summaryrefslogtreecommitdiffstats
path: root/drivers/i3c/master/mipi-i3c-hci/dma.c
blob: 4e01a95cc4d0ad2485caf13fa6776374ce6d0e91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
// SPDX-License-Identifier: BSD-3-Clause
/*
 * Copyright (c) 2020, MIPI Alliance, Inc.
 *
 * Author: Nicolas Pitre <npitre@baylibre.com>
 *
 * Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on
 * v1.x of the spec and v2.0 will likely be split out.
 */

#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/i3c/master.h>
#include <linux/io.h>

#include "hci.h"
#include "cmd.h"
#include "ibi.h"


/*
 * Software Parameter Values (somewhat arb itrary for now).
 * Some of them could be determined at run time eventually.
 */

#define XFER_RINGS			1	/* max: 8 */
#define XFER_RING_ENTRIES		16	/* max: 255 */

#define IBI_RINGS			1	/* max: 8 */
#define IBI_STATUS_RING_ENTRIES		32	/* max: 255 */
#define IBI_CHUNK_CACHELINES		1	/* max: 256 bytes equivalent */
#define IBI_CHUNK_POOL_SIZE		128	/* max: 1023 */

/*
 * Ring Header Preamble
 */

#define rhs_reg_read(r)		readl(hci->RHS_regs + (RHS_##r))
#define rhs_reg_write(r, v)	writel(v, hci->RHS_regs + (RHS_##r))

#define RHS_CONTROL			0x00
#define PREAMBLE_SIZE			GENMASK(31, 24)	/* Preamble Section Size */
#define HEADER_SIZE			GENMASK(23, 16)	/* Ring Header Size */
#define MAX_HEADER_COUNT_CAP		GENMASK(7, 4) /* HC Max Header Count */
#define MAX_HEADER_COUNT		GENMASK(3, 0) /* Driver Max Header Count */

#define RHS_RHn_OFFSET(n)		(0x04 + (n)*4)

/*
 * Ring Header (Per-Ring Bundle)
 */

#define rh_reg_read(r)		readl(rh->regs + (RH_##r))
#define rh_reg_write(r, v)	writel(v, rh->regs + (RH_##r))

#define RH_CR_SETUP			0x00	/* Command/Response Ring */
#define CR_XFER_STRUCT_SIZE		GENMASK(31, 24)
#define CR_RESP_STRUCT_SIZE		GENMASK(23, 16)
#define CR_RING_SIZE			GENMASK(8, 0)

#define RH_IBI_SETUP			0x04
#define IBI_STATUS_STRUCT_SIZE		GENMASK(31, 24)
#define IBI_STATUS_RING_SIZE		GENMASK(23, 16)
#define IBI_DATA_CHUNK_SIZE		GENMASK(12, 10)
#define IBI_DATA_CHUNK_COUNT		GENMASK(9, 0)

#define RH_CHUNK_CONTROL			0x08

#define RH_INTR_STATUS			0x10
#define RH_INTR_STATUS_ENABLE		0x14
#define RH_INTR_SIGNAL_ENABLE		0x18
#define RH_INTR_FORCE			0x1c
#define INTR_IBI_READY			BIT(12)
#define INTR_TRANSFER_COMPLETION	BIT(11)
#define INTR_RING_OP			BIT(10)
#define INTR_TRANSFER_ERR		BIT(9)
#define INTR_WARN_INS_STOP_MODE		BIT(7)
#define INTR_IBI_RING_FULL		BIT(6)
#define INTR_TRANSFER_ABORT		BIT(5)

#define RH_RING_STATUS			0x20
#define RING_STATUS_LOCKED		BIT(3)
#define RING_STATUS_ABORTED		BIT(2)
#define RING_STATUS_RUNNING		BIT(1)
#define RING_STATUS_ENABLED		BIT(0)

#define RH_RING_CONTROL			0x24
#define RING_CTRL_ABORT			BIT(2)
#define RING_CTRL_RUN_STOP		BIT(1)
#define RING_CTRL_ENABLE		BIT(0)

#define RH_RING_OPERATION1		0x28
#define RING_OP1_IBI_DEQ_PTR		GENMASK(23, 16)
#define RING_OP1_CR_SW_DEQ_PTR		GENMASK(15, 8)
#define RING_OP1_CR_ENQ_PTR		GENMASK(7, 0)

#define RH_RING_OPERATION2		0x2c
#define RING_OP2_IBI_ENQ_PTR		GENMASK(23, 16)
#define RING_OP2_CR_DEQ_PTR		GENMASK(7, 0)

#define RH_CMD_RING_BASE_LO		0x30
#define RH_CMD_RING_BASE_HI		0x34
#define RH_RESP_RING_BASE_LO		0x38
#define RH_RESP_RING_BASE_HI		0x3c
#define RH_IBI_STATUS_RING_BASE_LO	0x40
#define RH_IBI_STATUS_RING_BASE_HI	0x44
#define RH_IBI_DATA_RING_BASE_LO	0x48
#define RH_IBI_DATA_RING_BASE_HI	0x4c

#define RH_CMD_RING_SG			0x50	/* Ring Scatter Gather Support */
#define RH_RESP_RING_SG			0x54
#define RH_IBI_STATUS_RING_SG		0x58
#define RH_IBI_DATA_RING_SG		0x5c
#define RING_SG_BLP			BIT(31)	/* Buffer Vs. List Pointer */
#define RING_SG_LIST_SIZE		GENMASK(15, 0)

/*
 * Data Buffer Descriptor (in memory)
 */

#define DATA_BUF_BLP			BIT(31)	/* Buffer Vs. List Pointer */
#define DATA_BUF_IOC			BIT(30)	/* Interrupt on Completion */
#define DATA_BUF_BLOCK_SIZE		GENMASK(15, 0)


struct hci_rh_data {
	void __iomem *regs;
	void *xfer, *resp, *ibi_status, *ibi_data;
	dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma;
	unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total;
	unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz;
	unsigned int done_ptr, ibi_chunk_ptr;
	struct hci_xfer **src_xfers;
	spinlock_t lock;
	struct completion op_done;
};

struct hci_rings_data {
	unsigned int total;
	struct hci_rh_data headers[] __counted_by(total);
};

struct hci_dma_dev_ibi_data {
	struct i3c_generic_ibi_pool *pool;
	unsigned int max_len;
};

static inline u32 lo32(dma_addr_t physaddr)
{
	return physaddr;
}

static inline u32 hi32(dma_addr_t physaddr)
{
	/* trickery to avoid compiler warnings on 32-bit build targets */
	if (sizeof(dma_addr_t) > 4) {
		u64 hi = physaddr;
		return hi >> 32;
	}
	return 0;
}

static void hci_dma_cleanup(struct i3c_hci *hci)
{
	struct hci_rings_data *rings = hci->io_data;
	struct hci_rh_data *rh;
	unsigned int i;

	if (!rings)
		return;

	for (i = 0; i < rings->total; i++) {
		rh = &rings->headers[i];

		rh_reg_write(RING_CONTROL, 0);
		rh_reg_write(CR_SETUP, 0);
		rh_reg_write(IBI_SETUP, 0);
		rh_reg_write(INTR_SIGNAL_ENABLE, 0);

		if (rh->xfer)
			dma_free_coherent(&hci->master.dev,
					  rh->xfer_struct_sz * rh->xfer_entries,
					  rh->xfer, rh->xfer_dma);
		if (rh->resp)
			dma_free_coherent(&hci->master.dev,
					  rh->resp_struct_sz * rh->xfer_entries,
					  rh->resp, rh->resp_dma);
		kfree(rh->src_xfers);
		if (rh->ibi_status)
			dma_free_coherent(&hci->master.dev,
					  rh->ibi_status_sz * rh->ibi_status_entries,
					  rh->ibi_status, rh->ibi_status_dma);
		if (rh->ibi_data_dma)
			dma_unmap_single(&hci->master.dev, rh->ibi_data_dma,
					 rh->ibi_chunk_sz * rh->ibi_chunks_total,
					 DMA_FROM_DEVICE);
		kfree(rh->ibi_data);
	}

	rhs_reg_write(CONTROL, 0);

	kfree(rings);
	hci->io_data = NULL;
}

static int hci_dma_init(struct i3c_hci *hci)
{
	struct hci_rings_data *rings;
	struct hci_rh_data *rh;
	u32 regval;
	unsigned int i, nr_rings, xfers_sz, resps_sz;
	unsigned int ibi_status_ring_sz, ibi_data_ring_sz;
	int ret;

	regval = rhs_reg_read(CONTROL);
	nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval);
	dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings);
	if (unlikely(nr_rings > 8)) {
		dev_err(&hci->master.dev, "number of rings should be <= 8\n");
		nr_rings = 8;
	}
	if (nr_rings > XFER_RINGS)
		nr_rings = XFER_RINGS;
	rings = kzalloc(struct_size(rings, headers, nr_rings), GFP_KERNEL);
	if (!rings)
		return -ENOMEM;
	hci->io_data = rings;
	rings->total = nr_rings;

	regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total);
	rhs_reg_write(CONTROL, regval);

	for (i = 0; i < rings->total; i++) {
		u32 offset = rhs_reg_read(RHn_OFFSET(i));

		dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset);
		ret = -EINVAL;
		if (!offset)
			goto err_out;
		rh = &rings->headers[i];
		rh->regs = hci->base_regs + offset;
		spin_lock_init(&rh->lock);
		init_completion(&rh->op_done);

		rh->xfer_entries = XFER_RING_ENTRIES;

		regval = rh_reg_read(CR_SETUP);
		rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval);
		rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval);
		DBG("xfer_struct_sz = %d, resp_struct_sz = %d",
		    rh->xfer_struct_sz, rh->resp_struct_sz);
		xfers_sz = rh->xfer_struct_sz * rh->xfer_entries;
		resps_sz = rh->resp_struct_sz * rh->xfer_entries;

		rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz,
					      &rh->xfer_dma, GFP_KERNEL);
		rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz,
					      &rh->resp_dma, GFP_KERNEL);
		rh->src_xfers =
			kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers),
				      GFP_KERNEL);
		ret = -ENOMEM;
		if (!rh->xfer || !rh->resp || !rh->src_xfers)
			goto err_out;

		rh_reg_write(CMD_RING_BASE_LO, lo32(rh->xfer_dma));
		rh_reg_write(CMD_RING_BASE_HI, hi32(rh->xfer_dma));
		rh_reg_write(RESP_RING_BASE_LO, lo32(rh->resp_dma));
		rh_reg_write(RESP_RING_BASE_HI, hi32(rh->resp_dma));

		regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries);
		rh_reg_write(CR_SETUP, regval);

		rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
		rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY |
						 INTR_TRANSFER_COMPLETION |
						 INTR_RING_OP |
						 INTR_TRANSFER_ERR |
						 INTR_WARN_INS_STOP_MODE |
						 INTR_IBI_RING_FULL |
						 INTR_TRANSFER_ABORT);

		/* IBIs */

		if (i >= IBI_RINGS)
			goto ring_ready;

		regval = rh_reg_read(IBI_SETUP);
		rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval);
		rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES;
		rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE;

		rh->ibi_chunk_sz = dma_get_cache_alignment();
		rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES;
		BUG_ON(rh->ibi_chunk_sz > 256);

		ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries;
		ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total;

		rh->ibi_status =
			dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz,
					   &rh->ibi_status_dma, GFP_KERNEL);
		rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL);
		ret = -ENOMEM;
		if (!rh->ibi_status || !rh->ibi_data)
			goto err_out;
		rh->ibi_data_dma =
			dma_map_single(&hci->master.dev, rh->ibi_data,
				       ibi_data_ring_sz, DMA_FROM_DEVICE);
		if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) {
			rh->ibi_data_dma = 0;
			ret = -ENOMEM;
			goto err_out;
		}

		regval = FIELD_PREP(IBI_STATUS_RING_SIZE,
				    rh->ibi_status_entries) |
			 FIELD_PREP(IBI_DATA_CHUNK_SIZE,
				    ilog2(rh->ibi_chunk_sz) - 2) |
			 FIELD_PREP(IBI_DATA_CHUNK_COUNT,
				    rh->ibi_chunks_total);
		rh_reg_write(IBI_SETUP, regval);

		regval = rh_reg_read(INTR_SIGNAL_ENABLE);
		regval |= INTR_IBI_READY;
		rh_reg_write(INTR_SIGNAL_ENABLE, regval);

ring_ready:
		rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE |
					   RING_CTRL_RUN_STOP);
	}

	return 0;

err_out:
	hci_dma_cleanup(hci);
	return ret;
}

static void hci_dma_unmap_xfer(struct i3c_hci *hci,
			       struct hci_xfer *xfer_list, unsigned int n)
{
	struct hci_xfer *xfer;
	unsigned int i;

	for (i = 0; i < n; i++) {
		xfer = xfer_list + i;
		if (!xfer->data)
			continue;
		dma_unmap_single(&hci->master.dev,
				 xfer->data_dma, xfer->data_len,
				 xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
	}
}

static int hci_dma_queue_xfer(struct i3c_hci *hci,
			      struct hci_xfer *xfer_list, int n)
{
	struct hci_rings_data *rings = hci->io_data;
	struct hci_rh_data *rh;
	unsigned int i, ring, enqueue_ptr;
	u32 op1_val, op2_val;
	void *buf;

	/* For now we only use ring 0 */
	ring = 0;
	rh = &rings->headers[ring];

	op1_val = rh_reg_read(RING_OPERATION1);
	enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val);
	for (i = 0; i < n; i++) {
		struct hci_xfer *xfer = xfer_list + i;
		u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr;

		/* store cmd descriptor */
		*ring_data++ = xfer->cmd_desc[0];
		*ring_data++ = xfer->cmd_desc[1];
		if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
			*ring_data++ = xfer->cmd_desc[2];
			*ring_data++ = xfer->cmd_desc[3];
		}

		/* first word of Data Buffer Descriptor Structure */
		if (!xfer->data)
			xfer->data_len = 0;
		*ring_data++ =
			FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) |
			((i == n - 1) ? DATA_BUF_IOC : 0);

		/* 2nd and 3rd words of Data Buffer Descriptor Structure */
		if (xfer->data) {
			buf = xfer->bounce_buf ? xfer->bounce_buf : xfer->data;
			xfer->data_dma =
				dma_map_single(&hci->master.dev,
					       buf,
					       xfer->data_len,
					       xfer->rnw ?
						  DMA_FROM_DEVICE :
						  DMA_TO_DEVICE);
			if (dma_mapping_error(&hci->master.dev,
					      xfer->data_dma)) {
				hci_dma_unmap_xfer(hci, xfer_list, i);
				return -ENOMEM;
			}
			*ring_data++ = lo32(xfer->data_dma);
			*ring_data++ = hi32(xfer->data_dma);
		} else {
			*ring_data++ = 0;
			*ring_data++ = 0;
		}

		/* remember corresponding xfer struct */
		rh->src_xfers[enqueue_ptr] = xfer;
		/* remember corresponding ring/entry for this xfer structure */
		xfer->ring_number = ring;
		xfer->ring_entry = enqueue_ptr;

		enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries;

		/*
		 * We may update the hardware view of the enqueue pointer
		 * only if we didn't reach its dequeue pointer.
		 */
		op2_val = rh_reg_read(RING_OPERATION2);
		if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) {
			/* the ring is full */
			hci_dma_unmap_xfer(hci, xfer_list, i + 1);
			return -EBUSY;
		}
	}

	/* take care to update the hardware enqueue pointer atomically */
	spin_lock_irq(&rh->lock);
	op1_val = rh_reg_read(RING_OPERATION1);
	op1_val &= ~RING_OP1_CR_ENQ_PTR;
	op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr);
	rh_reg_write(RING_OPERATION1, op1_val);
	spin_unlock_irq(&rh->lock);

	return 0;
}

static bool hci_dma_dequeue_xfer(struct i3c_hci *hci,
				 struct hci_xfer *xfer_list, int n)
{
	struct hci_rings_data *rings = hci->io_data;
	struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number];
	unsigned int i;
	bool did_unqueue = false;

	/* stop the ring */
	rh_reg_write(RING_CONTROL, RING_CTRL_ABORT);
	if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) {
		/*
		 * We're deep in it if ever this condition is ever met.
		 * Hardware might still be writing to memory, etc.
		 */
		dev_crit(&hci->master.dev, "unable to abort the ring\n");
		WARN_ON(1);
	}

	for (i = 0; i < n; i++) {
		struct hci_xfer *xfer = xfer_list + i;
		int idx = xfer->ring_entry;

		/*
		 * At the time the abort happened, the xfer might have
		 * completed already. If not then replace corresponding
		 * descriptor entries with a no-op.
		 */
		if (idx >= 0) {
			u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx;

			/* store no-op cmd descriptor */
			*ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7);
			*ring_data++ = 0;
			if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
				*ring_data++ = 0;
				*ring_data++ = 0;
			}

			/* disassociate this xfer struct */
			rh->src_xfers[idx] = NULL;

			/* and unmap it */
			hci_dma_unmap_xfer(hci, xfer, 1);

			did_unqueue = true;
		}
	}

	/* restart the ring */
	rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);

	return did_unqueue;
}

static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh)
{
	u32 op1_val, op2_val, resp, *ring_resp;
	unsigned int tid, done_ptr = rh->done_ptr;
	struct hci_xfer *xfer;

	for (;;) {
		op2_val = rh_reg_read(RING_OPERATION2);
		if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val))
			break;

		ring_resp = rh->resp + rh->resp_struct_sz * done_ptr;
		resp = *ring_resp;
		tid = RESP_TID(resp);
		DBG("resp = 0x%08x", resp);

		xfer = rh->src_xfers[done_ptr];
		if (!xfer) {
			DBG("orphaned ring entry");
		} else {
			hci_dma_unmap_xfer(hci, xfer, 1);
			xfer->ring_entry = -1;
			xfer->response = resp;
			if (tid != xfer->cmd_tid) {
				dev_err(&hci->master.dev,
					"response tid=%d when expecting %d\n",
					tid, xfer->cmd_tid);
				/* TODO: do something about it? */
			}
			if (xfer->completion)
				complete(xfer->completion);
		}

		done_ptr = (done_ptr + 1) % rh->xfer_entries;
		rh->done_ptr = done_ptr;
	}

	/* take care to update the software dequeue pointer atomically */
	spin_lock(&rh->lock);
	op1_val = rh_reg_read(RING_OPERATION1);
	op1_val &= ~RING_OP1_CR_SW_DEQ_PTR;
	op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr);
	rh_reg_write(RING_OPERATION1, op1_val);
	spin_unlock(&rh->lock);
}

static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
			       const struct i3c_ibi_setup *req)
{
	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
	struct i3c_generic_ibi_pool *pool;
	struct hci_dma_dev_ibi_data *dev_ibi;

	dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
	if (!dev_ibi)
		return -ENOMEM;
	pool = i3c_generic_ibi_alloc_pool(dev, req);
	if (IS_ERR(pool)) {
		kfree(dev_ibi);
		return PTR_ERR(pool);
	}
	dev_ibi->pool = pool;
	dev_ibi->max_len = req->max_payload_len;
	dev_data->ibi_data = dev_ibi;
	return 0;
}

static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
{
	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;

	dev_data->ibi_data = NULL;
	i3c_generic_ibi_free_pool(dev_ibi->pool);
	kfree(dev_ibi);
}

static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci,
				     struct i3c_dev_desc *dev,
				     struct i3c_ibi_slot *slot)
{
	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;

	i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
}

static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh)
{
	struct i3c_dev_desc *dev;
	struct i3c_hci_dev_data *dev_data;
	struct hci_dma_dev_ibi_data *dev_ibi;
	struct i3c_ibi_slot *slot;
	u32 op1_val, op2_val, ibi_status_error;
	unsigned int ptr, enq_ptr, deq_ptr;
	unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part;
	int ibi_addr, last_ptr;
	void *ring_ibi_data;
	dma_addr_t ring_ibi_data_dma;

	op1_val = rh_reg_read(RING_OPERATION1);
	deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val);

	op2_val = rh_reg_read(RING_OPERATION2);
	enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val);

	ibi_status_error = 0;
	ibi_addr = -1;
	ibi_chunks = 0;
	ibi_size = 0;
	last_ptr = -1;

	/* let's find all we can about this IBI */
	for (ptr = deq_ptr; ptr != enq_ptr;
	     ptr = (ptr + 1) % rh->ibi_status_entries) {
		u32 ibi_status, *ring_ibi_status;
		unsigned int chunks;

		ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr;
		ibi_status = *ring_ibi_status;
		DBG("status = %#x", ibi_status);

		if (ibi_status_error) {
			/* we no longer care */
		} else if (ibi_status & IBI_ERROR) {
			ibi_status_error = ibi_status;
		} else if (ibi_addr ==  -1) {
			ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
		} else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) {
			/* the address changed unexpectedly */
			ibi_status_error = ibi_status;
		}

		chunks = FIELD_GET(IBI_CHUNKS, ibi_status);
		ibi_chunks += chunks;
		if (!(ibi_status & IBI_LAST_STATUS)) {
			ibi_size += chunks * rh->ibi_chunk_sz;
		} else {
			ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status);
			last_ptr = ptr;
			break;
		}
	}

	/* validate what we've got */

	if (last_ptr == -1) {
		/* this IBI sequence is not yet complete */
		DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr);
		return;
	}
	deq_ptr = last_ptr + 1;
	deq_ptr %= rh->ibi_status_entries;

	if (ibi_status_error) {
		dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr);
		goto done;
	}

	/* determine who this is for */
	dev = i3c_hci_addr_to_dev(hci, ibi_addr);
	if (!dev) {
		dev_err(&hci->master.dev,
			"IBI for unknown device %#x\n", ibi_addr);
		goto done;
	}

	dev_data = i3c_dev_get_master_data(dev);
	dev_ibi = dev_data->ibi_data;
	if (ibi_size > dev_ibi->max_len) {
		dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
			ibi_size, dev_ibi->max_len);
		goto done;
	}

	/*
	 * This ring model is not suitable for zero-copy processing of IBIs.
	 * We have the data chunk ring wrap-around to deal with, meaning
	 * that the payload might span multiple chunks beginning at the
	 * end of the ring and wrap to the start of the ring. Furthermore
	 * there is no guarantee that those chunks will be released in order
	 * and in a timely manner by the upper driver. So let's just copy
	 * them to a discrete buffer. In practice they're supposed to be
	 * small anyway.
	 */
	slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
	if (!slot) {
		dev_err(&hci->master.dev, "no free slot for IBI\n");
		goto done;
	}

	/* copy first part of the payload */
	ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr;
	ring_ibi_data = rh->ibi_data + ibi_data_offset;
	ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset;
	first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr)
			* rh->ibi_chunk_sz;
	if (first_part > ibi_size)
		first_part = ibi_size;
	dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
				first_part, DMA_FROM_DEVICE);
	memcpy(slot->data, ring_ibi_data, first_part);

	/* copy second part if any */
	if (ibi_size > first_part) {
		/* we wrap back to the start and copy remaining data */
		ring_ibi_data = rh->ibi_data;
		ring_ibi_data_dma = rh->ibi_data_dma;
		dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
					ibi_size - first_part, DMA_FROM_DEVICE);
		memcpy(slot->data + first_part, ring_ibi_data,
		       ibi_size - first_part);
	}

	/* submit it */
	slot->dev = dev;
	slot->len = ibi_size;
	i3c_master_queue_ibi(dev, slot);

done:
	/* take care to update the ibi dequeue pointer atomically */
	spin_lock(&rh->lock);
	op1_val = rh_reg_read(RING_OPERATION1);
	op1_val &= ~RING_OP1_IBI_DEQ_PTR;
	op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr);
	rh_reg_write(RING_OPERATION1, op1_val);
	spin_unlock(&rh->lock);

	/* update the chunk pointer */
	rh->ibi_chunk_ptr += ibi_chunks;
	rh->ibi_chunk_ptr %= rh->ibi_chunks_total;

	/* and tell the hardware about freed chunks */
	rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks);
}

static bool hci_dma_irq_handler(struct i3c_hci *hci, unsigned int mask)
{
	struct hci_rings_data *rings = hci->io_data;
	unsigned int i;
	bool handled = false;

	for (i = 0; mask && i < rings->total; i++) {
		struct hci_rh_data *rh;
		u32 status;

		if (!(mask & BIT(i)))
			continue;
		mask &= ~BIT(i);

		rh = &rings->headers[i];
		status = rh_reg_read(INTR_STATUS);
		DBG("rh%d status: %#x", i, status);
		if (!status)
			continue;
		rh_reg_write(INTR_STATUS, status);

		if (status & INTR_IBI_READY)
			hci_dma_process_ibi(hci, rh);
		if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR))
			hci_dma_xfer_done(hci, rh);
		if (status & INTR_RING_OP)
			complete(&rh->op_done);

		if (status & INTR_TRANSFER_ABORT) {
			dev_notice_ratelimited(&hci->master.dev,
				"ring %d: Transfer Aborted\n", i);
			mipi_i3c_hci_resume(hci);
		}
		if (status & INTR_WARN_INS_STOP_MODE)
			dev_warn_ratelimited(&hci->master.dev,
				"ring %d: Inserted Stop on Mode Change\n", i);
		if (status & INTR_IBI_RING_FULL)
			dev_err_ratelimited(&hci->master.dev,
				"ring %d: IBI Ring Full Condition\n", i);

		handled = true;
	}

	return handled;
}

const struct hci_io_ops mipi_i3c_hci_dma = {
	.init			= hci_dma_init,
	.cleanup		= hci_dma_cleanup,
	.queue_xfer		= hci_dma_queue_xfer,
	.dequeue_xfer		= hci_dma_dequeue_xfer,
	.irq_handler		= hci_dma_irq_handler,
	.request_ibi		= hci_dma_request_ibi,
	.free_ibi		= hci_dma_free_ibi,
	.recycle_ibi_slot	= hci_dma_recycle_ibi_slot,
};