1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#include <uapi/drm/pvr_drm.h>
#include <drm/drm_syncobj.h>
#include <drm/gpu_scheduler.h>
#include <linux/xarray.h>
#include <linux/dma-fence-unwrap.h>
#include "pvr_device.h"
#include "pvr_queue.h"
#include "pvr_sync.h"
static int
pvr_check_sync_op(const struct drm_pvr_sync_op *sync_op)
{
u8 handle_type;
if (sync_op->flags & ~DRM_PVR_SYNC_OP_FLAGS_MASK)
return -EINVAL;
handle_type = sync_op->flags & DRM_PVR_SYNC_OP_FLAG_HANDLE_TYPE_MASK;
if (handle_type != DRM_PVR_SYNC_OP_FLAG_HANDLE_TYPE_SYNCOBJ &&
handle_type != DRM_PVR_SYNC_OP_FLAG_HANDLE_TYPE_TIMELINE_SYNCOBJ)
return -EINVAL;
if (handle_type == DRM_PVR_SYNC_OP_FLAG_HANDLE_TYPE_SYNCOBJ &&
sync_op->value != 0)
return -EINVAL;
return 0;
}
static void
pvr_sync_signal_free(struct pvr_sync_signal *sig_sync)
{
if (!sig_sync)
return;
drm_syncobj_put(sig_sync->syncobj);
dma_fence_chain_free(sig_sync->chain);
dma_fence_put(sig_sync->fence);
kfree(sig_sync);
}
void
pvr_sync_signal_array_cleanup(struct xarray *array)
{
struct pvr_sync_signal *sig_sync;
unsigned long i;
xa_for_each(array, i, sig_sync)
pvr_sync_signal_free(sig_sync);
xa_destroy(array);
}
static struct pvr_sync_signal *
pvr_sync_signal_array_add(struct xarray *array, struct drm_file *file, u32 handle, u64 point)
{
struct pvr_sync_signal *sig_sync;
struct dma_fence *cur_fence;
int err;
u32 id;
sig_sync = kzalloc(sizeof(*sig_sync), GFP_KERNEL);
if (!sig_sync)
return ERR_PTR(-ENOMEM);
sig_sync->handle = handle;
sig_sync->point = point;
if (point > 0) {
sig_sync->chain = dma_fence_chain_alloc();
if (!sig_sync->chain) {
err = -ENOMEM;
goto err_free_sig_sync;
}
}
sig_sync->syncobj = drm_syncobj_find(file, handle);
if (!sig_sync->syncobj) {
err = -EINVAL;
goto err_free_sig_sync;
}
/* Retrieve the current fence attached to that point. It's
* perfectly fine to get a NULL fence here, it just means there's
* no fence attached to that point yet.
*/
if (!drm_syncobj_find_fence(file, handle, point, 0, &cur_fence))
sig_sync->fence = cur_fence;
err = xa_alloc(array, &id, sig_sync, xa_limit_32b, GFP_KERNEL);
if (err)
goto err_free_sig_sync;
return sig_sync;
err_free_sig_sync:
pvr_sync_signal_free(sig_sync);
return ERR_PTR(err);
}
static struct pvr_sync_signal *
pvr_sync_signal_array_search(struct xarray *array, u32 handle, u64 point)
{
struct pvr_sync_signal *sig_sync;
unsigned long i;
xa_for_each(array, i, sig_sync) {
if (handle == sig_sync->handle && point == sig_sync->point)
return sig_sync;
}
return NULL;
}
static struct pvr_sync_signal *
pvr_sync_signal_array_get(struct xarray *array, struct drm_file *file, u32 handle, u64 point)
{
struct pvr_sync_signal *sig_sync;
sig_sync = pvr_sync_signal_array_search(array, handle, point);
if (sig_sync)
return sig_sync;
return pvr_sync_signal_array_add(array, file, handle, point);
}
int
pvr_sync_signal_array_collect_ops(struct xarray *array,
struct drm_file *file,
u32 sync_op_count,
const struct drm_pvr_sync_op *sync_ops)
{
for (u32 i = 0; i < sync_op_count; i++) {
struct pvr_sync_signal *sig_sync;
int ret;
if (!(sync_ops[i].flags & DRM_PVR_SYNC_OP_FLAG_SIGNAL))
continue;
ret = pvr_check_sync_op(&sync_ops[i]);
if (ret)
return ret;
sig_sync = pvr_sync_signal_array_get(array, file,
sync_ops[i].handle,
sync_ops[i].value);
if (IS_ERR(sig_sync))
return PTR_ERR(sig_sync);
}
return 0;
}
int
pvr_sync_signal_array_update_fences(struct xarray *array,
u32 sync_op_count,
const struct drm_pvr_sync_op *sync_ops,
struct dma_fence *done_fence)
{
for (u32 i = 0; i < sync_op_count; i++) {
struct dma_fence *old_fence;
struct pvr_sync_signal *sig_sync;
if (!(sync_ops[i].flags & DRM_PVR_SYNC_OP_FLAG_SIGNAL))
continue;
sig_sync = pvr_sync_signal_array_search(array, sync_ops[i].handle,
sync_ops[i].value);
if (WARN_ON(!sig_sync))
return -EINVAL;
old_fence = sig_sync->fence;
sig_sync->fence = dma_fence_get(done_fence);
dma_fence_put(old_fence);
if (WARN_ON(!sig_sync->fence))
return -EINVAL;
}
return 0;
}
void
pvr_sync_signal_array_push_fences(struct xarray *array)
{
struct pvr_sync_signal *sig_sync;
unsigned long i;
xa_for_each(array, i, sig_sync) {
if (sig_sync->chain) {
drm_syncobj_add_point(sig_sync->syncobj, sig_sync->chain,
sig_sync->fence, sig_sync->point);
sig_sync->chain = NULL;
} else {
drm_syncobj_replace_fence(sig_sync->syncobj, sig_sync->fence);
}
}
}
static int
pvr_sync_add_dep_to_job(struct drm_sched_job *job, struct dma_fence *f)
{
struct dma_fence_unwrap iter;
u32 native_fence_count = 0;
struct dma_fence *uf;
int err = 0;
dma_fence_unwrap_for_each(uf, &iter, f) {
if (pvr_queue_fence_is_ufo_backed(uf))
native_fence_count++;
}
/* No need to unwrap the fence if it's fully non-native. */
if (!native_fence_count)
return drm_sched_job_add_dependency(job, f);
dma_fence_unwrap_for_each(uf, &iter, f) {
/* There's no dma_fence_unwrap_stop() helper cleaning up the refs
* owned by dma_fence_unwrap(), so let's just iterate over all
* entries without doing anything when something failed.
*/
if (err)
continue;
if (pvr_queue_fence_is_ufo_backed(uf)) {
struct drm_sched_fence *s_fence = to_drm_sched_fence(uf);
/* If this is a native dependency, we wait for the scheduled fence,
* and we will let pvr_queue_run_job() issue FW waits.
*/
err = drm_sched_job_add_dependency(job,
dma_fence_get(&s_fence->scheduled));
} else {
err = drm_sched_job_add_dependency(job, dma_fence_get(uf));
}
}
dma_fence_put(f);
return err;
}
int
pvr_sync_add_deps_to_job(struct pvr_file *pvr_file, struct drm_sched_job *job,
u32 sync_op_count,
const struct drm_pvr_sync_op *sync_ops,
struct xarray *signal_array)
{
int err = 0;
if (!sync_op_count)
return 0;
for (u32 i = 0; i < sync_op_count; i++) {
struct pvr_sync_signal *sig_sync;
struct dma_fence *fence;
if (sync_ops[i].flags & DRM_PVR_SYNC_OP_FLAG_SIGNAL)
continue;
err = pvr_check_sync_op(&sync_ops[i]);
if (err)
return err;
sig_sync = pvr_sync_signal_array_search(signal_array, sync_ops[i].handle,
sync_ops[i].value);
if (sig_sync) {
if (WARN_ON(!sig_sync->fence))
return -EINVAL;
fence = dma_fence_get(sig_sync->fence);
} else {
err = drm_syncobj_find_fence(from_pvr_file(pvr_file), sync_ops[i].handle,
sync_ops[i].value, 0, &fence);
if (err)
return err;
}
err = pvr_sync_add_dep_to_job(job, fence);
if (err)
return err;
}
return 0;
}
|