1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2022 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include <linux/slab.h>
#include "../habanalabs.h"
#include <trace/events/habanalabs.h>
/**
* hl_mmu_get_funcs() - get MMU functions structure
* @hdev: habanalabs device structure.
* @pgt_residency: page table residency.
* @is_dram_addr: true if we need HMMU functions
*
* @return appropriate MMU functions structure
*/
static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
bool is_dram_addr)
{
return &hdev->mmu_func[pgt_residency];
}
bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->dmmu.start_addr,
prop->dmmu.end_addr);
}
/**
* hl_mmu_init() - initialize the MMU module.
* @hdev: habanalabs device structure.
*
* Return: 0 for success, non-zero for failure.
*/
int hl_mmu_init(struct hl_device *hdev)
{
int rc = -EOPNOTSUPP;
if (hdev->mmu_disable)
return 0;
mutex_init(&hdev->mmu_lock);
if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
if (rc)
return rc;
}
if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
if (rc)
goto fini_dr_mmu;
}
return 0;
fini_dr_mmu:
if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
hdev->mmu_func[MMU_DR_PGT].fini(hdev);
return rc;
}
/**
* hl_mmu_fini() - release the MMU module.
* @hdev: habanalabs device structure.
*
* This function does the following:
* - Disable MMU in H/W.
* - Free the pgt_infos pool.
*
* All contexts should be freed before calling this function.
*/
void hl_mmu_fini(struct hl_device *hdev)
{
if (hdev->mmu_disable)
return;
if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
hdev->mmu_func[MMU_DR_PGT].fini(hdev);
if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
hdev->mmu_func[MMU_HR_PGT].fini(hdev);
mutex_destroy(&hdev->mmu_lock);
}
/**
* hl_mmu_ctx_init() - initialize a context for using the MMU module.
* @ctx: pointer to the context structure to initialize.
*
* Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
* page tables hops related to this context.
* Return: 0 on success, non-zero otherwise.
*/
int hl_mmu_ctx_init(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
int rc = -EOPNOTSUPP;
if (hdev->mmu_disable)
return 0;
if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
if (rc)
return rc;
}
if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
if (rc)
goto fini_dr_ctx;
}
return 0;
fini_dr_ctx:
if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
hdev->mmu_func[MMU_DR_PGT].fini(hdev);
return rc;
}
/*
* hl_mmu_ctx_fini - disable a ctx from using the mmu module
*
* @ctx: pointer to the context structure
*
* This function does the following:
* - Free any pgts which were not freed yet
* - Free the mutex
* - Free DRAM default page mapping hops
*/
void hl_mmu_ctx_fini(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
if (hdev->mmu_disable)
return;
if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
}
/*
* hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
*
* @hdev: pointer to device data.
* @mmu_prop: MMU properties.
* @page_size: page size
* @real_page_size: set here the actual page size to use for the operation
* @is_dram_addr: true if DRAM address, otherwise false.
*
* @return 0 on success, otherwise non 0 error code
*
* note that this is general implementation that can fit most MMU arch. but as this is used as an
* MMU function:
* 1. it shall not be called directly- only from mmu_func structure instance
* 2. each MMU may modify the implementation internally
*/
int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
u32 page_size, u32 *real_page_size, bool is_dram_addr)
{
/*
* The H/W handles mapping of specific page sizes. Hence if the page
* size is bigger, we break it to sub-pages and map them separately.
*/
if ((page_size % mmu_prop->page_size) == 0) {
*real_page_size = mmu_prop->page_size;
return 0;
}
dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
page_size, mmu_prop->page_size >> 10);
return -EFAULT;
}
static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
bool is_dram_addr)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
if (is_dram_addr)
return &prop->dmmu;
else if ((page_size % prop->pmmu_huge.page_size) == 0)
return &prop->pmmu_huge;
return &prop->pmmu;
}
/*
* hl_mmu_unmap_page - unmaps a virtual addr
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @page_size: size of the page to unmap
* @flush_pte: whether to do a PCI flush
*
* This function does the following:
* - Check that the virt addr is mapped
* - Unmap the virt addr and frees pgts if possible
* - Returns 0 on success, -EINVAL if the given addr is not mapped
*
* Because this function changes the page tables in the device and because it
* changes the MMU hash, it must be protected by a lock.
* However, because it maps only a single page, the lock should be implemented
* in a higher level in order to protect the entire mapping of the memory area
*
* For optimization reasons PCI flush may be requested once after unmapping of
* large area.
*/
int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
{
struct hl_device *hdev = ctx->hdev;
struct hl_mmu_properties *mmu_prop;
struct hl_mmu_funcs *mmu_funcs;
int i, pgt_residency, rc = 0;
u32 real_page_size, npages;
u64 real_virt_addr;
bool is_dram_addr;
if (hdev->mmu_disable)
return 0;
is_dram_addr = hl_is_dram_va(hdev, virt_addr);
mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
is_dram_addr);
if (rc)
return rc;
npages = page_size / real_page_size;
real_virt_addr = virt_addr;
for (i = 0 ; i < npages ; i++) {
rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
if (rc)
break;
real_virt_addr += real_page_size;
}
if (flush_pte)
mmu_funcs->flush(ctx);
if (trace_habanalabs_mmu_unmap_enabled() && !rc)
trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte);
return rc;
}
/*
* hl_mmu_map_page - maps a virtual addr to physical addr
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @phys_addr: phys addr to map to
* @page_size: physical page size
* @flush_pte: whether to do a PCI flush
*
* This function does the following:
* - Check that the virt addr is not mapped
* - Allocate pgts as necessary in order to map the virt addr to the phys
* - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
*
* Because this function changes the page tables in the device and because it
* changes the MMU hash, it must be protected by a lock.
* However, because it maps only a single page, the lock should be implemented
* in a higher level in order to protect the entire mapping of the memory area
*
* For optimization reasons PCI flush may be requested once after mapping of
* large area.
*/
int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
bool flush_pte)
{
int i, rc, pgt_residency, mapped_cnt = 0;
struct hl_device *hdev = ctx->hdev;
struct hl_mmu_properties *mmu_prop;
u64 real_virt_addr, real_phys_addr;
struct hl_mmu_funcs *mmu_funcs;
u32 real_page_size, npages;
bool is_dram_addr;
if (hdev->mmu_disable)
return 0;
is_dram_addr = hl_is_dram_va(hdev, virt_addr);
mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
is_dram_addr);
if (rc)
return rc;
/*
* Verify that the phys and virt addresses are aligned with the
* MMU page size (in dram this means checking the address and MMU
* after scrambling)
*/
if ((is_dram_addr &&
((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
(mmu_prop->page_size - 1)) ||
(hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
(mmu_prop->page_size - 1)))) ||
(!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
(virt_addr & (real_page_size - 1)))))
dev_crit(hdev->dev,
"Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
phys_addr, virt_addr, real_page_size);
npages = page_size / real_page_size;
real_virt_addr = virt_addr;
real_phys_addr = phys_addr;
for (i = 0 ; i < npages ; i++) {
rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
is_dram_addr);
if (rc)
goto err;
real_virt_addr += real_page_size;
real_phys_addr += real_page_size;
mapped_cnt++;
}
if (flush_pte)
mmu_funcs->flush(ctx);
trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte);
return 0;
err:
real_virt_addr = virt_addr;
for (i = 0 ; i < mapped_cnt ; i++) {
if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
dev_warn_ratelimited(hdev->dev,
"failed to unmap va: 0x%llx\n", real_virt_addr);
real_virt_addr += real_page_size;
}
mmu_funcs->flush(ctx);
return rc;
}
/*
* hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
* for mapping contiguous physical memory
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @phys_addr: phys addr to map to
* @size: size to map
*
*/
int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
u64 phys_addr, u32 size)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 curr_va, curr_pa;
u32 page_size;
bool flush_pte;
int rc = 0, off;
if (hl_mem_area_inside_range(virt_addr, size,
prop->dmmu.start_addr, prop->dmmu.end_addr))
page_size = prop->dmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu.start_addr, prop->pmmu.end_addr))
page_size = prop->pmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
page_size = prop->pmmu_huge.page_size;
else
return -EINVAL;
for (off = 0 ; off < size ; off += page_size) {
curr_va = virt_addr + off;
curr_pa = phys_addr + off;
flush_pte = (off + page_size) >= size;
rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
flush_pte);
if (rc) {
dev_err(hdev->dev,
"Map failed for va 0x%llx to pa 0x%llx\n",
curr_va, curr_pa);
/* last mapping failed so don't try to unmap it - reduce off by page_size */
off -= page_size;
goto unmap;
}
}
return rc;
unmap:
for (; off >= 0 ; off -= page_size) {
curr_va = virt_addr + off;
flush_pte = (off - (s32) page_size) < 0;
if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
dev_warn_ratelimited(hdev->dev,
"failed to unmap va 0x%llx\n", curr_va);
}
return rc;
}
/*
* hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
* for unmapping contiguous physical memory
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to unmap
* @size: size to unmap
*
*/
int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 curr_va;
u32 page_size;
bool flush_pte;
int rc = 0, off;
if (hl_mem_area_inside_range(virt_addr, size,
prop->dmmu.start_addr, prop->dmmu.end_addr))
page_size = prop->dmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu.start_addr, prop->pmmu.end_addr))
page_size = prop->pmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
page_size = prop->pmmu_huge.page_size;
else
return -EINVAL;
for (off = 0 ; off < size ; off += page_size) {
curr_va = virt_addr + off;
flush_pte = (off + page_size) >= size;
rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
if (rc)
dev_warn_ratelimited(hdev->dev,
"Unmap failed for va 0x%llx\n", curr_va);
}
return rc;
}
static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
struct hl_mmu_hop_info *hops,
u64 *phys_addr)
{
struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
struct hl_mmu_properties *mmu_prop;
/* last hop holds the phys address and flags */
if (hops->unscrambled_paddr)
tmp_phys_addr = hops->unscrambled_paddr;
else
tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
mmu_prop = &prop->pmmu_huge;
else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
mmu_prop = &prop->pmmu;
else /* HL_VA_RANGE_TYPE_DRAM */
mmu_prop = &prop->dmmu;
if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
!is_power_of_2(prop->dram_page_size)) {
u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
page_id, page_start;
u32 page_off;
/*
* Bit arithmetic cannot be used for non power of two page
* sizes. In addition, since bit arithmetic is not used,
* we cannot ignore dram base. All that shall be considered.
*/
dram_page_size = prop->dram_page_size;
dram_base = prop->dram_base_address;
abs_phys_addr = tmp_phys_addr - dram_base;
abs_virt_addr = virt_addr - dram_base;
page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
page_start = page_id * dram_page_size;
div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
*phys_addr = page_start + page_off + dram_base;
} else {
/*
* find the correct hop shift field in hl_mmu_properties
* structure in order to determine the right masks
* for the page offset.
*/
hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
offset_mask = (1ull << hop_shift) - 1;
addr_mask = ~(offset_mask);
*phys_addr = (tmp_phys_addr & addr_mask) |
(virt_addr & offset_mask);
}
}
int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
{
struct hl_mmu_hop_info hops;
int rc;
memset(&hops, 0, sizeof(hops));
rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
if (rc)
return rc;
hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr);
return 0;
}
int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
struct hl_mmu_hop_info *hops)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop;
struct hl_mmu_properties *mmu_prop;
struct hl_mmu_funcs *mmu_funcs;
int pgt_residency, rc;
bool is_dram_addr;
if (hdev->mmu_disable)
return -EOPNOTSUPP;
prop = &hdev->asic_prop;
hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->dmmu.start_addr,
prop->dmmu.end_addr);
/* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
mutex_lock(&hdev->mmu_lock);
rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
mutex_unlock(&hdev->mmu_lock);
if (rc)
return rc;
/* add page offset to physical address */
if (hops->unscrambled_paddr)
hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
return 0;
}
int hl_mmu_if_set_funcs(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
if (hdev->mmu_disable)
return 0;
switch (hdev->asic_type) {
case ASIC_GOYA:
case ASIC_GAUDI:
case ASIC_GAUDI_SEC:
hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
break;
case ASIC_GAUDI2:
case ASIC_GAUDI2B:
case ASIC_GAUDI2C:
hl_mmu_v2_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
if (prop->pmmu.host_resident)
hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
break;
default:
dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
hdev->asic_type);
return -EOPNOTSUPP;
}
return 0;
}
/**
* hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
* @hdev: pointer to device data.
* @addr: The address to scramble.
*
* Return: The scrambled address.
*/
u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
{
return addr;
}
/**
* hl_mmu_descramble_addr() - The generic mmu address descrambling
* routine.
* @hdev: pointer to device data.
* @addr: The address to descramble.
*
* Return: The un-scrambled address.
*/
u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
{
return addr;
}
int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
{
int rc;
rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
if (rc)
dev_err_ratelimited(hdev->dev,
"%s cache invalidation failed, rc=%d\n",
flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc);
return rc;
}
int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
u32 flags, u32 asid, u64 va, u64 size)
{
int rc;
rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
asid, va, size);
if (rc)
dev_err_ratelimited(hdev->dev,
"%s cache range invalidation failed: va=%#llx, size=%llu, rc=%d",
flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", va, size, rc);
return rc;
}
static void hl_mmu_prefetch_work_function(struct work_struct *work)
{
struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work);
struct hl_ctx *ctx = pfw->ctx;
struct hl_device *hdev = ctx->hdev;
if (!hl_device_operational(hdev, NULL))
goto put_ctx;
mutex_lock(&hdev->mmu_lock);
hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
mutex_unlock(&hdev->mmu_lock);
put_ctx:
/*
* context was taken in the common mmu prefetch function- see comment there about
* context handling.
*/
hl_ctx_put(ctx);
kfree(pfw);
}
int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
{
struct hl_prefetch_work *handle_prefetch_work;
handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL);
if (!handle_prefetch_work)
return -ENOMEM;
INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function);
handle_prefetch_work->ctx = ctx;
handle_prefetch_work->va = va;
handle_prefetch_work->size = size;
handle_prefetch_work->flags = flags;
handle_prefetch_work->asid = asid;
/*
* as actual prefetch is done in a WQ we must get the context (and put it
* at the end of the work function)
*/
hl_ctx_get(ctx);
queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work);
return 0;
}
u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
{
return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
}
/**
* hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
* @ctx: pointer to the context structure to initialize.
* @mmu_prop: MMU properties.
* @hop_idx: HOP index.
* @hop_addr: HOP address.
* @virt_addr: virtual address for the translation.
*
* @return the matching PTE value on success, otherwise U64_MAX.
*/
u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
u8 hop_idx, u64 hop_addr, u64 virt_addr)
{
u64 mask, shift;
if (hop_idx >= mmu_prop->num_hops) {
dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
return U64_MAX;
}
shift = mmu_prop->hop_shifts[hop_idx];
mask = mmu_prop->hop_masks[hop_idx];
return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
}
static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
struct gen_pool_chunk *chunk,
void *data)
{
struct hl_device *hdev = data;
hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
(void *)chunk->start_addr, chunk->phys_addr);
}
void hl_mmu_hr_flush(struct hl_ctx *ctx)
{
/* a flush operation requires memory barrier */
mb();
}
/**
* hl_mmu_hr_pool_destroy() - destroy genpool
* @hdev: habanalabs device structure.
* @hr_priv: MMU HR private data.
* @hop_table_size: HOP table size.
*
* This function does the following:
* - free entries allocated for shadow HOP0
* - free pool chunks
* - free pool
*/
static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
u32 hop_table_size)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
struct pgt_info *hop0_pgt;
int asid;
if (ZERO_OR_NULL_PTR(*pool))
return;
/* Free the Fixed allocation of HOPs0 */
if (hr_priv->mmu_asid_hop0) {
for (asid = 0 ; asid < prop->max_asid ; asid++) {
hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
continue;
gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
}
}
gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
gen_pool_destroy(*pool);
/* Make sure that if we arrive here again without init was called we
* won't cause kernel panic. This can happen for example if we fail
* during hard reset code at certain points
*/
*pool = NULL;
}
/**
* hl_mmu_hr_init() - initialize the MMU module.
* @hdev: habanalabs device structure.
* @hr_priv: MMU HR private data.
* @hop_table_size: HOP table size.
* @pgt_size: memory size allocated for the page table
*
* @return 0 on success otherwise non-zero error code
*
* This function does the following:
* - Create a pool of pages for pgt_infos.
* - Create a shadow table for pgt
*/
int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
u64 pgt_size)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
size_t pool_chunk_size = SZ_4M;
struct pgt_info *hop0_pgt;
dma_addr_t dma_addr;
u64 virt_addr;
int i, rc;
/*
* we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
* PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
* This way we can call "DMA alloc align" according to dma_alloc granularity and supply
* allocations with higher-order alignment restrictions
*/
hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
dev_err(hdev->dev, "Failed to create hr page pool\n");
return -ENOMEM;
}
hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
rc = -ENOMEM;
goto destroy_mmu_pgt_pool;
}
for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
&dma_addr,
GFP_KERNEL | __GFP_ZERO);
if (ZERO_OR_NULL_PTR(virt_addr)) {
dev_err(hdev->dev,
"Failed to allocate memory for host-resident page pool\n");
rc = -ENOMEM;
goto destroy_mmu_pgt_pool;
}
rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
pool_chunk_size, -1);
if (rc) {
dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
goto destroy_mmu_pgt_pool;
}
}
for (i = 0 ; i < prop->max_asid ; i++) {
hop0_pgt = &hr_priv->mmu_asid_hop0[i];
hop0_pgt->virt_addr = (uintptr_t)
gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
hop_table_size,
(dma_addr_t *) &hop0_pgt->phys_addr,
hop_table_size);
if (!hop0_pgt->virt_addr) {
dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
rc = -ENOMEM;
goto destroy_mmu_pgt_pool;
}
}
/* MMU H/W init will be done in device hw_init() */
return 0;
destroy_mmu_pgt_pool:
hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
kvfree(hr_priv->mmu_asid_hop0);
return rc;
}
/**
* hl_mmu_hr_fini() - release the MMU module.
* @hdev: habanalabs device structure.
* @hr_priv: MMU host resident private info.
* @hop_table_size: HOP table size
*
* This function does the following:
* - Disable MMU in H/W.
* - Free the pgt_infos pool.
*
* All contexts should be freed before calling this function.
*/
void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
{
/* MMU H/W fini was already done in device hw_fini() */
hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
kvfree(hr_priv->mmu_asid_hop0);
/* Make sure that if we arrive here again without init was
* called we won't cause kernel panic. This can happen for
* example if we fail during hard reset code at certain points
*/
hr_priv->mmu_asid_hop0 = NULL;
}
}
/**
* hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
* @pgt_info: page table info structure.
* @hr_priv: MMU HR private data.
* @hop_table_size: HOP table size.
*/
void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
u32 hop_table_size)
{
gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
hash_del(&pgt_info->node);
kfree(pgt_info);
}
/**
* hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
* @ctx: pointer to the context structure
* @pgt: pgt_info for the HOP hosting the PTE
* @phys_pte_addr: phys address of the PTE
* @hop_table_size: HOP table size
*
* @return PTE virtual address
*
* The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
* by adding the PTE offset.
*/
u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
u64 phys_pte_addr, u32 hop_table_size)
{
u64 page_mask = (hop_table_size - 1);
u64 pte_offset = phys_pte_addr & page_mask;
return pgt->virt_addr + pte_offset;
}
/**
* hl_mmu_hr_write_pte() - write HR PTE
* @ctx: pointer to the context structure
* @pgt_info: HOP's page table info structure
* @phys_pte_addr: phys PTE address
* @val: raw PTE data
* @hop_table_size: HOP table size
*/
void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
u64 val, u32 hop_table_size)
{
/*
* The value to write is the phys address of the next hop +
* flags at the 12 LSBs.
*/
u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
*((u64 *) (uintptr_t) virt_addr) = val;
}
/**
* hl_mmu_hr_clear_pte() - clear HR PTE
* @ctx: pointer to the context structure
* @pgt_info: HOP's page table info structure
* @phys_pte_addr: phys PTE address
* @hop_table_size: HOP table size
*/
void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
u32 hop_table_size)
{
/* no need to transform the value to physical address */
hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
}
/**
* hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
* @ctx: pointer to the context structure
* @pgt_info: HOP's page table info structure
* @hr_priv: HR MMU private info
* @hop_table_size: HOP table size
*
* @return number of PTEs still in the HOP
*/
int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
struct hl_mmu_hr_priv *hr_priv,
u32 hop_table_size)
{
int num_of_ptes_left;
pgt_info->num_of_ptes--;
/*
* Need to save the number of ptes left because free_hop might free
* the pgt_info
*/
num_of_ptes_left = pgt_info->num_of_ptes;
if (!num_of_ptes_left)
hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
return num_of_ptes_left;
}
/**
* hl_mmu_hr_get_pte() - increase PGT PTE count
* @ctx: pointer to the context structure
* @hr_func: host resident functions
* @phys_hop_addr: HOP phys address
*/
void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
{
hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
}
/**
* hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
* @ctx: pointer to the context structure.
* @hr_func: host resident functions.
* @curr_pte: current PTE value.
*
* @return pgt_info structure on success, otherwise NULL.
*/
struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
struct hl_hr_mmu_funcs *hr_func,
u64 curr_pte)
{
u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
if (next_hop_phys_addr == ULLONG_MAX)
return NULL;
return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
}
/**
* hl_mmu_hr_alloc_hop() - allocate HOP
* @ctx: pointer to the context structure.
* @hr_priv: host resident private info structure.
* @hr_func: host resident functions.
* @mmu_prop: MMU properties.
*
* @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
*/
struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
struct hl_hr_mmu_funcs *hr_func,
struct hl_mmu_properties *mmu_prop)
{
struct hl_device *hdev = ctx->hdev;
struct pgt_info *pgt_info;
dma_addr_t phys_addr;
void *virt_addr;
int i, retry = 1;
pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
if (!pgt_info)
return NULL;
for (i = 0; i <= retry; i++) {
virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
mmu_prop->hop_table_size,
&phys_addr,
mmu_prop->hop_table_size);
if (virt_addr)
break;
/* No memory in pool - get some and try again */
virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
GFP_KERNEL | __GFP_ZERO);
if (ZERO_OR_NULL_PTR(virt_addr))
break;
if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
phys_addr, SZ_2M, -1)) {
hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
virt_addr = NULL;
break;
}
}
if (ZERO_OR_NULL_PTR(virt_addr)) {
dev_err(hdev->dev, "failed to allocate page\n");
goto pool_alloc_err;
}
pgt_info->phys_addr = phys_addr;
pgt_info->shadow_addr = (unsigned long) NULL;
pgt_info->virt_addr = (unsigned long)virt_addr;
pgt_info->ctx = ctx;
pgt_info->num_of_ptes = 0;
hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
return pgt_info;
pool_alloc_err:
kfree(pgt_info);
return NULL;
}
/**
* hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
* @ctx: pointer to the context structure.
* @hr_priv: host resident private info structure.
* @hr_func: host resident functions.
* @mmu_prop: MMU properties.
* @curr_pte: current PTE value.
* @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
*
* @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
*/
struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
struct hl_mmu_hr_priv *hr_priv,
struct hl_hr_mmu_funcs *hr_func,
struct hl_mmu_properties *mmu_prop,
u64 curr_pte, bool *is_new_hop)
{
u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
if (hop_addr != ULLONG_MAX)
return hr_func->get_pgt_info(ctx, hop_addr);
*is_new_hop = true;
return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
}
/**
* hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
* @ctx: pointer to the context structure.
* @virt_addr: the virt address for which to get info.
* @hops: HOPs info structure.
* @hr_func: host resident functions.
*
* @return 0 on success, otherwise non 0 error code..
*/
int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
struct hl_hr_mmu_funcs *hr_func)
{
/* using 6 HOPs as this is the maximum number of HOPs */
struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
struct hl_device *hdev = ctx->hdev;
struct hl_mmu_properties *mmu_prop;
int rc, i, used_hops;
bool is_huge;
rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
if (rc)
return rc;
used_hops = mmu_prop->num_hops;
/* huge pages use one less hop */
if (is_huge)
used_hops--;
hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
for (i = 0 ; i < used_hops ; i++) {
if (i == 0)
hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
else
hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
hops->hop_info[i - 1].hop_pte_val);
if (!hops_pgt_info[i])
return -EFAULT;
hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
hops->hop_info[i].hop_pte_addr =
hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
hops->hop_info[i].hop_addr,
hops->scrambled_vaddr);
hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
hops->hop_info[i].hop_pte_addr,
mmu_prop->hop_table_size);
if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
return -EFAULT;
if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
break;
}
/* if passed over all hops then no last hop was found */
if (i == mmu_prop->num_hops)
return -EFAULT;
if (hops->scrambled_vaddr != virt_addr)
hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
(hdev, hops->hop_info[i].hop_pte_val);
else
hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
hops->used_hops = i + 1;
return 0;
}
struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr)
{
struct pgt_info *pgt_info = NULL;
hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node,
(unsigned long) hop_addr)
if (hop_addr == pgt_info->shadow_addr)
break;
return pgt_info;
}
void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr)
{
struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr);
hl_mmu_dr_free_pgt_node(ctx, pgt_info);
}
void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info)
{
struct hl_device *hdev = ctx->hdev;
gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr,
hdev->asic_prop.dmmu.hop_table_size);
hash_del(&pgt_info->node);
kfree((u64 *) (uintptr_t) pgt_info->shadow_addr);
kfree(pgt_info);
}
u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx)
{
return ctx->hdev->asic_prop.mmu_pgt_addr +
(ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size);
}
u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx)
{
return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 +
(ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size);
}
u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
{
u64 page_mask = ctx->hdev->asic_prop.dmmu.hop_table_size - 1;
u64 shadow_hop_addr = shadow_addr & (~page_mask);
u64 pte_offset = shadow_addr & page_mask;
u64 phys_hop_addr;
if (shadow_hop_addr != hl_mmu_dr_get_hop0_addr(ctx))
phys_hop_addr = hl_mmu_dr_get_pgt_info(ctx, shadow_hop_addr)->phys_addr;
else
phys_hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx);
return phys_hop_addr + pte_offset;
}
void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
{
u64 phys_val = hl_mmu_dr_get_phys_addr(ctx, val);
ctx->hdev->asic_funcs->write_pte(ctx->hdev, hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr),
phys_val);
*(u64 *) (uintptr_t) shadow_pte_addr = val;
}
void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
{
ctx->hdev->asic_funcs->write_pte(ctx->hdev,
hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), val);
*(u64 *) (uintptr_t) shadow_pte_addr = val;
}
void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr)
{
hl_mmu_dr_write_final_pte(ctx, pte_addr, 0);
}
void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr)
{
hl_mmu_dr_get_pgt_info(ctx, hop_addr)->num_of_ptes++;
}
int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr)
{
struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr);
int num_of_ptes_left;
pgt_info->num_of_ptes--;
/*
* Need to save the number of ptes left because hl_mmu_free_hop might free
* the pgt_info
*/
num_of_ptes_left = pgt_info->num_of_ptes;
if (!num_of_ptes_left)
hl_mmu_dr_free_pgt_node(ctx, pgt_info);
return num_of_ptes_left;
}
u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct pgt_info *pgt_info;
u64 phys_addr, shadow_addr;
pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
if (!pgt_info)
return ULLONG_MAX;
phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool,
prop->dmmu.hop_table_size);
if (!phys_addr) {
dev_err(hdev->dev, "failed to allocate page\n");
goto pool_add_err;
}
shadow_addr = (u64) (uintptr_t) kzalloc(prop->dmmu.hop_table_size,
GFP_KERNEL);
if (!shadow_addr)
goto shadow_err;
pgt_info->phys_addr = phys_addr;
pgt_info->shadow_addr = shadow_addr;
pgt_info->ctx = ctx;
pgt_info->num_of_ptes = 0;
hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr);
return shadow_addr;
shadow_err:
gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool,
phys_addr, prop->dmmu.hop_table_size);
pool_add_err:
kfree(pgt_info);
return ULLONG_MAX;
}
u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop)
{
u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
if (hop_addr == ULLONG_MAX) {
hop_addr = hl_mmu_dr_alloc_hop(ctx);
*is_new_hop = (hop_addr != ULLONG_MAX);
}
return hop_addr;
}
void hl_mmu_dr_flush(struct hl_ctx *ctx)
{
/* flush all writes from all cores to reach PCI */
mb();
ctx->hdev->asic_funcs->read_pte(ctx->hdev, hl_mmu_dr_get_phys_hop0_addr(ctx));
}
int hl_mmu_dr_init(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
int rc;
hdev->mmu_priv.dr.mmu_pgt_pool =
gen_pool_create(__ffs(prop->dmmu.hop_table_size), -1);
if (!hdev->mmu_priv.dr.mmu_pgt_pool) {
dev_err(hdev->dev, "Failed to create page gen pool\n");
return -ENOMEM;
}
rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr +
prop->dmmu.hop0_tables_total_size,
prop->dmmu.pgt_size - prop->dmmu.hop0_tables_total_size,
-1);
if (rc) {
dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
goto err_pool_add;
}
hdev->mmu_priv.dr.mmu_shadow_hop0 = kvcalloc(prop->max_asid,
prop->dmmu.hop_table_size, GFP_KERNEL);
if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) {
rc = -ENOMEM;
goto err_pool_add;
}
/* MMU H/W init will be done in device hw_init() */
return 0;
err_pool_add:
gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
return rc;
}
void hl_mmu_dr_fini(struct hl_device *hdev)
{
/* MMU H/W fini was already done in device hw_fini() */
if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0))
return;
kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0);
gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
/* Make sure that if we arrive here again without init was
* called we won't cause kernel panic. This can happen for
* example if we fail during hard reset code at certain points
*/
hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL;
}
|