diff options
Diffstat (limited to 'mm/huge_memory.c')
-rw-r--r-- | mm/huge_memory.c | 77 |
1 files changed, 43 insertions, 34 deletions
diff --git a/mm/huge_memory.c b/mm/huge_memory.c index 89f58c7603..769e8a125f 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -2493,32 +2493,11 @@ static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, return __split_huge_zero_page_pmd(vma, haddr, pmd); } - /* - * Up to this point the pmd is present and huge and userland has the - * whole access to the hugepage during the split (which happens in - * place). If we overwrite the pmd with the not-huge version pointing - * to the pte here (which of course we could if all CPUs were bug - * free), userland could trigger a small page size TLB miss on the - * small sized TLB while the hugepage TLB entry is still established in - * the huge TLB. Some CPU doesn't like that. - * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum - * 383 on page 105. Intel should be safe but is also warns that it's - * only safe if the permission and cache attributes of the two entries - * loaded in the two TLB is identical (which should be the case here). - * But it is generally safer to never allow small and huge TLB entries - * for the same virtual address to be loaded simultaneously. So instead - * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the - * current pmd notpresent (atomically because here the pmd_trans_huge - * must remain set at all times on the pmd until the split is complete - * for this pmd), then we flush the SMP TLB and finally we write the - * non-huge version of the pmd entry with pmd_populate. - */ - old_pmd = pmdp_invalidate(vma, haddr, pmd); - - pmd_migration = is_pmd_migration_entry(old_pmd); + pmd_migration = is_pmd_migration_entry(*pmd); if (unlikely(pmd_migration)) { swp_entry_t entry; + old_pmd = *pmd; entry = pmd_to_swp_entry(old_pmd); page = pfn_swap_entry_to_page(entry); write = is_writable_migration_entry(entry); @@ -2529,6 +2508,30 @@ static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, soft_dirty = pmd_swp_soft_dirty(old_pmd); uffd_wp = pmd_swp_uffd_wp(old_pmd); } else { + /* + * Up to this point the pmd is present and huge and userland has + * the whole access to the hugepage during the split (which + * happens in place). If we overwrite the pmd with the not-huge + * version pointing to the pte here (which of course we could if + * all CPUs were bug free), userland could trigger a small page + * size TLB miss on the small sized TLB while the hugepage TLB + * entry is still established in the huge TLB. Some CPU doesn't + * like that. See + * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum + * 383 on page 105. Intel should be safe but is also warns that + * it's only safe if the permission and cache attributes of the + * two entries loaded in the two TLB is identical (which should + * be the case here). But it is generally safer to never allow + * small and huge TLB entries for the same virtual address to be + * loaded simultaneously. So instead of doing "pmd_populate(); + * flush_pmd_tlb_range();" we first mark the current pmd + * notpresent (atomically because here the pmd_trans_huge must + * remain set at all times on the pmd until the split is + * complete for this pmd), then we flush the SMP TLB and finally + * we write the non-huge version of the pmd entry with + * pmd_populate. + */ + old_pmd = pmdp_invalidate(vma, haddr, pmd); page = pmd_page(old_pmd); folio = page_folio(page); if (pmd_dirty(old_pmd)) { @@ -3055,30 +3058,36 @@ int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, if (new_order >= folio_order(folio)) return -EINVAL; - /* Cannot split anonymous THP to order-1 */ - if (new_order == 1 && folio_test_anon(folio)) { - VM_WARN_ONCE(1, "Cannot split to order-1 folio"); - return -EINVAL; - } - - if (new_order) { - /* Only swapping a whole PMD-mapped folio is supported */ - if (folio_test_swapcache(folio)) + if (folio_test_anon(folio)) { + /* order-1 is not supported for anonymous THP. */ + if (new_order == 1) { + VM_WARN_ONCE(1, "Cannot split to order-1 folio"); return -EINVAL; + } + } else if (new_order) { /* Split shmem folio to non-zero order not supported */ if (shmem_mapping(folio->mapping)) { VM_WARN_ONCE(1, "Cannot split shmem folio to non-0 order"); return -EINVAL; } - /* No split if the file system does not support large folio */ - if (!mapping_large_folio_support(folio->mapping)) { + /* + * No split if the file system does not support large folio. + * Note that we might still have THPs in such mappings due to + * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping + * does not actually support large folios properly. + */ + if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && + !mapping_large_folio_support(folio->mapping)) { VM_WARN_ONCE(1, "Cannot split file folio to non-0 order"); return -EINVAL; } } + /* Only swapping a whole PMD-mapped folio is supported */ + if (folio_test_swapcache(folio) && new_order) + return -EINVAL; is_hzp = is_huge_zero_page(&folio->page); if (is_hzp) { |