1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
|
// SPDX-License-Identifier: GPL-2.0
#define KMSG_COMPONENT "zpci"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel.h>
#include <linux/irq.h>
#include <linux/kernel_stat.h>
#include <linux/pci.h>
#include <linux/msi.h>
#include <linux/smp.h>
#include <asm/isc.h>
#include <asm/airq.h>
#include <asm/tpi.h>
static enum {FLOATING, DIRECTED} irq_delivery;
/*
* summary bit vector
* FLOATING - summary bit per function
* DIRECTED - summary bit per cpu (only used in fallback path)
*/
static struct airq_iv *zpci_sbv;
/*
* interrupt bit vectors
* FLOATING - interrupt bit vector per function
* DIRECTED - interrupt bit vector per cpu
*/
static struct airq_iv **zpci_ibv;
/* Modify PCI: Register floating adapter interruptions */
static int zpci_set_airq(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
struct zpci_fib fib = {0};
u8 status;
fib.fmt0.isc = PCI_ISC;
fib.fmt0.sum = 1; /* enable summary notifications */
fib.fmt0.noi = airq_iv_end(zdev->aibv);
fib.fmt0.aibv = virt_to_phys(zdev->aibv->vector);
fib.fmt0.aibvo = 0; /* each zdev has its own interrupt vector */
fib.fmt0.aisb = virt_to_phys(zpci_sbv->vector) + (zdev->aisb / 64) * 8;
fib.fmt0.aisbo = zdev->aisb & 63;
fib.gd = zdev->gisa;
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
}
/* Modify PCI: Unregister floating adapter interruptions */
static int zpci_clear_airq(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
struct zpci_fib fib = {0};
u8 cc, status;
fib.gd = zdev->gisa;
cc = zpci_mod_fc(req, &fib, &status);
if (cc == 3 || (cc == 1 && status == 24))
/* Function already gone or IRQs already deregistered. */
cc = 0;
return cc ? -EIO : 0;
}
/* Modify PCI: Register CPU directed interruptions */
static int zpci_set_directed_irq(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
struct zpci_fib fib = {0};
u8 status;
fib.fmt = 1;
fib.fmt1.noi = zdev->msi_nr_irqs;
fib.fmt1.dibvo = zdev->msi_first_bit;
fib.gd = zdev->gisa;
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
}
/* Modify PCI: Unregister CPU directed interruptions */
static int zpci_clear_directed_irq(struct zpci_dev *zdev)
{
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
struct zpci_fib fib = {0};
u8 cc, status;
fib.fmt = 1;
fib.gd = zdev->gisa;
cc = zpci_mod_fc(req, &fib, &status);
if (cc == 3 || (cc == 1 && status == 24))
/* Function already gone or IRQs already deregistered. */
cc = 0;
return cc ? -EIO : 0;
}
/* Register adapter interruptions */
static int zpci_set_irq(struct zpci_dev *zdev)
{
int rc;
if (irq_delivery == DIRECTED)
rc = zpci_set_directed_irq(zdev);
else
rc = zpci_set_airq(zdev);
if (!rc)
zdev->irqs_registered = 1;
return rc;
}
/* Clear adapter interruptions */
static int zpci_clear_irq(struct zpci_dev *zdev)
{
int rc;
if (irq_delivery == DIRECTED)
rc = zpci_clear_directed_irq(zdev);
else
rc = zpci_clear_airq(zdev);
if (!rc)
zdev->irqs_registered = 0;
return rc;
}
static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
bool force)
{
struct msi_desc *entry = irq_data_get_msi_desc(data);
struct msi_msg msg = entry->msg;
int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest));
msg.address_lo &= 0xff0000ff;
msg.address_lo |= (cpu_addr << 8);
pci_write_msi_msg(data->irq, &msg);
return IRQ_SET_MASK_OK;
}
static struct irq_chip zpci_irq_chip = {
.name = "PCI-MSI",
.irq_unmask = pci_msi_unmask_irq,
.irq_mask = pci_msi_mask_irq,
};
static void zpci_handle_cpu_local_irq(bool rescan)
{
struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
union zpci_sic_iib iib = {{0}};
unsigned long bit;
int irqs_on = 0;
for (bit = 0;;) {
/* Scan the directed IRQ bit vector */
bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
if (bit == -1UL) {
if (!rescan || irqs_on++)
/* End of second scan with interrupts on. */
break;
/* First scan complete, re-enable interrupts. */
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &iib))
break;
bit = 0;
continue;
}
inc_irq_stat(IRQIO_MSI);
generic_handle_irq(airq_iv_get_data(dibv, bit));
}
}
struct cpu_irq_data {
call_single_data_t csd;
atomic_t scheduled;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
static void zpci_handle_remote_irq(void *data)
{
atomic_t *scheduled = data;
do {
zpci_handle_cpu_local_irq(false);
} while (atomic_dec_return(scheduled));
}
static void zpci_handle_fallback_irq(void)
{
struct cpu_irq_data *cpu_data;
union zpci_sic_iib iib = {{0}};
unsigned long cpu;
int irqs_on = 0;
for (cpu = 0;;) {
cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
if (cpu == -1UL) {
if (irqs_on++)
/* End of second scan with interrupts on. */
break;
/* First scan complete, re-enable interrupts. */
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
break;
cpu = 0;
continue;
}
cpu_data = &per_cpu(irq_data, cpu);
if (atomic_inc_return(&cpu_data->scheduled) > 1)
continue;
INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled);
smp_call_function_single_async(cpu, &cpu_data->csd);
}
}
static void zpci_directed_irq_handler(struct airq_struct *airq,
struct tpi_info *tpi_info)
{
bool floating = !tpi_info->directed_irq;
if (floating) {
inc_irq_stat(IRQIO_PCF);
zpci_handle_fallback_irq();
} else {
inc_irq_stat(IRQIO_PCD);
zpci_handle_cpu_local_irq(true);
}
}
static void zpci_floating_irq_handler(struct airq_struct *airq,
struct tpi_info *tpi_info)
{
union zpci_sic_iib iib = {{0}};
unsigned long si, ai;
struct airq_iv *aibv;
int irqs_on = 0;
inc_irq_stat(IRQIO_PCF);
for (si = 0;;) {
/* Scan adapter summary indicator bit vector */
si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
if (si == -1UL) {
if (irqs_on++)
/* End of second scan with interrupts on. */
break;
/* First scan complete, re-enable interrupts. */
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
break;
si = 0;
continue;
}
/* Scan the adapter interrupt vector for this device. */
aibv = zpci_ibv[si];
for (ai = 0;;) {
ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
if (ai == -1UL)
break;
inc_irq_stat(IRQIO_MSI);
airq_iv_lock(aibv, ai);
generic_handle_irq(airq_iv_get_data(aibv, ai));
airq_iv_unlock(aibv, ai);
}
}
}
int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
{
struct zpci_dev *zdev = to_zpci(pdev);
unsigned int hwirq, msi_vecs, cpu;
unsigned long bit;
struct msi_desc *msi;
struct msi_msg msg;
int cpu_addr;
int rc, irq;
zdev->aisb = -1UL;
zdev->msi_first_bit = -1U;
if (type == PCI_CAP_ID_MSI && nvec > 1)
return 1;
msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
if (irq_delivery == DIRECTED) {
/* Allocate cpu vector bits */
bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
if (bit == -1UL)
return -EIO;
} else {
/* Allocate adapter summary indicator bit */
bit = airq_iv_alloc_bit(zpci_sbv);
if (bit == -1UL)
return -EIO;
zdev->aisb = bit;
/* Create adapter interrupt vector */
zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK, NULL);
if (!zdev->aibv)
return -ENOMEM;
/* Wire up shortcut pointer */
zpci_ibv[bit] = zdev->aibv;
/* Each function has its own interrupt vector */
bit = 0;
}
/* Request MSI interrupts */
hwirq = bit;
msi_for_each_desc(msi, &pdev->dev, MSI_DESC_NOTASSOCIATED) {
rc = -EIO;
if (hwirq - bit >= msi_vecs)
break;
irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE,
(irq_delivery == DIRECTED) ?
msi->affinity : NULL);
if (irq < 0)
return -ENOMEM;
rc = irq_set_msi_desc(irq, msi);
if (rc)
return rc;
irq_set_chip_and_handler(irq, &zpci_irq_chip,
handle_percpu_irq);
msg.data = hwirq - bit;
if (irq_delivery == DIRECTED) {
if (msi->affinity)
cpu = cpumask_first(&msi->affinity->mask);
else
cpu = 0;
cpu_addr = smp_cpu_get_cpu_address(cpu);
msg.address_lo = zdev->msi_addr & 0xff0000ff;
msg.address_lo |= (cpu_addr << 8);
for_each_possible_cpu(cpu) {
airq_iv_set_data(zpci_ibv[cpu], hwirq, irq);
}
} else {
msg.address_lo = zdev->msi_addr & 0xffffffff;
airq_iv_set_data(zdev->aibv, hwirq, irq);
}
msg.address_hi = zdev->msi_addr >> 32;
pci_write_msi_msg(irq, &msg);
hwirq++;
}
zdev->msi_first_bit = bit;
zdev->msi_nr_irqs = msi_vecs;
rc = zpci_set_irq(zdev);
if (rc)
return rc;
return (msi_vecs == nvec) ? 0 : msi_vecs;
}
void arch_teardown_msi_irqs(struct pci_dev *pdev)
{
struct zpci_dev *zdev = to_zpci(pdev);
struct msi_desc *msi;
int rc;
/* Disable interrupts */
rc = zpci_clear_irq(zdev);
if (rc)
return;
/* Release MSI interrupts */
msi_for_each_desc(msi, &pdev->dev, MSI_DESC_ASSOCIATED) {
irq_set_msi_desc(msi->irq, NULL);
irq_free_desc(msi->irq);
msi->msg.address_lo = 0;
msi->msg.address_hi = 0;
msi->msg.data = 0;
msi->irq = 0;
}
if (zdev->aisb != -1UL) {
zpci_ibv[zdev->aisb] = NULL;
airq_iv_free_bit(zpci_sbv, zdev->aisb);
zdev->aisb = -1UL;
}
if (zdev->aibv) {
airq_iv_release(zdev->aibv);
zdev->aibv = NULL;
}
if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
}
bool arch_restore_msi_irqs(struct pci_dev *pdev)
{
struct zpci_dev *zdev = to_zpci(pdev);
if (!zdev->irqs_registered)
zpci_set_irq(zdev);
return true;
}
static struct airq_struct zpci_airq = {
.handler = zpci_floating_irq_handler,
.isc = PCI_ISC,
};
static void __init cpu_enable_directed_irq(void *unused)
{
union zpci_sic_iib iib = {{0}};
union zpci_sic_iib ziib = {{0}};
iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector;
zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &ziib);
}
static int __init zpci_directed_irq_init(void)
{
union zpci_sic_iib iib = {{0}};
unsigned int cpu;
zpci_sbv = airq_iv_create(num_possible_cpus(), 0, NULL);
if (!zpci_sbv)
return -ENOMEM;
iib.diib.isc = PCI_ISC;
iib.diib.nr_cpus = num_possible_cpus();
iib.diib.disb_addr = virt_to_phys(zpci_sbv->vector);
zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
GFP_KERNEL);
if (!zpci_ibv)
return -ENOMEM;
for_each_possible_cpu(cpu) {
/*
* Per CPU IRQ vectors look the same but bit-allocation
* is only done on the first vector.
*/
zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
AIRQ_IV_DATA |
AIRQ_IV_CACHELINE |
(!cpu ? AIRQ_IV_ALLOC : 0), NULL);
if (!zpci_ibv[cpu])
return -ENOMEM;
}
on_each_cpu(cpu_enable_directed_irq, NULL, 1);
zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
return 0;
}
static int __init zpci_floating_irq_init(void)
{
zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
if (!zpci_ibv)
return -ENOMEM;
zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC, NULL);
if (!zpci_sbv)
goto out_free;
return 0;
out_free:
kfree(zpci_ibv);
return -ENOMEM;
}
int __init zpci_irq_init(void)
{
union zpci_sic_iib iib = {{0}};
int rc;
irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
if (s390_pci_force_floating)
irq_delivery = FLOATING;
if (irq_delivery == DIRECTED)
zpci_airq.handler = zpci_directed_irq_handler;
rc = register_adapter_interrupt(&zpci_airq);
if (rc)
goto out;
/* Set summary to 1 to be called every time for the ISC. */
*zpci_airq.lsi_ptr = 1;
switch (irq_delivery) {
case FLOATING:
rc = zpci_floating_irq_init();
break;
case DIRECTED:
rc = zpci_directed_irq_init();
break;
}
if (rc)
goto out_airq;
/*
* Enable floating IRQs (with suppression after one IRQ). When using
* directed IRQs this enables the fallback path.
*/
zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib);
return 0;
out_airq:
unregister_adapter_interrupt(&zpci_airq);
out:
return rc;
}
void __init zpci_irq_exit(void)
{
unsigned int cpu;
if (irq_delivery == DIRECTED) {
for_each_possible_cpu(cpu) {
airq_iv_release(zpci_ibv[cpu]);
}
}
kfree(zpci_ibv);
if (zpci_sbv)
airq_iv_release(zpci_sbv);
unregister_adapter_interrupt(&zpci_airq);
}
|