summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/ccree/cc_buffer_mgr.c
blob: bcca55bff910ef04832969d79efc49952d04d8c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */

#include <crypto/internal/aead.h>
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>

#include "cc_buffer_mgr.h"
#include "cc_lli_defs.h"
#include "cc_cipher.h"
#include "cc_hash.h"
#include "cc_aead.h"

union buffer_array_entry {
	struct scatterlist *sgl;
	dma_addr_t buffer_dma;
};

struct buffer_array {
	unsigned int num_of_buffers;
	union buffer_array_entry entry[MAX_NUM_OF_BUFFERS_IN_MLLI];
	unsigned int offset[MAX_NUM_OF_BUFFERS_IN_MLLI];
	int nents[MAX_NUM_OF_BUFFERS_IN_MLLI];
	int total_data_len[MAX_NUM_OF_BUFFERS_IN_MLLI];
	bool is_last[MAX_NUM_OF_BUFFERS_IN_MLLI];
	u32 *mlli_nents[MAX_NUM_OF_BUFFERS_IN_MLLI];
};

static inline char *cc_dma_buf_type(enum cc_req_dma_buf_type type)
{
	switch (type) {
	case CC_DMA_BUF_NULL:
		return "BUF_NULL";
	case CC_DMA_BUF_DLLI:
		return "BUF_DLLI";
	case CC_DMA_BUF_MLLI:
		return "BUF_MLLI";
	default:
		return "BUF_INVALID";
	}
}

/**
 * cc_copy_mac() - Copy MAC to temporary location
 *
 * @dev: device object
 * @req: aead request object
 * @dir: [IN] copy from/to sgl
 */
static void cc_copy_mac(struct device *dev, struct aead_request *req,
			enum cc_sg_cpy_direct dir)
{
	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
	u32 skip = req->assoclen + req->cryptlen;

	cc_copy_sg_portion(dev, areq_ctx->backup_mac, req->src,
			   (skip - areq_ctx->req_authsize), skip, dir);
}

/**
 * cc_get_sgl_nents() - Get scatterlist number of entries.
 *
 * @dev: Device object
 * @sg_list: SG list
 * @nbytes: [IN] Total SGL data bytes.
 * @lbytes: [OUT] Returns the amount of bytes at the last entry
 *
 * Return:
 * Number of entries in the scatterlist
 */
static unsigned int cc_get_sgl_nents(struct device *dev,
				     struct scatterlist *sg_list,
				     unsigned int nbytes, u32 *lbytes)
{
	unsigned int nents = 0;

	*lbytes = 0;

	while (nbytes && sg_list) {
		nents++;
		/* get the number of bytes in the last entry */
		*lbytes = nbytes;
		nbytes -= (sg_list->length > nbytes) ?
				nbytes : sg_list->length;
		sg_list = sg_next(sg_list);
	}

	dev_dbg(dev, "nents %d last bytes %d\n", nents, *lbytes);
	return nents;
}

/**
 * cc_copy_sg_portion() - Copy scatter list data,
 * from to_skip to end, to dest and vice versa
 *
 * @dev: Device object
 * @dest: Buffer to copy to/from
 * @sg: SG list
 * @to_skip: Number of bytes to skip before copying
 * @end: Offset of last byte to copy
 * @direct: Transfer direction (true == from SG list to buffer, false == from
 *          buffer to SG list)
 */
void cc_copy_sg_portion(struct device *dev, u8 *dest, struct scatterlist *sg,
			u32 to_skip, u32 end, enum cc_sg_cpy_direct direct)
{
	u32 nents;

	nents = sg_nents_for_len(sg, end);
	sg_copy_buffer(sg, nents, dest, (end - to_skip + 1), to_skip,
		       (direct == CC_SG_TO_BUF));
}

static int cc_render_buff_to_mlli(struct device *dev, dma_addr_t buff_dma,
				  u32 buff_size, u32 *curr_nents,
				  u32 **mlli_entry_pp)
{
	u32 *mlli_entry_p = *mlli_entry_pp;
	u32 new_nents;

	/* Verify there is no memory overflow*/
	new_nents = (*curr_nents + buff_size / CC_MAX_MLLI_ENTRY_SIZE + 1);
	if (new_nents > MAX_NUM_OF_TOTAL_MLLI_ENTRIES) {
		dev_err(dev, "Too many mlli entries. current %d max %d\n",
			new_nents, MAX_NUM_OF_TOTAL_MLLI_ENTRIES);
		return -ENOMEM;
	}

	/*handle buffer longer than 64 kbytes */
	while (buff_size > CC_MAX_MLLI_ENTRY_SIZE) {
		cc_lli_set_addr(mlli_entry_p, buff_dma);
		cc_lli_set_size(mlli_entry_p, CC_MAX_MLLI_ENTRY_SIZE);
		dev_dbg(dev, "entry[%d]: single_buff=0x%08X size=%08X\n",
			*curr_nents, mlli_entry_p[LLI_WORD0_OFFSET],
			mlli_entry_p[LLI_WORD1_OFFSET]);
		buff_dma += CC_MAX_MLLI_ENTRY_SIZE;
		buff_size -= CC_MAX_MLLI_ENTRY_SIZE;
		mlli_entry_p = mlli_entry_p + 2;
		(*curr_nents)++;
	}
	/*Last entry */
	cc_lli_set_addr(mlli_entry_p, buff_dma);
	cc_lli_set_size(mlli_entry_p, buff_size);
	dev_dbg(dev, "entry[%d]: single_buff=0x%08X size=%08X\n",
		*curr_nents, mlli_entry_p[LLI_WORD0_OFFSET],
		mlli_entry_p[LLI_WORD1_OFFSET]);
	mlli_entry_p = mlli_entry_p + 2;
	*mlli_entry_pp = mlli_entry_p;
	(*curr_nents)++;
	return 0;
}

static int cc_render_sg_to_mlli(struct device *dev, struct scatterlist *sgl,
				u32 sgl_data_len, u32 sgl_offset,
				u32 *curr_nents, u32 **mlli_entry_pp)
{
	struct scatterlist *curr_sgl = sgl;
	u32 *mlli_entry_p = *mlli_entry_pp;
	s32 rc = 0;

	for ( ; (curr_sgl && sgl_data_len);
	      curr_sgl = sg_next(curr_sgl)) {
		u32 entry_data_len =
			(sgl_data_len > sg_dma_len(curr_sgl) - sgl_offset) ?
				sg_dma_len(curr_sgl) - sgl_offset :
				sgl_data_len;
		sgl_data_len -= entry_data_len;
		rc = cc_render_buff_to_mlli(dev, sg_dma_address(curr_sgl) +
					    sgl_offset, entry_data_len,
					    curr_nents, &mlli_entry_p);
		if (rc)
			return rc;

		sgl_offset = 0;
	}
	*mlli_entry_pp = mlli_entry_p;
	return 0;
}

static int cc_generate_mlli(struct device *dev, struct buffer_array *sg_data,
			    struct mlli_params *mlli_params, gfp_t flags)
{
	u32 *mlli_p;
	u32 total_nents = 0, prev_total_nents = 0;
	int rc = 0, i;

	dev_dbg(dev, "NUM of SG's = %d\n", sg_data->num_of_buffers);

	/* Allocate memory from the pointed pool */
	mlli_params->mlli_virt_addr =
		dma_pool_alloc(mlli_params->curr_pool, flags,
			       &mlli_params->mlli_dma_addr);
	if (!mlli_params->mlli_virt_addr) {
		dev_err(dev, "dma_pool_alloc() failed\n");
		rc = -ENOMEM;
		goto build_mlli_exit;
	}
	/* Point to start of MLLI */
	mlli_p = mlli_params->mlli_virt_addr;
	/* go over all SG's and link it to one MLLI table */
	for (i = 0; i < sg_data->num_of_buffers; i++) {
		union buffer_array_entry *entry = &sg_data->entry[i];
		u32 tot_len = sg_data->total_data_len[i];
		u32 offset = sg_data->offset[i];

		rc = cc_render_sg_to_mlli(dev, entry->sgl, tot_len, offset,
					  &total_nents, &mlli_p);
		if (rc)
			return rc;

		/* set last bit in the current table */
		if (sg_data->mlli_nents[i]) {
			/*Calculate the current MLLI table length for the
			 *length field in the descriptor
			 */
			*sg_data->mlli_nents[i] +=
				(total_nents - prev_total_nents);
			prev_total_nents = total_nents;
		}
	}

	/* Set MLLI size for the bypass operation */
	mlli_params->mlli_len = (total_nents * LLI_ENTRY_BYTE_SIZE);

	dev_dbg(dev, "MLLI params: virt_addr=%pK dma_addr=%pad mlli_len=0x%X\n",
		mlli_params->mlli_virt_addr, &mlli_params->mlli_dma_addr,
		mlli_params->mlli_len);

build_mlli_exit:
	return rc;
}

static void cc_add_sg_entry(struct device *dev, struct buffer_array *sgl_data,
			    unsigned int nents, struct scatterlist *sgl,
			    unsigned int data_len, unsigned int data_offset,
			    bool is_last_table, u32 *mlli_nents)
{
	unsigned int index = sgl_data->num_of_buffers;

	dev_dbg(dev, "index=%u nents=%u sgl=%pK data_len=0x%08X is_last=%d\n",
		index, nents, sgl, data_len, is_last_table);
	sgl_data->nents[index] = nents;
	sgl_data->entry[index].sgl = sgl;
	sgl_data->offset[index] = data_offset;
	sgl_data->total_data_len[index] = data_len;
	sgl_data->is_last[index] = is_last_table;
	sgl_data->mlli_nents[index] = mlli_nents;
	if (sgl_data->mlli_nents[index])
		*sgl_data->mlli_nents[index] = 0;
	sgl_data->num_of_buffers++;
}

static int cc_map_sg(struct device *dev, struct scatterlist *sg,
		     unsigned int nbytes, int direction, u32 *nents,
		     u32 max_sg_nents, u32 *lbytes, u32 *mapped_nents)
{
	int ret = 0;

	if (!nbytes) {
		*mapped_nents = 0;
		*lbytes = 0;
		*nents = 0;
		return 0;
	}

	*nents = cc_get_sgl_nents(dev, sg, nbytes, lbytes);
	if (*nents > max_sg_nents) {
		*nents = 0;
		dev_err(dev, "Too many fragments. current %d max %d\n",
			*nents, max_sg_nents);
		return -ENOMEM;
	}

	ret = dma_map_sg(dev, sg, *nents, direction);
	if (!ret) {
		*nents = 0;
		dev_err(dev, "dma_map_sg() sg buffer failed %d\n", ret);
		return -ENOMEM;
	}

	*mapped_nents = ret;

	return 0;
}

static int
cc_set_aead_conf_buf(struct device *dev, struct aead_req_ctx *areq_ctx,
		     u8 *config_data, struct buffer_array *sg_data,
		     unsigned int assoclen)
{
	dev_dbg(dev, " handle additional data config set to DLLI\n");
	/* create sg for the current buffer */
	sg_init_one(&areq_ctx->ccm_adata_sg, config_data,
		    AES_BLOCK_SIZE + areq_ctx->ccm_hdr_size);
	if (dma_map_sg(dev, &areq_ctx->ccm_adata_sg, 1, DMA_TO_DEVICE) != 1) {
		dev_err(dev, "dma_map_sg() config buffer failed\n");
		return -ENOMEM;
	}
	dev_dbg(dev, "Mapped curr_buff: dma_address=%pad page=%p addr=%pK offset=%u length=%u\n",
		&sg_dma_address(&areq_ctx->ccm_adata_sg),
		sg_page(&areq_ctx->ccm_adata_sg),
		sg_virt(&areq_ctx->ccm_adata_sg),
		areq_ctx->ccm_adata_sg.offset, areq_ctx->ccm_adata_sg.length);
	/* prepare for case of MLLI */
	if (assoclen > 0) {
		cc_add_sg_entry(dev, sg_data, 1, &areq_ctx->ccm_adata_sg,
				(AES_BLOCK_SIZE + areq_ctx->ccm_hdr_size),
				0, false, NULL);
	}
	return 0;
}

static int cc_set_hash_buf(struct device *dev, struct ahash_req_ctx *areq_ctx,
			   u8 *curr_buff, u32 curr_buff_cnt,
			   struct buffer_array *sg_data)
{
	dev_dbg(dev, " handle curr buff %x set to   DLLI\n", curr_buff_cnt);
	/* create sg for the current buffer */
	sg_init_one(areq_ctx->buff_sg, curr_buff, curr_buff_cnt);
	if (dma_map_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE) != 1) {
		dev_err(dev, "dma_map_sg() src buffer failed\n");
		return -ENOMEM;
	}
	dev_dbg(dev, "Mapped curr_buff: dma_address=%pad page=%p addr=%pK offset=%u length=%u\n",
		&sg_dma_address(areq_ctx->buff_sg), sg_page(areq_ctx->buff_sg),
		sg_virt(areq_ctx->buff_sg), areq_ctx->buff_sg->offset,
		areq_ctx->buff_sg->length);
	areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
	areq_ctx->curr_sg = areq_ctx->buff_sg;
	areq_ctx->in_nents = 0;
	/* prepare for case of MLLI */
	cc_add_sg_entry(dev, sg_data, 1, areq_ctx->buff_sg, curr_buff_cnt, 0,
			false, NULL);
	return 0;
}

void cc_unmap_cipher_request(struct device *dev, void *ctx,
				unsigned int ivsize, struct scatterlist *src,
				struct scatterlist *dst)
{
	struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx;

	if (req_ctx->gen_ctx.iv_dma_addr) {
		dev_dbg(dev, "Unmapped iv: iv_dma_addr=%pad iv_size=%u\n",
			&req_ctx->gen_ctx.iv_dma_addr, ivsize);
		dma_unmap_single(dev, req_ctx->gen_ctx.iv_dma_addr,
				 ivsize, DMA_BIDIRECTIONAL);
	}
	/* Release pool */
	if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI &&
	    req_ctx->mlli_params.mlli_virt_addr) {
		dma_pool_free(req_ctx->mlli_params.curr_pool,
			      req_ctx->mlli_params.mlli_virt_addr,
			      req_ctx->mlli_params.mlli_dma_addr);
	}

	if (src != dst) {
		dma_unmap_sg(dev, src, req_ctx->in_nents, DMA_TO_DEVICE);
		dma_unmap_sg(dev, dst, req_ctx->out_nents, DMA_FROM_DEVICE);
		dev_dbg(dev, "Unmapped req->dst=%pK\n", sg_virt(dst));
		dev_dbg(dev, "Unmapped req->src=%pK\n", sg_virt(src));
	} else {
		dma_unmap_sg(dev, src, req_ctx->in_nents, DMA_BIDIRECTIONAL);
		dev_dbg(dev, "Unmapped req->src=%pK\n", sg_virt(src));
	}
}

int cc_map_cipher_request(struct cc_drvdata *drvdata, void *ctx,
			  unsigned int ivsize, unsigned int nbytes,
			  void *info, struct scatterlist *src,
			  struct scatterlist *dst, gfp_t flags)
{
	struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx;
	struct mlli_params *mlli_params = &req_ctx->mlli_params;
	struct device *dev = drvdata_to_dev(drvdata);
	struct buffer_array sg_data;
	u32 dummy = 0;
	int rc = 0;
	u32 mapped_nents = 0;
	int src_direction = (src != dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL);

	req_ctx->dma_buf_type = CC_DMA_BUF_DLLI;
	mlli_params->curr_pool = NULL;
	sg_data.num_of_buffers = 0;

	/* Map IV buffer */
	if (ivsize) {
		dump_byte_array("iv", info, ivsize);
		req_ctx->gen_ctx.iv_dma_addr =
			dma_map_single(dev, info, ivsize, DMA_BIDIRECTIONAL);
		if (dma_mapping_error(dev, req_ctx->gen_ctx.iv_dma_addr)) {
			dev_err(dev, "Mapping iv %u B at va=%pK for DMA failed\n",
				ivsize, info);
			return -ENOMEM;
		}
		dev_dbg(dev, "Mapped iv %u B at va=%pK to dma=%pad\n",
			ivsize, info, &req_ctx->gen_ctx.iv_dma_addr);
	} else {
		req_ctx->gen_ctx.iv_dma_addr = 0;
	}

	/* Map the src SGL */
	rc = cc_map_sg(dev, src, nbytes, src_direction, &req_ctx->in_nents,
		       LLI_MAX_NUM_OF_DATA_ENTRIES, &dummy, &mapped_nents);
	if (rc)
		goto cipher_exit;
	if (mapped_nents > 1)
		req_ctx->dma_buf_type = CC_DMA_BUF_MLLI;

	if (src == dst) {
		/* Handle inplace operation */
		if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
			req_ctx->out_nents = 0;
			cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src,
					nbytes, 0, true,
					&req_ctx->in_mlli_nents);
		}
	} else {
		/* Map the dst sg */
		rc = cc_map_sg(dev, dst, nbytes, DMA_FROM_DEVICE,
			       &req_ctx->out_nents, LLI_MAX_NUM_OF_DATA_ENTRIES,
			       &dummy, &mapped_nents);
		if (rc)
			goto cipher_exit;
		if (mapped_nents > 1)
			req_ctx->dma_buf_type = CC_DMA_BUF_MLLI;

		if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
			cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src,
					nbytes, 0, true,
					&req_ctx->in_mlli_nents);
			cc_add_sg_entry(dev, &sg_data, req_ctx->out_nents, dst,
					nbytes, 0, true,
					&req_ctx->out_mlli_nents);
		}
	}

	if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
		mlli_params->curr_pool = drvdata->mlli_buffs_pool;
		rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
		if (rc)
			goto cipher_exit;
	}

	dev_dbg(dev, "areq_ctx->dma_buf_type = %s\n",
		cc_dma_buf_type(req_ctx->dma_buf_type));

	return 0;

cipher_exit:
	cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
	return rc;
}

void cc_unmap_aead_request(struct device *dev, struct aead_request *req)
{
	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
	unsigned int hw_iv_size = areq_ctx->hw_iv_size;
	struct cc_drvdata *drvdata = dev_get_drvdata(dev);
	int src_direction = (req->src != req->dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL);

	if (areq_ctx->mac_buf_dma_addr) {
		dma_unmap_single(dev, areq_ctx->mac_buf_dma_addr,
				 MAX_MAC_SIZE, DMA_BIDIRECTIONAL);
	}

	if (areq_ctx->cipher_mode == DRV_CIPHER_GCTR) {
		if (areq_ctx->hkey_dma_addr) {
			dma_unmap_single(dev, areq_ctx->hkey_dma_addr,
					 AES_BLOCK_SIZE, DMA_BIDIRECTIONAL);
		}

		if (areq_ctx->gcm_block_len_dma_addr) {
			dma_unmap_single(dev, areq_ctx->gcm_block_len_dma_addr,
					 AES_BLOCK_SIZE, DMA_TO_DEVICE);
		}

		if (areq_ctx->gcm_iv_inc1_dma_addr) {
			dma_unmap_single(dev, areq_ctx->gcm_iv_inc1_dma_addr,
					 AES_BLOCK_SIZE, DMA_TO_DEVICE);
		}

		if (areq_ctx->gcm_iv_inc2_dma_addr) {
			dma_unmap_single(dev, areq_ctx->gcm_iv_inc2_dma_addr,
					 AES_BLOCK_SIZE, DMA_TO_DEVICE);
		}
	}

	if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
		if (areq_ctx->ccm_iv0_dma_addr) {
			dma_unmap_single(dev, areq_ctx->ccm_iv0_dma_addr,
					 AES_BLOCK_SIZE, DMA_TO_DEVICE);
		}

		dma_unmap_sg(dev, &areq_ctx->ccm_adata_sg, 1, DMA_TO_DEVICE);
	}
	if (areq_ctx->gen_ctx.iv_dma_addr) {
		dma_unmap_single(dev, areq_ctx->gen_ctx.iv_dma_addr,
				 hw_iv_size, DMA_BIDIRECTIONAL);
		kfree_sensitive(areq_ctx->gen_ctx.iv);
	}

	/* Release pool */
	if ((areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
	     areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) &&
	    (areq_ctx->mlli_params.mlli_virt_addr)) {
		dev_dbg(dev, "free MLLI buffer: dma=%pad virt=%pK\n",
			&areq_ctx->mlli_params.mlli_dma_addr,
			areq_ctx->mlli_params.mlli_virt_addr);
		dma_pool_free(areq_ctx->mlli_params.curr_pool,
			      areq_ctx->mlli_params.mlli_virt_addr,
			      areq_ctx->mlli_params.mlli_dma_addr);
	}

	dev_dbg(dev, "Unmapping src sgl: req->src=%pK areq_ctx->src.nents=%u areq_ctx->assoc.nents=%u assoclen:%u cryptlen=%u\n",
		sg_virt(req->src), areq_ctx->src.nents, areq_ctx->assoc.nents,
		areq_ctx->assoclen, req->cryptlen);

	dma_unmap_sg(dev, req->src, areq_ctx->src.mapped_nents, src_direction);
	if (req->src != req->dst) {
		dev_dbg(dev, "Unmapping dst sgl: req->dst=%pK\n",
			sg_virt(req->dst));
		dma_unmap_sg(dev, req->dst, areq_ctx->dst.mapped_nents, DMA_FROM_DEVICE);
	}
	if (drvdata->coherent &&
	    areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT &&
	    req->src == req->dst) {
		/* copy back mac from temporary location to deal with possible
		 * data memory overriding that caused by cache coherence
		 * problem.
		 */
		cc_copy_mac(dev, req, CC_SG_FROM_BUF);
	}
}

static bool cc_is_icv_frag(unsigned int sgl_nents, unsigned int authsize,
			   u32 last_entry_data_size)
{
	return ((sgl_nents > 1) && (last_entry_data_size < authsize));
}

static int cc_aead_chain_iv(struct cc_drvdata *drvdata,
			    struct aead_request *req,
			    struct buffer_array *sg_data,
			    bool is_last, bool do_chain)
{
	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
	unsigned int hw_iv_size = areq_ctx->hw_iv_size;
	struct device *dev = drvdata_to_dev(drvdata);
	gfp_t flags = cc_gfp_flags(&req->base);
	int rc = 0;

	if (!req->iv) {
		areq_ctx->gen_ctx.iv_dma_addr = 0;
		areq_ctx->gen_ctx.iv = NULL;
		goto chain_iv_exit;
	}

	areq_ctx->gen_ctx.iv = kmemdup(req->iv, hw_iv_size, flags);
	if (!areq_ctx->gen_ctx.iv)
		return -ENOMEM;

	areq_ctx->gen_ctx.iv_dma_addr =
		dma_map_single(dev, areq_ctx->gen_ctx.iv, hw_iv_size,
			       DMA_BIDIRECTIONAL);
	if (dma_mapping_error(dev, areq_ctx->gen_ctx.iv_dma_addr)) {
		dev_err(dev, "Mapping iv %u B at va=%pK for DMA failed\n",
			hw_iv_size, req->iv);
		kfree_sensitive(areq_ctx->gen_ctx.iv);
		areq_ctx->gen_ctx.iv = NULL;
		rc = -ENOMEM;
		goto chain_iv_exit;
	}

	dev_dbg(dev, "Mapped iv %u B at va=%pK to dma=%pad\n",
		hw_iv_size, req->iv, &areq_ctx->gen_ctx.iv_dma_addr);

chain_iv_exit:
	return rc;
}

static int cc_aead_chain_assoc(struct cc_drvdata *drvdata,
			       struct aead_request *req,
			       struct buffer_array *sg_data,
			       bool is_last, bool do_chain)
{
	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
	int rc = 0;
	int mapped_nents = 0;
	struct device *dev = drvdata_to_dev(drvdata);

	if (!sg_data) {
		rc = -EINVAL;
		goto chain_assoc_exit;
	}

	if (areq_ctx->assoclen == 0) {
		areq_ctx->assoc_buff_type = CC_DMA_BUF_NULL;
		areq_ctx->assoc.nents = 0;
		areq_ctx->assoc.mlli_nents = 0;
		dev_dbg(dev, "Chain assoc of length 0: buff_type=%s nents=%u\n",
			cc_dma_buf_type(areq_ctx->assoc_buff_type),
			areq_ctx->assoc.nents);
		goto chain_assoc_exit;
	}

	mapped_nents = sg_nents_for_len(req->src, areq_ctx->assoclen);
	if (mapped_nents < 0)
		return mapped_nents;

	if (mapped_nents > LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES) {
		dev_err(dev, "Too many fragments. current %d max %d\n",
			mapped_nents, LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES);
		return -ENOMEM;
	}
	areq_ctx->assoc.nents = mapped_nents;

	/* in CCM case we have additional entry for
	 * ccm header configurations
	 */
	if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
		if ((mapped_nents + 1) > LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES) {
			dev_err(dev, "CCM case.Too many fragments. Current %d max %d\n",
				(areq_ctx->assoc.nents + 1),
				LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES);
			rc = -ENOMEM;
			goto chain_assoc_exit;
		}
	}

	if (mapped_nents == 1 && areq_ctx->ccm_hdr_size == ccm_header_size_null)
		areq_ctx->assoc_buff_type = CC_DMA_BUF_DLLI;
	else
		areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI;

	if (do_chain || areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI) {
		dev_dbg(dev, "Chain assoc: buff_type=%s nents=%u\n",
			cc_dma_buf_type(areq_ctx->assoc_buff_type),
			areq_ctx->assoc.nents);
		cc_add_sg_entry(dev, sg_data, areq_ctx->assoc.nents, req->src,
				areq_ctx->assoclen, 0, is_last,
				&areq_ctx->assoc.mlli_nents);
		areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI;
	}

chain_assoc_exit:
	return rc;
}

static void cc_prepare_aead_data_dlli(struct aead_request *req,
				      u32 *src_last_bytes, u32 *dst_last_bytes)
{
	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
	enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
	unsigned int authsize = areq_ctx->req_authsize;
	struct scatterlist *sg;
	ssize_t offset;

	areq_ctx->is_icv_fragmented = false;

	if ((req->src == req->dst) || direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
		sg = areq_ctx->src_sgl;
		offset = *src_last_bytes - authsize;
	} else {
		sg = areq_ctx->dst_sgl;
		offset = *dst_last_bytes - authsize;
	}

	areq_ctx->icv_dma_addr = sg_dma_address(sg) + offset;
	areq_ctx->icv_virt_addr = sg_virt(sg) + offset;
}

static void cc_prepare_aead_data_mlli(struct cc_drvdata *drvdata,
				      struct aead_request *req,
				      struct buffer_array *sg_data,
				      u32 *src_last_bytes, u32 *dst_last_bytes,
				      bool is_last_table)
{
	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
	enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
	unsigned int authsize = areq_ctx->req_authsize;
	struct device *dev = drvdata_to_dev(drvdata);
	struct scatterlist *sg;

	if (req->src == req->dst) {
		/*INPLACE*/
		cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
				areq_ctx->src_sgl, areq_ctx->cryptlen,
				areq_ctx->src_offset, is_last_table,
				&areq_ctx->src.mlli_nents);

		areq_ctx->is_icv_fragmented =
			cc_is_icv_frag(areq_ctx->src.nents, authsize,
				       *src_last_bytes);

		if (areq_ctx->is_icv_fragmented) {
			/* Backup happens only when ICV is fragmented, ICV
			 * verification is made by CPU compare in order to
			 * simplify MAC verification upon request completion
			 */
			if (direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
				/* In coherent platforms (e.g. ACP)
				 * already copying ICV for any
				 * INPLACE-DECRYPT operation, hence
				 * we must neglect this code.
				 */
				if (!drvdata->coherent)
					cc_copy_mac(dev, req, CC_SG_TO_BUF);

				areq_ctx->icv_virt_addr = areq_ctx->backup_mac;
			} else {
				areq_ctx->icv_virt_addr = areq_ctx->mac_buf;
				areq_ctx->icv_dma_addr =
					areq_ctx->mac_buf_dma_addr;
			}
		} else { /* Contig. ICV */
			sg = &areq_ctx->src_sgl[areq_ctx->src.nents - 1];
			/*Should hanlde if the sg is not contig.*/
			areq_ctx->icv_dma_addr = sg_dma_address(sg) +
				(*src_last_bytes - authsize);
			areq_ctx->icv_virt_addr = sg_virt(sg) +
				(*src_last_bytes - authsize);
		}

	} else if (direct == DRV_CRYPTO_DIRECTION_DECRYPT) {
		/*NON-INPLACE and DECRYPT*/
		cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
				areq_ctx->src_sgl, areq_ctx->cryptlen,
				areq_ctx->src_offset, is_last_table,
				&areq_ctx->src.mlli_nents);
		cc_add_sg_entry(dev, sg_data, areq_ctx->dst.nents,
				areq_ctx->dst_sgl, areq_ctx->cryptlen,
				areq_ctx->dst_offset, is_last_table,
				&areq_ctx->dst.mlli_nents);

		areq_ctx->is_icv_fragmented =
			cc_is_icv_frag(areq_ctx->src.nents, authsize,
				       *src_last_bytes);
		/* Backup happens only when ICV is fragmented, ICV

		 * verification is made by CPU compare in order to simplify
		 * MAC verification upon request completion
		 */
		if (areq_ctx->is_icv_fragmented) {
			cc_copy_mac(dev, req, CC_SG_TO_BUF);
			areq_ctx->icv_virt_addr = areq_ctx->backup_mac;

		} else { /* Contig. ICV */
			sg = &areq_ctx->src_sgl[areq_ctx->src.nents - 1];
			/*Should hanlde if the sg is not contig.*/
			areq_ctx->icv_dma_addr = sg_dma_address(sg) +
				(*src_last_bytes - authsize);
			areq_ctx->icv_virt_addr = sg_virt(sg) +
				(*src_last_bytes - authsize);
		}

	} else {
		/*NON-INPLACE and ENCRYPT*/
		cc_add_sg_entry(dev, sg_data, areq_ctx->dst.nents,
				areq_ctx->dst_sgl, areq_ctx->cryptlen,
				areq_ctx->dst_offset, is_last_table,
				&areq_ctx->dst.mlli_nents);
		cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents,
				areq_ctx->src_sgl, areq_ctx->cryptlen,
				areq_ctx->src_offset, is_last_table,
				&areq_ctx->src.mlli_nents);

		areq_ctx->is_icv_fragmented =
			cc_is_icv_frag(areq_ctx->dst.nents, authsize,
				       *dst_last_bytes);

		if (!areq_ctx->is_icv_fragmented) {
			sg = &areq_ctx->dst_sgl[areq_ctx->dst.nents - 1];
			/* Contig. ICV */
			areq_ctx->icv_dma_addr = sg_dma_address(sg) +
				(*dst_last_bytes - authsize);
			areq_ctx->icv_virt_addr = sg_virt(sg) +
				(*dst_last_bytes - authsize);
		} else {
			areq_ctx->icv_dma_addr = areq_ctx->mac_buf_dma_addr;
			areq_ctx->icv_virt_addr = areq_ctx->mac_buf;
		}
	}
}

static int cc_aead_chain_data(struct cc_drvdata *drvdata,
			      struct aead_request *req,
			      struct buffer_array *sg_data,
			      bool is_last_table, bool do_chain)
{
	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
	struct device *dev = drvdata_to_dev(drvdata);
	enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type;
	unsigned int authsize = areq_ctx->req_authsize;
	unsigned int src_last_bytes = 0, dst_last_bytes = 0;
	int rc = 0;
	u32 src_mapped_nents = 0, dst_mapped_nents = 0;
	u32 offset = 0;
	/* non-inplace mode */
	unsigned int size_for_map = req->assoclen + req->cryptlen;
	u32 sg_index = 0;
	u32 size_to_skip = req->assoclen;
	struct scatterlist *sgl;

	offset = size_to_skip;

	if (!sg_data)
		return -EINVAL;

	areq_ctx->src_sgl = req->src;
	areq_ctx->dst_sgl = req->dst;

	size_for_map += (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
			authsize : 0;
	src_mapped_nents = cc_get_sgl_nents(dev, req->src, size_for_map,
					    &src_last_bytes);
	sg_index = areq_ctx->src_sgl->length;
	//check where the data starts
	while (src_mapped_nents && (sg_index <= size_to_skip)) {
		src_mapped_nents--;
		offset -= areq_ctx->src_sgl->length;
		sgl = sg_next(areq_ctx->src_sgl);
		if (!sgl)
			break;
		areq_ctx->src_sgl = sgl;
		sg_index += areq_ctx->src_sgl->length;
	}
	if (src_mapped_nents > LLI_MAX_NUM_OF_DATA_ENTRIES) {
		dev_err(dev, "Too many fragments. current %d max %d\n",
			src_mapped_nents, LLI_MAX_NUM_OF_DATA_ENTRIES);
		return -ENOMEM;
	}

	areq_ctx->src.nents = src_mapped_nents;

	areq_ctx->src_offset = offset;

	if (req->src != req->dst) {
		size_for_map = req->assoclen + req->cryptlen;

		if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT)
			size_for_map += authsize;
		else
			size_for_map -= authsize;

		rc = cc_map_sg(dev, req->dst, size_for_map, DMA_FROM_DEVICE,
			       &areq_ctx->dst.mapped_nents,
			       LLI_MAX_NUM_OF_DATA_ENTRIES, &dst_last_bytes,
			       &dst_mapped_nents);
		if (rc)
			goto chain_data_exit;
	}

	dst_mapped_nents = cc_get_sgl_nents(dev, req->dst, size_for_map,
					    &dst_last_bytes);
	sg_index = areq_ctx->dst_sgl->length;
	offset = size_to_skip;

	//check where the data starts
	while (dst_mapped_nents && sg_index <= size_to_skip) {
		dst_mapped_nents--;
		offset -= areq_ctx->dst_sgl->length;
		sgl = sg_next(areq_ctx->dst_sgl);
		if (!sgl)
			break;
		areq_ctx->dst_sgl = sgl;
		sg_index += areq_ctx->dst_sgl->length;
	}
	if (dst_mapped_nents > LLI_MAX_NUM_OF_DATA_ENTRIES) {
		dev_err(dev, "Too many fragments. current %d max %d\n",
			dst_mapped_nents, LLI_MAX_NUM_OF_DATA_ENTRIES);
		return -ENOMEM;
	}
	areq_ctx->dst.nents = dst_mapped_nents;
	areq_ctx->dst_offset = offset;
	if (src_mapped_nents > 1 ||
	    dst_mapped_nents  > 1 ||
	    do_chain) {
		areq_ctx->data_buff_type = CC_DMA_BUF_MLLI;
		cc_prepare_aead_data_mlli(drvdata, req, sg_data,
					  &src_last_bytes, &dst_last_bytes,
					  is_last_table);
	} else {
		areq_ctx->data_buff_type = CC_DMA_BUF_DLLI;
		cc_prepare_aead_data_dlli(req, &src_last_bytes,
					  &dst_last_bytes);
	}

chain_data_exit:
	return rc;
}

static void cc_update_aead_mlli_nents(struct cc_drvdata *drvdata,
				      struct aead_request *req)
{
	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
	u32 curr_mlli_size = 0;

	if (areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI) {
		areq_ctx->assoc.sram_addr = drvdata->mlli_sram_addr;
		curr_mlli_size = areq_ctx->assoc.mlli_nents *
						LLI_ENTRY_BYTE_SIZE;
	}

	if (areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) {
		/*Inplace case dst nents equal to src nents*/
		if (req->src == req->dst) {
			areq_ctx->dst.mlli_nents = areq_ctx->src.mlli_nents;
			areq_ctx->src.sram_addr = drvdata->mlli_sram_addr +
								curr_mlli_size;
			areq_ctx->dst.sram_addr = areq_ctx->src.sram_addr;
			if (!areq_ctx->is_single_pass)
				areq_ctx->assoc.mlli_nents +=
					areq_ctx->src.mlli_nents;
		} else {
			if (areq_ctx->gen_ctx.op_type ==
					DRV_CRYPTO_DIRECTION_DECRYPT) {
				areq_ctx->src.sram_addr =
						drvdata->mlli_sram_addr +
								curr_mlli_size;
				areq_ctx->dst.sram_addr =
						areq_ctx->src.sram_addr +
						areq_ctx->src.mlli_nents *
						LLI_ENTRY_BYTE_SIZE;
				if (!areq_ctx->is_single_pass)
					areq_ctx->assoc.mlli_nents +=
						areq_ctx->src.mlli_nents;
			} else {
				areq_ctx->dst.sram_addr =
						drvdata->mlli_sram_addr +
								curr_mlli_size;
				areq_ctx->src.sram_addr =
						areq_ctx->dst.sram_addr +
						areq_ctx->dst.mlli_nents *
						LLI_ENTRY_BYTE_SIZE;
				if (!areq_ctx->is_single_pass)
					areq_ctx->assoc.mlli_nents +=
						areq_ctx->dst.mlli_nents;
			}
		}
	}
}

int cc_map_aead_request(struct cc_drvdata *drvdata, struct aead_request *req)
{
	struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
	struct mlli_params *mlli_params = &areq_ctx->mlli_params;
	struct device *dev = drvdata_to_dev(drvdata);
	struct buffer_array sg_data;
	unsigned int authsize = areq_ctx->req_authsize;
	int rc = 0;
	dma_addr_t dma_addr;
	u32 mapped_nents = 0;
	u32 dummy = 0; /*used for the assoc data fragments */
	u32 size_to_map;
	gfp_t flags = cc_gfp_flags(&req->base);

	mlli_params->curr_pool = NULL;
	sg_data.num_of_buffers = 0;

	/* copy mac to a temporary location to deal with possible
	 * data memory overriding that caused by cache coherence problem.
	 */
	if (drvdata->coherent &&
	    areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT &&
	    req->src == req->dst)
		cc_copy_mac(dev, req, CC_SG_TO_BUF);

	/* cacluate the size for cipher remove ICV in decrypt*/
	areq_ctx->cryptlen = (areq_ctx->gen_ctx.op_type ==
				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
				req->cryptlen :
				(req->cryptlen - authsize);

	dma_addr = dma_map_single(dev, areq_ctx->mac_buf, MAX_MAC_SIZE,
				  DMA_BIDIRECTIONAL);
	if (dma_mapping_error(dev, dma_addr)) {
		dev_err(dev, "Mapping mac_buf %u B at va=%pK for DMA failed\n",
			MAX_MAC_SIZE, areq_ctx->mac_buf);
		rc = -ENOMEM;
		goto aead_map_failure;
	}
	areq_ctx->mac_buf_dma_addr = dma_addr;

	if (areq_ctx->ccm_hdr_size != ccm_header_size_null) {
		void *addr = areq_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;

		dma_addr = dma_map_single(dev, addr, AES_BLOCK_SIZE,
					  DMA_TO_DEVICE);

		if (dma_mapping_error(dev, dma_addr)) {
			dev_err(dev, "Mapping mac_buf %u B at va=%pK for DMA failed\n",
				AES_BLOCK_SIZE, addr);
			areq_ctx->ccm_iv0_dma_addr = 0;
			rc = -ENOMEM;
			goto aead_map_failure;
		}
		areq_ctx->ccm_iv0_dma_addr = dma_addr;

		rc = cc_set_aead_conf_buf(dev, areq_ctx, areq_ctx->ccm_config,
					  &sg_data, areq_ctx->assoclen);
		if (rc)
			goto aead_map_failure;
	}

	if (areq_ctx->cipher_mode == DRV_CIPHER_GCTR) {
		dma_addr = dma_map_single(dev, areq_ctx->hkey, AES_BLOCK_SIZE,
					  DMA_BIDIRECTIONAL);
		if (dma_mapping_error(dev, dma_addr)) {
			dev_err(dev, "Mapping hkey %u B at va=%pK for DMA failed\n",
				AES_BLOCK_SIZE, areq_ctx->hkey);
			rc = -ENOMEM;
			goto aead_map_failure;
		}
		areq_ctx->hkey_dma_addr = dma_addr;

		dma_addr = dma_map_single(dev, &areq_ctx->gcm_len_block,
					  AES_BLOCK_SIZE, DMA_TO_DEVICE);
		if (dma_mapping_error(dev, dma_addr)) {
			dev_err(dev, "Mapping gcm_len_block %u B at va=%pK for DMA failed\n",
				AES_BLOCK_SIZE, &areq_ctx->gcm_len_block);
			rc = -ENOMEM;
			goto aead_map_failure;
		}
		areq_ctx->gcm_block_len_dma_addr = dma_addr;

		dma_addr = dma_map_single(dev, areq_ctx->gcm_iv_inc1,
					  AES_BLOCK_SIZE, DMA_TO_DEVICE);

		if (dma_mapping_error(dev, dma_addr)) {
			dev_err(dev, "Mapping gcm_iv_inc1 %u B at va=%pK for DMA failed\n",
				AES_BLOCK_SIZE, (areq_ctx->gcm_iv_inc1));
			areq_ctx->gcm_iv_inc1_dma_addr = 0;
			rc = -ENOMEM;
			goto aead_map_failure;
		}
		areq_ctx->gcm_iv_inc1_dma_addr = dma_addr;

		dma_addr = dma_map_single(dev, areq_ctx->gcm_iv_inc2,
					  AES_BLOCK_SIZE, DMA_TO_DEVICE);

		if (dma_mapping_error(dev, dma_addr)) {
			dev_err(dev, "Mapping gcm_iv_inc2 %u B at va=%pK for DMA failed\n",
				AES_BLOCK_SIZE, (areq_ctx->gcm_iv_inc2));
			areq_ctx->gcm_iv_inc2_dma_addr = 0;
			rc = -ENOMEM;
			goto aead_map_failure;
		}
		areq_ctx->gcm_iv_inc2_dma_addr = dma_addr;
	}

	size_to_map = req->cryptlen + req->assoclen;
	/* If we do in-place encryption, we also need the auth tag */
	if ((areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_ENCRYPT) &&
	   (req->src == req->dst)) {
		size_to_map += authsize;
	}

	rc = cc_map_sg(dev, req->src, size_to_map,
		       (req->src != req->dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL),
		       &areq_ctx->src.mapped_nents,
		       (LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES +
			LLI_MAX_NUM_OF_DATA_ENTRIES),
		       &dummy, &mapped_nents);
	if (rc)
		goto aead_map_failure;

	if (areq_ctx->is_single_pass) {
		/*
		 * Create MLLI table for:
		 *   (1) Assoc. data
		 *   (2) Src/Dst SGLs
		 *   Note: IV is contg. buffer (not an SGL)
		 */
		rc = cc_aead_chain_assoc(drvdata, req, &sg_data, true, false);
		if (rc)
			goto aead_map_failure;
		rc = cc_aead_chain_iv(drvdata, req, &sg_data, true, false);
		if (rc)
			goto aead_map_failure;
		rc = cc_aead_chain_data(drvdata, req, &sg_data, true, false);
		if (rc)
			goto aead_map_failure;
	} else { /* DOUBLE-PASS flow */
		/*
		 * Prepare MLLI table(s) in this order:
		 *
		 * If ENCRYPT/DECRYPT (inplace):
		 *   (1) MLLI table for assoc
		 *   (2) IV entry (chained right after end of assoc)
		 *   (3) MLLI for src/dst (inplace operation)
		 *
		 * If ENCRYPT (non-inplace)
		 *   (1) MLLI table for assoc
		 *   (2) IV entry (chained right after end of assoc)
		 *   (3) MLLI for dst
		 *   (4) MLLI for src
		 *
		 * If DECRYPT (non-inplace)
		 *   (1) MLLI table for assoc
		 *   (2) IV entry (chained right after end of assoc)
		 *   (3) MLLI for src
		 *   (4) MLLI for dst
		 */
		rc = cc_aead_chain_assoc(drvdata, req, &sg_data, false, true);
		if (rc)
			goto aead_map_failure;
		rc = cc_aead_chain_iv(drvdata, req, &sg_data, false, true);
		if (rc)
			goto aead_map_failure;
		rc = cc_aead_chain_data(drvdata, req, &sg_data, true, true);
		if (rc)
			goto aead_map_failure;
	}

	/* Mlli support -start building the MLLI according to the above
	 * results
	 */
	if (areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
	    areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) {
		mlli_params->curr_pool = drvdata->mlli_buffs_pool;
		rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
		if (rc)
			goto aead_map_failure;

		cc_update_aead_mlli_nents(drvdata, req);
		dev_dbg(dev, "assoc params mn %d\n",
			areq_ctx->assoc.mlli_nents);
		dev_dbg(dev, "src params mn %d\n", areq_ctx->src.mlli_nents);
		dev_dbg(dev, "dst params mn %d\n", areq_ctx->dst.mlli_nents);
	}
	return 0;

aead_map_failure:
	cc_unmap_aead_request(dev, req);
	return rc;
}

int cc_map_hash_request_final(struct cc_drvdata *drvdata, void *ctx,
			      struct scatterlist *src, unsigned int nbytes,
			      bool do_update, gfp_t flags)
{
	struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
	struct device *dev = drvdata_to_dev(drvdata);
	u8 *curr_buff = cc_hash_buf(areq_ctx);
	u32 *curr_buff_cnt = cc_hash_buf_cnt(areq_ctx);
	struct mlli_params *mlli_params = &areq_ctx->mlli_params;
	struct buffer_array sg_data;
	int rc = 0;
	u32 dummy = 0;
	u32 mapped_nents = 0;

	dev_dbg(dev, "final params : curr_buff=%pK curr_buff_cnt=0x%X nbytes = 0x%X src=%pK curr_index=%u\n",
		curr_buff, *curr_buff_cnt, nbytes, src, areq_ctx->buff_index);
	/* Init the type of the dma buffer */
	areq_ctx->data_dma_buf_type = CC_DMA_BUF_NULL;
	mlli_params->curr_pool = NULL;
	sg_data.num_of_buffers = 0;
	areq_ctx->in_nents = 0;

	if (nbytes == 0 && *curr_buff_cnt == 0) {
		/* nothing to do */
		return 0;
	}

	/* map the previous buffer */
	if (*curr_buff_cnt) {
		rc = cc_set_hash_buf(dev, areq_ctx, curr_buff, *curr_buff_cnt,
				     &sg_data);
		if (rc)
			return rc;
	}

	if (src && nbytes > 0 && do_update) {
		rc = cc_map_sg(dev, src, nbytes, DMA_TO_DEVICE,
			       &areq_ctx->in_nents, LLI_MAX_NUM_OF_DATA_ENTRIES,
			       &dummy, &mapped_nents);
		if (rc)
			goto unmap_curr_buff;
		if (src && mapped_nents == 1 &&
		    areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
			memcpy(areq_ctx->buff_sg, src,
			       sizeof(struct scatterlist));
			areq_ctx->buff_sg->length = nbytes;
			areq_ctx->curr_sg = areq_ctx->buff_sg;
			areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
		} else {
			areq_ctx->data_dma_buf_type = CC_DMA_BUF_MLLI;
		}
	}

	/*build mlli */
	if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_MLLI) {
		mlli_params->curr_pool = drvdata->mlli_buffs_pool;
		/* add the src data to the sg_data */
		cc_add_sg_entry(dev, &sg_data, areq_ctx->in_nents, src, nbytes,
				0, true, &areq_ctx->mlli_nents);
		rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
		if (rc)
			goto fail_unmap_din;
	}
	/* change the buffer index for the unmap function */
	areq_ctx->buff_index = (areq_ctx->buff_index ^ 1);
	dev_dbg(dev, "areq_ctx->data_dma_buf_type = %s\n",
		cc_dma_buf_type(areq_ctx->data_dma_buf_type));
	return 0;

fail_unmap_din:
	dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE);

unmap_curr_buff:
	if (*curr_buff_cnt)
		dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);

	return rc;
}

int cc_map_hash_request_update(struct cc_drvdata *drvdata, void *ctx,
			       struct scatterlist *src, unsigned int nbytes,
			       unsigned int block_size, gfp_t flags)
{
	struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
	struct device *dev = drvdata_to_dev(drvdata);
	u8 *curr_buff = cc_hash_buf(areq_ctx);
	u32 *curr_buff_cnt = cc_hash_buf_cnt(areq_ctx);
	u8 *next_buff = cc_next_buf(areq_ctx);
	u32 *next_buff_cnt = cc_next_buf_cnt(areq_ctx);
	struct mlli_params *mlli_params = &areq_ctx->mlli_params;
	unsigned int update_data_len;
	u32 total_in_len = nbytes + *curr_buff_cnt;
	struct buffer_array sg_data;
	unsigned int swap_index = 0;
	int rc = 0;
	u32 dummy = 0;
	u32 mapped_nents = 0;

	dev_dbg(dev, " update params : curr_buff=%pK curr_buff_cnt=0x%X nbytes=0x%X src=%pK curr_index=%u\n",
		curr_buff, *curr_buff_cnt, nbytes, src, areq_ctx->buff_index);
	/* Init the type of the dma buffer */
	areq_ctx->data_dma_buf_type = CC_DMA_BUF_NULL;
	mlli_params->curr_pool = NULL;
	areq_ctx->curr_sg = NULL;
	sg_data.num_of_buffers = 0;
	areq_ctx->in_nents = 0;

	if (total_in_len < block_size) {
		dev_dbg(dev, " less than one block: curr_buff=%pK *curr_buff_cnt=0x%X copy_to=%pK\n",
			curr_buff, *curr_buff_cnt, &curr_buff[*curr_buff_cnt]);
		areq_ctx->in_nents = sg_nents_for_len(src, nbytes);
		sg_copy_to_buffer(src, areq_ctx->in_nents,
				  &curr_buff[*curr_buff_cnt], nbytes);
		*curr_buff_cnt += nbytes;
		return 1;
	}

	/* Calculate the residue size*/
	*next_buff_cnt = total_in_len & (block_size - 1);
	/* update data len */
	update_data_len = total_in_len - *next_buff_cnt;

	dev_dbg(dev, " temp length : *next_buff_cnt=0x%X update_data_len=0x%X\n",
		*next_buff_cnt, update_data_len);

	/* Copy the new residue to next buffer */
	if (*next_buff_cnt) {
		dev_dbg(dev, " handle residue: next buff %pK skip data %u residue %u\n",
			next_buff, (update_data_len - *curr_buff_cnt),
			*next_buff_cnt);
		cc_copy_sg_portion(dev, next_buff, src,
				   (update_data_len - *curr_buff_cnt),
				   nbytes, CC_SG_TO_BUF);
		/* change the buffer index for next operation */
		swap_index = 1;
	}

	if (*curr_buff_cnt) {
		rc = cc_set_hash_buf(dev, areq_ctx, curr_buff, *curr_buff_cnt,
				     &sg_data);
		if (rc)
			return rc;
		/* change the buffer index for next operation */
		swap_index = 1;
	}

	if (update_data_len > *curr_buff_cnt) {
		rc = cc_map_sg(dev, src, (update_data_len - *curr_buff_cnt),
			       DMA_TO_DEVICE, &areq_ctx->in_nents,
			       LLI_MAX_NUM_OF_DATA_ENTRIES, &dummy,
			       &mapped_nents);
		if (rc)
			goto unmap_curr_buff;
		if (mapped_nents == 1 &&
		    areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
			/* only one entry in the SG and no previous data */
			memcpy(areq_ctx->buff_sg, src,
			       sizeof(struct scatterlist));
			areq_ctx->buff_sg->length = update_data_len;
			areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI;
			areq_ctx->curr_sg = areq_ctx->buff_sg;
		} else {
			areq_ctx->data_dma_buf_type = CC_DMA_BUF_MLLI;
		}
	}

	if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_MLLI) {
		mlli_params->curr_pool = drvdata->mlli_buffs_pool;
		/* add the src data to the sg_data */
		cc_add_sg_entry(dev, &sg_data, areq_ctx->in_nents, src,
				(update_data_len - *curr_buff_cnt), 0, true,
				&areq_ctx->mlli_nents);
		rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags);
		if (rc)
			goto fail_unmap_din;
	}
	areq_ctx->buff_index = (areq_ctx->buff_index ^ swap_index);

	return 0;

fail_unmap_din:
	dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE);

unmap_curr_buff:
	if (*curr_buff_cnt)
		dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);

	return rc;
}

void cc_unmap_hash_request(struct device *dev, void *ctx,
			   struct scatterlist *src, bool do_revert)
{
	struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx;
	u32 *prev_len = cc_next_buf_cnt(areq_ctx);

	/*In case a pool was set, a table was
	 *allocated and should be released
	 */
	if (areq_ctx->mlli_params.curr_pool) {
		dev_dbg(dev, "free MLLI buffer: dma=%pad virt=%pK\n",
			&areq_ctx->mlli_params.mlli_dma_addr,
			areq_ctx->mlli_params.mlli_virt_addr);
		dma_pool_free(areq_ctx->mlli_params.curr_pool,
			      areq_ctx->mlli_params.mlli_virt_addr,
			      areq_ctx->mlli_params.mlli_dma_addr);
	}

	if (src && areq_ctx->in_nents) {
		dev_dbg(dev, "Unmapped sg src: virt=%pK dma=%pad len=0x%X\n",
			sg_virt(src), &sg_dma_address(src), sg_dma_len(src));
		dma_unmap_sg(dev, src,
			     areq_ctx->in_nents, DMA_TO_DEVICE);
	}

	if (*prev_len) {
		dev_dbg(dev, "Unmapped buffer: areq_ctx->buff_sg=%pK dma=%pad len 0x%X\n",
			sg_virt(areq_ctx->buff_sg),
			&sg_dma_address(areq_ctx->buff_sg),
			sg_dma_len(areq_ctx->buff_sg));
		dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE);
		if (!do_revert) {
			/* clean the previous data length for update
			 * operation
			 */
			*prev_len = 0;
		} else {
			areq_ctx->buff_index ^= 1;
		}
	}
}

int cc_buffer_mgr_init(struct cc_drvdata *drvdata)
{
	struct device *dev = drvdata_to_dev(drvdata);

	drvdata->mlli_buffs_pool =
		dma_pool_create("dx_single_mlli_tables", dev,
				MAX_NUM_OF_TOTAL_MLLI_ENTRIES *
				LLI_ENTRY_BYTE_SIZE,
				MLLI_TABLE_MIN_ALIGNMENT, 0);

	if (!drvdata->mlli_buffs_pool)
		return -ENOMEM;

	return 0;
}

int cc_buffer_mgr_fini(struct cc_drvdata *drvdata)
{
	dma_pool_destroy(drvdata->mlli_buffs_pool);
	return 0;
}