summaryrefslogtreecommitdiffstats
path: root/mm/kmsan/hooks.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/kmsan/hooks.c')
-rw-r--r--mm/kmsan/hooks.c424
1 files changed, 424 insertions, 0 deletions
diff --git a/mm/kmsan/hooks.c b/mm/kmsan/hooks.c
new file mode 100644
index 000000000..5d6e2dee5
--- /dev/null
+++ b/mm/kmsan/hooks.c
@@ -0,0 +1,424 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * KMSAN hooks for kernel subsystems.
+ *
+ * These functions handle creation of KMSAN metadata for memory allocations.
+ *
+ * Copyright (C) 2018-2022 Google LLC
+ * Author: Alexander Potapenko <glider@google.com>
+ *
+ */
+
+#include <linux/cacheflush.h>
+#include <linux/dma-direction.h>
+#include <linux/gfp.h>
+#include <linux/kmsan.h>
+#include <linux/mm.h>
+#include <linux/mm_types.h>
+#include <linux/scatterlist.h>
+#include <linux/slab.h>
+#include <linux/uaccess.h>
+#include <linux/usb.h>
+
+#include "../internal.h"
+#include "../slab.h"
+#include "kmsan.h"
+
+/*
+ * Instrumented functions shouldn't be called under
+ * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
+ * skipping effects of functions like memset() inside instrumented code.
+ */
+
+void kmsan_task_create(struct task_struct *task)
+{
+ kmsan_enter_runtime();
+ kmsan_internal_task_create(task);
+ kmsan_leave_runtime();
+}
+
+void kmsan_task_exit(struct task_struct *task)
+{
+ struct kmsan_ctx *ctx = &task->kmsan_ctx;
+
+ if (!kmsan_enabled || kmsan_in_runtime())
+ return;
+
+ ctx->allow_reporting = false;
+}
+
+void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags)
+{
+ if (unlikely(object == NULL))
+ return;
+ if (!kmsan_enabled || kmsan_in_runtime())
+ return;
+ /*
+ * There's a ctor or this is an RCU cache - do nothing. The memory
+ * status hasn't changed since last use.
+ */
+ if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU))
+ return;
+
+ kmsan_enter_runtime();
+ if (flags & __GFP_ZERO)
+ kmsan_internal_unpoison_memory(object, s->object_size,
+ KMSAN_POISON_CHECK);
+ else
+ kmsan_internal_poison_memory(object, s->object_size, flags,
+ KMSAN_POISON_CHECK);
+ kmsan_leave_runtime();
+}
+
+void kmsan_slab_free(struct kmem_cache *s, void *object)
+{
+ if (!kmsan_enabled || kmsan_in_runtime())
+ return;
+
+ /* RCU slabs could be legally used after free within the RCU period */
+ if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)))
+ return;
+ /*
+ * If there's a constructor, freed memory must remain in the same state
+ * until the next allocation. We cannot save its state to detect
+ * use-after-free bugs, instead we just keep it unpoisoned.
+ */
+ if (s->ctor)
+ return;
+ kmsan_enter_runtime();
+ kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL,
+ KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
+ kmsan_leave_runtime();
+}
+
+void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
+{
+ if (unlikely(ptr == NULL))
+ return;
+ if (!kmsan_enabled || kmsan_in_runtime())
+ return;
+ kmsan_enter_runtime();
+ if (flags & __GFP_ZERO)
+ kmsan_internal_unpoison_memory((void *)ptr, size,
+ /*checked*/ true);
+ else
+ kmsan_internal_poison_memory((void *)ptr, size, flags,
+ KMSAN_POISON_CHECK);
+ kmsan_leave_runtime();
+}
+
+void kmsan_kfree_large(const void *ptr)
+{
+ struct page *page;
+
+ if (!kmsan_enabled || kmsan_in_runtime())
+ return;
+ kmsan_enter_runtime();
+ page = virt_to_head_page((void *)ptr);
+ KMSAN_WARN_ON(ptr != page_address(page));
+ kmsan_internal_poison_memory((void *)ptr,
+ page_size(page),
+ GFP_KERNEL,
+ KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
+ kmsan_leave_runtime();
+}
+
+static unsigned long vmalloc_shadow(unsigned long addr)
+{
+ return (unsigned long)kmsan_get_metadata((void *)addr,
+ KMSAN_META_SHADOW);
+}
+
+static unsigned long vmalloc_origin(unsigned long addr)
+{
+ return (unsigned long)kmsan_get_metadata((void *)addr,
+ KMSAN_META_ORIGIN);
+}
+
+void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end)
+{
+ __vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end));
+ __vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end));
+ flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
+ flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
+}
+
+/*
+ * This function creates new shadow/origin pages for the physical pages mapped
+ * into the virtual memory. If those physical pages already had shadow/origin,
+ * those are ignored.
+ */
+int kmsan_ioremap_page_range(unsigned long start, unsigned long end,
+ phys_addr_t phys_addr, pgprot_t prot,
+ unsigned int page_shift)
+{
+ gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO;
+ struct page *shadow, *origin;
+ unsigned long off = 0;
+ int nr, err = 0, clean = 0, mapped;
+
+ if (!kmsan_enabled || kmsan_in_runtime())
+ return 0;
+
+ nr = (end - start) / PAGE_SIZE;
+ kmsan_enter_runtime();
+ for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) {
+ shadow = alloc_pages(gfp_mask, 1);
+ origin = alloc_pages(gfp_mask, 1);
+ if (!shadow || !origin) {
+ err = -ENOMEM;
+ goto ret;
+ }
+ mapped = __vmap_pages_range_noflush(
+ vmalloc_shadow(start + off),
+ vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow,
+ PAGE_SHIFT);
+ if (mapped) {
+ err = mapped;
+ goto ret;
+ }
+ shadow = NULL;
+ mapped = __vmap_pages_range_noflush(
+ vmalloc_origin(start + off),
+ vmalloc_origin(start + off + PAGE_SIZE), prot, &origin,
+ PAGE_SHIFT);
+ if (mapped) {
+ __vunmap_range_noflush(
+ vmalloc_shadow(start + off),
+ vmalloc_shadow(start + off + PAGE_SIZE));
+ err = mapped;
+ goto ret;
+ }
+ origin = NULL;
+ }
+ /* Page mapping loop finished normally, nothing to clean up. */
+ clean = 0;
+
+ret:
+ if (clean > 0) {
+ /*
+ * Something went wrong. Clean up shadow/origin pages allocated
+ * on the last loop iteration, then delete mappings created
+ * during the previous iterations.
+ */
+ if (shadow)
+ __free_pages(shadow, 1);
+ if (origin)
+ __free_pages(origin, 1);
+ __vunmap_range_noflush(
+ vmalloc_shadow(start),
+ vmalloc_shadow(start + clean * PAGE_SIZE));
+ __vunmap_range_noflush(
+ vmalloc_origin(start),
+ vmalloc_origin(start + clean * PAGE_SIZE));
+ }
+ flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
+ flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
+ kmsan_leave_runtime();
+ return err;
+}
+
+void kmsan_iounmap_page_range(unsigned long start, unsigned long end)
+{
+ unsigned long v_shadow, v_origin;
+ struct page *shadow, *origin;
+ int nr;
+
+ if (!kmsan_enabled || kmsan_in_runtime())
+ return;
+
+ nr = (end - start) / PAGE_SIZE;
+ kmsan_enter_runtime();
+ v_shadow = (unsigned long)vmalloc_shadow(start);
+ v_origin = (unsigned long)vmalloc_origin(start);
+ for (int i = 0; i < nr;
+ i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) {
+ shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow);
+ origin = kmsan_vmalloc_to_page_or_null((void *)v_origin);
+ __vunmap_range_noflush(v_shadow, vmalloc_shadow(end));
+ __vunmap_range_noflush(v_origin, vmalloc_origin(end));
+ if (shadow)
+ __free_pages(shadow, 1);
+ if (origin)
+ __free_pages(origin, 1);
+ }
+ flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
+ flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
+ kmsan_leave_runtime();
+}
+
+void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy,
+ size_t left)
+{
+ unsigned long ua_flags;
+
+ if (!kmsan_enabled || kmsan_in_runtime())
+ return;
+ /*
+ * At this point we've copied the memory already. It's hard to check it
+ * before copying, as the size of actually copied buffer is unknown.
+ */
+
+ /* copy_to_user() may copy zero bytes. No need to check. */
+ if (!to_copy)
+ return;
+ /* Or maybe copy_to_user() failed to copy anything. */
+ if (to_copy <= left)
+ return;
+
+ ua_flags = user_access_save();
+ if ((u64)to < TASK_SIZE) {
+ /* This is a user memory access, check it. */
+ kmsan_internal_check_memory((void *)from, to_copy - left, to,
+ REASON_COPY_TO_USER);
+ } else {
+ /* Otherwise this is a kernel memory access. This happens when a
+ * compat syscall passes an argument allocated on the kernel
+ * stack to a real syscall.
+ * Don't check anything, just copy the shadow of the copied
+ * bytes.
+ */
+ kmsan_internal_memmove_metadata((void *)to, (void *)from,
+ to_copy - left);
+ }
+ user_access_restore(ua_flags);
+}
+EXPORT_SYMBOL(kmsan_copy_to_user);
+
+/* Helper function to check an URB. */
+void kmsan_handle_urb(const struct urb *urb, bool is_out)
+{
+ if (!urb)
+ return;
+ if (is_out)
+ kmsan_internal_check_memory(urb->transfer_buffer,
+ urb->transfer_buffer_length,
+ /*user_addr*/ 0, REASON_SUBMIT_URB);
+ else
+ kmsan_internal_unpoison_memory(urb->transfer_buffer,
+ urb->transfer_buffer_length,
+ /*checked*/ false);
+}
+EXPORT_SYMBOL_GPL(kmsan_handle_urb);
+
+static void kmsan_handle_dma_page(const void *addr, size_t size,
+ enum dma_data_direction dir)
+{
+ switch (dir) {
+ case DMA_BIDIRECTIONAL:
+ kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
+ REASON_ANY);
+ kmsan_internal_unpoison_memory((void *)addr, size,
+ /*checked*/ false);
+ break;
+ case DMA_TO_DEVICE:
+ kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
+ REASON_ANY);
+ break;
+ case DMA_FROM_DEVICE:
+ kmsan_internal_unpoison_memory((void *)addr, size,
+ /*checked*/ false);
+ break;
+ case DMA_NONE:
+ break;
+ }
+}
+
+/* Helper function to handle DMA data transfers. */
+void kmsan_handle_dma(struct page *page, size_t offset, size_t size,
+ enum dma_data_direction dir)
+{
+ u64 page_offset, to_go, addr;
+
+ if (PageHighMem(page))
+ return;
+ addr = (u64)page_address(page) + offset;
+ /*
+ * The kernel may occasionally give us adjacent DMA pages not belonging
+ * to the same allocation. Process them separately to avoid triggering
+ * internal KMSAN checks.
+ */
+ while (size > 0) {
+ page_offset = offset_in_page(addr);
+ to_go = min(PAGE_SIZE - page_offset, (u64)size);
+ kmsan_handle_dma_page((void *)addr, to_go, dir);
+ addr += to_go;
+ size -= to_go;
+ }
+}
+
+void kmsan_handle_dma_sg(struct scatterlist *sg, int nents,
+ enum dma_data_direction dir)
+{
+ struct scatterlist *item;
+ int i;
+
+ for_each_sg(sg, item, nents, i)
+ kmsan_handle_dma(sg_page(item), item->offset, item->length,
+ dir);
+}
+
+/* Functions from kmsan-checks.h follow. */
+void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
+{
+ if (!kmsan_enabled || kmsan_in_runtime())
+ return;
+ kmsan_enter_runtime();
+ /* The users may want to poison/unpoison random memory. */
+ kmsan_internal_poison_memory((void *)address, size, flags,
+ KMSAN_POISON_NOCHECK);
+ kmsan_leave_runtime();
+}
+EXPORT_SYMBOL(kmsan_poison_memory);
+
+void kmsan_unpoison_memory(const void *address, size_t size)
+{
+ unsigned long ua_flags;
+
+ if (!kmsan_enabled || kmsan_in_runtime())
+ return;
+
+ ua_flags = user_access_save();
+ kmsan_enter_runtime();
+ /* The users may want to poison/unpoison random memory. */
+ kmsan_internal_unpoison_memory((void *)address, size,
+ KMSAN_POISON_NOCHECK);
+ kmsan_leave_runtime();
+ user_access_restore(ua_flags);
+}
+EXPORT_SYMBOL(kmsan_unpoison_memory);
+
+/*
+ * Version of kmsan_unpoison_memory() that can be called from within the KMSAN
+ * runtime.
+ *
+ * Non-instrumented IRQ entry functions receive struct pt_regs from assembly
+ * code. Those regs need to be unpoisoned, otherwise using them will result in
+ * false positives.
+ * Using kmsan_unpoison_memory() is not an option in entry code, because the
+ * return value of in_task() is inconsistent - as a result, certain calls to
+ * kmsan_unpoison_memory() are ignored. kmsan_unpoison_entry_regs() ensures that
+ * the registers are unpoisoned even if kmsan_in_runtime() is true in the early
+ * entry code.
+ */
+void kmsan_unpoison_entry_regs(const struct pt_regs *regs)
+{
+ unsigned long ua_flags;
+
+ if (!kmsan_enabled)
+ return;
+
+ ua_flags = user_access_save();
+ kmsan_internal_unpoison_memory((void *)regs, sizeof(*regs),
+ KMSAN_POISON_NOCHECK);
+ user_access_restore(ua_flags);
+}
+
+void kmsan_check_memory(const void *addr, size_t size)
+{
+ if (!kmsan_enabled)
+ return;
+ return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
+ REASON_ANY);
+}
+EXPORT_SYMBOL(kmsan_check_memory);