summaryrefslogtreecommitdiffstats
path: root/rust/kernel/types.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/types.rs')
-rw-r--r--rust/kernel/types.rs389
1 files changed, 389 insertions, 0 deletions
diff --git a/rust/kernel/types.rs b/rust/kernel/types.rs
new file mode 100644
index 000000000..fdb778e65
--- /dev/null
+++ b/rust/kernel/types.rs
@@ -0,0 +1,389 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Kernel types.
+
+use crate::init::{self, PinInit};
+use alloc::boxed::Box;
+use core::{
+ cell::UnsafeCell,
+ marker::{PhantomData, PhantomPinned},
+ mem::MaybeUninit,
+ ops::{Deref, DerefMut},
+ ptr::NonNull,
+};
+
+/// Used to transfer ownership to and from foreign (non-Rust) languages.
+///
+/// Ownership is transferred from Rust to a foreign language by calling [`Self::into_foreign`] and
+/// later may be transferred back to Rust by calling [`Self::from_foreign`].
+///
+/// This trait is meant to be used in cases when Rust objects are stored in C objects and
+/// eventually "freed" back to Rust.
+pub trait ForeignOwnable: Sized {
+ /// Type of values borrowed between calls to [`ForeignOwnable::into_foreign`] and
+ /// [`ForeignOwnable::from_foreign`].
+ type Borrowed<'a>;
+
+ /// Converts a Rust-owned object to a foreign-owned one.
+ ///
+ /// The foreign representation is a pointer to void.
+ fn into_foreign(self) -> *const core::ffi::c_void;
+
+ /// Borrows a foreign-owned object.
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for
+ /// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet.
+ unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a>;
+
+ /// Converts a foreign-owned object back to a Rust-owned one.
+ ///
+ /// # Safety
+ ///
+ /// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for
+ /// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet.
+ /// Additionally, all instances (if any) of values returned by [`ForeignOwnable::borrow`] for
+ /// this object must have been dropped.
+ unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self;
+}
+
+impl<T: 'static> ForeignOwnable for Box<T> {
+ type Borrowed<'a> = &'a T;
+
+ fn into_foreign(self) -> *const core::ffi::c_void {
+ Box::into_raw(self) as _
+ }
+
+ unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> &'a T {
+ // SAFETY: The safety requirements for this function ensure that the object is still alive,
+ // so it is safe to dereference the raw pointer.
+ // The safety requirements of `from_foreign` also ensure that the object remains alive for
+ // the lifetime of the returned value.
+ unsafe { &*ptr.cast() }
+ }
+
+ unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
+ // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
+ // call to `Self::into_foreign`.
+ unsafe { Box::from_raw(ptr as _) }
+ }
+}
+
+impl ForeignOwnable for () {
+ type Borrowed<'a> = ();
+
+ fn into_foreign(self) -> *const core::ffi::c_void {
+ core::ptr::NonNull::dangling().as_ptr()
+ }
+
+ unsafe fn borrow<'a>(_: *const core::ffi::c_void) -> Self::Borrowed<'a> {}
+
+ unsafe fn from_foreign(_: *const core::ffi::c_void) -> Self {}
+}
+
+/// Runs a cleanup function/closure when dropped.
+///
+/// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running.
+///
+/// # Examples
+///
+/// In the example below, we have multiple exit paths and we want to log regardless of which one is
+/// taken:
+/// ```
+/// # use kernel::types::ScopeGuard;
+/// fn example1(arg: bool) {
+/// let _log = ScopeGuard::new(|| pr_info!("example1 completed\n"));
+///
+/// if arg {
+/// return;
+/// }
+///
+/// pr_info!("Do something...\n");
+/// }
+///
+/// # example1(false);
+/// # example1(true);
+/// ```
+///
+/// In the example below, we want to log the same message on all early exits but a different one on
+/// the main exit path:
+/// ```
+/// # use kernel::types::ScopeGuard;
+/// fn example2(arg: bool) {
+/// let log = ScopeGuard::new(|| pr_info!("example2 returned early\n"));
+///
+/// if arg {
+/// return;
+/// }
+///
+/// // (Other early returns...)
+///
+/// log.dismiss();
+/// pr_info!("example2 no early return\n");
+/// }
+///
+/// # example2(false);
+/// # example2(true);
+/// ```
+///
+/// In the example below, we need a mutable object (the vector) to be accessible within the log
+/// function, so we wrap it in the [`ScopeGuard`]:
+/// ```
+/// # use kernel::types::ScopeGuard;
+/// fn example3(arg: bool) -> Result {
+/// let mut vec =
+/// ScopeGuard::new_with_data(Vec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
+///
+/// vec.try_push(10u8)?;
+/// if arg {
+/// return Ok(());
+/// }
+/// vec.try_push(20u8)?;
+/// Ok(())
+/// }
+///
+/// # assert_eq!(example3(false), Ok(()));
+/// # assert_eq!(example3(true), Ok(()));
+/// ```
+///
+/// # Invariants
+///
+/// The value stored in the struct is nearly always `Some(_)`, except between
+/// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value
+/// will have been returned to the caller. Since [`ScopeGuard::dismiss`] consumes the guard,
+/// callers won't be able to use it anymore.
+pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>);
+
+impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
+ /// Creates a new guarded object wrapping the given data and with the given cleanup function.
+ pub fn new_with_data(data: T, cleanup_func: F) -> Self {
+ // INVARIANT: The struct is being initialised with `Some(_)`.
+ Self(Some((data, cleanup_func)))
+ }
+
+ /// Prevents the cleanup function from running and returns the guarded data.
+ pub fn dismiss(mut self) -> T {
+ // INVARIANT: This is the exception case in the invariant; it is not visible to callers
+ // because this function consumes `self`.
+ self.0.take().unwrap().0
+ }
+}
+
+impl ScopeGuard<(), fn(())> {
+ /// Creates a new guarded object with the given cleanup function.
+ pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
+ ScopeGuard::new_with_data((), move |_| cleanup())
+ }
+}
+
+impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> {
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ // The type invariants guarantee that `unwrap` will succeed.
+ &self.0.as_ref().unwrap().0
+ }
+}
+
+impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> {
+ fn deref_mut(&mut self) -> &mut T {
+ // The type invariants guarantee that `unwrap` will succeed.
+ &mut self.0.as_mut().unwrap().0
+ }
+}
+
+impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
+ fn drop(&mut self) {
+ // Run the cleanup function if one is still present.
+ if let Some((data, cleanup)) = self.0.take() {
+ cleanup(data)
+ }
+ }
+}
+
+/// Stores an opaque value.
+///
+/// This is meant to be used with FFI objects that are never interpreted by Rust code.
+#[repr(transparent)]
+pub struct Opaque<T> {
+ value: UnsafeCell<MaybeUninit<T>>,
+ _pin: PhantomPinned,
+}
+
+impl<T> Opaque<T> {
+ /// Creates a new opaque value.
+ pub const fn new(value: T) -> Self {
+ Self {
+ value: UnsafeCell::new(MaybeUninit::new(value)),
+ _pin: PhantomPinned,
+ }
+ }
+
+ /// Creates an uninitialised value.
+ pub const fn uninit() -> Self {
+ Self {
+ value: UnsafeCell::new(MaybeUninit::uninit()),
+ _pin: PhantomPinned,
+ }
+ }
+
+ /// Creates a pin-initializer from the given initializer closure.
+ ///
+ /// The returned initializer calls the given closure with the pointer to the inner `T` of this
+ /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
+ ///
+ /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
+ /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
+ /// to verify at that point that the inner value is valid.
+ pub fn ffi_init(init_func: impl FnOnce(*mut T)) -> impl PinInit<Self> {
+ // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
+ // initialize the `T`.
+ unsafe {
+ init::pin_init_from_closure::<_, ::core::convert::Infallible>(move |slot| {
+ init_func(Self::raw_get(slot));
+ Ok(())
+ })
+ }
+ }
+
+ /// Returns a raw pointer to the opaque data.
+ pub fn get(&self) -> *mut T {
+ UnsafeCell::get(&self.value).cast::<T>()
+ }
+
+ /// Gets the value behind `this`.
+ ///
+ /// This function is useful to get access to the value without creating intermediate
+ /// references.
+ pub const fn raw_get(this: *const Self) -> *mut T {
+ UnsafeCell::raw_get(this.cast::<UnsafeCell<MaybeUninit<T>>>()).cast::<T>()
+ }
+}
+
+/// Types that are _always_ reference counted.
+///
+/// It allows such types to define their own custom ref increment and decrement functions.
+/// Additionally, it allows users to convert from a shared reference `&T` to an owned reference
+/// [`ARef<T>`].
+///
+/// This is usually implemented by wrappers to existing structures on the C side of the code. For
+/// Rust code, the recommendation is to use [`Arc`](crate::sync::Arc) to create reference-counted
+/// instances of a type.
+///
+/// # Safety
+///
+/// Implementers must ensure that increments to the reference count keep the object alive in memory
+/// at least until matching decrements are performed.
+///
+/// Implementers must also ensure that all instances are reference-counted. (Otherwise they
+/// won't be able to honour the requirement that [`AlwaysRefCounted::inc_ref`] keep the object
+/// alive.)
+pub unsafe trait AlwaysRefCounted {
+ /// Increments the reference count on the object.
+ fn inc_ref(&self);
+
+ /// Decrements the reference count on the object.
+ ///
+ /// Frees the object when the count reaches zero.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that there was a previous matching increment to the reference count,
+ /// and that the object is no longer used after its reference count is decremented (as it may
+ /// result in the object being freed), unless the caller owns another increment on the refcount
+ /// (e.g., it calls [`AlwaysRefCounted::inc_ref`] twice, then calls
+ /// [`AlwaysRefCounted::dec_ref`] once).
+ unsafe fn dec_ref(obj: NonNull<Self>);
+}
+
+/// An owned reference to an always-reference-counted object.
+///
+/// The object's reference count is automatically decremented when an instance of [`ARef`] is
+/// dropped. It is also automatically incremented when a new instance is created via
+/// [`ARef::clone`].
+///
+/// # Invariants
+///
+/// The pointer stored in `ptr` is non-null and valid for the lifetime of the [`ARef`] instance. In
+/// particular, the [`ARef`] instance owns an increment on the underlying object's reference count.
+pub struct ARef<T: AlwaysRefCounted> {
+ ptr: NonNull<T>,
+ _p: PhantomData<T>,
+}
+
+// SAFETY: It is safe to send `ARef<T>` to another thread when the underlying `T` is `Sync` because
+// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
+// `T` to be `Send` because any thread that has an `ARef<T>` may ultimately access `T` using a
+// mutable reference, for example, when the reference count reaches zero and `T` is dropped.
+unsafe impl<T: AlwaysRefCounted + Sync + Send> Send for ARef<T> {}
+
+// SAFETY: It is safe to send `&ARef<T>` to another thread when the underlying `T` is `Sync`
+// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
+// it needs `T` to be `Send` because any thread that has a `&ARef<T>` may clone it and get an
+// `ARef<T>` on that thread, so the thread may ultimately access `T` using a mutable reference, for
+// example, when the reference count reaches zero and `T` is dropped.
+unsafe impl<T: AlwaysRefCounted + Sync + Send> Sync for ARef<T> {}
+
+impl<T: AlwaysRefCounted> ARef<T> {
+ /// Creates a new instance of [`ARef`].
+ ///
+ /// It takes over an increment of the reference count on the underlying object.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that the reference count was incremented at least once, and that they
+ /// are properly relinquishing one increment. That is, if there is only one increment, callers
+ /// must not use the underlying object anymore -- it is only safe to do so via the newly
+ /// created [`ARef`].
+ pub unsafe fn from_raw(ptr: NonNull<T>) -> Self {
+ // INVARIANT: The safety requirements guarantee that the new instance now owns the
+ // increment on the refcount.
+ Self {
+ ptr,
+ _p: PhantomData,
+ }
+ }
+}
+
+impl<T: AlwaysRefCounted> Clone for ARef<T> {
+ fn clone(&self) -> Self {
+ self.inc_ref();
+ // SAFETY: We just incremented the refcount above.
+ unsafe { Self::from_raw(self.ptr) }
+ }
+}
+
+impl<T: AlwaysRefCounted> Deref for ARef<T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: The type invariants guarantee that the object is valid.
+ unsafe { self.ptr.as_ref() }
+ }
+}
+
+impl<T: AlwaysRefCounted> From<&T> for ARef<T> {
+ fn from(b: &T) -> Self {
+ b.inc_ref();
+ // SAFETY: We just incremented the refcount above.
+ unsafe { Self::from_raw(NonNull::from(b)) }
+ }
+}
+
+impl<T: AlwaysRefCounted> Drop for ARef<T> {
+ fn drop(&mut self) {
+ // SAFETY: The type invariants guarantee that the `ARef` owns the reference we're about to
+ // decrement.
+ unsafe { T::dec_ref(self.ptr) };
+ }
+}
+
+/// A sum type that always holds either a value of type `L` or `R`.
+pub enum Either<L, R> {
+ /// Constructs an instance of [`Either`] containing a value of type `L`.
+ Left(L),
+
+ /// Constructs an instance of [`Either`] containing a value of type `R`.
+ Right(R),
+}