summaryrefslogtreecommitdiffstats
path: root/arch/x86/platform/intel-quark/imr.c
blob: d3d456925b2a9388d245a940a4097a57360e59a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
// SPDX-License-Identifier: GPL-2.0-only
/*
 * imr.c -- Intel Isolated Memory Region driver
 *
 * Copyright(c) 2013 Intel Corporation.
 * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
 *
 * IMR registers define an isolated region of memory that can
 * be masked to prohibit certain system agents from accessing memory.
 * When a device behind a masked port performs an access - snooped or
 * not, an IMR may optionally prevent that transaction from changing
 * the state of memory or from getting correct data in response to the
 * operation.
 *
 * Write data will be dropped and reads will return 0xFFFFFFFF, the
 * system will reset and system BIOS will print out an error message to
 * inform the user that an IMR has been violated.
 *
 * This code is based on the Linux MTRR code and reference code from
 * Intel's Quark BSP EFI, Linux and grub code.
 *
 * See quark-x1000-datasheet.pdf for register definitions.
 * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <asm-generic/sections.h>
#include <asm/cpu_device_id.h>
#include <asm/imr.h>
#include <asm/iosf_mbi.h>
#include <asm/io.h>

#include <linux/debugfs.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/types.h>

struct imr_device {
	bool		init;
	struct mutex	lock;
	int		max_imr;
	int		reg_base;
};

static struct imr_device imr_dev;

/*
 * IMR read/write mask control registers.
 * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
 * bit definitions.
 *
 * addr_hi
 * 31		Lock bit
 * 30:24	Reserved
 * 23:2		1 KiB aligned lo address
 * 1:0		Reserved
 *
 * addr_hi
 * 31:24	Reserved
 * 23:2		1 KiB aligned hi address
 * 1:0		Reserved
 */
#define IMR_LOCK	BIT(31)

struct imr_regs {
	u32 addr_lo;
	u32 addr_hi;
	u32 rmask;
	u32 wmask;
};

#define IMR_NUM_REGS	(sizeof(struct imr_regs)/sizeof(u32))
#define IMR_SHIFT	8
#define imr_to_phys(x)	((x) << IMR_SHIFT)
#define phys_to_imr(x)	((x) >> IMR_SHIFT)

/**
 * imr_is_enabled - true if an IMR is enabled false otherwise.
 *
 * Determines if an IMR is enabled based on address range and read/write
 * mask. An IMR set with an address range set to zero and a read/write
 * access mask set to all is considered to be disabled. An IMR in any
 * other state - for example set to zero but without read/write access
 * all is considered to be enabled. This definition of disabled is how
 * firmware switches off an IMR and is maintained in kernel for
 * consistency.
 *
 * @imr:	pointer to IMR descriptor.
 * @return:	true if IMR enabled false if disabled.
 */
static inline int imr_is_enabled(struct imr_regs *imr)
{
	return !(imr->rmask == IMR_READ_ACCESS_ALL &&
		 imr->wmask == IMR_WRITE_ACCESS_ALL &&
		 imr_to_phys(imr->addr_lo) == 0 &&
		 imr_to_phys(imr->addr_hi) == 0);
}

/**
 * imr_read - read an IMR at a given index.
 *
 * Requires caller to hold imr mutex.
 *
 * @idev:	pointer to imr_device structure.
 * @imr_id:	IMR entry to read.
 * @imr:	IMR structure representing address and access masks.
 * @return:	0 on success or error code passed from mbi_iosf on failure.
 */
static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
{
	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
	int ret;

	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
	if (ret)
		return ret;

	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
	if (ret)
		return ret;

	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
	if (ret)
		return ret;

	return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
}

/**
 * imr_write - write an IMR at a given index.
 *
 * Requires caller to hold imr mutex.
 * Note lock bits need to be written independently of address bits.
 *
 * @idev:	pointer to imr_device structure.
 * @imr_id:	IMR entry to write.
 * @imr:	IMR structure representing address and access masks.
 * @return:	0 on success or error code passed from mbi_iosf on failure.
 */
static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
{
	unsigned long flags;
	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
	int ret;

	local_irq_save(flags);

	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
	if (ret)
		goto failed;

	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
	if (ret)
		goto failed;

	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
	if (ret)
		goto failed;

	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
	if (ret)
		goto failed;

	local_irq_restore(flags);
	return 0;
failed:
	/*
	 * If writing to the IOSF failed then we're in an unknown state,
	 * likely a very bad state. An IMR in an invalid state will almost
	 * certainly lead to a memory access violation.
	 */
	local_irq_restore(flags);
	WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
	     imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);

	return ret;
}

/**
 * imr_dbgfs_state_show - print state of IMR registers.
 *
 * @s:		pointer to seq_file for output.
 * @unused:	unused parameter.
 * @return:	0 on success or error code passed from mbi_iosf on failure.
 */
static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
{
	phys_addr_t base;
	phys_addr_t end;
	int i;
	struct imr_device *idev = s->private;
	struct imr_regs imr;
	size_t size;
	int ret = -ENODEV;

	mutex_lock(&idev->lock);

	for (i = 0; i < idev->max_imr; i++) {

		ret = imr_read(idev, i, &imr);
		if (ret)
			break;

		/*
		 * Remember to add IMR_ALIGN bytes to size to indicate the
		 * inherent IMR_ALIGN size bytes contained in the masked away
		 * lower ten bits.
		 */
		if (imr_is_enabled(&imr)) {
			base = imr_to_phys(imr.addr_lo);
			end = imr_to_phys(imr.addr_hi) + IMR_MASK;
			size = end - base + 1;
		} else {
			base = 0;
			end = 0;
			size = 0;
		}
		seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
			   "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
			   &base, &end, size, imr.rmask, imr.wmask,
			   imr_is_enabled(&imr) ? "enabled " : "disabled",
			   imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
	}

	mutex_unlock(&idev->lock);
	return ret;
}
DEFINE_SHOW_ATTRIBUTE(imr_dbgfs_state);

/**
 * imr_debugfs_register - register debugfs hooks.
 *
 * @idev:	pointer to imr_device structure.
 */
static void imr_debugfs_register(struct imr_device *idev)
{
	debugfs_create_file("imr_state", 0444, NULL, idev,
			    &imr_dbgfs_state_fops);
}

/**
 * imr_check_params - check passed address range IMR alignment and non-zero size
 *
 * @base:	base address of intended IMR.
 * @size:	size of intended IMR.
 * @return:	zero on valid range -EINVAL on unaligned base/size.
 */
static int imr_check_params(phys_addr_t base, size_t size)
{
	if ((base & IMR_MASK) || (size & IMR_MASK)) {
		pr_err("base %pa size 0x%08zx must align to 1KiB\n",
			&base, size);
		return -EINVAL;
	}
	if (size == 0)
		return -EINVAL;

	return 0;
}

/**
 * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
 *
 * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
 * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
 * as a result.
 *
 * @size:	input size bytes.
 * @return:	reduced size.
 */
static inline size_t imr_raw_size(size_t size)
{
	return size - IMR_ALIGN;
}

/**
 * imr_address_overlap - detects an address overlap.
 *
 * @addr:	address to check against an existing IMR.
 * @imr:	imr being checked.
 * @return:	true for overlap false for no overlap.
 */
static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
{
	return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
}

/**
 * imr_add_range - add an Isolated Memory Region.
 *
 * @base:	physical base address of region aligned to 1KiB.
 * @size:	physical size of region in bytes must be aligned to 1KiB.
 * @read_mask:	read access mask.
 * @write_mask:	write access mask.
 * @return:	zero on success or negative value indicating error.
 */
int imr_add_range(phys_addr_t base, size_t size,
		  unsigned int rmask, unsigned int wmask)
{
	phys_addr_t end;
	unsigned int i;
	struct imr_device *idev = &imr_dev;
	struct imr_regs imr;
	size_t raw_size;
	int reg;
	int ret;

	if (WARN_ONCE(idev->init == false, "driver not initialized"))
		return -ENODEV;

	ret = imr_check_params(base, size);
	if (ret)
		return ret;

	/* Tweak the size value. */
	raw_size = imr_raw_size(size);
	end = base + raw_size;

	/*
	 * Check for reserved IMR value common to firmware, kernel and grub
	 * indicating a disabled IMR.
	 */
	imr.addr_lo = phys_to_imr(base);
	imr.addr_hi = phys_to_imr(end);
	imr.rmask = rmask;
	imr.wmask = wmask;
	if (!imr_is_enabled(&imr))
		return -ENOTSUPP;

	mutex_lock(&idev->lock);

	/*
	 * Find a free IMR while checking for an existing overlapping range.
	 * Note there's no restriction in silicon to prevent IMR overlaps.
	 * For the sake of simplicity and ease in defining/debugging an IMR
	 * memory map we exclude IMR overlaps.
	 */
	reg = -1;
	for (i = 0; i < idev->max_imr; i++) {
		ret = imr_read(idev, i, &imr);
		if (ret)
			goto failed;

		/* Find overlap @ base or end of requested range. */
		ret = -EINVAL;
		if (imr_is_enabled(&imr)) {
			if (imr_address_overlap(base, &imr))
				goto failed;
			if (imr_address_overlap(end, &imr))
				goto failed;
		} else {
			reg = i;
		}
	}

	/* Error out if we have no free IMR entries. */
	if (reg == -1) {
		ret = -ENOMEM;
		goto failed;
	}

	pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
		 reg, &base, &end, raw_size, rmask, wmask);

	/* Enable IMR at specified range and access mask. */
	imr.addr_lo = phys_to_imr(base);
	imr.addr_hi = phys_to_imr(end);
	imr.rmask = rmask;
	imr.wmask = wmask;

	ret = imr_write(idev, reg, &imr);
	if (ret < 0) {
		/*
		 * In the highly unlikely event iosf_mbi_write failed
		 * attempt to rollback the IMR setup skipping the trapping
		 * of further IOSF write failures.
		 */
		imr.addr_lo = 0;
		imr.addr_hi = 0;
		imr.rmask = IMR_READ_ACCESS_ALL;
		imr.wmask = IMR_WRITE_ACCESS_ALL;
		imr_write(idev, reg, &imr);
	}
failed:
	mutex_unlock(&idev->lock);
	return ret;
}
EXPORT_SYMBOL_GPL(imr_add_range);

/**
 * __imr_remove_range - delete an Isolated Memory Region.
 *
 * This function allows you to delete an IMR by its index specified by reg or
 * by address range specified by base and size respectively. If you specify an
 * index on its own the base and size parameters are ignored.
 * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
 * imr_remove_range(-1, base, size); delete IMR from base to base+size.
 *
 * @reg:	imr index to remove.
 * @base:	physical base address of region aligned to 1 KiB.
 * @size:	physical size of region in bytes aligned to 1 KiB.
 * @return:	-EINVAL on invalid range or out or range id
 *		-ENODEV if reg is valid but no IMR exists or is locked
 *		0 on success.
 */
static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
{
	phys_addr_t end;
	bool found = false;
	unsigned int i;
	struct imr_device *idev = &imr_dev;
	struct imr_regs imr;
	size_t raw_size;
	int ret = 0;

	if (WARN_ONCE(idev->init == false, "driver not initialized"))
		return -ENODEV;

	/*
	 * Validate address range if deleting by address, else we are
	 * deleting by index where base and size will be ignored.
	 */
	if (reg == -1) {
		ret = imr_check_params(base, size);
		if (ret)
			return ret;
	}

	/* Tweak the size value. */
	raw_size = imr_raw_size(size);
	end = base + raw_size;

	mutex_lock(&idev->lock);

	if (reg >= 0) {
		/* If a specific IMR is given try to use it. */
		ret = imr_read(idev, reg, &imr);
		if (ret)
			goto failed;

		if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
			ret = -ENODEV;
			goto failed;
		}
		found = true;
	} else {
		/* Search for match based on address range. */
		for (i = 0; i < idev->max_imr; i++) {
			ret = imr_read(idev, i, &imr);
			if (ret)
				goto failed;

			if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
				continue;

			if ((imr_to_phys(imr.addr_lo) == base) &&
			    (imr_to_phys(imr.addr_hi) == end)) {
				found = true;
				reg = i;
				break;
			}
		}
	}

	if (!found) {
		ret = -ENODEV;
		goto failed;
	}

	pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);

	/* Tear down the IMR. */
	imr.addr_lo = 0;
	imr.addr_hi = 0;
	imr.rmask = IMR_READ_ACCESS_ALL;
	imr.wmask = IMR_WRITE_ACCESS_ALL;

	ret = imr_write(idev, reg, &imr);

failed:
	mutex_unlock(&idev->lock);
	return ret;
}

/**
 * imr_remove_range - delete an Isolated Memory Region by address
 *
 * This function allows you to delete an IMR by an address range specified
 * by base and size respectively.
 * imr_remove_range(base, size); delete IMR from base to base+size.
 *
 * @base:	physical base address of region aligned to 1 KiB.
 * @size:	physical size of region in bytes aligned to 1 KiB.
 * @return:	-EINVAL on invalid range or out or range id
 *		-ENODEV if reg is valid but no IMR exists or is locked
 *		0 on success.
 */
int imr_remove_range(phys_addr_t base, size_t size)
{
	return __imr_remove_range(-1, base, size);
}
EXPORT_SYMBOL_GPL(imr_remove_range);

/**
 * imr_clear - delete an Isolated Memory Region by index
 *
 * This function allows you to delete an IMR by an address range specified
 * by the index of the IMR. Useful for initial sanitization of the IMR
 * address map.
 * imr_ge(base, size); delete IMR from base to base+size.
 *
 * @reg:	imr index to remove.
 * @return:	-EINVAL on invalid range or out or range id
 *		-ENODEV if reg is valid but no IMR exists or is locked
 *		0 on success.
 */
static inline int imr_clear(int reg)
{
	return __imr_remove_range(reg, 0, 0);
}

/**
 * imr_fixup_memmap - Tear down IMRs used during bootup.
 *
 * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
 * that need to be removed before the kernel hands out one of the IMR
 * encased addresses to a downstream DMA agent such as the SD or Ethernet.
 * IMRs on Galileo are setup to immediately reset the system on violation.
 * As a result if you're running a root filesystem from SD - you'll need
 * the boot-time IMRs torn down or you'll find seemingly random resets when
 * using your filesystem.
 *
 * @idev:	pointer to imr_device structure.
 * @return:
 */
static void __init imr_fixup_memmap(struct imr_device *idev)
{
	phys_addr_t base = virt_to_phys(&_text);
	size_t size = virt_to_phys(&__end_rodata) - base;
	unsigned long start, end;
	int i;
	int ret;

	/* Tear down all existing unlocked IMRs. */
	for (i = 0; i < idev->max_imr; i++)
		imr_clear(i);

	start = (unsigned long)_text;
	end = (unsigned long)__end_rodata - 1;

	/*
	 * Setup an unlocked IMR around the physical extent of the kernel
	 * from the beginning of the .text section to the end of the
	 * .rodata section as one physically contiguous block.
	 *
	 * We don't round up @size since it is already PAGE_SIZE aligned.
	 * See vmlinux.lds.S for details.
	 */
	ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
	if (ret < 0) {
		pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
			size / 1024, start, end);
	} else {
		pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
			size / 1024, start, end);
	}

}

static const struct x86_cpu_id imr_ids[] __initconst = {
	X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000, NULL),
	{}
};

/**
 * imr_init - entry point for IMR driver.
 *
 * return: -ENODEV for no IMR support 0 if good to go.
 */
static int __init imr_init(void)
{
	struct imr_device *idev = &imr_dev;

	if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
		return -ENODEV;

	idev->max_imr = QUARK_X1000_IMR_MAX;
	idev->reg_base = QUARK_X1000_IMR_REGBASE;
	idev->init = true;

	mutex_init(&idev->lock);
	imr_debugfs_register(idev);
	imr_fixup_memmap(idev);
	return 0;
}
device_initcall(imr_init);