1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Just-In-Time compiler for eBPF bytecode on MIPS.
* Implementation of JIT functions common to 32-bit and 64-bit CPUs.
*
* Copyright (c) 2021 Anyfi Networks AB.
* Author: Johan Almbladh <johan.almbladh@gmail.com>
*
* Based on code and ideas from
* Copyright (c) 2017 Cavium, Inc.
* Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
* Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
*/
/*
* Code overview
* =============
*
* - bpf_jit_comp.h
* Common definitions and utilities.
*
* - bpf_jit_comp.c
* Implementation of JIT top-level logic and exported JIT API functions.
* Implementation of internal operations shared by 32-bit and 64-bit code.
* JMP and ALU JIT control code, register control code, shared ALU and
* JMP/JMP32 JIT operations.
*
* - bpf_jit_comp32.c
* Implementation of functions to JIT prologue, epilogue and a single eBPF
* instruction for 32-bit MIPS CPUs. The functions use shared operations
* where possible, and implement the rest for 32-bit MIPS such as ALU64
* operations.
*
* - bpf_jit_comp64.c
* Ditto, for 64-bit MIPS CPUs.
*
* Zero and sign extension
* ========================
* 32-bit MIPS instructions on 64-bit MIPS registers use sign extension,
* but the eBPF instruction set mandates zero extension. We let the verifier
* insert explicit zero-extensions after 32-bit ALU operations, both for
* 32-bit and 64-bit MIPS JITs. Conditional JMP32 operations on 64-bit MIPs
* are JITed with sign extensions inserted when so expected.
*
* ALU operations
* ==============
* ALU operations on 32/64-bit MIPS and ALU64 operations on 64-bit MIPS are
* JITed in the following steps. ALU64 operations on 32-bit MIPS are more
* complicated and therefore only processed by special implementations in
* step (3).
*
* 1) valid_alu_i:
* Determine if an immediate operation can be emitted as such, or if
* we must fall back to the register version.
*
* 2) rewrite_alu_i:
* Convert BPF operation and immediate value to a canonical form for
* JITing. In some degenerate cases this form may be a no-op.
*
* 3) emit_alu_{i,i64,r,64}:
* Emit instructions for an ALU or ALU64 immediate or register operation.
*
* JMP operations
* ==============
* JMP and JMP32 operations require an JIT instruction offset table for
* translating the jump offset. This table is computed by dry-running the
* JIT without actually emitting anything. However, the computed PC-relative
* offset may overflow the 18-bit offset field width of the native MIPS
* branch instruction. In such cases, the long jump is converted into the
* following sequence.
*
* <branch> !<cond> +2 Inverted PC-relative branch
* nop Delay slot
* j <offset> Unconditional absolute long jump
* nop Delay slot
*
* Since this converted sequence alters the offset table, all offsets must
* be re-calculated. This may in turn trigger new branch conversions, so
* the process is repeated until no further changes are made. Normally it
* completes in 1-2 iterations. If JIT_MAX_ITERATIONS should reached, we
* fall back to converting every remaining jump operation. The branch
* conversion is independent of how the JMP or JMP32 condition is JITed.
*
* JMP32 and JMP operations are JITed as follows.
*
* 1) setup_jmp_{i,r}:
* Convert jump conditional and offset into a form that can be JITed.
* This form may be a no-op, a canonical form, or an inverted PC-relative
* jump if branch conversion is necessary.
*
* 2) valid_jmp_i:
* Determine if an immediate operations can be emitted as such, or if
* we must fall back to the register version. Applies to JMP32 for 32-bit
* MIPS, and both JMP and JMP32 for 64-bit MIPS.
*
* 3) emit_jmp_{i,i64,r,r64}:
* Emit instructions for an JMP or JMP32 immediate or register operation.
*
* 4) finish_jmp_{i,r}:
* Emit any instructions needed to finish the jump. This includes a nop
* for the delay slot if a branch was emitted, and a long absolute jump
* if the branch was converted.
*/
#include <linux/limits.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/filter.h>
#include <linux/bpf.h>
#include <linux/slab.h>
#include <asm/bitops.h>
#include <asm/cacheflush.h>
#include <asm/cpu-features.h>
#include <asm/isa-rev.h>
#include <asm/uasm.h>
#include "bpf_jit_comp.h"
/* Convenience macros for descriptor access */
#define CONVERTED(desc) ((desc) & JIT_DESC_CONVERT)
#define INDEX(desc) ((desc) & ~JIT_DESC_CONVERT)
/*
* Push registers on the stack, starting at a given depth from the stack
* pointer and increasing. The next depth to be written is returned.
*/
int push_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth)
{
int reg;
for (reg = 0; reg < BITS_PER_BYTE * sizeof(mask); reg++)
if (mask & BIT(reg)) {
if ((excl & BIT(reg)) == 0) {
if (sizeof(long) == 4)
emit(ctx, sw, reg, depth, MIPS_R_SP);
else /* sizeof(long) == 8 */
emit(ctx, sd, reg, depth, MIPS_R_SP);
}
depth += sizeof(long);
}
ctx->stack_used = max((int)ctx->stack_used, depth);
return depth;
}
/*
* Pop registers from the stack, starting at a given depth from the stack
* pointer and increasing. The next depth to be read is returned.
*/
int pop_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth)
{
int reg;
for (reg = 0; reg < BITS_PER_BYTE * sizeof(mask); reg++)
if (mask & BIT(reg)) {
if ((excl & BIT(reg)) == 0) {
if (sizeof(long) == 4)
emit(ctx, lw, reg, depth, MIPS_R_SP);
else /* sizeof(long) == 8 */
emit(ctx, ld, reg, depth, MIPS_R_SP);
}
depth += sizeof(long);
}
return depth;
}
/* Compute the 28-bit jump target address from a BPF program location */
int get_target(struct jit_context *ctx, u32 loc)
{
u32 index = INDEX(ctx->descriptors[loc]);
unsigned long pc = (unsigned long)&ctx->target[ctx->jit_index];
unsigned long addr = (unsigned long)&ctx->target[index];
if (!ctx->target)
return 0;
if ((addr ^ pc) & ~MIPS_JMP_MASK)
return -1;
return addr & MIPS_JMP_MASK;
}
/* Compute the PC-relative offset to relative BPF program offset */
int get_offset(const struct jit_context *ctx, int off)
{
return (INDEX(ctx->descriptors[ctx->bpf_index + off]) -
ctx->jit_index - 1) * sizeof(u32);
}
/* dst = imm (register width) */
void emit_mov_i(struct jit_context *ctx, u8 dst, s32 imm)
{
if (imm >= -0x8000 && imm <= 0x7fff) {
emit(ctx, addiu, dst, MIPS_R_ZERO, imm);
} else {
emit(ctx, lui, dst, (s16)((u32)imm >> 16));
emit(ctx, ori, dst, dst, (u16)(imm & 0xffff));
}
clobber_reg(ctx, dst);
}
/* dst = src (register width) */
void emit_mov_r(struct jit_context *ctx, u8 dst, u8 src)
{
emit(ctx, ori, dst, src, 0);
clobber_reg(ctx, dst);
}
/* Validate ALU immediate range */
bool valid_alu_i(u8 op, s32 imm)
{
switch (BPF_OP(op)) {
case BPF_NEG:
case BPF_LSH:
case BPF_RSH:
case BPF_ARSH:
/* All legal eBPF values are valid */
return true;
case BPF_ADD:
if (IS_ENABLED(CONFIG_CPU_DADDI_WORKAROUNDS))
return false;
/* imm must be 16 bits */
return imm >= -0x8000 && imm <= 0x7fff;
case BPF_SUB:
if (IS_ENABLED(CONFIG_CPU_DADDI_WORKAROUNDS))
return false;
/* -imm must be 16 bits */
return imm >= -0x7fff && imm <= 0x8000;
case BPF_AND:
case BPF_OR:
case BPF_XOR:
/* imm must be 16 bits unsigned */
return imm >= 0 && imm <= 0xffff;
case BPF_MUL:
/* imm must be zero or a positive power of two */
return imm == 0 || (imm > 0 && is_power_of_2(imm));
case BPF_DIV:
case BPF_MOD:
/* imm must be an 17-bit power of two */
return (u32)imm <= 0x10000 && is_power_of_2((u32)imm);
}
return false;
}
/* Rewrite ALU immediate operation */
bool rewrite_alu_i(u8 op, s32 imm, u8 *alu, s32 *val)
{
bool act = true;
switch (BPF_OP(op)) {
case BPF_LSH:
case BPF_RSH:
case BPF_ARSH:
case BPF_ADD:
case BPF_SUB:
case BPF_OR:
case BPF_XOR:
/* imm == 0 is a no-op */
act = imm != 0;
break;
case BPF_MUL:
if (imm == 1) {
/* dst * 1 is a no-op */
act = false;
} else if (imm == 0) {
/* dst * 0 is dst & 0 */
op = BPF_AND;
} else {
/* dst * (1 << n) is dst << n */
op = BPF_LSH;
imm = ilog2(abs(imm));
}
break;
case BPF_DIV:
if (imm == 1) {
/* dst / 1 is a no-op */
act = false;
} else {
/* dst / (1 << n) is dst >> n */
op = BPF_RSH;
imm = ilog2(imm);
}
break;
case BPF_MOD:
/* dst % (1 << n) is dst & ((1 << n) - 1) */
op = BPF_AND;
imm--;
break;
}
*alu = op;
*val = imm;
return act;
}
/* ALU immediate operation (32-bit) */
void emit_alu_i(struct jit_context *ctx, u8 dst, s32 imm, u8 op)
{
switch (BPF_OP(op)) {
/* dst = -dst */
case BPF_NEG:
emit(ctx, subu, dst, MIPS_R_ZERO, dst);
break;
/* dst = dst & imm */
case BPF_AND:
emit(ctx, andi, dst, dst, (u16)imm);
break;
/* dst = dst | imm */
case BPF_OR:
emit(ctx, ori, dst, dst, (u16)imm);
break;
/* dst = dst ^ imm */
case BPF_XOR:
emit(ctx, xori, dst, dst, (u16)imm);
break;
/* dst = dst << imm */
case BPF_LSH:
emit(ctx, sll, dst, dst, imm);
break;
/* dst = dst >> imm */
case BPF_RSH:
emit(ctx, srl, dst, dst, imm);
break;
/* dst = dst >> imm (arithmetic) */
case BPF_ARSH:
emit(ctx, sra, dst, dst, imm);
break;
/* dst = dst + imm */
case BPF_ADD:
emit(ctx, addiu, dst, dst, imm);
break;
/* dst = dst - imm */
case BPF_SUB:
emit(ctx, addiu, dst, dst, -imm);
break;
}
clobber_reg(ctx, dst);
}
/* ALU register operation (32-bit) */
void emit_alu_r(struct jit_context *ctx, u8 dst, u8 src, u8 op)
{
switch (BPF_OP(op)) {
/* dst = dst & src */
case BPF_AND:
emit(ctx, and, dst, dst, src);
break;
/* dst = dst | src */
case BPF_OR:
emit(ctx, or, dst, dst, src);
break;
/* dst = dst ^ src */
case BPF_XOR:
emit(ctx, xor, dst, dst, src);
break;
/* dst = dst << src */
case BPF_LSH:
emit(ctx, sllv, dst, dst, src);
break;
/* dst = dst >> src */
case BPF_RSH:
emit(ctx, srlv, dst, dst, src);
break;
/* dst = dst >> src (arithmetic) */
case BPF_ARSH:
emit(ctx, srav, dst, dst, src);
break;
/* dst = dst + src */
case BPF_ADD:
emit(ctx, addu, dst, dst, src);
break;
/* dst = dst - src */
case BPF_SUB:
emit(ctx, subu, dst, dst, src);
break;
/* dst = dst * src */
case BPF_MUL:
if (cpu_has_mips32r1 || cpu_has_mips32r6) {
emit(ctx, mul, dst, dst, src);
} else {
emit(ctx, multu, dst, src);
emit(ctx, mflo, dst);
}
break;
/* dst = dst / src */
case BPF_DIV:
if (cpu_has_mips32r6) {
emit(ctx, divu_r6, dst, dst, src);
} else {
emit(ctx, divu, dst, src);
emit(ctx, mflo, dst);
}
break;
/* dst = dst % src */
case BPF_MOD:
if (cpu_has_mips32r6) {
emit(ctx, modu, dst, dst, src);
} else {
emit(ctx, divu, dst, src);
emit(ctx, mfhi, dst);
}
break;
}
clobber_reg(ctx, dst);
}
/* Atomic read-modify-write (32-bit) */
void emit_atomic_r(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 code)
{
LLSC_sync(ctx);
emit(ctx, ll, MIPS_R_T9, off, dst);
switch (code) {
case BPF_ADD:
case BPF_ADD | BPF_FETCH:
emit(ctx, addu, MIPS_R_T8, MIPS_R_T9, src);
break;
case BPF_AND:
case BPF_AND | BPF_FETCH:
emit(ctx, and, MIPS_R_T8, MIPS_R_T9, src);
break;
case BPF_OR:
case BPF_OR | BPF_FETCH:
emit(ctx, or, MIPS_R_T8, MIPS_R_T9, src);
break;
case BPF_XOR:
case BPF_XOR | BPF_FETCH:
emit(ctx, xor, MIPS_R_T8, MIPS_R_T9, src);
break;
case BPF_XCHG:
emit(ctx, move, MIPS_R_T8, src);
break;
}
emit(ctx, sc, MIPS_R_T8, off, dst);
emit(ctx, LLSC_beqz, MIPS_R_T8, -16 - LLSC_offset);
emit(ctx, nop); /* Delay slot */
if (code & BPF_FETCH) {
emit(ctx, move, src, MIPS_R_T9);
clobber_reg(ctx, src);
}
}
/* Atomic compare-and-exchange (32-bit) */
void emit_cmpxchg_r(struct jit_context *ctx, u8 dst, u8 src, u8 res, s16 off)
{
LLSC_sync(ctx);
emit(ctx, ll, MIPS_R_T9, off, dst);
emit(ctx, bne, MIPS_R_T9, res, 12);
emit(ctx, move, MIPS_R_T8, src); /* Delay slot */
emit(ctx, sc, MIPS_R_T8, off, dst);
emit(ctx, LLSC_beqz, MIPS_R_T8, -20 - LLSC_offset);
emit(ctx, move, res, MIPS_R_T9); /* Delay slot */
clobber_reg(ctx, res);
}
/* Swap bytes and truncate a register word or half word */
void emit_bswap_r(struct jit_context *ctx, u8 dst, u32 width)
{
u8 tmp = MIPS_R_T8;
u8 msk = MIPS_R_T9;
switch (width) {
/* Swap bytes in a word */
case 32:
if (cpu_has_mips32r2 || cpu_has_mips32r6) {
emit(ctx, wsbh, dst, dst);
emit(ctx, rotr, dst, dst, 16);
} else {
emit(ctx, sll, tmp, dst, 16); /* tmp = dst << 16 */
emit(ctx, srl, dst, dst, 16); /* dst = dst >> 16 */
emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */
emit(ctx, lui, msk, 0xff); /* msk = 0x00ff0000 */
emit(ctx, ori, msk, msk, 0xff); /* msk = msk | 0xff */
emit(ctx, and, tmp, dst, msk); /* tmp = dst & msk */
emit(ctx, sll, tmp, tmp, 8); /* tmp = tmp << 8 */
emit(ctx, srl, dst, dst, 8); /* dst = dst >> 8 */
emit(ctx, and, dst, dst, msk); /* dst = dst & msk */
emit(ctx, or, dst, dst, tmp); /* reg = dst | tmp */
}
break;
/* Swap bytes in a half word */
case 16:
if (cpu_has_mips32r2 || cpu_has_mips32r6) {
emit(ctx, wsbh, dst, dst);
emit(ctx, andi, dst, dst, 0xffff);
} else {
emit(ctx, andi, tmp, dst, 0xff00); /* t = d & 0xff00 */
emit(ctx, srl, tmp, tmp, 8); /* t = t >> 8 */
emit(ctx, andi, dst, dst, 0x00ff); /* d = d & 0x00ff */
emit(ctx, sll, dst, dst, 8); /* d = d << 8 */
emit(ctx, or, dst, dst, tmp); /* d = d | t */
}
break;
}
clobber_reg(ctx, dst);
}
/* Validate jump immediate range */
bool valid_jmp_i(u8 op, s32 imm)
{
switch (op) {
case JIT_JNOP:
/* Immediate value not used */
return true;
case BPF_JEQ:
case BPF_JNE:
/* No immediate operation */
return false;
case BPF_JSET:
case JIT_JNSET:
/* imm must be 16 bits unsigned */
return imm >= 0 && imm <= 0xffff;
case BPF_JGE:
case BPF_JLT:
case BPF_JSGE:
case BPF_JSLT:
/* imm must be 16 bits */
return imm >= -0x8000 && imm <= 0x7fff;
case BPF_JGT:
case BPF_JLE:
case BPF_JSGT:
case BPF_JSLE:
/* imm + 1 must be 16 bits */
return imm >= -0x8001 && imm <= 0x7ffe;
}
return false;
}
/* Invert a conditional jump operation */
static u8 invert_jmp(u8 op)
{
switch (op) {
case BPF_JA: return JIT_JNOP;
case BPF_JEQ: return BPF_JNE;
case BPF_JNE: return BPF_JEQ;
case BPF_JSET: return JIT_JNSET;
case BPF_JGT: return BPF_JLE;
case BPF_JGE: return BPF_JLT;
case BPF_JLT: return BPF_JGE;
case BPF_JLE: return BPF_JGT;
case BPF_JSGT: return BPF_JSLE;
case BPF_JSGE: return BPF_JSLT;
case BPF_JSLT: return BPF_JSGE;
case BPF_JSLE: return BPF_JSGT;
}
return 0;
}
/* Prepare a PC-relative jump operation */
static void setup_jmp(struct jit_context *ctx, u8 bpf_op,
s16 bpf_off, u8 *jit_op, s32 *jit_off)
{
u32 *descp = &ctx->descriptors[ctx->bpf_index];
int op = bpf_op;
int offset = 0;
/* Do not compute offsets on the first pass */
if (INDEX(*descp) == 0)
goto done;
/* Skip jumps never taken */
if (bpf_op == JIT_JNOP)
goto done;
/* Convert jumps always taken */
if (bpf_op == BPF_JA)
*descp |= JIT_DESC_CONVERT;
/*
* Current ctx->jit_index points to the start of the branch preamble.
* Since the preamble differs among different branch conditionals,
* the current index cannot be used to compute the branch offset.
* Instead, we use the offset table value for the next instruction,
* which gives the index immediately after the branch delay slot.
*/
if (!CONVERTED(*descp)) {
int target = ctx->bpf_index + bpf_off + 1;
int origin = ctx->bpf_index + 1;
offset = (INDEX(ctx->descriptors[target]) -
INDEX(ctx->descriptors[origin]) + 1) * sizeof(u32);
}
/*
* The PC-relative branch offset field on MIPS is 18 bits signed,
* so if the computed offset is larger than this we generate a an
* absolute jump that we skip with an inverted conditional branch.
*/
if (CONVERTED(*descp) || offset < -0x20000 || offset > 0x1ffff) {
offset = 3 * sizeof(u32);
op = invert_jmp(bpf_op);
ctx->changes += !CONVERTED(*descp);
*descp |= JIT_DESC_CONVERT;
}
done:
*jit_off = offset;
*jit_op = op;
}
/* Prepare a PC-relative jump operation with immediate conditional */
void setup_jmp_i(struct jit_context *ctx, s32 imm, u8 width,
u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off)
{
bool always = false;
bool never = false;
switch (bpf_op) {
case BPF_JEQ:
case BPF_JNE:
break;
case BPF_JSET:
case BPF_JLT:
never = imm == 0;
break;
case BPF_JGE:
always = imm == 0;
break;
case BPF_JGT:
never = (u32)imm == U32_MAX;
break;
case BPF_JLE:
always = (u32)imm == U32_MAX;
break;
case BPF_JSGT:
never = imm == S32_MAX && width == 32;
break;
case BPF_JSGE:
always = imm == S32_MIN && width == 32;
break;
case BPF_JSLT:
never = imm == S32_MIN && width == 32;
break;
case BPF_JSLE:
always = imm == S32_MAX && width == 32;
break;
}
if (never)
bpf_op = JIT_JNOP;
if (always)
bpf_op = BPF_JA;
setup_jmp(ctx, bpf_op, bpf_off, jit_op, jit_off);
}
/* Prepare a PC-relative jump operation with register conditional */
void setup_jmp_r(struct jit_context *ctx, bool same_reg,
u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off)
{
switch (bpf_op) {
case BPF_JSET:
break;
case BPF_JEQ:
case BPF_JGE:
case BPF_JLE:
case BPF_JSGE:
case BPF_JSLE:
if (same_reg)
bpf_op = BPF_JA;
break;
case BPF_JNE:
case BPF_JLT:
case BPF_JGT:
case BPF_JSGT:
case BPF_JSLT:
if (same_reg)
bpf_op = JIT_JNOP;
break;
}
setup_jmp(ctx, bpf_op, bpf_off, jit_op, jit_off);
}
/* Finish a PC-relative jump operation */
int finish_jmp(struct jit_context *ctx, u8 jit_op, s16 bpf_off)
{
/* Emit conditional branch delay slot */
if (jit_op != JIT_JNOP)
emit(ctx, nop);
/*
* Emit an absolute long jump with delay slot,
* if the PC-relative branch was converted.
*/
if (CONVERTED(ctx->descriptors[ctx->bpf_index])) {
int target = get_target(ctx, ctx->bpf_index + bpf_off + 1);
if (target < 0)
return -1;
emit(ctx, j, target);
emit(ctx, nop);
}
return 0;
}
/* Jump immediate (32-bit) */
void emit_jmp_i(struct jit_context *ctx, u8 dst, s32 imm, s32 off, u8 op)
{
switch (op) {
/* No-op, used internally for branch optimization */
case JIT_JNOP:
break;
/* PC += off if dst & imm */
case BPF_JSET:
emit(ctx, andi, MIPS_R_T9, dst, (u16)imm);
emit(ctx, bnez, MIPS_R_T9, off);
break;
/* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
case JIT_JNSET:
emit(ctx, andi, MIPS_R_T9, dst, (u16)imm);
emit(ctx, beqz, MIPS_R_T9, off);
break;
/* PC += off if dst > imm */
case BPF_JGT:
emit(ctx, sltiu, MIPS_R_T9, dst, imm + 1);
emit(ctx, beqz, MIPS_R_T9, off);
break;
/* PC += off if dst >= imm */
case BPF_JGE:
emit(ctx, sltiu, MIPS_R_T9, dst, imm);
emit(ctx, beqz, MIPS_R_T9, off);
break;
/* PC += off if dst < imm */
case BPF_JLT:
emit(ctx, sltiu, MIPS_R_T9, dst, imm);
emit(ctx, bnez, MIPS_R_T9, off);
break;
/* PC += off if dst <= imm */
case BPF_JLE:
emit(ctx, sltiu, MIPS_R_T9, dst, imm + 1);
emit(ctx, bnez, MIPS_R_T9, off);
break;
/* PC += off if dst > imm (signed) */
case BPF_JSGT:
emit(ctx, slti, MIPS_R_T9, dst, imm + 1);
emit(ctx, beqz, MIPS_R_T9, off);
break;
/* PC += off if dst >= imm (signed) */
case BPF_JSGE:
emit(ctx, slti, MIPS_R_T9, dst, imm);
emit(ctx, beqz, MIPS_R_T9, off);
break;
/* PC += off if dst < imm (signed) */
case BPF_JSLT:
emit(ctx, slti, MIPS_R_T9, dst, imm);
emit(ctx, bnez, MIPS_R_T9, off);
break;
/* PC += off if dst <= imm (signed) */
case BPF_JSLE:
emit(ctx, slti, MIPS_R_T9, dst, imm + 1);
emit(ctx, bnez, MIPS_R_T9, off);
break;
}
}
/* Jump register (32-bit) */
void emit_jmp_r(struct jit_context *ctx, u8 dst, u8 src, s32 off, u8 op)
{
switch (op) {
/* No-op, used internally for branch optimization */
case JIT_JNOP:
break;
/* PC += off if dst == src */
case BPF_JEQ:
emit(ctx, beq, dst, src, off);
break;
/* PC += off if dst != src */
case BPF_JNE:
emit(ctx, bne, dst, src, off);
break;
/* PC += off if dst & src */
case BPF_JSET:
emit(ctx, and, MIPS_R_T9, dst, src);
emit(ctx, bnez, MIPS_R_T9, off);
break;
/* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
case JIT_JNSET:
emit(ctx, and, MIPS_R_T9, dst, src);
emit(ctx, beqz, MIPS_R_T9, off);
break;
/* PC += off if dst > src */
case BPF_JGT:
emit(ctx, sltu, MIPS_R_T9, src, dst);
emit(ctx, bnez, MIPS_R_T9, off);
break;
/* PC += off if dst >= src */
case BPF_JGE:
emit(ctx, sltu, MIPS_R_T9, dst, src);
emit(ctx, beqz, MIPS_R_T9, off);
break;
/* PC += off if dst < src */
case BPF_JLT:
emit(ctx, sltu, MIPS_R_T9, dst, src);
emit(ctx, bnez, MIPS_R_T9, off);
break;
/* PC += off if dst <= src */
case BPF_JLE:
emit(ctx, sltu, MIPS_R_T9, src, dst);
emit(ctx, beqz, MIPS_R_T9, off);
break;
/* PC += off if dst > src (signed) */
case BPF_JSGT:
emit(ctx, slt, MIPS_R_T9, src, dst);
emit(ctx, bnez, MIPS_R_T9, off);
break;
/* PC += off if dst >= src (signed) */
case BPF_JSGE:
emit(ctx, slt, MIPS_R_T9, dst, src);
emit(ctx, beqz, MIPS_R_T9, off);
break;
/* PC += off if dst < src (signed) */
case BPF_JSLT:
emit(ctx, slt, MIPS_R_T9, dst, src);
emit(ctx, bnez, MIPS_R_T9, off);
break;
/* PC += off if dst <= src (signed) */
case BPF_JSLE:
emit(ctx, slt, MIPS_R_T9, src, dst);
emit(ctx, beqz, MIPS_R_T9, off);
break;
}
}
/* Jump always */
int emit_ja(struct jit_context *ctx, s16 off)
{
int target = get_target(ctx, ctx->bpf_index + off + 1);
if (target < 0)
return -1;
emit(ctx, j, target);
emit(ctx, nop);
return 0;
}
/* Jump to epilogue */
int emit_exit(struct jit_context *ctx)
{
int target = get_target(ctx, ctx->program->len);
if (target < 0)
return -1;
emit(ctx, j, target);
emit(ctx, nop);
return 0;
}
/* Build the program body from eBPF bytecode */
static int build_body(struct jit_context *ctx)
{
const struct bpf_prog *prog = ctx->program;
unsigned int i;
ctx->stack_used = 0;
for (i = 0; i < prog->len; i++) {
const struct bpf_insn *insn = &prog->insnsi[i];
u32 *descp = &ctx->descriptors[i];
int ret;
access_reg(ctx, insn->src_reg);
access_reg(ctx, insn->dst_reg);
ctx->bpf_index = i;
if (ctx->target == NULL) {
ctx->changes += INDEX(*descp) != ctx->jit_index;
*descp &= JIT_DESC_CONVERT;
*descp |= ctx->jit_index;
}
ret = build_insn(insn, ctx);
if (ret < 0)
return ret;
if (ret > 0) {
i++;
if (ctx->target == NULL)
descp[1] = ctx->jit_index;
}
}
/* Store the end offset, where the epilogue begins */
ctx->descriptors[prog->len] = ctx->jit_index;
return 0;
}
/* Set the branch conversion flag on all instructions */
static void set_convert_flag(struct jit_context *ctx, bool enable)
{
const struct bpf_prog *prog = ctx->program;
u32 flag = enable ? JIT_DESC_CONVERT : 0;
unsigned int i;
for (i = 0; i <= prog->len; i++)
ctx->descriptors[i] = INDEX(ctx->descriptors[i]) | flag;
}
static void jit_fill_hole(void *area, unsigned int size)
{
u32 *p;
/* We are guaranteed to have aligned memory. */
for (p = area; size >= sizeof(u32); size -= sizeof(u32))
uasm_i_break(&p, BRK_BUG); /* Increments p */
}
bool bpf_jit_needs_zext(void)
{
return true;
}
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
struct bpf_prog *tmp, *orig_prog = prog;
struct bpf_binary_header *header = NULL;
struct jit_context ctx;
bool tmp_blinded = false;
unsigned int tmp_idx;
unsigned int image_size;
u8 *image_ptr;
int tries;
/*
* If BPF JIT was not enabled then we must fall back to
* the interpreter.
*/
if (!prog->jit_requested)
return orig_prog;
/*
* If constant blinding was enabled and we failed during blinding
* then we must fall back to the interpreter. Otherwise, we save
* the new JITed code.
*/
tmp = bpf_jit_blind_constants(prog);
if (IS_ERR(tmp))
return orig_prog;
if (tmp != prog) {
tmp_blinded = true;
prog = tmp;
}
memset(&ctx, 0, sizeof(ctx));
ctx.program = prog;
/*
* Not able to allocate memory for descriptors[], then
* we must fall back to the interpreter
*/
ctx.descriptors = kcalloc(prog->len + 1, sizeof(*ctx.descriptors),
GFP_KERNEL);
if (ctx.descriptors == NULL)
goto out_err;
/* First pass discovers used resources */
if (build_body(&ctx) < 0)
goto out_err;
/*
* Second pass computes instruction offsets.
* If any PC-relative branches are out of range, a sequence of
* a PC-relative branch + a jump is generated, and we have to
* try again from the beginning to generate the new offsets.
* This is done until no additional conversions are necessary.
* The last two iterations are done with all branches being
* converted, to guarantee offset table convergence within a
* fixed number of iterations.
*/
ctx.jit_index = 0;
build_prologue(&ctx);
tmp_idx = ctx.jit_index;
tries = JIT_MAX_ITERATIONS;
do {
ctx.jit_index = tmp_idx;
ctx.changes = 0;
if (tries == 2)
set_convert_flag(&ctx, true);
if (build_body(&ctx) < 0)
goto out_err;
} while (ctx.changes > 0 && --tries > 0);
if (WARN_ONCE(ctx.changes > 0, "JIT offsets failed to converge"))
goto out_err;
build_epilogue(&ctx, MIPS_R_RA);
/* Now we know the size of the structure to make */
image_size = sizeof(u32) * ctx.jit_index;
header = bpf_jit_binary_alloc(image_size, &image_ptr,
sizeof(u32), jit_fill_hole);
/*
* Not able to allocate memory for the structure then
* we must fall back to the interpretation
*/
if (header == NULL)
goto out_err;
/* Actual pass to generate final JIT code */
ctx.target = (u32 *)image_ptr;
ctx.jit_index = 0;
/*
* If building the JITed code fails somehow,
* we fall back to the interpretation.
*/
build_prologue(&ctx);
if (build_body(&ctx) < 0)
goto out_err;
build_epilogue(&ctx, MIPS_R_RA);
/* Populate line info meta data */
set_convert_flag(&ctx, false);
bpf_prog_fill_jited_linfo(prog, &ctx.descriptors[1]);
/* Set as read-only exec and flush instruction cache */
if (bpf_jit_binary_lock_ro(header))
goto out_err;
flush_icache_range((unsigned long)header,
(unsigned long)&ctx.target[ctx.jit_index]);
if (bpf_jit_enable > 1)
bpf_jit_dump(prog->len, image_size, 2, ctx.target);
prog->bpf_func = (void *)ctx.target;
prog->jited = 1;
prog->jited_len = image_size;
out:
if (tmp_blinded)
bpf_jit_prog_release_other(prog, prog == orig_prog ?
tmp : orig_prog);
kfree(ctx.descriptors);
return prog;
out_err:
prog = orig_prog;
if (header)
bpf_jit_binary_free(header);
goto out;
}
|