summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/gt/intel_gtt.c
blob: 86f73fe558ca6eb88051c8e77938460bbc043dec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2020 Intel Corporation
 */

#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
#include <linux/sched/mm.h>

#include <drm/drm_cache.h>

#include "gem/i915_gem_internal.h"
#include "gem/i915_gem_lmem.h"
#include "i915_reg.h"
#include "i915_trace.h"
#include "i915_utils.h"
#include "intel_gt.h"
#include "intel_gt_mcr.h"
#include "intel_gt_print.h"
#include "intel_gt_regs.h"
#include "intel_gtt.h"

bool i915_ggtt_require_binder(struct drm_i915_private *i915)
{
	/* Wa_13010847436 & Wa_14019519902 */
	return MEDIA_VER_FULL(i915) == IP_VER(13, 0);
}

static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915)
{
	return IS_BROXTON(i915) && i915_vtd_active(i915);
}

bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915)
{
	return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915);
}

struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
{
	struct drm_i915_gem_object *obj;

	/*
	 * To avoid severe over-allocation when dealing with min_page_size
	 * restrictions, we override that behaviour here by allowing an object
	 * size and page layout which can be smaller. In practice this should be
	 * totally fine, since GTT paging structures are not typically inserted
	 * into the GTT.
	 *
	 * Note that we also hit this path for the scratch page, and for this
	 * case it might need to be 64K, but that should work fine here since we
	 * used the passed in size for the page size, which should ensure it
	 * also has the same alignment.
	 */
	obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
						    vm->lmem_pt_obj_flags);
	/*
	 * Ensure all paging structures for this vm share the same dma-resv
	 * object underneath, with the idea that one object_lock() will lock
	 * them all at once.
	 */
	if (!IS_ERR(obj)) {
		obj->base.resv = i915_vm_resv_get(vm);
		obj->shares_resv_from = vm;

		if (vm->fpriv)
			i915_drm_client_add_object(vm->fpriv->client, obj);
	}

	return obj;
}

struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
{
	struct drm_i915_gem_object *obj;

	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);

	obj = i915_gem_object_create_internal(vm->i915, sz);
	/*
	 * Ensure all paging structures for this vm share the same dma-resv
	 * object underneath, with the idea that one object_lock() will lock
	 * them all at once.
	 */
	if (!IS_ERR(obj)) {
		obj->base.resv = i915_vm_resv_get(vm);
		obj->shares_resv_from = vm;

		if (vm->fpriv)
			i915_drm_client_add_object(vm->fpriv->client, obj);
	}

	return obj;
}

int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
{
	enum i915_map_type type;
	void *vaddr;

	type = intel_gt_coherent_map_type(vm->gt, obj, true);
	/*
	 * FIXME: It is suspected that some Address Translation Service (ATS)
	 * issue on IOMMU is causing CAT errors to occur on some MTL workloads.
	 * Applying a write barrier to the ppgtt set entry functions appeared
	 * to have no effect, so we must temporarily use I915_MAP_WC here on
	 * MTL until a proper ATS solution is found.
	 */
	if (IS_METEORLAKE(vm->i915))
		type = I915_MAP_WC;

	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	i915_gem_object_make_unshrinkable(obj);
	return 0;
}

int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
{
	enum i915_map_type type;
	void *vaddr;

	type = intel_gt_coherent_map_type(vm->gt, obj, true);
	/*
	 * FIXME: It is suspected that some Address Translation Service (ATS)
	 * issue on IOMMU is causing CAT errors to occur on some MTL workloads.
	 * Applying a write barrier to the ppgtt set entry functions appeared
	 * to have no effect, so we must temporarily use I915_MAP_WC here on
	 * MTL until a proper ATS solution is found.
	 */
	if (IS_METEORLAKE(vm->i915))
		type = I915_MAP_WC;

	vaddr = i915_gem_object_pin_map(obj, type);
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	i915_gem_object_make_unshrinkable(obj);
	return 0;
}

static void clear_vm_list(struct list_head *list)
{
	struct i915_vma *vma, *vn;

	list_for_each_entry_safe(vma, vn, list, vm_link) {
		struct drm_i915_gem_object *obj = vma->obj;

		if (!i915_gem_object_get_rcu(obj)) {
			/*
			 * Object is dying, but has not yet cleared its
			 * vma list.
			 * Unbind the dying vma to ensure our list
			 * is completely drained. We leave the destruction to
			 * the object destructor to avoid the vma
			 * disappearing under it.
			 */
			atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
			WARN_ON(__i915_vma_unbind(vma));

			/* Remove from the unbound list */
			list_del_init(&vma->vm_link);

			/*
			 * Delay the vm and vm mutex freeing until the
			 * object is done with destruction.
			 */
			i915_vm_resv_get(vma->vm);
			vma->vm_ddestroy = true;
		} else {
			i915_vma_destroy_locked(vma);
			i915_gem_object_put(obj);
		}

	}
}

static void __i915_vm_close(struct i915_address_space *vm)
{
	mutex_lock(&vm->mutex);

	clear_vm_list(&vm->bound_list);
	clear_vm_list(&vm->unbound_list);

	/* Check for must-fix unanticipated side-effects */
	GEM_BUG_ON(!list_empty(&vm->bound_list));
	GEM_BUG_ON(!list_empty(&vm->unbound_list));

	mutex_unlock(&vm->mutex);
}

/* lock the vm into the current ww, if we lock one, we lock all */
int i915_vm_lock_objects(struct i915_address_space *vm,
			 struct i915_gem_ww_ctx *ww)
{
	if (vm->scratch[0]->base.resv == &vm->_resv) {
		return i915_gem_object_lock(vm->scratch[0], ww);
	} else {
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);

		/* We borrowed the scratch page from ggtt, take the top level object */
		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
	}
}

void i915_address_space_fini(struct i915_address_space *vm)
{
	drm_mm_takedown(&vm->mm);
}

/**
 * i915_vm_resv_release - Final struct i915_address_space destructor
 * @kref: Pointer to the &i915_address_space.resv_ref member.
 *
 * This function is called when the last lock sharer no longer shares the
 * &i915_address_space._resv lock, and also if we raced when
 * destroying a vma by the vma destruction
 */
void i915_vm_resv_release(struct kref *kref)
{
	struct i915_address_space *vm =
		container_of(kref, typeof(*vm), resv_ref);

	dma_resv_fini(&vm->_resv);
	mutex_destroy(&vm->mutex);

	kfree(vm);
}

static void __i915_vm_release(struct work_struct *work)
{
	struct i915_address_space *vm =
		container_of(work, struct i915_address_space, release_work);

	__i915_vm_close(vm);

	/* Synchronize async unbinds. */
	i915_vma_resource_bind_dep_sync_all(vm);

	vm->cleanup(vm);
	i915_address_space_fini(vm);

	i915_vm_resv_put(vm);
}

void i915_vm_release(struct kref *kref)
{
	struct i915_address_space *vm =
		container_of(kref, struct i915_address_space, ref);

	GEM_BUG_ON(i915_is_ggtt(vm));
	trace_i915_ppgtt_release(vm);

	queue_work(vm->i915->wq, &vm->release_work);
}

void i915_address_space_init(struct i915_address_space *vm, int subclass)
{
	kref_init(&vm->ref);

	/*
	 * Special case for GGTT that has already done an early
	 * kref_init here.
	 */
	if (!kref_read(&vm->resv_ref))
		kref_init(&vm->resv_ref);

	vm->pending_unbind = RB_ROOT_CACHED;
	INIT_WORK(&vm->release_work, __i915_vm_release);

	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
	lockdep_set_subclass(&vm->mutex, subclass);

	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
	} else {
		/*
		 * CHV + BXT VTD workaround use stop_machine(),
		 * which is allowed to allocate memory. This means &vm->mutex
		 * is the outer lock, and in theory we can allocate memory inside
		 * it through stop_machine().
		 *
		 * Add the annotation for this, we use trylock in shrinker.
		 */
		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
		might_alloc(GFP_KERNEL);
		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
	}
	dma_resv_init(&vm->_resv);

	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);

	memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT,
		 ARRAY_SIZE(vm->min_alignment));

	if (HAS_64K_PAGES(vm->i915)) {
		vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K;
		vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K;
	}

	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	INIT_LIST_HEAD(&vm->bound_list);
	INIT_LIST_HEAD(&vm->unbound_list);
}

void *__px_vaddr(struct drm_i915_gem_object *p)
{
	enum i915_map_type type;

	GEM_BUG_ON(!i915_gem_object_has_pages(p));
	return page_unpack_bits(p->mm.mapping, &type);
}

dma_addr_t __px_dma(struct drm_i915_gem_object *p)
{
	GEM_BUG_ON(!i915_gem_object_has_pages(p));
	return sg_dma_address(p->mm.pages->sgl);
}

struct page *__px_page(struct drm_i915_gem_object *p)
{
	GEM_BUG_ON(!i915_gem_object_has_pages(p));
	return sg_page(p->mm.pages->sgl);
}

void
fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
{
	void *vaddr = __px_vaddr(p);

	memset64(vaddr, val, count);
	drm_clflush_virt_range(vaddr, PAGE_SIZE);
}

static void poison_scratch_page(struct drm_i915_gem_object *scratch)
{
	void *vaddr = __px_vaddr(scratch);
	u8 val;

	val = 0;
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		val = POISON_FREE;

	memset(vaddr, val, scratch->base.size);
	drm_clflush_virt_range(vaddr, scratch->base.size);
}

int setup_scratch_page(struct i915_address_space *vm)
{
	unsigned long size;

	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
	 */
	size = I915_GTT_PAGE_SIZE_4K;
	if (i915_vm_is_4lvl(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K) &&
	    !HAS_64K_PAGES(vm->i915))
		size = I915_GTT_PAGE_SIZE_64K;

	do {
		struct drm_i915_gem_object *obj;

		obj = vm->alloc_scratch_dma(vm, size);
		if (IS_ERR(obj))
			goto skip;

		if (map_pt_dma(vm, obj))
			goto skip_obj;

		/* We need a single contiguous page for our scratch */
		if (obj->mm.page_sizes.sg < size)
			goto skip_obj;

		/* And it needs to be correspondingly aligned */
		if (__px_dma(obj) & (size - 1))
			goto skip_obj;

		/*
		 * Use a non-zero scratch page for debugging.
		 *
		 * We want a value that should be reasonably obvious
		 * to spot in the error state, while also causing a GPU hang
		 * if executed. We prefer using a clear page in production, so
		 * should it ever be accidentally used, the effect should be
		 * fairly benign.
		 */
		poison_scratch_page(obj);

		vm->scratch[0] = obj;
		vm->scratch_order = get_order(size);
		return 0;

skip_obj:
		i915_gem_object_put(obj);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
	} while (1);
}

void free_scratch(struct i915_address_space *vm)
{
	int i;

	if (!vm->scratch[0])
		return;

	for (i = 0; i <= vm->top; i++)
		i915_gem_object_put(vm->scratch[i]);
}

void gtt_write_workarounds(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;

	/*
	 * This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
	if (IS_BROADWELL(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
	else if (IS_CHERRYVIEW(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
	else if (IS_GEN9_LP(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
	    GRAPHICS_VER(i915) <= 10)
		intel_uncore_rmw(uncore,
				 GEN8_GAMW_ECO_DEV_RW_IA,
				 0,
				 GAMW_ECO_ENABLE_64K_IPS_FIELD);

	if (IS_GRAPHICS_VER(i915, 8, 11)) {
		bool can_use_gtt_cache = true;

		/*
		 * According to the BSpec if we use 2M/1G pages then we also
		 * need to disable the GTT cache. At least on BDW we can see
		 * visual corruption when using 2M pages, and not disabling the
		 * GTT cache.
		 */
		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
			can_use_gtt_cache = false;

		/* WaGttCachingOffByDefault */
		intel_uncore_write(uncore,
				   HSW_GTT_CACHE_EN,
				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
		gt_WARN_ON_ONCE(gt, can_use_gtt_cache &&
				intel_uncore_read(uncore,
						  HSW_GTT_CACHE_EN) == 0);
	}
}

static void xelpmp_setup_private_ppat(struct intel_uncore *uncore)
{
	intel_uncore_write(uncore, XELPMP_PAT_INDEX(0),
			   MTL_PPAT_L4_0_WB);
	intel_uncore_write(uncore, XELPMP_PAT_INDEX(1),
			   MTL_PPAT_L4_1_WT);
	intel_uncore_write(uncore, XELPMP_PAT_INDEX(2),
			   MTL_PPAT_L4_3_UC);
	intel_uncore_write(uncore, XELPMP_PAT_INDEX(3),
			   MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
	intel_uncore_write(uncore, XELPMP_PAT_INDEX(4),
			   MTL_PPAT_L4_0_WB | MTL_3_COH_2W);

	/*
	 * Remaining PAT entries are left at the hardware-default
	 * fully-cached setting
	 */
}

static void xelpg_setup_private_ppat(struct intel_gt *gt)
{
	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(0),
				     MTL_PPAT_L4_0_WB);
	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(1),
				     MTL_PPAT_L4_1_WT);
	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(2),
				     MTL_PPAT_L4_3_UC);
	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(3),
				     MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(4),
				     MTL_PPAT_L4_0_WB | MTL_3_COH_2W);

	/*
	 * Remaining PAT entries are left at the hardware-default
	 * fully-cached setting
	 */
}

static void tgl_setup_private_ppat(struct intel_uncore *uncore)
{
	/* TGL doesn't support LLC or AGE settings */
	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
}

static void xehp_setup_private_ppat(struct intel_gt *gt)
{
	enum forcewake_domains fw;
	unsigned long flags;

	fw = intel_uncore_forcewake_for_reg(gt->uncore, _MMIO(XEHP_PAT_INDEX(0).reg),
					    FW_REG_WRITE);
	intel_uncore_forcewake_get(gt->uncore, fw);

	intel_gt_mcr_lock(gt, &flags);
	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(0), GEN8_PPAT_WB);
	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(1), GEN8_PPAT_WC);
	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(2), GEN8_PPAT_WT);
	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(3), GEN8_PPAT_UC);
	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(4), GEN8_PPAT_WB);
	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(5), GEN8_PPAT_WB);
	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(6), GEN8_PPAT_WB);
	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(7), GEN8_PPAT_WB);
	intel_gt_mcr_unlock(gt, flags);

	intel_uncore_forcewake_put(gt->uncore, fw);
}

static void icl_setup_private_ppat(struct intel_uncore *uncore)
{
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(0),
			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(1),
			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(2),
			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(3),
			   GEN8_PPAT_UC);
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(4),
			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(5),
			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(6),
			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(7),
			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
}

/*
 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases.
 */
static void bdw_setup_private_ppat(struct intel_uncore *uncore)
{
	struct drm_i915_private *i915 = uncore->i915;
	u64 pat;

	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));

	/* for scanout with eLLC */
	if (GRAPHICS_VER(i915) >= 9)
		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
	else
		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);

	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static void chv_setup_private_ppat(struct intel_uncore *uncore)
{
	u64 pat;

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
	 */

	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(1, 0) |
	      GEN8_PPAT(2, 0) |
	      GEN8_PPAT(3, 0) |
	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(7, CHV_PPAT_SNOOP);

	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

void setup_private_pat(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;
	struct drm_i915_private *i915 = gt->i915;

	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);

	if (gt->type == GT_MEDIA) {
		xelpmp_setup_private_ppat(gt->uncore);
		return;
	}

	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
		xelpg_setup_private_ppat(gt);
	else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
		xehp_setup_private_ppat(gt);
	else if (GRAPHICS_VER(i915) >= 12)
		tgl_setup_private_ppat(uncore);
	else if (GRAPHICS_VER(i915) >= 11)
		icl_setup_private_ppat(uncore);
	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
		chv_setup_private_ppat(uncore);
	else
		bdw_setup_private_ppat(uncore);
}

struct i915_vma *
__vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;

	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
	if (IS_ERR(obj))
		return ERR_CAST(obj);

	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);

	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma)) {
		i915_gem_object_put(obj);
		return vma;
	}

	return vma;
}

struct i915_vma *
__vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
{
	struct i915_vma *vma;
	int err;

	vma = __vm_create_scratch_for_read(vm, size);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0,
			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
	if (err) {
		i915_vma_put(vma);
		return ERR_PTR(err);
	}

	return vma;
}

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
#endif