove calls themselves to tracefs. We need to temporarily
+ * switch to root file permission to allow for this scenario.
+ */
+ cred->fsuid = GLOBAL_ROOT_UID;
+
+ old_cred = override_creds(cred);
+
+ if (visible)
+ ret = trace_add_event_call(&user->call);
+ else
+ ret = trace_remove_event_call(&user->call);
+
+ revert_creds(old_cred);
+ put_cred(cred);
+
+ return ret;
+}
+
+static int destroy_user_event(struct user_event *user)
+{
+ int ret = 0;
+
+ lockdep_assert_held(&event_mutex);
+
+ /* Must destroy fields before call removal */
+ user_event_destroy_fields(user);
+
+ ret = user_event_set_call_visible(user, false);
+
+ if (ret)
+ return ret;
+
+ dyn_event_remove(&user->devent);
+ hash_del(&user->node);
+
+ user_event_destroy_validators(user);
+ kfree(user->call.print_fmt);
+ kfree(EVENT_NAME(user));
+ kfree(user);
+
+ if (current_user_events > 0)
+ current_user_events--;
+ else
+ pr_alert("BUG: Bad current_user_events\n");
+
+ return ret;
+}
+
+static struct user_event *find_user_event(struct user_event_group *group,
+ char *name, u32 *outkey)
+{
+ struct user_event *user;
+ u32 key = user_event_key(name);
+
+ *outkey = key;
+
+ hash_for_each_possible(group->register_table, user, node, key)
+ if (!strcmp(EVENT_NAME(user), name))
+ return user_event_get(user);
+
+ return NULL;
+}
+
+static int user_event_validate(struct user_event *user, void *data, int len)
+{
+ struct list_head *head = &user->validators;
+ struct user_event_validator *validator;
+ void *pos, *end = data + len;
+ u32 loc, offset, size;
+
+ list_for_each_entry(validator, head, user_event_link) {
+ pos = data + validator->offset;
+
+ /* Already done min_size check, no bounds check here */
+ loc = *(u32 *)pos;
+ offset = loc & 0xffff;
+ size = loc >> 16;
+
+ if (likely(validator->flags & VALIDATOR_REL))
+ pos += offset + sizeof(loc);
+ else
+ pos = data + offset;
+
+ pos += size;
+
+ if (unlikely(pos > end))
+ return -EFAULT;
+
+ if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
+ if (unlikely(*(char *)(pos - 1) != '\0'))
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+/*
+ * Writes the user supplied payload out to a trace file.
+ */
+static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
+ void *tpdata, bool *faulted)
+{
+ struct trace_event_file *file;
+ struct trace_entry *entry;
+ struct trace_event_buffer event_buffer;
+ size_t size = sizeof(*entry) + i->count;
+
+ file = (struct trace_event_file *)tpdata;
+
+ if (!file ||
+ !(file->flags & EVENT_FILE_FL_ENABLED) ||
+ trace_trigger_soft_disabled(file))
+ return;
+
+ /* Allocates and fills trace_entry, + 1 of this is data payload */
+ entry = trace_event_buffer_reserve(&event_buffer, file, size);
+
+ if (unlikely(!entry))
+ return;
+
+ if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i)))
+ goto discard;
+
+ if (!list_empty(&user->validators) &&
+ unlikely(user_event_validate(user, entry, size)))
+ goto discard;
+
+ trace_event_buffer_commit(&event_buffer);
+
+ return;
+discard:
+ *faulted = true;
+ __trace_event_discard_commit(event_buffer.buffer,
+ event_buffer.event);
+}
+
+#ifdef CONFIG_PERF_EVENTS
+/*
+ * Writes the user supplied payload out to perf ring buffer.
+ */
+static void user_event_perf(struct user_event *user, struct iov_iter *i,
+ void *tpdata, bool *faulted)
+{
+ struct hlist_head *perf_head;
+
+ perf_head = this_cpu_ptr(user->call.perf_events);
+
+ if (perf_head && !hlist_empty(perf_head)) {
+ struct trace_entry *perf_entry;
+ struct pt_regs *regs;
+ size_t size = sizeof(*perf_entry) + i->count;
+ int context;
+
+ perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
+ &regs, &context);
+
+ if (unlikely(!perf_entry))
+ return;
+
+ perf_fetch_caller_regs(regs);
+
+ if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i)))
+ goto discard;
+
+ if (!list_empty(&user->validators) &&
+ unlikely(user_event_validate(user, perf_entry, size)))
+ goto discard;
+
+ perf_trace_buf_submit(perf_entry, size, context,
+ user->call.event.type, 1, regs,
+ perf_head, NULL);
+
+ return;
+discard:
+ *faulted = true;
+ perf_swevent_put_recursion_context(context);
+ }
+}
+#endif
+
+/*
+ * Update the enabled bit among all user processes.
+ */
+static void update_enable_bit_for(struct user_event *user)
+{
+ struct tracepoint *tp = &user->tracepoint;
+ char status = 0;
+
+ if (atomic_read(&tp->key.enabled) > 0) {
+ struct tracepoint_func *probe_func_ptr;
+ user_event_func_t probe_func;
+
+ rcu_read_lock_sched();
+
+ probe_func_ptr = rcu_dereference_sched(tp->funcs);
+
+ if (probe_func_ptr) {
+ do {
+ probe_func = probe_func_ptr->func;
+
+ if (probe_func == user_event_ftrace)
+ status |= EVENT_STATUS_FTRACE;
+#ifdef CONFIG_PERF_EVENTS
+ else if (probe_func == user_event_perf)
+ status |= EVENT_STATUS_PERF;
+#endif
+ else
+ status |= EVENT_STATUS_OTHER;
+ } while ((++probe_func_ptr)->func);
+ }
+
+ rcu_read_unlock_sched();
+ }
+
+ user->status = status;
+
+ user_event_enabler_update(user);
+}
+
+/*
+ * Register callback for our events from tracing sub-systems.
+ */
+static int user_event_reg(struct trace_event_call *call,
+ enum trace_reg type,
+ void *data)
+{
+ struct user_event *user = (struct user_event *)call->data;
+ int ret = 0;
+
+ if (!user)
+ return -ENOENT;
+
+ switch (type) {
+ case TRACE_REG_REGISTER:
+ ret = tracepoint_probe_register(call->tp,
+ call->class->probe,
+ data);
+ if (!ret)
+ goto inc;
+ break;
+
+ case TRACE_REG_UNREGISTER:
+ tracepoint_probe_unregister(call->tp,
+ call->class->probe,
+ data);
+ goto dec;
+
+#ifdef CONFIG_PERF_EVENTS
+ case TRACE_REG_PERF_REGISTER:
+ ret = tracepoint_probe_register(call->tp,
+ call->class->perf_probe,
+ data);
+ if (!ret)
+ goto inc;
+ break;
+
+ case TRACE_REG_PERF_UNREGISTER:
+ tracepoint_probe_unregister(call->tp,
+ call->class->perf_probe,
+ data);
+ goto dec;
+
+ case TRACE_REG_PERF_OPEN:
+ case TRACE_REG_PERF_CLOSE:
+ case TRACE_REG_PERF_ADD:
+ case TRACE_REG_PERF_DEL:
+ break;
+#endif
+ }
+
+ return ret;
+inc:
+ user_event_get(user);
+ update_enable_bit_for(user);
+ return 0;
+dec:
+ update_enable_bit_for(user);
+ user_event_put(user, true);
+ return 0;
+}
+
+static int user_event_create(const char *raw_command)
+{
+ struct user_event_group *group;
+ struct user_event *user;
+ char *name;
+ int ret;
+
+ if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
+ return -ECANCELED;
+
+ raw_command += USER_EVENTS_PREFIX_LEN;
+ raw_command = skip_spaces(raw_command);
+
+ name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
+
+ if (!name)
+ return -ENOMEM;
+
+ group = current_user_event_group();
+
+ if (!group) {
+ kfree(name);
+ return -ENOENT;
+ }
+
+ mutex_lock(&group->reg_mutex);
+
+ /* Dyn events persist, otherwise they would cleanup immediately */
+ ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST);
+
+ if (!ret)
+ user_event_put(user, false);
+
+ mutex_unlock(&group->reg_mutex);
+
+ if (ret)
+ kfree(name);
+
+ return ret;
+}
+
+static int user_event_show(struct seq_file *m, struct dyn_event *ev)
+{
+ struct user_event *user = container_of(ev, struct user_event, devent);
+ struct ftrace_event_field *field;
+ struct list_head *head;
+ int depth = 0;
+
+ seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
+
+ head = trace_get_fields(&user->call);
+
+ list_for_each_entry_reverse(field, head, link) {
+ if (depth == 0)
+ seq_puts(m, " ");
+ else
+ seq_puts(m, "; ");
+
+ seq_printf(m, "%s %s", field->type, field->name);
+
+ if (str_has_prefix(field->type, "struct "))
+ seq_printf(m, " %d", field->size);
+
+ depth++;
+ }
+
+ seq_puts(m, "\n");
+
+ return 0;
+}
+
+static bool user_event_is_busy(struct dyn_event *ev)
+{
+ struct user_event *user = container_of(ev, struct user_event, devent);
+
+ return !user_event_last_ref(user);
+}
+
+static int user_event_free(struct dyn_event *ev)
+{
+ struct user_event *user = container_of(ev, struct user_event, devent);
+
+ if (!user_event_last_ref(user))
+ return -EBUSY;
+
+ return destroy_user_event(user);
+}
+
+static bool user_field_match(struct ftrace_event_field *field, int argc,
+ const char **argv, int *iout)
+{
+ char *field_name = NULL, *dyn_field_name = NULL;
+ bool colon = false, match = false;
+ int dyn_len, len;
+
+ if (*iout >= argc)
+ return false;
+
+ dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
+ 0, &colon);
+
+ len = user_field_set_string(field, field_name, 0, colon);
+
+ if (dyn_len != len)
+ return false;
+
+ dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
+ field_name = kmalloc(len, GFP_KERNEL);
+
+ if (!dyn_field_name || !field_name)
+ goto out;
+
+ user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
+ dyn_len, &colon);
+
+ user_field_set_string(field, field_name, len, colon);
+
+ match = strcmp(dyn_field_name, field_name) == 0;
+out:
+ kfree(dyn_field_name);
+ kfree(field_name);
+
+ return match;
+}
+
+static bool user_fields_match(struct user_event *user, int argc,
+ const char **argv)
+{
+ struct ftrace_event_field *field;
+ struct list_head *head = &user->fields;
+ int i = 0;
+
+ list_for_each_entry_reverse(field, head, link) {
+ if (!user_field_match(field, argc, argv, &i))
+ return false;
+ }
+
+ if (i != argc)
+ return false;
+
+ return true;
+}
+
+static bool user_event_match(const char *system, const char *event,
+ int argc, const char **argv, struct dyn_event *ev)
+{
+ struct user_event *user = container_of(ev, struct user_event, devent);
+ bool match;
+
+ match = strcmp(EVENT_NAME(user), event) == 0 &&
+ (!system || strcmp(system, USER_EVENTS_SYSTEM) == 0);
+
+ if (match && argc > 0)
+ match = user_fields_match(user, argc, argv);
+ else if (match && argc == 0)
+ match = list_empty(&user->fields);
+
+ return match;
+}
+
+static struct dyn_event_operations user_event_dops = {
+ .create = user_event_create,
+ .show = user_event_show,
+ .is_busy = user_event_is_busy,
+ .free = user_event_free,
+ .match = user_event_match,
+};
+
+static int user_event_trace_register(struct user_event *user)
+{
+ int ret;
+
+ ret = register_trace_event(&user->call.event);
+
+ if (!ret)
+ return -ENODEV;
+
+ ret = user_event_set_call_visible(user, true);
+
+ if (ret)
+ unregister_trace_event(&user->call.event);
+
+ return ret;
+}
+
+/*
+ * Parses the event name, arguments and flags then registers if successful.
+ * The name buffer lifetime is owned by this method for success cases only.
+ * Upon success the returned user_event has its ref count increased by 1.
+ */
+static int user_event_parse(struct user_event_group *group, char *name,
+ char *args, char *flags,
+ struct user_event **newuser, int reg_flags)
+{
+ int ret;
+ u32 key;
+ struct user_event *user;
+ int argc = 0;
+ char **argv;
+
+ /* User register flags are not ready yet */
+ if (reg_flags != 0 || flags != NULL)
+ return -EINVAL;
+
+ /* Prevent dyn_event from racing */
+ mutex_lock(&event_mutex);
+ user = find_user_event(group, name, &key);
+ mutex_unlock(&event_mutex);
+
+ if (user) {
+ if (args) {
+ argv = argv_split(GFP_KERNEL, args, &argc);
+ if (!argv) {
+ ret = -ENOMEM;
+ goto error;
+ }
+
+ ret = user_fields_match(user, argc, (const char **)argv);
+ argv_free(argv);
+
+ } else
+ ret = list_empty(&user->fields);
+
+ if (ret) {
+ *newuser = user;
+ /*
+ * Name is allocated by caller, free it since it already exists.
+ * Caller only worries about failure cases for freeing.
+ */
+ kfree(name);
+ } else {
+ ret = -EADDRINUSE;
+ goto error;
+ }
+
+ return 0;
+error:
+ user_event_put(user, false);
+ return ret;
+ }
+
+ user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
+
+ if (!user)
+ return -ENOMEM;
+
+ INIT_LIST_HEAD(&user->class.fields);
+ INIT_LIST_HEAD(&user->fields);
+ INIT_LIST_HEAD(&user->validators);
+
+ user->group = group;
+ user->tracepoint.name = name;
+
+ ret = user_event_parse_fields(user, args);
+
+ if (ret)
+ goto put_user;
+
+ ret = user_event_create_print_fmt(user);
+
+ if (ret)
+ goto put_user;
+
+ user->call.data = user;
+ user->call.class = &user->class;
+ user->call.name = name;
+ user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
+ user->call.tp = &user->tracepoint;
+ user->call.event.funcs = &user_event_funcs;
+ user->class.system = group->system_name;
+
+ user->class.fields_array = user_event_fields_array;
+ user->class.get_fields = user_event_get_fields;
+ user->class.reg = user_event_reg;
+ user->class.probe = user_event_ftrace;
+#ifdef CONFIG_PERF_EVENTS
+ user->class.perf_probe = user_event_perf;
+#endif
+
+ mutex_lock(&event_mutex);
+
+ if (current_user_events >= max_user_events) {
+ ret = -EMFILE;
+ goto put_user_lock;
+ }
+
+ ret = user_event_trace_register(user);
+
+ if (ret)
+ goto put_user_lock;
+
+ user->reg_flags = reg_flags;
+
+ if (user->reg_flags & USER_EVENT_REG_PERSIST) {
+ /* Ensure we track self ref and caller ref (2) */
+ refcount_set(&user->refcnt, 2);
+ } else {
+ /* Ensure we track only caller ref (1) */
+ refcount_set(&user->refcnt, 1);
+ }
+
+ dyn_event_init(&user->devent, &user_event_dops);
+ dyn_event_add(&user->devent, &user->call);
+ hash_add(group->register_table, &user->node, key);
+ current_user_events++;
+
+ mutex_unlock(&event_mutex);
+
+ *newuser = user;
+ return 0;
+put_user_lock:
+ mutex_unlock(&event_mutex);
+put_user:
+ user_event_destroy_fields(user);
+ user_event_destroy_validators(user);
+ kfree(user->call.print_fmt);
+ kfree(user);
+ return ret;
+}
+
+/*
+ * Deletes a previously created event if it is no longer being used.
+ */
+static int delete_user_event(struct user_event_group *group, char *name)
+{
+ u32 key;
+ struct user_event *user = find_user_event(group, name, &key);
+
+ if (!user)
+ return -ENOENT;
+
+ user_event_put(user, true);
+
+ if (!user_event_last_ref(user))
+ return -EBUSY;
+
+ return destroy_user_event(user);
+}
+
+/*
+ * Validates the user payload and writes via iterator.
+ */
+static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
+{
+ struct user_event_file_info *info = file->private_data;
+ struct user_event_refs *refs;
+ struct user_event *user = NULL;
+ struct tracepoint *tp;
+ ssize_t ret = i->count;
+ int idx;
+
+ if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
+ return -EFAULT;
+
+ if (idx < 0)
+ return -EINVAL;
+
+ rcu_read_lock_sched();
+
+ refs = rcu_dereference_sched(info->refs);
+
+ /*
+ * The refs->events array is protected by RCU, and new items may be
+ * added. But the user retrieved from indexing into the events array
+ * shall be immutable while the file is opened.
+ */
+ if (likely(refs && idx < refs->count))
+ user = refs->events[idx];
+
+ rcu_read_unlock_sched();
+
+ if (unlikely(user == NULL))
+ return -ENOENT;
+
+ if (unlikely(i->count < user->min_size))
+ return -EINVAL;
+
+ tp = &user->tracepoint;
+
+ /*
+ * It's possible key.enabled disables after this check, however
+ * we don't mind if a few events are included in this condition.
+ */
+ if (likely(atomic_read(&tp->key.enabled) > 0)) {
+ struct tracepoint_func *probe_func_ptr;
+ user_event_func_t probe_func;
+ struct iov_iter copy;
+ void *tpdata;
+ bool faulted;
+
+ if (unlikely(fault_in_iov_iter_readable(i, i->count)))
+ return -EFAULT;
+
+ faulted = false;
+
+ rcu_read_lock_sched();
+
+ probe_func_ptr = rcu_dereference_sched(tp->funcs);
+
+ if (probe_func_ptr) {
+ do {
+ copy = *i;
+ probe_func = probe_func_ptr->func;
+ tpdata = probe_func_ptr->data;
+ probe_func(user, &copy, tpdata, &faulted);
+ } while ((++probe_func_ptr)->func);
+ }
+
+ rcu_read_unlock_sched();
+
+ if (unlikely(faulted))
+ return -EFAULT;
+ } else
+ return -EBADF;
+
+ return ret;
+}
+
+static int user_events_open(struct inode *node, struct file *file)
+{
+ struct user_event_group *group;
+ struct user_event_file_info *info;
+
+ group = current_user_event_group();
+
+ if (!group)
+ return -ENOENT;
+
+ info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
+
+ if (!info)
+ return -ENOMEM;
+
+ info->group = group;
+
+ file->private_data = info;
+
+ return 0;
+}
+
+static ssize_t user_events_write(struct file *file, const char __user *ubuf,
+ size_t count, loff_t *ppos)
+{
+ struct iovec iov;
+ struct iov_iter i;
+
+ if (unlikely(*ppos != 0))
+ return -EFAULT;
+
+ if (unlikely(import_single_range(ITER_SOURCE, (char __user *)ubuf,
+ count, &iov, &i)))
+ return -EFAULT;
+
+ return user_events_write_core(file, &i);
+}
+
+static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
+{
+ return user_events_write_core(kp->ki_filp, i);
+}
+
+static int user_events_ref_add(struct user_event_file_info *info,
+ struct user_event *user)
+{
+ struct user_event_group *group = info->group;
+ struct user_event_refs *refs, *new_refs;
+ int i, size, count = 0;
+
+ refs = rcu_dereference_protected(info->refs,
+ lockdep_is_held(&group->reg_mutex));
+
+ if (refs) {
+ count = refs->count;
+
+ for (i = 0; i < count; ++i)
+ if (refs->events[i] == user)
+ return i;
+ }
+
+ size = struct_size(refs, events, count + 1);
+
+ new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
+
+ if (!new_refs)
+ return -ENOMEM;
+
+ new_refs->count = count + 1;
+
+ for (i = 0; i < count; ++i)
+ new_refs->events[i] = refs->events[i];
+
+ new_refs->events[i] = user_event_get(user);
+
+ rcu_assign_pointer(info->refs, new_refs);
+
+ if (refs)
+ kfree_rcu(refs, rcu);
+
+ return i;
+}
+
+static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
+{
+ u32 size;
+ long ret;
+
+ ret = get_user(size, &ureg->size);
+
+ if (ret)
+ return ret;
+
+ if (size > PAGE_SIZE)
+ return -E2BIG;
+
+ if (size < offsetofend(struct user_reg, write_index))
+ return -EINVAL;
+
+ ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
+
+ if (ret)
+ return ret;
+
+ /* Ensure only valid flags */
+ if (kreg->flags & ~(USER_EVENT_REG_MAX-1))
+ return -EINVAL;
+
+ /* Ensure supported size */
+ switch (kreg->enable_size) {
+ case 4:
+ /* 32-bit */
+ break;
+#if BITS_PER_LONG >= 64
+ case 8:
+ /* 64-bit */
+ break;
+#endif
+ default:
+ return -EINVAL;
+ }
+
+ /* Ensure natural alignment */
+ if (kreg->enable_addr % kreg->enable_size)
+ return -EINVAL;
+
+ /* Ensure bit range for size */
+ if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
+ return -EINVAL;
+
+ /* Ensure accessible */
+ if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
+ kreg->enable_size))
+ return -EFAULT;
+
+ kreg->size = size;
+
+ return 0;
+}
+
+/*
+ * Registers a user_event on behalf of a user process.
+ */
+static long user_events_ioctl_reg(struct user_event_file_info *info,
+ unsigned long uarg)
+{
+ struct user_reg __user *ureg = (struct user_reg __user *)uarg;
+ struct user_reg reg;
+ struct user_event *user;
+ struct user_event_enabler *enabler;
+ char *name;
+ long ret;
+ int write_result;
+
+ ret = user_reg_get(ureg, &reg);
+
+ if (ret)
+ return ret;
+
+ /*
+ * Prevent users from using the same address and bit multiple times
+ * within the same mm address space. This can cause unexpected behavior
+ * for user processes that is far easier to debug if this is explictly
+ * an error upon registering.
+ */
+ if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
+ reg.enable_bit))
+ return -EADDRINUSE;
+
+ name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
+ MAX_EVENT_DESC);
+
+ if (IS_ERR(name)) {
+ ret = PTR_ERR(name);
+ return ret;
+ }
+
+ ret = user_event_parse_cmd(info->group, name, &user, reg.flags);
+
+ if (ret) {
+ kfree(name);
+ return ret;
+ }
+
+ ret = user_events_ref_add(info, user);
+
+ /* No longer need parse ref, ref_add either worked or not */
+ user_event_put(user, false);
+
+ /* Positive number is index and valid */
+ if (ret < 0)
+ return ret;
+
+ /*
+ * user_events_ref_add succeeded:
+ * At this point we have a user_event, it's lifetime is bound by the
+ * reference count, not this file. If anything fails, the user_event
+ * still has a reference until the file is released. During release
+ * any remaining references (from user_events_ref_add) are decremented.
+ *
+ * Attempt to create an enabler, which too has a lifetime tied in the
+ * same way for the event. Once the task that caused the enabler to be
+ * created exits or issues exec() then the enablers it has created
+ * will be destroyed and the ref to the event will be decremented.
+ */
+ enabler = user_event_enabler_create(&reg, user, &write_result);
+
+ if (!enabler)
+ return -ENOMEM;
+
+ /* Write failed/faulted, give error back to caller */
+ if (write_result)
+ return write_result;
+
+ put_user((u32)ret, &ureg->write_index);
+
+ return 0;
+}
+
+/*
+ * Deletes a user_event on behalf of a user process.
+ */
+static long user_events_ioctl_del(struct user_event_file_info *info,
+ unsigned long uarg)
+{
+ void __user *ubuf = (void __user *)uarg;
+ char *name;
+ long ret;
+
+ name = strndup_user(ubuf, MAX_EVENT_DESC);
+
+ if (IS_ERR(name))
+ return PTR_ERR(name);
+
+ /* event_mutex prevents dyn_event from racing */
+ mutex_lock(&event_mutex);
+ ret = delete_user_event(info->group, name);
+ mutex_unlock(&event_mutex);
+
+ kfree(name);
+
+ return ret;
+}
+
+static long user_unreg_get(struct user_unreg __user *ureg,
+ struct user_unreg *kreg)
+{
+ u32 size;
+ long ret;
+
+ ret = get_user(size, &ureg->size);
+
+ if (ret)
+ return ret;
+
+ if (size > PAGE_SIZE)
+ return -E2BIG;
+
+ if (size < offsetofend(struct user_unreg, disable_addr))
+ return -EINVAL;
+
+ ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
+
+ /* Ensure no reserved values, since we don't support any yet */
+ if (kreg->__reserved || kreg->__reserved2)
+ return -EINVAL;
+
+ return ret;
+}
+
+static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
+ unsigned long uaddr, unsigned char bit,
+ unsigned long flags)
+{
+ struct user_event_enabler enabler;
+ int result;
+ int attempt = 0;
+
+ memset(&enabler, 0, sizeof(enabler));
+ enabler.addr = uaddr;
+ enabler.values = bit | flags;
+retry:
+ /* Prevents state changes from racing with new enablers */
+ mutex_lock(&event_mutex);
+
+ /* Force the bit to be cleared, since no event is attached */
+ mmap_read_lock(user_mm->mm);
+ result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
+ mmap_read_unlock(user_mm->mm);
+
+ mutex_unlock(&event_mutex);
+
+ if (result) {
+ /* Attempt to fault-in and retry if it worked */
+ if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
+ goto retry;
+ }
+
+ return result;
+}
+
+/*
+ * Unregisters an enablement address/bit within a task/user mm.
+ */
+static long user_events_ioctl_unreg(unsigned long uarg)
+{
+ struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
+ struct user_event_mm *mm = current->user_event_mm;
+ struct user_event_enabler *enabler, *next;
+ struct user_unreg reg;
+ unsigned long flags;
+ long ret;
+
+ ret = user_unreg_get(ureg, &reg);
+
+ if (ret)
+ return ret;
+
+ if (!mm)
+ return -ENOENT;
+
+ flags = 0;
+ ret = -ENOENT;
+
+ /*
+ * Flags freeing and faulting are used to indicate if the enabler is in
+ * use at all. When faulting is set a page-fault is occurring asyncly.
+ * During async fault if freeing is set, the enabler will be destroyed.
+ * If no async fault is happening, we can destroy it now since we hold
+ * the event_mutex during these checks.
+ */
+ mutex_lock(&event_mutex);
+
+ list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) {
+ if (enabler->addr == reg.disable_addr &&
+ ENABLE_BIT(enabler) == reg.disable_bit) {
+ set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
+
+ /* We must keep compat flags for the clear */
+ flags |= enabler->values & ENABLE_VAL_COMPAT_MASK;
+
+ if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
+ user_event_enabler_destroy(enabler, true);
+
+ /* Removed at least one */
+ ret = 0;
+ }
+ }
+
+ mutex_unlock(&event_mutex);
+
+ /* Ensure bit is now cleared for user, regardless of event status */
+ if (!ret)
+ ret = user_event_mm_clear_bit(mm, reg.disable_addr,
+ reg.disable_bit, flags);
+
+ return ret;
+}
+
+/*
+ * Handles the ioctl from user mode to register or alter operations.
+ */
+static long user_events_ioctl(struct file *file, unsigned int cmd,
+ unsigned long uarg)
+{
+ struct user_event_file_info *info = file->private_data;
+ struct user_event_group *group = info->group;
+ long ret = -ENOTTY;
+
+ switch (cmd) {
+ case DIAG_IOCSREG:
+ mutex_lock(&group->reg_mutex);
+ ret = user_events_ioctl_reg(info, uarg);
+ mutex_unlock(&group->reg_mutex);
+ break;
+
+ case DIAG_IOCSDEL:
+ mutex_lock(&group->reg_mutex);
+ ret = user_events_ioctl_del(info, uarg);
+ mutex_unlock(&group->reg_mutex);
+ break;
+
+ case DIAG_IOCSUNREG:
+ mutex_lock(&group->reg_mutex);
+ ret = user_events_ioctl_unreg(uarg);
+ mutex_unlock(&group->reg_mutex);
+ break;
+ }
+
+ return ret;
+}
+
+/*
+ * Handles the final close of the file from user mode.
+ */
+static int user_events_release(struct inode *node, struct file *file)
+{
+ struct user_event_file_info *info = file->private_data;
+ struct user_event_group *group;
+ struct user_event_refs *refs;
+ int i;
+
+ if (!info)
+ return -EINVAL;
+
+ group = info->group;
+
+ /*
+ * Ensure refs cannot change under any situation by taking the
+ * register mutex during the final freeing of the references.
+ */
+ mutex_lock(&group->reg_mutex);
+
+ refs = info->refs;
+
+ if (!refs)
+ goto out;
+
+ /*
+ * The lifetime of refs has reached an end, it's tied to this file.
+ * The underlying user_events are ref counted, and cannot be freed.
+ * After this decrement, the user_events may be freed elsewhere.
+ */
+ for (i = 0; i < refs->count; ++i)
+ user_event_put(refs->events[i], false);
+
+out:
+ file->private_data = NULL;
+
+ mutex_unlock(&group->reg_mutex);
+
+ kfree(refs);
+ kfree(info);
+
+ return 0;
+}
+
+static const struct file_operations user_data_fops = {
+ .open = user_events_open,
+ .write = user_events_write,
+ .write_iter = user_events_write_iter,
+ .unlocked_ioctl = user_events_ioctl,
+ .release = user_events_release,
+};
+
+static void *user_seq_start(struct seq_file *m, loff_t *pos)
+{
+ if (*pos)
+ return NULL;
+
+ return (void *)1;
+}
+
+static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
+{
+ ++*pos;
+ return NULL;
+}
+
+static void user_seq_stop(struct seq_file *m, void *p)
+{
+}
+
+static int user_seq_show(struct seq_file *m, void *p)
+{
+ struct user_event_group *group = m->private;
+ struct user_event *user;
+ char status;
+ int i, active = 0, busy = 0;
+
+ if (!group)
+ return -EINVAL;
+
+ mutex_lock(&group->reg_mutex);
+
+ hash_for_each(group->register_table, i, user, node) {
+ status = user->status;
+
+ seq_printf(m, "%s", EVENT_NAME(user));
+
+ if (status != 0)
+ seq_puts(m, " #");
+
+ if (status != 0) {
+ seq_puts(m, " Used by");
+ if (status & EVENT_STATUS_FTRACE)
+ seq_puts(m, " ftrace");
+ if (status & EVENT_STATUS_PERF)
+ seq_puts(m, " perf");
+ if (status & EVENT_STATUS_OTHER)
+ seq_puts(m, " other");
+ busy++;
+ }
+
+ seq_puts(m, "\n");
+ active++;
+ }
+
+ mutex_unlock(&group->reg_mutex);
+
+ seq_puts(m, "\n");
+ seq_printf(m, "Active: %d\n", active);
+ seq_printf(m, "Busy: %d\n", busy);
+
+ return 0;
+}
+
+static const struct seq_operations user_seq_ops = {
+ .start = user_seq_start,
+ .next = user_seq_next,
+ .stop = user_seq_stop,
+ .show = user_seq_show,
+};
+
+static int user_status_open(struct inode *node, struct file *file)
+{
+ struct user_event_group *group;
+ int ret;
+
+ group = current_user_event_group();
+
+ if (!group)
+ return -ENOENT;
+
+ ret = seq_open(file, &user_seq_ops);
+
+ if (!ret) {
+ /* Chain group to seq_file */
+ struct seq_file *m = file->private_data;
+
+ m->private = group;
+ }
+
+ return ret;
+}
+
+static const struct file_operations user_status_fops = {
+ .open = user_status_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+/*
+ * Creates a set of tracefs files to allow user mode interactions.
+ */
+static int create_user_tracefs(void)
+{
+ struct dentry *edata, *emmap;
+
+ edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
+ NULL, NULL, &user_data_fops);
+
+ if (!edata) {
+ pr_warn("Could not create tracefs 'user_events_data' entry\n");
+ goto err;
+ }
+
+ emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
+ NULL, NULL, &user_status_fops);
+
+ if (!emmap) {
+ tracefs_remove(edata);
+ pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
+ goto err;
+ }
+
+ return 0;
+err:
+ return -ENODEV;
+}
+
+static int set_max_user_events_sysctl(struct ctl_table *table, int write,
+ void *buffer, size_t *lenp, loff_t *ppos)
+{
+ int ret;
+
+ mutex_lock(&event_mutex);
+
+ ret = proc_douintvec(table, write, buffer, lenp, ppos);
+
+ mutex_unlock(&event_mutex);
+
+ return ret;
+}
+
+static struct ctl_table user_event_sysctls[] = {
+ {
+ .procname = "user_events_max",
+ .data = &max_user_events,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = set_max_user_events_sysctl,
+ },
+ {}
+};
+
+static int __init trace_events_user_init(void)
+{
+ int ret;
+
+ fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
+
+ if (!fault_cache)
+ return -ENOMEM;
+
+ init_group = user_event_group_create();
+
+ if (!init_group) {
+ kmem_cache_destroy(fault_cache);
+ return -ENOMEM;
+ }
+
+ ret = create_user_tracefs();
+
+ if (ret) {
+ pr_warn("user_events could not register with tracefs\n");
+ user_event_group_destroy(init_group);
+ kmem_cache_destroy(fault_cache);
+ init_group = NULL;
+ return ret;
+ }
+
+ if (dyn_event_register(&user_event_dops))
+ pr_warn("user_events could not register with dyn_events\n");
+
+ register_sysctl_init("kernel", user_event_sysctls);
+
+ return 0;
+}
+
+fs_initcall(trace_events_user_init);