summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm/hyp/vhe/tlb.c
blob: 5fa0359f3a8709c9ee4f9128a9b66439ad0476c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

#include <linux/irqflags.h>

#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/tlbflush.h>

struct tlb_inv_context {
	struct kvm_s2_mmu	*mmu;
	unsigned long		flags;
	u64			tcr;
	u64			sctlr;
};

static void enter_vmid_context(struct kvm_s2_mmu *mmu,
			       struct tlb_inv_context *cxt)
{
	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
	u64 val;

	local_irq_save(cxt->flags);

	if (vcpu && mmu != vcpu->arch.hw_mmu)
		cxt->mmu = vcpu->arch.hw_mmu;
	else
		cxt->mmu = NULL;

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
		/*
		 * For CPUs that are affected by ARM errata 1165522 or 1530923,
		 * we cannot trust stage-1 to be in a correct state at that
		 * point. Since we do not want to force a full load of the
		 * vcpu state, we prevent the EL1 page-table walker to
		 * allocate new TLBs. This is done by setting the EPD bits
		 * in the TCR_EL1 register. We also need to prevent it to
		 * allocate IPA->PA walks, so we enable the S1 MMU...
		 */
		val = cxt->tcr = read_sysreg_el1(SYS_TCR);
		val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
		write_sysreg_el1(val, SYS_TCR);
		val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR);
		val |= SCTLR_ELx_M;
		write_sysreg_el1(val, SYS_SCTLR);
	}

	/*
	 * With VHE enabled, we have HCR_EL2.{E2H,TGE} = {1,1}, and
	 * most TLB operations target EL2/EL0. In order to affect the
	 * guest TLBs (EL1/EL0), we need to change one of these two
	 * bits. Changing E2H is impossible (goodbye TTBR1_EL2), so
	 * let's flip TGE before executing the TLB operation.
	 *
	 * ARM erratum 1165522 requires some special handling (again),
	 * as we need to make sure both stages of translation are in
	 * place before clearing TGE. __load_stage2() already
	 * has an ISB in order to deal with this.
	 */
	__load_stage2(mmu, mmu->arch);
	val = read_sysreg(hcr_el2);
	val &= ~HCR_TGE;
	write_sysreg(val, hcr_el2);
	isb();
}

static void exit_vmid_context(struct tlb_inv_context *cxt)
{
	/*
	 * We're done with the TLB operation, let's restore the host's
	 * view of HCR_EL2.
	 */
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
	isb();

	/* ... and the stage-2 MMU context that we switched away from */
	if (cxt->mmu)
		__load_stage2(cxt->mmu, cxt->mmu->arch);

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
		/* Restore the registers to what they were */
		write_sysreg_el1(cxt->tcr, SYS_TCR);
		write_sysreg_el1(cxt->sctlr, SYS_SCTLR);
	}

	local_irq_restore(cxt->flags);
}

void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
			      phys_addr_t ipa, int level)
{
	struct tlb_inv_context cxt;

	dsb(ishst);

	/* Switch to requested VMID */
	enter_vmid_context(mmu, &cxt);

	/*
	 * We could do so much better if we had the VA as well.
	 * Instead, we invalidate Stage-2 for this IPA, and the
	 * whole of Stage-1. Weep...
	 */
	ipa >>= 12;
	__tlbi_level(ipas2e1is, ipa, level);

	/*
	 * We have to ensure completion of the invalidation at Stage-2,
	 * since a table walk on another CPU could refill a TLB with a
	 * complete (S1 + S2) walk based on the old Stage-2 mapping if
	 * the Stage-1 invalidation happened first.
	 */
	dsb(ish);
	__tlbi(vmalle1is);
	dsb(ish);
	isb();

	exit_vmid_context(&cxt);
}

void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
				  phys_addr_t ipa, int level)
{
	struct tlb_inv_context cxt;

	dsb(nshst);

	/* Switch to requested VMID */
	enter_vmid_context(mmu, &cxt);

	/*
	 * We could do so much better if we had the VA as well.
	 * Instead, we invalidate Stage-2 for this IPA, and the
	 * whole of Stage-1. Weep...
	 */
	ipa >>= 12;
	__tlbi_level(ipas2e1, ipa, level);

	/*
	 * We have to ensure completion of the invalidation at Stage-2,
	 * since a table walk on another CPU could refill a TLB with a
	 * complete (S1 + S2) walk based on the old Stage-2 mapping if
	 * the Stage-1 invalidation happened first.
	 */
	dsb(nsh);
	__tlbi(vmalle1);
	dsb(nsh);
	isb();

	exit_vmid_context(&cxt);
}

void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
				phys_addr_t start, unsigned long pages)
{
	struct tlb_inv_context cxt;
	unsigned long stride;

	/*
	 * Since the range of addresses may not be mapped at
	 * the same level, assume the worst case as PAGE_SIZE
	 */
	stride = PAGE_SIZE;
	start = round_down(start, stride);

	dsb(ishst);

	/* Switch to requested VMID */
	enter_vmid_context(mmu, &cxt);

	__flush_s2_tlb_range_op(ipas2e1is, start, pages, stride,
				TLBI_TTL_UNKNOWN);

	dsb(ish);
	__tlbi(vmalle1is);
	dsb(ish);
	isb();

	exit_vmid_context(&cxt);
}

void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
{
	struct tlb_inv_context cxt;

	dsb(ishst);

	/* Switch to requested VMID */
	enter_vmid_context(mmu, &cxt);

	__tlbi(vmalls12e1is);
	dsb(ish);
	isb();

	exit_vmid_context(&cxt);
}

void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
{
	struct tlb_inv_context cxt;

	/* Switch to requested VMID */
	enter_vmid_context(mmu, &cxt);

	__tlbi(vmalle1);
	asm volatile("ic iallu");
	dsb(nsh);
	isb();

	exit_vmid_context(&cxt);
}

void __kvm_flush_vm_context(void)
{
	dsb(ishst);
	__tlbi(alle1is);
	dsb(ish);
}