1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* LoongArch KGDB support
*
* Copyright (C) 2023 Loongson Technology Corporation Limited
*/
#include <linux/hw_breakpoint.h>
#include <linux/kdebug.h>
#include <linux/kgdb.h>
#include <linux/processor.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <asm/cacheflush.h>
#include <asm/fpu.h>
#include <asm/hw_breakpoint.h>
#include <asm/inst.h>
#include <asm/irq_regs.h>
#include <asm/ptrace.h>
#include <asm/sigcontext.h>
int kgdb_watch_activated;
static unsigned int stepped_opcode;
static unsigned long stepped_address;
struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
{ "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
{ "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
{ "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
{ "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
{ "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
{ "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
{ "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
{ "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
{ "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
{ "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
{ "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
{ "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
{ "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
{ "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
{ "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
{ "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
{ "r16", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) },
{ "r17", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) },
{ "r18", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) },
{ "r19", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) },
{ "r20", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) },
{ "r21", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) },
{ "r22", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) },
{ "r23", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) },
{ "r24", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) },
{ "r25", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) },
{ "r26", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) },
{ "r27", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) },
{ "r28", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) },
{ "r29", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) },
{ "r30", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) },
{ "r31", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) },
{ "orig_a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, orig_a0) },
{ "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_era) },
{ "badv", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_badvaddr) },
{ "f0", GDB_SIZEOF_REG, 0 },
{ "f1", GDB_SIZEOF_REG, 1 },
{ "f2", GDB_SIZEOF_REG, 2 },
{ "f3", GDB_SIZEOF_REG, 3 },
{ "f4", GDB_SIZEOF_REG, 4 },
{ "f5", GDB_SIZEOF_REG, 5 },
{ "f6", GDB_SIZEOF_REG, 6 },
{ "f7", GDB_SIZEOF_REG, 7 },
{ "f8", GDB_SIZEOF_REG, 8 },
{ "f9", GDB_SIZEOF_REG, 9 },
{ "f10", GDB_SIZEOF_REG, 10 },
{ "f11", GDB_SIZEOF_REG, 11 },
{ "f12", GDB_SIZEOF_REG, 12 },
{ "f13", GDB_SIZEOF_REG, 13 },
{ "f14", GDB_SIZEOF_REG, 14 },
{ "f15", GDB_SIZEOF_REG, 15 },
{ "f16", GDB_SIZEOF_REG, 16 },
{ "f17", GDB_SIZEOF_REG, 17 },
{ "f18", GDB_SIZEOF_REG, 18 },
{ "f19", GDB_SIZEOF_REG, 19 },
{ "f20", GDB_SIZEOF_REG, 20 },
{ "f21", GDB_SIZEOF_REG, 21 },
{ "f22", GDB_SIZEOF_REG, 22 },
{ "f23", GDB_SIZEOF_REG, 23 },
{ "f24", GDB_SIZEOF_REG, 24 },
{ "f25", GDB_SIZEOF_REG, 25 },
{ "f26", GDB_SIZEOF_REG, 26 },
{ "f27", GDB_SIZEOF_REG, 27 },
{ "f28", GDB_SIZEOF_REG, 28 },
{ "f29", GDB_SIZEOF_REG, 29 },
{ "f30", GDB_SIZEOF_REG, 30 },
{ "f31", GDB_SIZEOF_REG, 31 },
{ "fcc0", 1, 0 },
{ "fcc1", 1, 1 },
{ "fcc2", 1, 2 },
{ "fcc3", 1, 3 },
{ "fcc4", 1, 4 },
{ "fcc5", 1, 5 },
{ "fcc6", 1, 6 },
{ "fcc7", 1, 7 },
{ "fcsr", 4, 0 },
};
char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
{
int reg_offset, reg_size;
if (regno < 0 || regno >= DBG_MAX_REG_NUM)
return NULL;
reg_offset = dbg_reg_def[regno].offset;
reg_size = dbg_reg_def[regno].size;
if (reg_offset == -1)
goto out;
/* Handle general-purpose/orig_a0/pc/badv registers */
if (regno <= DBG_PT_REGS_END) {
memcpy(mem, (void *)regs + reg_offset, reg_size);
goto out;
}
if (!(regs->csr_euen & CSR_EUEN_FPEN))
goto out;
save_fp(current);
/* Handle FP registers */
switch (regno) {
case DBG_FCSR: /* Process the fcsr */
memcpy(mem, (void *)¤t->thread.fpu.fcsr, reg_size);
break;
case DBG_FCC_BASE ... DBG_FCC_END: /* Process the fcc */
memcpy(mem, (void *)¤t->thread.fpu.fcc + reg_offset, reg_size);
break;
case DBG_FPR_BASE ... DBG_FPR_END: /* Process the fpr */
memcpy(mem, (void *)¤t->thread.fpu.fpr[reg_offset], reg_size);
break;
default:
break;
}
out:
return dbg_reg_def[regno].name;
}
int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
{
int reg_offset, reg_size;
if (regno < 0 || regno >= DBG_MAX_REG_NUM)
return -EINVAL;
reg_offset = dbg_reg_def[regno].offset;
reg_size = dbg_reg_def[regno].size;
if (reg_offset == -1)
return 0;
/* Handle general-purpose/orig_a0/pc/badv registers */
if (regno <= DBG_PT_REGS_END) {
memcpy((void *)regs + reg_offset, mem, reg_size);
return 0;
}
if (!(regs->csr_euen & CSR_EUEN_FPEN))
return 0;
/* Handle FP registers */
switch (regno) {
case DBG_FCSR: /* Process the fcsr */
memcpy((void *)¤t->thread.fpu.fcsr, mem, reg_size);
break;
case DBG_FCC_BASE ... DBG_FCC_END: /* Process the fcc */
memcpy((void *)¤t->thread.fpu.fcc + reg_offset, mem, reg_size);
break;
case DBG_FPR_BASE ... DBG_FPR_END: /* Process the fpr */
memcpy((void *)¤t->thread.fpu.fpr[reg_offset], mem, reg_size);
break;
default:
break;
}
restore_fp(current);
return 0;
}
/*
* Similar to regs_to_gdb_regs() except that process is sleeping and so
* we may not be able to get all the info.
*/
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
{
/* Initialize to zero */
memset((char *)gdb_regs, 0, NUMREGBYTES);
gdb_regs[DBG_LOONGARCH_RA] = p->thread.reg01;
gdb_regs[DBG_LOONGARCH_TP] = (long)p;
gdb_regs[DBG_LOONGARCH_SP] = p->thread.reg03;
/* S0 - S8 */
gdb_regs[DBG_LOONGARCH_S0] = p->thread.reg23;
gdb_regs[DBG_LOONGARCH_S1] = p->thread.reg24;
gdb_regs[DBG_LOONGARCH_S2] = p->thread.reg25;
gdb_regs[DBG_LOONGARCH_S3] = p->thread.reg26;
gdb_regs[DBG_LOONGARCH_S4] = p->thread.reg27;
gdb_regs[DBG_LOONGARCH_S5] = p->thread.reg28;
gdb_regs[DBG_LOONGARCH_S6] = p->thread.reg29;
gdb_regs[DBG_LOONGARCH_S7] = p->thread.reg30;
gdb_regs[DBG_LOONGARCH_S8] = p->thread.reg31;
/*
* PC use return address (RA), i.e. the moment after return from __switch_to()
*/
gdb_regs[DBG_LOONGARCH_PC] = p->thread.reg01;
}
void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
{
regs->csr_era = pc;
}
void arch_kgdb_breakpoint(void)
{
__asm__ __volatile__ ( \
".globl kgdb_breakinst\n\t" \
"nop\n" \
"kgdb_breakinst:\tbreak 2\n\t"); /* BRK_KDB = 2 */
}
/*
* Calls linux_debug_hook before the kernel dies. If KGDB is enabled,
* then try to fall into the debugger
*/
static int kgdb_loongarch_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
{
struct die_args *args = (struct die_args *)ptr;
struct pt_regs *regs = args->regs;
/* Userspace events, ignore. */
if (user_mode(regs))
return NOTIFY_DONE;
if (!kgdb_io_module_registered)
return NOTIFY_DONE;
if (atomic_read(&kgdb_active) != -1)
kgdb_nmicallback(smp_processor_id(), regs);
if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
return NOTIFY_DONE;
if (atomic_read(&kgdb_setting_breakpoint))
if (regs->csr_era == (unsigned long)&kgdb_breakinst)
regs->csr_era += LOONGARCH_INSN_SIZE;
return NOTIFY_STOP;
}
bool kgdb_breakpoint_handler(struct pt_regs *regs)
{
struct die_args args = {
.regs = regs,
.str = "Break",
.err = BRK_KDB,
.trapnr = read_csr_excode(),
.signr = SIGTRAP,
};
return (kgdb_loongarch_notify(NULL, DIE_TRAP, &args) == NOTIFY_STOP) ? true : false;
}
static struct notifier_block kgdb_notifier = {
.notifier_call = kgdb_loongarch_notify,
};
static inline void kgdb_arch_update_addr(struct pt_regs *regs,
char *remcom_in_buffer)
{
unsigned long addr;
char *ptr;
ptr = &remcom_in_buffer[1];
if (kgdb_hex2long(&ptr, &addr))
regs->csr_era = addr;
}
/* Calculate the new address for after a step */
static int get_step_address(struct pt_regs *regs, unsigned long *next_addr)
{
char cj_val;
unsigned int si, si_l, si_h, rd, rj, cj;
unsigned long pc = instruction_pointer(regs);
union loongarch_instruction *ip = (union loongarch_instruction *)pc;
if (pc & 3) {
pr_warn("%s: invalid pc 0x%lx\n", __func__, pc);
return -EINVAL;
}
*next_addr = pc + LOONGARCH_INSN_SIZE;
si_h = ip->reg0i26_format.immediate_h;
si_l = ip->reg0i26_format.immediate_l;
switch (ip->reg0i26_format.opcode) {
case b_op:
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27);
return 0;
case bl_op:
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27);
regs->regs[1] = pc + LOONGARCH_INSN_SIZE;
return 0;
}
rj = ip->reg1i21_format.rj;
cj = (rj & 0x07) + DBG_FCC_BASE;
si_l = ip->reg1i21_format.immediate_l;
si_h = ip->reg1i21_format.immediate_h;
dbg_get_reg(cj, &cj_val, regs);
switch (ip->reg1i21_format.opcode) {
case beqz_op:
if (regs->regs[rj] == 0)
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
return 0;
case bnez_op:
if (regs->regs[rj] != 0)
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
return 0;
case bceqz_op: /* bceqz_op = bcnez_op */
if (((rj & 0x18) == 0x00) && !cj_val) /* bceqz */
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
if (((rj & 0x18) == 0x08) && cj_val) /* bcnez */
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
return 0;
}
rj = ip->reg2i16_format.rj;
rd = ip->reg2i16_format.rd;
si = ip->reg2i16_format.immediate;
switch (ip->reg2i16_format.opcode) {
case beq_op:
if (regs->regs[rj] == regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bne_op:
if (regs->regs[rj] != regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case blt_op:
if ((long)regs->regs[rj] < (long)regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bge_op:
if ((long)regs->regs[rj] >= (long)regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bltu_op:
if (regs->regs[rj] < regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bgeu_op:
if (regs->regs[rj] >= regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case jirl_op:
regs->regs[rd] = pc + LOONGARCH_INSN_SIZE;
*next_addr = regs->regs[rj] + sign_extend64(si << 2, 17);
return 0;
}
return 0;
}
static int do_single_step(struct pt_regs *regs)
{
int error = 0;
unsigned long addr = 0; /* Determine where the target instruction will send us to */
error = get_step_address(regs, &addr);
if (error)
return error;
/* Store the opcode in the stepped address */
error = get_kernel_nofault(stepped_opcode, (void *)addr);
if (error)
return error;
stepped_address = addr;
/* Replace the opcode with the break instruction */
error = copy_to_kernel_nofault((void *)stepped_address,
arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
if (error) {
stepped_opcode = 0;
stepped_address = 0;
} else {
kgdb_single_step = 1;
atomic_set(&kgdb_cpu_doing_single_step, raw_smp_processor_id());
}
return error;
}
/* Undo a single step */
static void undo_single_step(struct pt_regs *regs)
{
if (stepped_opcode) {
copy_to_kernel_nofault((void *)stepped_address,
(void *)&stepped_opcode, BREAK_INSTR_SIZE);
flush_icache_range(stepped_address, stepped_address + BREAK_INSTR_SIZE);
}
stepped_opcode = 0;
stepped_address = 0;
kgdb_single_step = 0;
atomic_set(&kgdb_cpu_doing_single_step, -1);
}
int kgdb_arch_handle_exception(int vector, int signo, int err_code,
char *remcom_in_buffer, char *remcom_out_buffer,
struct pt_regs *regs)
{
int ret = 0;
undo_single_step(regs);
regs->csr_prmd |= CSR_PRMD_PWE;
switch (remcom_in_buffer[0]) {
case 'D':
case 'k':
regs->csr_prmd &= ~CSR_PRMD_PWE;
fallthrough;
case 'c':
kgdb_arch_update_addr(regs, remcom_in_buffer);
break;
case 's':
kgdb_arch_update_addr(regs, remcom_in_buffer);
ret = do_single_step(regs);
break;
default:
ret = -1;
}
return ret;
}
static struct hw_breakpoint {
unsigned int enabled;
unsigned long addr;
int len;
int type;
struct perf_event * __percpu *pev;
} breakinfo[LOONGARCH_MAX_BRP];
static int hw_break_reserve_slot(int breakno)
{
int cpu, cnt = 0;
struct perf_event **pevent;
for_each_online_cpu(cpu) {
cnt++;
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
if (dbg_reserve_bp_slot(*pevent))
goto fail;
}
return 0;
fail:
for_each_online_cpu(cpu) {
cnt--;
if (!cnt)
break;
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
dbg_release_bp_slot(*pevent);
}
return -1;
}
static int hw_break_release_slot(int breakno)
{
int cpu;
struct perf_event **pevent;
if (dbg_is_early)
return 0;
for_each_online_cpu(cpu) {
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
if (dbg_release_bp_slot(*pevent))
/*
* The debugger is responsible for handing the retry on
* remove failure.
*/
return -1;
}
return 0;
}
static int kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
{
int i;
for (i = 0; i < LOONGARCH_MAX_BRP; i++)
if (!breakinfo[i].enabled)
break;
if (i == LOONGARCH_MAX_BRP)
return -1;
switch (bptype) {
case BP_HARDWARE_BREAKPOINT:
breakinfo[i].type = HW_BREAKPOINT_X;
break;
case BP_READ_WATCHPOINT:
breakinfo[i].type = HW_BREAKPOINT_R;
break;
case BP_WRITE_WATCHPOINT:
breakinfo[i].type = HW_BREAKPOINT_W;
break;
case BP_ACCESS_WATCHPOINT:
breakinfo[i].type = HW_BREAKPOINT_RW;
break;
default:
return -1;
}
switch (len) {
case 1:
breakinfo[i].len = HW_BREAKPOINT_LEN_1;
break;
case 2:
breakinfo[i].len = HW_BREAKPOINT_LEN_2;
break;
case 4:
breakinfo[i].len = HW_BREAKPOINT_LEN_4;
break;
case 8:
breakinfo[i].len = HW_BREAKPOINT_LEN_8;
break;
default:
return -1;
}
breakinfo[i].addr = addr;
if (hw_break_reserve_slot(i)) {
breakinfo[i].addr = 0;
return -1;
}
breakinfo[i].enabled = 1;
return 0;
}
static int kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
{
int i;
for (i = 0; i < LOONGARCH_MAX_BRP; i++)
if (breakinfo[i].addr == addr && breakinfo[i].enabled)
break;
if (i == LOONGARCH_MAX_BRP)
return -1;
if (hw_break_release_slot(i)) {
pr_err("Cannot remove hw breakpoint at %lx\n", addr);
return -1;
}
breakinfo[i].enabled = 0;
return 0;
}
static void kgdb_disable_hw_break(struct pt_regs *regs)
{
int i;
int cpu = raw_smp_processor_id();
struct perf_event *bp;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (!breakinfo[i].enabled)
continue;
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
if (bp->attr.disabled == 1)
continue;
arch_uninstall_hw_breakpoint(bp);
bp->attr.disabled = 1;
}
/* Disable hardware debugging while we are in kgdb */
csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
}
static void kgdb_remove_all_hw_break(void)
{
int i;
int cpu = raw_smp_processor_id();
struct perf_event *bp;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (!breakinfo[i].enabled)
continue;
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
if (!bp->attr.disabled) {
arch_uninstall_hw_breakpoint(bp);
bp->attr.disabled = 1;
continue;
}
if (hw_break_release_slot(i))
pr_err("KGDB: hw bpt remove failed %lx\n", breakinfo[i].addr);
breakinfo[i].enabled = 0;
}
csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
kgdb_watch_activated = 0;
}
static void kgdb_correct_hw_break(void)
{
int i, activated = 0;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
struct perf_event *bp;
int val;
int cpu = raw_smp_processor_id();
if (!breakinfo[i].enabled)
continue;
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
if (bp->attr.disabled != 1)
continue;
bp->attr.bp_addr = breakinfo[i].addr;
bp->attr.bp_len = breakinfo[i].len;
bp->attr.bp_type = breakinfo[i].type;
val = hw_breakpoint_arch_parse(bp, &bp->attr, counter_arch_bp(bp));
if (val)
return;
val = arch_install_hw_breakpoint(bp);
if (!val)
bp->attr.disabled = 0;
activated = 1;
}
csr_xchg32(activated ? CSR_CRMD_WE : 0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
kgdb_watch_activated = activated;
}
const struct kgdb_arch arch_kgdb_ops = {
.gdb_bpt_instr = {0x02, 0x00, break_op >> 1, 0x00}, /* BRK_KDB = 2 */
.flags = KGDB_HW_BREAKPOINT,
.set_hw_breakpoint = kgdb_set_hw_break,
.remove_hw_breakpoint = kgdb_remove_hw_break,
.disable_hw_break = kgdb_disable_hw_break,
.remove_all_hw_break = kgdb_remove_all_hw_break,
.correct_hw_break = kgdb_correct_hw_break,
};
int kgdb_arch_init(void)
{
return register_die_notifier(&kgdb_notifier);
}
void kgdb_arch_late(void)
{
int i, cpu;
struct perf_event_attr attr;
struct perf_event **pevent;
hw_breakpoint_init(&attr);
attr.bp_addr = (unsigned long)kgdb_arch_init;
attr.bp_len = HW_BREAKPOINT_LEN_4;
attr.bp_type = HW_BREAKPOINT_W;
attr.disabled = 1;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (breakinfo[i].pev)
continue;
breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
if (IS_ERR((void * __force)breakinfo[i].pev)) {
pr_err("kgdb: Could not allocate hw breakpoints.\n");
breakinfo[i].pev = NULL;
return;
}
for_each_online_cpu(cpu) {
pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
if (pevent[0]->destroy) {
pevent[0]->destroy = NULL;
release_bp_slot(*pevent);
}
}
}
}
void kgdb_arch_exit(void)
{
int i;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (breakinfo[i].pev) {
unregister_wide_hw_breakpoint(breakinfo[i].pev);
breakinfo[i].pev = NULL;
}
}
unregister_die_notifier(&kgdb_notifier);
}
|