1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2013-2016 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#ifndef __MSM_FENCE_H__
#define __MSM_FENCE_H__
#include "msm_drv.h"
/**
* struct msm_fence_context - fence context for gpu
*
* Each ringbuffer has a single fence context, with the GPU writing an
* incrementing fence seqno at the end of each submit
*/
struct msm_fence_context {
struct drm_device *dev;
/** name: human readable name for fence timeline */
char name[32];
/** context: see dma_fence_context_alloc() */
unsigned context;
/** index: similar to context, but local to msm_fence_context's */
unsigned index;
/**
* last_fence:
*
* Last assigned fence, incremented each time a fence is created
* on this fence context. If last_fence == completed_fence,
* there is no remaining pending work
*/
uint32_t last_fence;
/**
* completed_fence:
*
* The last completed fence, updated from the CPU after interrupt
* from GPU
*/
uint32_t completed_fence;
/**
* fenceptr:
*
* The address that the GPU directly writes with completed fence
* seqno. This can be ahead of completed_fence. We can peek at
* this to see if a fence has already signaled but the CPU hasn't
* gotten around to handling the irq and updating completed_fence
*/
volatile uint32_t *fenceptr;
spinlock_t spinlock;
/*
* TODO this doesn't really deal with multiple deadlines, like
* if userspace got multiple frames ahead.. OTOH atomic updates
* don't queue, so maybe that is ok
*/
/** next_deadline: Time of next deadline */
ktime_t next_deadline;
/**
* next_deadline_fence:
*
* Fence value for next pending deadline. The deadline timer is
* canceled when this fence is signaled.
*/
uint32_t next_deadline_fence;
struct hrtimer deadline_timer;
struct kthread_work deadline_work;
};
struct msm_fence_context * msm_fence_context_alloc(struct drm_device *dev,
volatile uint32_t *fenceptr, const char *name);
void msm_fence_context_free(struct msm_fence_context *fctx);
bool msm_fence_completed(struct msm_fence_context *fctx, uint32_t fence);
void msm_update_fence(struct msm_fence_context *fctx, uint32_t fence);
struct dma_fence * msm_fence_alloc(void);
void msm_fence_init(struct dma_fence *fence, struct msm_fence_context *fctx);
static inline bool
fence_before(uint32_t a, uint32_t b)
{
return (int32_t)(a - b) < 0;
}
static inline bool
fence_after(uint32_t a, uint32_t b)
{
return (int32_t)(a - b) > 0;
}
#endif
|