summaryrefslogtreecommitdiffstats
path: root/tools/memory-model/Documentation/ordering.txt
diff options
context:
space:
mode:
Diffstat (limited to 'tools/memory-model/Documentation/ordering.txt')
-rw-r--r--tools/memory-model/Documentation/ordering.txt556
1 files changed, 556 insertions, 0 deletions
diff --git a/tools/memory-model/Documentation/ordering.txt b/tools/memory-model/Documentation/ordering.txt
new file mode 100644
index 0000000000..9b0949d3f5
--- /dev/null
+++ b/tools/memory-model/Documentation/ordering.txt
@@ -0,0 +1,556 @@
+This document gives an overview of the categories of memory-ordering
+operations provided by the Linux-kernel memory model (LKMM).
+
+
+Categories of Ordering
+======================
+
+This section lists LKMM's three top-level categories of memory-ordering
+operations in decreasing order of strength:
+
+1. Barriers (also known as "fences"). A barrier orders some or
+ all of the CPU's prior operations against some or all of its
+ subsequent operations.
+
+2. Ordered memory accesses. These operations order themselves
+ against some or all of the CPU's prior accesses or some or all
+ of the CPU's subsequent accesses, depending on the subcategory
+ of the operation.
+
+3. Unordered accesses, as the name indicates, have no ordering
+ properties except to the extent that they interact with an
+ operation in the previous categories. This being the real world,
+ some of these "unordered" operations provide limited ordering
+ in some special situations.
+
+Each of the above categories is described in more detail by one of the
+following sections.
+
+
+Barriers
+========
+
+Each of the following categories of barriers is described in its own
+subsection below:
+
+a. Full memory barriers.
+
+b. Read-modify-write (RMW) ordering augmentation barriers.
+
+c. Write memory barrier.
+
+d. Read memory barrier.
+
+e. Compiler barrier.
+
+Note well that many of these primitives generate absolutely no code
+in kernels built with CONFIG_SMP=n. Therefore, if you are writing
+a device driver, which must correctly order accesses to a physical
+device even in kernels built with CONFIG_SMP=n, please use the
+ordering primitives provided for that purpose. For example, instead of
+smp_mb(), use mb(). See the "Linux Kernel Device Drivers" book or the
+https://lwn.net/Articles/698014/ article for more information.
+
+
+Full Memory Barriers
+--------------------
+
+The Linux-kernel primitives that provide full ordering include:
+
+o The smp_mb() full memory barrier.
+
+o Value-returning RMW atomic operations whose names do not end in
+ _acquire, _release, or _relaxed.
+
+o RCU's grace-period primitives.
+
+First, the smp_mb() full memory barrier orders all of the CPU's prior
+accesses against all subsequent accesses from the viewpoint of all CPUs.
+In other words, all CPUs will agree that any earlier action taken
+by that CPU happened before any later action taken by that same CPU.
+For example, consider the following:
+
+ WRITE_ONCE(x, 1);
+ smp_mb(); // Order store to x before load from y.
+ r1 = READ_ONCE(y);
+
+All CPUs will agree that the store to "x" happened before the load
+from "y", as indicated by the comment. And yes, please comment your
+memory-ordering primitives. It is surprisingly hard to remember their
+purpose after even a few months.
+
+Second, some RMW atomic operations provide full ordering. These
+operations include value-returning RMW atomic operations (that is, those
+with non-void return types) whose names do not end in _acquire, _release,
+or _relaxed. Examples include atomic_add_return(), atomic_dec_and_test(),
+cmpxchg(), and xchg(). Note that conditional RMW atomic operations such
+as cmpxchg() are only guaranteed to provide ordering when they succeed.
+When RMW atomic operations provide full ordering, they partition the
+CPU's accesses into three groups:
+
+1. All code that executed prior to the RMW atomic operation.
+
+2. The RMW atomic operation itself.
+
+3. All code that executed after the RMW atomic operation.
+
+All CPUs will agree that any operation in a given partition happened
+before any operation in a higher-numbered partition.
+
+In contrast, non-value-returning RMW atomic operations (that is, those
+with void return types) do not guarantee any ordering whatsoever. Nor do
+value-returning RMW atomic operations whose names end in _relaxed.
+Examples of the former include atomic_inc() and atomic_dec(),
+while examples of the latter include atomic_cmpxchg_relaxed() and
+atomic_xchg_relaxed(). Similarly, value-returning non-RMW atomic
+operations such as atomic_read() do not guarantee full ordering, and
+are covered in the later section on unordered operations.
+
+Value-returning RMW atomic operations whose names end in _acquire or
+_release provide limited ordering, and will be described later in this
+document.
+
+Finally, RCU's grace-period primitives provide full ordering. These
+primitives include synchronize_rcu(), synchronize_rcu_expedited(),
+synchronize_srcu() and so on. However, these primitives have orders
+of magnitude greater overhead than smp_mb(), atomic_xchg(), and so on.
+Furthermore, RCU's grace-period primitives can only be invoked in
+sleepable contexts. Therefore, RCU's grace-period primitives are
+typically instead used to provide ordering against RCU read-side critical
+sections, as documented in their comment headers. But of course if you
+need a synchronize_rcu() to interact with readers, it costs you nothing
+to also rely on its additional full-memory-barrier semantics. Just please
+carefully comment this, otherwise your future self will hate you.
+
+
+RMW Ordering Augmentation Barriers
+----------------------------------
+
+As noted in the previous section, non-value-returning RMW operations
+such as atomic_inc() and atomic_dec() guarantee no ordering whatsoever.
+Nevertheless, a number of popular CPU families, including x86, provide
+full ordering for these primitives. One way to obtain full ordering on
+all architectures is to add a call to smp_mb():
+
+ WRITE_ONCE(x, 1);
+ atomic_inc(&my_counter);
+ smp_mb(); // Inefficient on x86!!!
+ r1 = READ_ONCE(y);
+
+This works, but the added smp_mb() adds needless overhead for
+x86, on which atomic_inc() provides full ordering all by itself.
+The smp_mb__after_atomic() primitive can be used instead:
+
+ WRITE_ONCE(x, 1);
+ atomic_inc(&my_counter);
+ smp_mb__after_atomic(); // Order store to x before load from y.
+ r1 = READ_ONCE(y);
+
+The smp_mb__after_atomic() primitive emits code only on CPUs whose
+atomic_inc() implementations do not guarantee full ordering, thus
+incurring no unnecessary overhead on x86. There are a number of
+variations on the smp_mb__*() theme:
+
+o smp_mb__before_atomic(), which provides full ordering prior
+ to an unordered RMW atomic operation.
+
+o smp_mb__after_atomic(), which, as shown above, provides full
+ ordering subsequent to an unordered RMW atomic operation.
+
+o smp_mb__after_spinlock(), which provides full ordering subsequent
+ to a successful spinlock acquisition. Note that spin_lock() is
+ always successful but spin_trylock() might not be.
+
+o smp_mb__after_srcu_read_unlock(), which provides full ordering
+ subsequent to an srcu_read_unlock().
+
+It is bad practice to place code between the smp__*() primitive and the
+operation whose ordering that it is augmenting. The reason is that the
+ordering of this intervening code will differ from one CPU architecture
+to another.
+
+
+Write Memory Barrier
+--------------------
+
+The Linux kernel's write memory barrier is smp_wmb(). If a CPU executes
+the following code:
+
+ WRITE_ONCE(x, 1);
+ smp_wmb();
+ WRITE_ONCE(y, 1);
+
+Then any given CPU will see the write to "x" has having happened before
+the write to "y". However, you are usually better off using a release
+store, as described in the "Release Operations" section below.
+
+Note that smp_wmb() might fail to provide ordering for unmarked C-language
+stores because profile-driven optimization could determine that the
+value being overwritten is almost always equal to the new value. Such a
+compiler might then reasonably decide to transform "x = 1" and "y = 1"
+as follows:
+
+ if (x != 1)
+ x = 1;
+ smp_wmb(); // BUG: does not order the reads!!!
+ if (y != 1)
+ y = 1;
+
+Therefore, if you need to use smp_wmb() with unmarked C-language writes,
+you will need to make sure that none of the compilers used to build
+the Linux kernel carry out this sort of transformation, both now and in
+the future.
+
+
+Read Memory Barrier
+-------------------
+
+The Linux kernel's read memory barrier is smp_rmb(). If a CPU executes
+the following code:
+
+ r0 = READ_ONCE(y);
+ smp_rmb();
+ r1 = READ_ONCE(x);
+
+Then any given CPU will see the read from "y" as having preceded the read from
+"x". However, you are usually better off using an acquire load, as described
+in the "Acquire Operations" section below.
+
+Compiler Barrier
+----------------
+
+The Linux kernel's compiler barrier is barrier(). This primitive
+prohibits compiler code-motion optimizations that might move memory
+references across the point in the code containing the barrier(), but
+does not constrain hardware memory ordering. For example, this can be
+used to prevent to compiler from moving code across an infinite loop:
+
+ WRITE_ONCE(x, 1);
+ while (dontstop)
+ barrier();
+ r1 = READ_ONCE(y);
+
+Without the barrier(), the compiler would be within its rights to move the
+WRITE_ONCE() to follow the loop. This code motion could be problematic
+in the case where an interrupt handler terminates the loop. Another way
+to handle this is to use READ_ONCE() for the load of "dontstop".
+
+Note that the barriers discussed previously use barrier() or its low-level
+equivalent in their implementations.
+
+
+Ordered Memory Accesses
+=======================
+
+The Linux kernel provides a wide variety of ordered memory accesses:
+
+a. Release operations.
+
+b. Acquire operations.
+
+c. RCU read-side ordering.
+
+d. Control dependencies.
+
+Each of the above categories has its own section below.
+
+
+Release Operations
+------------------
+
+Release operations include smp_store_release(), atomic_set_release(),
+rcu_assign_pointer(), and value-returning RMW operations whose names
+end in _release. These operations order their own store against all
+of the CPU's prior memory accesses. Release operations often provide
+improved readability and performance compared to explicit barriers.
+For example, use of smp_store_release() saves a line compared to the
+smp_wmb() example above:
+
+ WRITE_ONCE(x, 1);
+ smp_store_release(&y, 1);
+
+More important, smp_store_release() makes it easier to connect up the
+different pieces of the concurrent algorithm. The variable stored to
+by the smp_store_release(), in this case "y", will normally be used in
+an acquire operation in other parts of the concurrent algorithm.
+
+To see the performance advantages, suppose that the above example read
+from "x" instead of writing to it. Then an smp_wmb() could not guarantee
+ordering, and an smp_mb() would be needed instead:
+
+ r1 = READ_ONCE(x);
+ smp_mb();
+ WRITE_ONCE(y, 1);
+
+But smp_mb() often incurs much higher overhead than does
+smp_store_release(), which still provides the needed ordering of "x"
+against "y". On x86, the version using smp_store_release() might compile
+to a simple load instruction followed by a simple store instruction.
+In contrast, the smp_mb() compiles to an expensive instruction that
+provides the needed ordering.
+
+There is a wide variety of release operations:
+
+o Store operations, including not only the aforementioned
+ smp_store_release(), but also atomic_set_release(), and
+ atomic_long_set_release().
+
+o RCU's rcu_assign_pointer() operation. This is the same as
+ smp_store_release() except that: (1) It takes the pointer to
+ be assigned to instead of a pointer to that pointer, (2) It
+ is intended to be used in conjunction with rcu_dereference()
+ and similar rather than smp_load_acquire(), and (3) It checks
+ for an RCU-protected pointer in "sparse" runs.
+
+o Value-returning RMW operations whose names end in _release,
+ such as atomic_fetch_add_release() and cmpxchg_release().
+ Note that release ordering is guaranteed only against the
+ memory-store portion of the RMW operation, and not against the
+ memory-load portion. Note also that conditional operations such
+ as cmpxchg_release() are only guaranteed to provide ordering
+ when they succeed.
+
+As mentioned earlier, release operations are often paired with acquire
+operations, which are the subject of the next section.
+
+
+Acquire Operations
+------------------
+
+Acquire operations include smp_load_acquire(), atomic_read_acquire(),
+and value-returning RMW operations whose names end in _acquire. These
+operations order their own load against all of the CPU's subsequent
+memory accesses. Acquire operations often provide improved performance
+and readability compared to explicit barriers. For example, use of
+smp_load_acquire() saves a line compared to the smp_rmb() example above:
+
+ r0 = smp_load_acquire(&y);
+ r1 = READ_ONCE(x);
+
+As with smp_store_release(), this also makes it easier to connect
+the different pieces of the concurrent algorithm by looking for the
+smp_store_release() that stores to "y". In addition, smp_load_acquire()
+improves upon smp_rmb() by ordering against subsequent stores as well
+as against subsequent loads.
+
+There are a couple of categories of acquire operations:
+
+o Load operations, including not only the aforementioned
+ smp_load_acquire(), but also atomic_read_acquire(), and
+ atomic64_read_acquire().
+
+o Value-returning RMW operations whose names end in _acquire,
+ such as atomic_xchg_acquire() and atomic_cmpxchg_acquire().
+ Note that acquire ordering is guaranteed only against the
+ memory-load portion of the RMW operation, and not against the
+ memory-store portion. Note also that conditional operations
+ such as atomic_cmpxchg_acquire() are only guaranteed to provide
+ ordering when they succeed.
+
+Symmetry being what it is, acquire operations are often paired with the
+release operations covered earlier. For example, consider the following
+example, where task0() and task1() execute concurrently:
+
+ void task0(void)
+ {
+ WRITE_ONCE(x, 1);
+ smp_store_release(&y, 1);
+ }
+
+ void task1(void)
+ {
+ r0 = smp_load_acquire(&y);
+ r1 = READ_ONCE(x);
+ }
+
+If "x" and "y" are both initially zero, then either r0's final value
+will be zero or r1's final value will be one, thus providing the required
+ordering.
+
+
+RCU Read-Side Ordering
+----------------------
+
+This category includes read-side markers such as rcu_read_lock()
+and rcu_read_unlock() as well as pointer-traversal primitives such as
+rcu_dereference() and srcu_dereference().
+
+Compared to locking primitives and RMW atomic operations, markers
+for RCU read-side critical sections incur very low overhead because
+they interact only with the corresponding grace-period primitives.
+For example, the rcu_read_lock() and rcu_read_unlock() markers interact
+with synchronize_rcu(), synchronize_rcu_expedited(), and call_rcu().
+The way this works is that if a given call to synchronize_rcu() cannot
+prove that it started before a given call to rcu_read_lock(), then
+that synchronize_rcu() must block until the matching rcu_read_unlock()
+is reached. For more information, please see the synchronize_rcu()
+docbook header comment and the material in Documentation/RCU.
+
+RCU's pointer-traversal primitives, including rcu_dereference() and
+srcu_dereference(), order their load (which must be a pointer) against any
+of the CPU's subsequent memory accesses whose address has been calculated
+from the value loaded. There is said to be an *address dependency*
+from the value returned by the rcu_dereference() or srcu_dereference()
+to that subsequent memory access.
+
+A call to rcu_dereference() for a given RCU-protected pointer is
+usually paired with a call to a call to rcu_assign_pointer() for that
+same pointer in much the same way that a call to smp_load_acquire() is
+paired with a call to smp_store_release(). Calls to rcu_dereference()
+and rcu_assign_pointer are often buried in other APIs, for example,
+the RCU list API members defined in include/linux/rculist.h. For more
+information, please see the docbook headers in that file, the most
+recent LWN article on the RCU API (https://lwn.net/Articles/777036/),
+and of course the material in Documentation/RCU.
+
+If the pointer value is manipulated between the rcu_dereference()
+that returned it and a later dereference(), please read
+Documentation/RCU/rcu_dereference.rst. It can also be quite helpful to
+review uses in the Linux kernel.
+
+
+Control Dependencies
+--------------------
+
+A control dependency extends from a marked load (READ_ONCE() or stronger)
+through an "if" condition to a marked store (WRITE_ONCE() or stronger)
+that is executed only by one of the legs of that "if" statement.
+Control dependencies are so named because they are mediated by
+control-flow instructions such as comparisons and conditional branches.
+
+In short, you can use a control dependency to enforce ordering between
+an READ_ONCE() and a WRITE_ONCE() when there is an "if" condition
+between them. The canonical example is as follows:
+
+ q = READ_ONCE(a);
+ if (q)
+ WRITE_ONCE(b, 1);
+
+In this case, all CPUs would see the read from "a" as happening before
+the write to "b".
+
+However, control dependencies are easily destroyed by compiler
+optimizations, so any use of control dependencies must take into account
+all of the compilers used to build the Linux kernel. Please see the
+"control-dependencies.txt" file for more information.
+
+
+Unordered Accesses
+==================
+
+Each of these two categories of unordered accesses has a section below:
+
+a. Unordered marked operations.
+
+b. Unmarked C-language accesses.
+
+
+Unordered Marked Operations
+---------------------------
+
+Unordered operations to different variables are just that, unordered.
+However, if a group of CPUs apply these operations to a single variable,
+all the CPUs will agree on the operation order. Of course, the ordering
+of unordered marked accesses can also be constrained using the mechanisms
+described earlier in this document.
+
+These operations come in three categories:
+
+o Marked writes, such as WRITE_ONCE() and atomic_set(). These
+ primitives required the compiler to emit the corresponding store
+ instructions in the expected execution order, thus suppressing
+ a number of destructive optimizations. However, they provide no
+ hardware ordering guarantees, and in fact many CPUs will happily
+ reorder marked writes with each other or with other unordered
+ operations, unless these operations are to the same variable.
+
+o Marked reads, such as READ_ONCE() and atomic_read(). These
+ primitives required the compiler to emit the corresponding load
+ instructions in the expected execution order, thus suppressing
+ a number of destructive optimizations. However, they provide no
+ hardware ordering guarantees, and in fact many CPUs will happily
+ reorder marked reads with each other or with other unordered
+ operations, unless these operations are to the same variable.
+
+o Unordered RMW atomic operations. These are non-value-returning
+ RMW atomic operations whose names do not end in _acquire or
+ _release, and also value-returning RMW operations whose names
+ end in _relaxed. Examples include atomic_add(), atomic_or(),
+ and atomic64_fetch_xor_relaxed(). These operations do carry
+ out the specified RMW operation atomically, for example, five
+ concurrent atomic_inc() operations applied to a given variable
+ will reliably increase the value of that variable by five.
+ However, many CPUs will happily reorder these operations with
+ each other or with other unordered operations.
+
+ This category of operations can be efficiently ordered using
+ smp_mb__before_atomic() and smp_mb__after_atomic(), as was
+ discussed in the "RMW Ordering Augmentation Barriers" section.
+
+In short, these operations can be freely reordered unless they are all
+operating on a single variable or unless they are constrained by one of
+the operations called out earlier in this document.
+
+
+Unmarked C-Language Accesses
+----------------------------
+
+Unmarked C-language accesses are normal variable accesses to normal
+variables, that is, to variables that are not "volatile" and are not
+C11 atomic variables. These operations provide no ordering guarantees,
+and further do not guarantee "atomic" access. For example, the compiler
+might (and sometimes does) split a plain C-language store into multiple
+smaller stores. A load from that same variable running on some other
+CPU while such a store is executing might see a value that is a mashup
+of the old value and the new value.
+
+Unmarked C-language accesses are unordered, and are also subject to
+any number of compiler optimizations, many of which can break your
+concurrent code. It is possible to used unmarked C-language accesses for
+shared variables that are subject to concurrent access, but great care
+is required on an ongoing basis. The compiler-constraining barrier()
+primitive can be helpful, as can the various ordering primitives discussed
+in this document. It nevertheless bears repeating that use of unmarked
+C-language accesses requires careful attention to not just your code,
+but to all the compilers that might be used to build it. Such compilers
+might replace a series of loads with a single load, and might replace
+a series of stores with a single store. Some compilers will even split
+a single store into multiple smaller stores.
+
+But there are some ways of using unmarked C-language accesses for shared
+variables without such worries:
+
+o Guard all accesses to a given variable by a particular lock,
+ so that there are never concurrent conflicting accesses to
+ that variable. (There are "conflicting accesses" when
+ (1) at least one of the concurrent accesses to a variable is an
+ unmarked C-language access and (2) when at least one of those
+ accesses is a write, whether marked or not.)
+
+o As above, but using other synchronization primitives such
+ as reader-writer locks or sequence locks.
+
+o Use locking or other means to ensure that all concurrent accesses
+ to a given variable are reads.
+
+o Restrict use of a given variable to statistics or heuristics
+ where the occasional bogus value can be tolerated.
+
+o Declare the accessed variables as C11 atomics.
+ https://lwn.net/Articles/691128/
+
+o Declare the accessed variables as "volatile".
+
+If you need to live more dangerously, please do take the time to
+understand the compilers. One place to start is these two LWN
+articles:
+
+Who's afraid of a big bad optimizing compiler?
+ https://lwn.net/Articles/793253
+Calibrating your fear of big bad optimizing compilers
+ https://lwn.net/Articles/799218
+
+Used properly, unmarked C-language accesses can reduce overhead on
+fastpaths. However, the price is great care and continual attention
+to your compiler as new versions come out and as new optimizations
+are enabled.