1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Based on arch/arm/include/asm/io.h
*
* Copyright (C) 1996-2000 Russell King
* Copyright (C) 2012 ARM Ltd.
*/
#ifndef __ASM_IO_H
#define __ASM_IO_H
#include <linux/types.h>
#include <linux/pgtable.h>
#include <asm/byteorder.h>
#include <asm/barrier.h>
#include <asm/memory.h>
#include <asm/early_ioremap.h>
#include <asm/alternative.h>
#include <asm/cpufeature.h>
/*
* Generic IO read/write. These perform native-endian accesses.
*/
#define __raw_writeb __raw_writeb
static __always_inline void __raw_writeb(u8 val, volatile void __iomem *addr)
{
volatile u8 __iomem *ptr = addr;
asm volatile("strb %w0, %1" : : "rZ" (val), "Qo" (*ptr));
}
#define __raw_writew __raw_writew
static __always_inline void __raw_writew(u16 val, volatile void __iomem *addr)
{
volatile u16 __iomem *ptr = addr;
asm volatile("strh %w0, %1" : : "rZ" (val), "Qo" (*ptr));
}
#define __raw_writel __raw_writel
static __always_inline void __raw_writel(u32 val, volatile void __iomem *addr)
{
volatile u32 __iomem *ptr = addr;
asm volatile("str %w0, %1" : : "rZ" (val), "Qo" (*ptr));
}
#define __raw_writeq __raw_writeq
static __always_inline void __raw_writeq(u64 val, volatile void __iomem *addr)
{
volatile u64 __iomem *ptr = addr;
asm volatile("str %x0, %1" : : "rZ" (val), "Qo" (*ptr));
}
#define __raw_readb __raw_readb
static __always_inline u8 __raw_readb(const volatile void __iomem *addr)
{
u8 val;
asm volatile(ALTERNATIVE("ldrb %w0, [%1]",
"ldarb %w0, [%1]",
ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE)
: "=r" (val) : "r" (addr));
return val;
}
#define __raw_readw __raw_readw
static __always_inline u16 __raw_readw(const volatile void __iomem *addr)
{
u16 val;
asm volatile(ALTERNATIVE("ldrh %w0, [%1]",
"ldarh %w0, [%1]",
ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE)
: "=r" (val) : "r" (addr));
return val;
}
#define __raw_readl __raw_readl
static __always_inline u32 __raw_readl(const volatile void __iomem *addr)
{
u32 val;
asm volatile(ALTERNATIVE("ldr %w0, [%1]",
"ldar %w0, [%1]",
ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE)
: "=r" (val) : "r" (addr));
return val;
}
#define __raw_readq __raw_readq
static __always_inline u64 __raw_readq(const volatile void __iomem *addr)
{
u64 val;
asm volatile(ALTERNATIVE("ldr %0, [%1]",
"ldar %0, [%1]",
ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE)
: "=r" (val) : "r" (addr));
return val;
}
/* IO barriers */
#define __io_ar(v) \
({ \
unsigned long tmp; \
\
dma_rmb(); \
\
/* \
* Create a dummy control dependency from the IO read to any \
* later instructions. This ensures that a subsequent call to \
* udelay() will be ordered due to the ISB in get_cycles(). \
*/ \
asm volatile("eor %0, %1, %1\n" \
"cbnz %0, ." \
: "=r" (tmp) : "r" ((unsigned long)(v)) \
: "memory"); \
})
#define __io_bw() dma_wmb()
#define __io_br(v)
#define __io_aw(v)
/* arm64-specific, don't use in portable drivers */
#define __iormb(v) __io_ar(v)
#define __iowmb() __io_bw()
#define __iomb() dma_mb()
/*
* I/O port access primitives.
*/
#define arch_has_dev_port() (1)
#define IO_SPACE_LIMIT (PCI_IO_SIZE - 1)
#define PCI_IOBASE ((void __iomem *)PCI_IO_START)
/*
* String version of I/O memory access operations.
*/
extern void __memcpy_fromio(void *, const volatile void __iomem *, size_t);
extern void __memcpy_toio(volatile void __iomem *, const void *, size_t);
extern void __memset_io(volatile void __iomem *, int, size_t);
#define memset_io(c,v,l) __memset_io((c),(v),(l))
#define memcpy_fromio(a,c,l) __memcpy_fromio((a),(c),(l))
#define memcpy_toio(c,a,l) __memcpy_toio((c),(a),(l))
/*
* The ARM64 iowrite implementation is intended to support drivers that want to
* use write combining. For instance PCI drivers using write combining with a 64
* byte __iowrite64_copy() expect to get a 64 byte MemWr TLP on the PCIe bus.
*
* Newer ARM core have sensitive write combining buffers, it is important that
* the stores be contiguous blocks of store instructions. Normal memcpy
* approaches have a very low chance to generate write combining.
*
* Since this is the only API on ARM64 that should be used with write combining
* it also integrates the DGH hint which is supposed to lower the latency to
* emit the large TLP from the CPU.
*/
static __always_inline void
__const_memcpy_toio_aligned32(volatile u32 __iomem *to, const u32 *from,
size_t count)
{
switch (count) {
case 8:
asm volatile("str %w0, [%8, #4 * 0]\n"
"str %w1, [%8, #4 * 1]\n"
"str %w2, [%8, #4 * 2]\n"
"str %w3, [%8, #4 * 3]\n"
"str %w4, [%8, #4 * 4]\n"
"str %w5, [%8, #4 * 5]\n"
"str %w6, [%8, #4 * 6]\n"
"str %w7, [%8, #4 * 7]\n"
:
: "rZ"(from[0]), "rZ"(from[1]), "rZ"(from[2]),
"rZ"(from[3]), "rZ"(from[4]), "rZ"(from[5]),
"rZ"(from[6]), "rZ"(from[7]), "r"(to));
break;
case 4:
asm volatile("str %w0, [%4, #4 * 0]\n"
"str %w1, [%4, #4 * 1]\n"
"str %w2, [%4, #4 * 2]\n"
"str %w3, [%4, #4 * 3]\n"
:
: "rZ"(from[0]), "rZ"(from[1]), "rZ"(from[2]),
"rZ"(from[3]), "r"(to));
break;
case 2:
asm volatile("str %w0, [%2, #4 * 0]\n"
"str %w1, [%2, #4 * 1]\n"
:
: "rZ"(from[0]), "rZ"(from[1]), "r"(to));
break;
case 1:
__raw_writel(*from, to);
break;
default:
BUILD_BUG();
}
}
void __iowrite32_copy_full(void __iomem *to, const void *from, size_t count);
static __always_inline void
__iowrite32_copy(void __iomem *to, const void *from, size_t count)
{
if (__builtin_constant_p(count) &&
(count == 8 || count == 4 || count == 2 || count == 1)) {
__const_memcpy_toio_aligned32(to, from, count);
dgh();
} else {
__iowrite32_copy_full(to, from, count);
}
}
#define __iowrite32_copy __iowrite32_copy
static __always_inline void
__const_memcpy_toio_aligned64(volatile u64 __iomem *to, const u64 *from,
size_t count)
{
switch (count) {
case 8:
asm volatile("str %x0, [%8, #8 * 0]\n"
"str %x1, [%8, #8 * 1]\n"
"str %x2, [%8, #8 * 2]\n"
"str %x3, [%8, #8 * 3]\n"
"str %x4, [%8, #8 * 4]\n"
"str %x5, [%8, #8 * 5]\n"
"str %x6, [%8, #8 * 6]\n"
"str %x7, [%8, #8 * 7]\n"
:
: "rZ"(from[0]), "rZ"(from[1]), "rZ"(from[2]),
"rZ"(from[3]), "rZ"(from[4]), "rZ"(from[5]),
"rZ"(from[6]), "rZ"(from[7]), "r"(to));
break;
case 4:
asm volatile("str %x0, [%4, #8 * 0]\n"
"str %x1, [%4, #8 * 1]\n"
"str %x2, [%4, #8 * 2]\n"
"str %x3, [%4, #8 * 3]\n"
:
: "rZ"(from[0]), "rZ"(from[1]), "rZ"(from[2]),
"rZ"(from[3]), "r"(to));
break;
case 2:
asm volatile("str %x0, [%2, #8 * 0]\n"
"str %x1, [%2, #8 * 1]\n"
:
: "rZ"(from[0]), "rZ"(from[1]), "r"(to));
break;
case 1:
__raw_writeq(*from, to);
break;
default:
BUILD_BUG();
}
}
void __iowrite64_copy_full(void __iomem *to, const void *from, size_t count);
static __always_inline void
__iowrite64_copy(void __iomem *to, const void *from, size_t count)
{
if (__builtin_constant_p(count) &&
(count == 8 || count == 4 || count == 2 || count == 1)) {
__const_memcpy_toio_aligned64(to, from, count);
dgh();
} else {
__iowrite64_copy_full(to, from, count);
}
}
#define __iowrite64_copy __iowrite64_copy
/*
* I/O memory mapping functions.
*/
#define ioremap_prot ioremap_prot
#define _PAGE_IOREMAP PROT_DEVICE_nGnRE
#define ioremap_wc(addr, size) \
ioremap_prot((addr), (size), PROT_NORMAL_NC)
#define ioremap_np(addr, size) \
ioremap_prot((addr), (size), PROT_DEVICE_nGnRnE)
/*
* io{read,write}{16,32,64}be() macros
*/
#define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(__v); __v; })
#define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(__v); __v; })
#define ioread64be(p) ({ __u64 __v = be64_to_cpu((__force __be64)__raw_readq(p)); __iormb(__v); __v; })
#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
#define iowrite64be(v,p) ({ __iowmb(); __raw_writeq((__force __u64)cpu_to_be64(v), p); })
#include <asm-generic/io.h>
#define ioremap_cache ioremap_cache
static inline void __iomem *ioremap_cache(phys_addr_t addr, size_t size)
{
if (pfn_is_map_memory(__phys_to_pfn(addr)))
return (void __iomem *)__phys_to_virt(addr);
return ioremap_prot(addr, size, PROT_NORMAL);
}
/*
* More restrictive address range checking than the default implementation
* (PHYS_OFFSET and PHYS_MASK taken into account).
*/
#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
extern bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
unsigned long flags);
#define arch_memremap_can_ram_remap arch_memremap_can_ram_remap
#endif /* __ASM_IO_H */
|